
C∗-ALGEBRAS (MATH 684) COURSE NOTES.

Course given in the Winter term of 2013 by Prof. Chris Phillips.
Notes taken by Eusebio Gardella.

Abstract. These are lecture notes from a course given by Chris Phillips at the University of Oregon. The main
purpose of writing these notes is to have some kind of study guide for my Oral Examination, so in particular:

• Little proof-reading was done.

• Some proofs will be roughly outlined, and some will be just skipped.
There’s some material in these notes that wasn’t covered in class, and there’s some material that was covered in

class but is not here (mainly proofs of various results). Some sections are presented differently here than they

were in class.
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1. Basics of C∗-algebras.

Definition 1.1. A Banach ∗-algebra A, is a Banach algebra with a conjugate linear (continuous) involution
∗ : A → A. If a ∈ A, then a∗ is usually called the adjoint of a. If the norm on A also satisfies ‖a∗a‖ = ‖a‖2,
then A is called a C∗-algebra.

Notice that since ‖x‖2 = ‖x∗x‖ ≤ ‖x‖‖x∗‖, we get ‖x‖ ≤ ‖x∗‖ whenever x 6= 0. Since x∗∗ = x, we get
‖x∗‖ = ‖x‖, for all x ∈ A.

Examples 1.2. Some C∗-algebras.

(1) If H is a Hilbert space, then B(H) is a C∗-algebra, with the adjoint of T being characterized by 〈Tx, y〉 =
〈x, T ∗y〉 for all x, y ∈ H.

(2) More generally, any closed ∗-subalgebra of B(H) is naturally a C∗-algebra.
(3) IfH has finite dimension n, then B(H) ∼= Mn(C). Hence Mn(C) is a finite dimensional simple C∗-algebra.
(4) More generally, ⊕mj=1Mnj (C) is a finite dimensional C∗-algebra.
(5) If X is a locally compact and Hausdorff space, then C0(X) is a commutative C∗-algebra. Notice that

C0(X) is unital if and only if X is compact, in which case C0(X) = C(X).

In the course of the following sections, we will prove that:
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• Every C∗-algebra is (isomorphic to) a C∗-subalgebra of B(H) for some Hilbert space H. Hence, every
C∗-algebra is as in (2).

• Every simple, finite-dimensional C∗-algebra is (isomorphic to) Mn(C) for n =
√

dimCA. Hence, every
simple, finite-dimensional C∗-algebra is as in (3).

• Every finite-dimensional C∗-algebra is (isomorphic to) a sum of matrices with coefficients in C. Hence,
every finite-dimensional C∗-algebra is as in (4).

• Every commutative C∗-algebra is isomorphic to C0(X) for some locally compact Hausdorff space X.
Hence, every commutative C∗-algebra is as in (5).

Examples 1.3. The following Banach ∗-algebras are not C∗-algebras.

(1) A(D) with f∗(z) = f(z). In this case, f(z) = z is self-adjoint, but sp(f) = D (the spectrum of a
self-adjoint element in a C∗-algebra is contained in R: see Proposition 3.6).

(2) L1(G) for a locally compact group G, with convolution and f∗(g) = ∆(g)−1f(g−1).

Definition 1.4. Let A be a C∗-algebra. An element a ∈ A is called normal if a∗a = aa∗, and it is self-adjoint
if a = a∗. We denote the set of all self-adjoint elements of A by Asa.

For each a ∈ A, the elements 1
2 (a+ a∗) and − i

2 (a− a∗) are self-adjoint, and are called the real and imaginary
parts of a. It follows that Asa is a closed real subspace of A and each element a ∈ A has a unique decomposition
as a = b+ ic, with b, c ∈ Asa. In particular, the self-adjoint elements of A linearly span A.

Definition 1.5. An element p ∈ A is called a projection if p∗p = p. We denote the set of all projections on A
by P(A). If A is unital, an element u ∈ A is called unitary if u∗u = uu∗ = 1. We denote the set of all unitaries
in A by U(A).

2. Unitizations of C∗-algebras.

There are many ways to construct a unital C∗-algebra that contains a given C∗-algebra as an essential ideal.
We present first the “maximal” construction.

Definition 2.1. Let A be a Banach algebra. A double centralizer on A is a pair (L,R) ∈ B(A) ⊕ B(A) such
that for all a, b in A, it is true that

(1) L(ab) = L(a)b
(2) R(ab) = aR(b)
(3) R(a)b = aL(b).

Examples 2.2. Some centralizers.

(1) Given x ∈ A, consider Lx(a) = xa and Rx(a) = ax for all a ∈ A.
(2) Consider (L,R) = (idA, idA). If A has a unit, idA = L1 = R1.

We denote by M(A) the set of all double centralizers on A.

Lemma 2.3. With the product (L1, R1) · (L2, R2) = (L1L2, R2R1), it follows thatM(A) is a closed subalgebra
of B(A)⊕ B(A), with the maximum norm on the direct sum.

Lemma 2.4. Let A be a Banach ∗-algebra. Define an involution on B(A) by T ∗(a) = T (a∗)∗ for a ∈ A. Then
the map (L,R) 7→ (R∗, L∗) is an involution on M(A).

Notice that for x ∈ A, we have L∗x = Rx∗ and R∗x = Lx∗ .

Remark 2.5. If A is a C∗-algebra, then for all a ∈ A we have

‖a‖ = sup
‖x‖≤1

‖ax‖ = sup
‖x‖≤1

‖xa‖.

Proof. In any Banach algebra it is true that ‖a‖ ≥ sup‖x‖≤1 ‖ax‖ and ‖a‖ ≥ sup‖x‖≤1 ‖xa‖. If a = 0, this is

immediate, and if a 6= 0 take x = 1
‖a‖a

∗. �

Something stronger than a Banach algebra is needed: if X is any Banach space, define ab = 0 for all a, b ∈ X.
Then X is a Banach algebra and the above remark is false in this case.

Lemma 2.6. Let A be a C∗-algebra and let (L,R) ∈ M(A). Then ‖L‖ = ‖R‖. Also, ‖Lx‖ = ‖Rx‖ = ‖x‖ for
all x ∈ A.

Proof. Let a ∈ A. Then

‖L(a)‖ = sup
‖x‖≤1

‖xL(a)‖ = sup
‖x‖≤1

‖R(x)a‖ ≤ sup
‖x‖≤1

‖R‖‖x‖‖a‖ = ‖R‖‖a‖,

so ‖L‖ ≤ ‖R‖, and likewise ‖R‖ ≤ ‖L‖. The second statement follows from Remark 2.5 above. �
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Definition 2.7. If z = (L,R) ∈M(A), we define its norm by ‖z‖ = ‖L‖(= ‖R‖).

Lemma 2.8. Let A be a Banach algebra with involution such that ‖x2‖ ≥ ‖x‖2 for all x ∈ A. Then A is a
C∗-algebra.

Proof. We only need to show that ‖x‖ = ‖x∗‖, and it is enough to show that ‖x‖ ≥ ‖x∗‖. Assume x 6= 0, then
‖x‖2 ≤ ‖x∗x‖ ≤ ‖x∗‖‖x‖, and the claim follows. �

Theorem 2.9. Let A be a C∗-algebra. Then M(A) is a unital C∗-algebra.

Proof. That M(A) is unital is clear: (idA, idA) ∈ M(A) is its unit. For the first claim, we need to verify the
C∗-condition, so let z ∈M(A). Write z = (L,R), so that z∗z = (R∗L,RL∗). Let a ∈ A with ‖a‖ ≤ 1. Then

‖L(a)‖2 = ‖L(a)∗L(a)‖ = L∗(a∗)L(a)‖ = ‖R(L∗(a∗))a‖ ≤ ‖RL∗‖‖a∗‖‖a‖ ≤ ‖RL∗‖ = ‖z∗z‖.

Since ‖z‖ = ‖L‖, it follows that ‖z‖2 ≤ ‖z∗z‖ and by Lemma 2.8 above, the result follows. �

Remark 2.10. The map A→M(A) given by a 7→ (La, Ra) is an isometric ∗-homomorphism, and its range is
a closed two-sided ideal.

Unitization of a C∗-algebra. Let A be a C∗-algebra. Set A+ = A ⊕ C = {(a, λ) : a ∈ A, λ ∈ C}. Define
addition and scalar multiplication coordinate-wise on A+, and define multiplication and involution by

(a, λ) · (b, µ) = (ab+ µ · a+ λ · b, λµ) (a, λ)∗ = (a∗, λ).

Then A+ is a unital ∗-algebra, with unit (0, 1). Via the injective homomorphism ι : A→ A+ given by ι(a) = (a, 0),
we regard A as sitting inside of A+. We need to define a norm on A+ making it a C∗-algebra.

Corollary 2.11. Let A be a C∗-algebra. Then there is a unique norm on A+ which makes it a C∗-algebra.

Proof. Uniqueness was done before (on any ∗-algebra, there is at most one norm making it a C∗-algebra). For
existence, we divide the discussion into two cases. If A is unital, then A+ ∼= A⊕ C as ∗-algebras, the unit of C
being 1A+ − 1A. In this case, A⊕ C has a C∗-norm. If A is non-unital, then in M(A) we have C · 1 ∩A = {0},
so A + C · 1 ⊆ M(A) is a subalgebra isomorphic to A+. Since it is closed (because A is closed and C is finite
dimensional), it inherits a norm from M(A). �

We can also unitize maps between C∗-algebras. The proof of the following lemma is straightforward.

Lemma 2.12. Let A,B be C∗-algebras, let ϕ : A → B be a homomorphism. Then there is a unique unital
homomorphism ϕ+ : A+ → B+ extending ϕ. Moreover, if B is unital, then there is a unique extension of ϕ to a
homomorphism A+ → B.

3. Some spectral theory for C∗-algebras.

Recall that given a unital Banach algebra A and a ∈ A, the spectrum of a in A is defined to be sp(a) = {λ ∈
C : λ− a is not invertible}.

Definition 3.1. For a non-unital C∗-algebra A, the spectrum of a ∈ A, denoted by sp(a), is the spectrum of a
as an element of A+.

Lemma 3.2. If A is a C∗-algebra and a ∈ A is a normal element, then ‖a‖ = r(a).

Proof. Notice that if a ∈ Asa, then ‖a2‖ = ‖a‖2, so r(a) = lim
∥∥a2n

∥∥ 1
2n = ‖a‖. For a general normal element a,

we get ∥∥∥a2n
∥∥∥2

=
∥∥∥(a∗)2na2n

∥∥∥ =
∥∥∥(a∗a)2n

∥∥∥ = ‖a‖2
n+1

.

Notice that we used that a is normal in the second equality. Finally, ‖a‖ =
∥∥a2n

∥∥ 1
2n → r(a), so ‖a‖ = r(a). �

Corollary 3.3. Let ϕ : A→ B be a unital homomorphism of unital C∗-algebras. Then ‖ϕ‖ ≤ 1 and ‖ϕ‖ = 1 if
ϕ is bijective.

Proof. Since sp(ϕ(a)) ⊆ sp(a), we get that

‖ϕ(a)‖2 = ‖ϕ(a∗a)‖ = r(a∗a) ≤ r(ϕ(a∗a)) = ‖ϕ(a∗a)‖ = ‖ϕ(a)‖2.
Finally, if ϕ is bijective, then sp(b) = sp(ϕ(b)) and we get equality. �

Later in this chapter we will prove a stronger result: any homomorphism between C∗-algebras is norm-
decreasing, and it is an isometry if and only if it is injective.

Corollary 3.4. There exists at most one norm on a ∗-algebra making it a C∗-algebra.

Proof. In a C∗-algebra A, for every a ∈ A we have ‖a‖2 = ‖a∗a‖ = r(a∗a), and the spectral radius is independent

of the norm. So there is at most one option, given by ‖a‖ =
√
r(a∗a). �
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The proof of the following proposition also follows from the Gelfand Theorem (and more easily). To prove it
now we will need a technical lemma.

Lemma 3.5. If A is a unital Banach algebra, a ∈ Inv(A) and λ 6= 0, then λ ∈ sp(a) if and only if λ−1 ∈ sp(a−1).

Proof. It is enough to prove one direction, so assume that λ ∈ sp(a). Then λa(λ−1 − a−1) = a− λ and hence

λ−1 − a−1 = λ−1a−1(a− λ)−1,

so λ−1 − a−1 is a product of invertible elements, so it is invertible itself. Therefore, λ−1 ∈ sp(a−1). �

Proposition 3.6. Let A be a C∗-algebra and a ∈ Asa. Then sp(a) ⊆ R. If moreover A is unital and u ∈ U(A),
then sp(u) ⊆ S1.

Proof. We shall assume that A is unital (or take its unitization). If u ∈ U(A), then ‖u‖2 = ‖u∗u‖ = 1, so
‖u‖ ≤ 1. Let λ ∈ sp(u). Then λ−1 ∈ sp(u−1) = sp(u∗), and since u∗ is also unitary, we get that |λ|, |λ−1| ≤ 1.
Hence |λ| = 1 and sp(u) ⊆ S1.

If a ∈ Asa, the function eiz =
∑∞
n=0

(iz)n

n! is entire. By applying holomorphic functional calculus we see that

u = eia is unitary, with u∗ = e−ia. Now, if λ ∈ sp(a) and b =
∑∞
n=1

in(a−λ)n−1

n! , then

eia − eiλ = ei(a−λ)−1eiλ = (a− λ)beiλ.

Since b commutes with a and a−λ is not invertible, hence eia−eiλ is not invertible either. Thus eiλ ∈ sp(eia) ⊆ S1,
and λ ∈ R. �

Example 3.7. The converse of the above proposition is not true. Indeed, a =

(
1 1
0 1

)
∈M2(C) is:

• not unitary, although sp(a) = {1} ⊆ S1.
• not self-adjoint, although sp(a) = {1} ⊆ R.

However, if we assume that a is normal, then a is self-adjoint if and only if sp(a) ⊆ R and a is unitary if and
only if sp(a) ⊆ S1. This follows from the Gelfand theorem.

4. Commutative C∗-algebras and the Gelfand transform.

The goal of this section is to prove that if A is a commutative C∗-algebra, then there exists a locally compact
Hausdorff space X such that A ∼= C0(X). If we start with an isomorphism A ∼= C0(X), we can recover X
from A by considering the set of maximal ideals of A, because each maximal ideal M has the form M = {f ∈
C0(X) : f(x0) = 0} for some x0 ∈ X. This is the motivating idea for this section.

Definition 4.1. Let A be a Banach algebra. A character on A is a nonzero homomorphism from A into C. If
A is unital, we require this homomorphism to be unital.

The set of all characters on A is called the maximal ideal space of A, and it is denoted by Max(A).

Recall the following standard result for Banach algebras.

Theorem 4.2. Let A be a unital Banach algebra.

(1) If ω ∈ Max(A), then ‖ω‖ = 1.
(2) The map ω 7→ kerω defines a bijection from Max(A) onto the set of all maximal ideals of A.

Remark 4.3. If A is a unital Banach algebra, then Max(A) is nonempty. However, Max(A) may be empty if A
is nonunital, although this is still true for commutative C∗-algebras.

Endow Max(A) with the weak∗ topology (pointwise convergence). Since Max(A) is a closed subset (that is,
the pointwise limit of a net of characters is again a character – only algebra is involved here) of the unit ball of
A∗, the following theorem is a consequence of Alaoglu’s theorem.

Theorem 4.4. If A is a unital and commutative Banach algebra, then Max(A) is a nonempty compact Hausdorff
space.

Definition 4.5. Let A be unital and commutative Banach algebra. If a ∈ A, define â : Max(A)→ C by

(1) εa(ω) = ω(a).

Lemma 4.6. If A is a unital, commutative Banach ∗-algebra and ω : A→ C is a character, then ω(a∗) = ω(a).

Proof. Write a = x + iy for x, y ∈ Asa. Then ω(a∗) = ω(x − iy) = ω(x) − iω(y) so it is enough to show that
ω(a) ∈ R if a ∈ Asa. Indeed, if this is the case, we get that

ω(a∗) = ω((x+ iy)∗) = ω(x) + iω(y) = ω(x) + iω(y) = ω(a).

To show this, notice that a − ω(a) ∈ ker(ω), which is a maximal ideal, so a − ω(a) is not invertible. We
conclude that ω(a) ∈ sp(a) ⊆ R. �
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Proposition 4.7. Let A be a commutative Banach ∗-algebra. Then the map defined by (1) is a ∗-homomorphism
GA : A→ C0(Max(A)), given by a 7→ â.

Proof. Let’s check that â is continuous. Notice that if F ⊆ C is closed, then â−1(F ) = {ω ∈ Max(A) : ω(a) ∈ F}
is weak∗ closed (recall that ωi → ω weak∗ if ωi(b)→ (ω(b))). Hence â ∈ C(Max(A)).
GA is a unital homomorphism because

âb(ω) = ω(ab) = ω(a)ω(b) = â(ω)̂b(ω) 1̂(ω) = ω(1) = 1.

Finally, GA preserves the involution: â∗(ω) = ω(a∗) = ω(a) = â(ω). �

The unital ∗-homomorphism ε : A→ C0(Max(A)) is called the Gelfand transform.

Theorem 4.8. (Gelfand Transform) Let A be commutative C∗-algebra. Then GA : A → C0(Max(A)) is an
isometric ∗-isomorphism. Hence

A ∼= C0(Max(A)).

Proof. Assume first that A is unital. Thanks to the Open Mapping theorem, we only need to show that GA is
isometric and surjective. Notice that an isometry is automatically injective.

Isometry: If a is invertible, then GA(a) is invertible, and its inverse is GA(a−1). Conversely, if a is not invert-
ible, then the ideal I = aA (recall that A is commutative) is proper and thus is contained in some maximal ideal
M (because A is assumed to be unital). Since M = kerω for some character ω, we get that â(ω) = ω(a) = 0
and hence â is not invertible in C(Max(A)), because it vanishes at ω.

From the above paragraph we conclude that a and â have the same spectrum, which must agree with
the range of â ∈ C(Max(A)). Since the norm on C(Max(A)) is the supremum norm, we conclude that
‖a‖A = r(a) = r(â) = ‖â‖∞ (since a is normal, as A is commutative). Hence GA is an isometry.

Surjectivity: Notice that G(A) is a closed subalgebra of C(Max(A)) (because it is isometrically isomorphic to
A, which is complete), that separates points of Max(A) (because two different characters on A must differ at some
point of A), and contains the constants. Hence the Stone-Weierstrass theorem implies that ε(A) = C(Max(A)).

For the nonunital case, we get that GA+ : A+ → C(Max(A+)) is an isometric isomorphism. Since A+/A ∼= C,
GA+(A) is a maximal ideal of C(Max(A+)), and hence it has the form

GA+(A) = C0(Max(A+) \ {π})

for some ρ ∈ Max(A+). It is clear that Max(A+) = Max(A) ∪ {π} where π : A+ → A+/A ∼= C is the quotient
map. Hence ρ = π and the restriction of GA+ to A, which agrees with GA, is an isometric ∗-isomorphism between
A and C0(Max(A)) = C0(Max(A+) \ {π}) = GA+(A). �

The following theorem reduces the study of commutative C∗-algebras to the study of topological spaces.
Therefore the study of C∗-algebras is usually thought of as the study of noncommutative topology.

Theorem 4.9. Define a contravariant functor C from the category of compact Hausdorff spaces and continuous
maps to the category of commutative unital C∗-algebras and unital homomorphisms, by X 7→ C(X). Then C is
an equivalence of categories.

Proof. Need a quasi-inverse functor. Consider the functor Max from the category of commutiative, unital C∗-
algebras to the category of compact Hausdorff spaces. For a homomorphism ϕ : A → B and ω ∈ Max(B) (this
is, a character ω : B → C), define Max(ϕ)(ω) = ω ◦ ϕ. One checks that Max(ϕ) : Max(B) → Max(A) is weak*-
continuous.

For every commutative unital C∗-algebra A and every compact Hausdorff space X, one needs isomorphisms
GA : A→ C(Max(A)) and εX : X → Max(C(X)). That GA is an isomorphism was proved in the Theorem above.
The map εX : X → Max(C(X)) is defined by εX(x)(ω) = ω(x) for all x ∈ X and all ω ∈ Max(C(X)). One
needs to show that εX is continuous, injective and surjective. Since X is compact, this will imply that it is an
homeomorphism.

Continuity: suppose that (xλ)λ∈Λ is a net in X converging to x ∈ X. In order to show that εX(xλ)→ εX(x)
in Max(C(X)), weakly-*, one has to show that the convergence is true opon evaluating at f ∈ Max(C(X)), this
is, f(xλ)→ f(x). This follows from continuity of f .

Injectivity: two non-identical functions defined on Max(C(X)) must differ in some x ∈ Max(C(X)).
Surjectivity: every maximal ideal of C(Y ) has the form {f ∈ C(Y ) : f(y0) = 0} for some y0 ∈ Y . �

Warning 4.10. Not every homomorphism C(X) → C(Y ) comes from a continuous map Y → X. It needs to
be unital.
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Let’s look at the locally compact case. A homomorphism C0(X)→ C0(Y ) corresponds to a unital homomor-
phism C(X+)→ C(Y +) that makes the diagram

C(Y +) //

ev∞
""

C(X+)

ev∞
||

C

commutes. Such maps correspond to continuous maps X+ → Y + sending ∞ to ∞.

Remark 4.11. Note that:

• A continuous map X → Y need not extend to a map X+ → Y + sending ∞ to ∞, and it does so if and
only if it is proper.

• Not all maps X+ → Y + come from maps X → Y . Indeed, some points in X could get mapped to ∞ in
Y +.

Consider the category of locally compact Hausdorff spaces X, with Mor(X,Y ) being all pairs (U, h) with
U ⊆ X open and h : U → Y continuous and proper. Equivalently,

Mor(X,Y ) = {f : X+ → Y + continuous with f(∞) =∞}.
(To obtain the pair (U, h), set U = f−1(Y ) and h = f |U .)

Example 4.12. The map C([0, 1]) ↪→ C([0, 1]) ⊕ C([0, 1]) given by f 7→ (f, 0) comes from the morphism
(U, h) = ([0, 1]× {0}, h(x, 0) = x).

5. Continuous functional calculus.

Let A be a unital C∗-algebra and let a ∈ A be a normal element. Then B = C∗(1, a) is a commutative unital
C∗-algebra, and hence there is a compact space X such that B ∼= C(X).

Lemma 5.1. In the situation described above, we have X ∼= spB(a).

Proof. The map eva : Max(B) → X is continuous and surjective. Let ω1, ω2 : B → C be characters that agree
on a. Since they are ∗-homomorphisms, they agree on all of B, and hence ω1 = ω2. This shows that GB(a) is
injective, and hence it is a homeomorphism. �

Theorem 5.2. Let A be a unital C∗-algebra and let B be a subalgebra of A. For a ∈ B, we have:

(1) If A and B are unital with the same unit, then spA(a) = spB(a).
(2) If A and B are non-unital, then spA(a) = spB(a) and both with contain {0}.
(3) If A is non-unital and B is unital, then

• If a ∈ Inv(B), then spA(a) = spB(a) ∪ {0} and {0} is not contained in spB(a).
• If a /∈ Inv(B), then spA(a) = spB(a) and both with contain {0}.

(4) If A and B are unital with 1A 6= 1B , then
• If a ∈ Inv(B), then spA(a) = spB(a) ∪ {0} and {0} is not contained in spB(a).
• If a /∈ Inv(B), then spA(a) = spB(a) and both with contain {0}.

Example 5.3. The result is not true for Banach ∗-algebras. Let A = C(S1) and let B = A(D) be the disc
algebra. Regard B ↪→ A via f 7→ f |S1 . Let z ∈ A(D) be given by z(ζ) = ζ for all ζ ∈ D. Then spB(z) = D and
spA(z) = S1.

We have proved the following.

Theorem 5.4. (Functional Calculus) Let A be a unital C∗-algebra and let a ∈ A be a normal element. then
there is an isometric isomorphism C∗(a) ∼= C0(sp(a) \ {0}) that sends a to the identity function on sp(a).

Corollary 5.5. If a is normal and nilpotent or quasinilpotent (‖an‖ 1
n → 0, which implies r(a) = 0 and

sp(a) = {0}), then a = 0.

Definition 5.6. If a is a normal element of A and f ∈ C0(sp(a) \ {0}), then we denote by f(a) the element
of A corresponding to f via the isomorphism given in the preceding theorem. This is known as the continuous
functional calculus for normal elements.

Proposition 5.7. (Spectral mapping theorem) If f ∈ C0(sp(a) \ {0}), then sp(f(a)) = f(sp(a)).

Proof. We have

sp(f(a)) = sp(ϕ(f)) = sp(f) = f(sp(a)),

using that ϕ is an isomorphism and that sp(f) = range(f). �
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Proposition 5.8. If in addition g ∈ C0(sp(a) \ {0}), then

g ◦ f(a) = g(f(a)).

Proof. Consider the maps C(sp(f(a))) → A given by g 7→ (g ◦ f)(a) and g 7→ g(f(a)). Both agree on
z : sp(f(a))→ C since they both send it to f(a). Since z generates C(sp(f(a))), they are equal. �

Theorem 5.9. Let A = C(X), B = C(Y ) commutative C∗-algebras, where X,Y are compact Hausdorff spaces.
Then A ∼= B if and only if X ∼= Y .

The Gelfand representation theorem for commutative algebras is fundamentally important. Even in a noncom-
mutative C∗-algebra A, we often obtain useful information of A via the study of certain commutative subalgebras.

The last theorem shows that the study of commutative C∗-algebras is equivalent to the study of compact
Hausdorff spaces, as these are their maximal ideal spaces. Therefore, commutative C∗-algebra theory is the
theory of topology. General C∗-algebra theory is usually referred to as noncommutative topology.

6. Positive cones.

The ultimate goal of this and the following sections is to prove Gelfand-Naimark representation theorem:
every C∗-algebra is a C∗-subalgebra of B(H) for some Hilbert space H. For that, we need to study the order
structure on C∗-algebras.

Recall that an operator T ∈ B(H) is positive if 〈Tx, x〉 ≥ 0 for all x ∈ H. In the case that H is finite-
dimensional, T is positive if and only if T is self-adjoint and all its eigenvalues are nonnegative. The following is
its straightforward generalization.

Definition 6.1. Given a C∗-algebra A, an element a ∈ A is said to be positive if a ∈ Asa and sp(a) ⊆ R+. The
set of all positive elements of A is denoted by A+.

Theorem 6.2. Let A be a C∗-algebra and a ∈ A. Then the following are equivalent:

(1) a ≥ 0.
(2) There exists b ∈ A such that a = b∗b.
(3) There exists b ∈ Asa such that a = b2.
(4) There exists a unique b ∈ A+ such that a = b2.
(5) a = a∗ and ‖t− a‖ ≤ t for any t ≥ ‖a‖.
(6) a = a∗ and ‖t− a‖ ≤ t for some t ≥ ‖a‖.

Proof. (a) implies (c). Apply functional calculus in C∗(1, a).
(c) implies (e). Since t− a is normal (it is indeed self-adjoint), we have

‖t− a‖ = sup{|λ| : λ ∈ sp(t− a) = t− sp(a)} ≤ t.
(e) implies (f). Clear.
(f) implies (a). Again, sp(t− a) = t− sp(a). If |t− λ| = t− λ ≤ t for some t ≥ ‖a‖, then λ ≥ 0.
(a) implies (d). Apply functional calculus in C∗(1, a).
(d) implies (c) implies (b). Clear.
(b) implies (a). One needs to show that elements of the form b∗b are always positive. This takes the most work
and its proof is omitted. �

Definition 6.3. Let a ∈ Asa. Then a2 ∈ A+. Set |a| = (a2)
1
2 . Define the positive and negative parts of a by

a+ =
|a|+ a

2
and a− =

|a| − a
2

.

Then |a|, a+ and a− are positive and a = a+ − a−. Moreover, a+a− = 0 = a−a+.

Corollary 6.4. If A is a unital C∗-algebra, then A is the linear span of its unitaries.

Proof. Let a ∈ Asa, ‖a‖ ≤ 1. Then 1− a2 ∈ A+. Put

u = a+ i(1− a2)
1
2 and v = a− i(1− a2)

1
2 .

Then u∗ = v and u∗u = uu∗ = 1. Hence u and v are unitaries and a = u+v
2 . Finally, any element in A can be

decomposed as the sum of its real and imaginary parts, both of which are self-adjoint. �

Proposition 6.5. Let A be a C∗-algebra. Then

(1) The set A+ is a closed cone, that is:
• A+ is a closed subset of A.
• A+ +A+ ⊆ A+
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• A+ ∩ (−A+) = {0}.
(2) a ∈ A+ if and only if there exists x ∈ A such that a = x∗x.

Proof. Part (a). That A+ is closed follows from condition (e) in the above lemma. Now, let a, b ∈ A+. Set
α = ‖a‖ and β = ‖b‖. Then

‖(α+ β)− (a+ b)‖ = ‖(α− a) + (β − b)‖ ≤ ‖α− a‖+ ‖β − b‖ ≤ α+ β,

so condition (f) of the above lemma holds, and a + b ∈ A+. For the last item, assume that a ≥ 0 and −a ≥ 0.
Then we conclude that a = 0 by looking at the commutative algebra C∗(1, a) ∼= C(sp(a)).

Part (b). It is a weaker form of the existence of (positive) square roots. �

Definition 6.6. In Asa, we write a ≤ b if b−a ∈ A+. Since Asa = A+−A+ and A+∩−A+ = {0}, Asa becomes
a partially ordered real vector space.

Remark 6.7. a, b ≥ 0 doesn’t imply ab ≥ 0. In fact, unless a, b commute, ab need not be selfadjoint.

Theorem 6.8. Let A be a C∗-algebra. Then

(1) A+ = {a∗a : a ∈ A}.
(2) a, b ∈ Asa, a ≤ b and c ∈ A imply that c∗ac ≤ c∗bc.
(3) 0 ≤ a ≤ b implies ‖a‖ ≤ ‖b‖.
(4) If A is unital and a ∈ A+ is invertible, and a ≤ b implies that b is invertible and 0 ≤ b−1 ≤ a−1.

Proof. (a) Follows from the previous theorem.
(b) Notice that c∗bc− c∗ac = c∗(b− a)c = c∗x∗xc = (xc)∗(xc), where b− a = x∗x ∈ A+.
(c) We may assume that A is unital. Recall that a ≤ ‖a‖ for every a ∈ Asa. Now, 0 ≤ a ≤ b implies a ≤ ‖b‖

and hence by looking at C∗(a, 1) (where both a and ‖b‖ belong), we conclude that ‖a‖ ≤ ‖b‖.
(d) Notice that if b ≥ 0 is invertible, then b−1 ≥ 0 too (consider C∗(1, b) ∼= C(sp(b))). Conjugate both sides of

the inequality a ≤ b by a−
1
2 to get 1 ≤ a−

1
2 ba−

1
2 . Now, these two elements commute and by Gelfand theorem,

a−
1
2 ba−

1
2 is invertible, which implies that b is invertible itself. Now, since the result is true in the commutative

case, we get that 0 ≤ a 1
2 b−1a

1
2 ≤ 1, and again conjugating by a−

1
2 we get 0 ≤ b−1 ≤ a−1. �

Theorem 6.9. Let A be a C∗-algebra. If a, b ∈ A+ and a ≤ b, then aα ≤ bα for 0 < α ≤ 1.
On the other hand, if α > 1 is fixed and A is a C∗-algebra in which 0 ≤ a ≤ b implies 0 ≤ aα ≤ bα, then A is

commutative.

Example 6.10. It is not true that 0 ≤ a ≤ b implies a2 ≤ b2 (in noncommutative C∗-algebras). For example,
let A = M2(C) and take

p =

(
1 0
0 0

)
and q =

1

2

(
1 1
1 1

)
.

Then p and q are projections, p ≤ p+ q but p2 = p 
 (p+ q)2 = p+ q + qp+ pq since

q + pq + qp =
1

2

(
3 2
2 1

)
is not positive.

Warning 6.11. If a, b, x are elements of a C∗-algebra A such that a∗a ≤ b∗b and x ≥ 0, it does not follow that
a∗xa ≤ b∗xb.

Warning 6.12. Unless A is commutative, A+ will in general not be a lattice. Indeed, the minimum or maximum
of two positive elements need not even exist.

7. Basic structure of C∗-algebras.

7.1. Approximate identities.

To deal with nonunital C∗-algebras one can often embed A into A+. However, more often, one has to work
in the original nonunital C∗-algebra. Therefore, the notion of approximate identity is essential.

Definition 7.1. Give a C∗-algebra A, an approximate identity for A is an increasing net {eλ}λ∈Λ of positive
elements in the closed unit ball of A such that a = limλ aeλ for all a ∈ A. Notice that this is equivalent to
a = limλ(eλa).

It is not clear that approximate identities always exist in non-unital C∗-algebras. Let’s see a couple of
examples.

Examples 7.2. Approximate identities in K and C0(X).
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(1) Let H be a Hilbert space with orthonormal basis {vn}n∈Z>0
. Then K ≤ B(H) is a nonunital C∗-algebra.

Let’s find an approximate identity for K. Let pn : H → span{v1, . . . , vn} be the orthogonal projection.
Then pn ∈ K and (pn)n∈Z>0 is an increasing sequence of projections in K. Moreover, for any x ∈ K,

‖pnx− x‖, ‖xpn − x‖ → 0 as n→∞.
This follows from the fact that every element in K can be approximated (in the operator norm) by
operators of finite rank.

(2) Let X be a σ−compact, noncompact, locally compact Hausdorff space. Then C0(X) = A is a nonunital
C∗-algebra. Moreover, X = ∪n∈Z>0

Xn, where each Xn is compact and Xn+1 contains a neighborhood
of Xn. There exists a sequence of positive functions fn ∈ C0(X) such that 0 ≤ fn ≤ 1, fn(t) = 1 on Xn

and fn(t) = 0 is t /∈ Xn+1. One checks that, for every g ∈ C0(X),

‖gfn − g‖, ‖fng − g‖ → 0 as n→∞.

Lemma 7.3. Let A be a C∗-algebra and denote by Λ the set of all elements a ∈ A+ with ‖a‖ < 1. Then Λ is
an upwards directed set, that is, if a, b ∈ Λ, then there exists c ∈ Λ such that a, b ≤ c.

Proof. Suppose a ∈ A+. Then 1 + a ∈ Inv(A+) and a(1 + a)−1 = 1− (1 + a)−1.
We claim that a, b ∈ A+ and a ≤ b imply a(1 + a)−1 ≤ b(1 + b)−1. In fact, if a ≤ b, then 1 + a ≤ 1 + b,

which implies that (1 + b)−1 ≤ (1 + a)−1. Consequently, 1 − (1 + a)−1 ≤ 1 − (1 + b)−1, which is the same as
a(1 + a)−1 ≤ b(1 + b)−1.

Note that if a ∈ A+, then a(1 + a)−1 ∈ Λ (it is positive and its norm is less than 1 using functional calculus
and the fact that z

z+1 < 1 for all z ∈ R). For a, b ∈ Λ, put

x = a(1− a)−1, y = b(1− b)−1 and c = (x+ y)(1 + x+ y)−1.

Then x, y ∈ A+, and hence also x+ y ∈ A+. Note that (1 + x)−1 = 1− a and x(1 + x)−1 = a. Hence, the above
claim implies that a = x(1 + x)−1 ≤ c, since x ≤ x+ y. Similarly, b ≤ c. Finally, notice that c ∈ A+ and ‖c‖ < 1
and c ∈ Λ. �

Theorem 7.4. Every C∗-algebra A admits an approximate identity. Indeed, if Λ is the upwards directed set
of all positive elements a ∈ A+ with ‖a‖ < 1, and eλ = λ for all λ ∈ Λ, then {eλ}λ∈Λ forms an approximate
identity for A.

Corollary 7.5. If A is separable, we can choose a countable approximate identity; in fact, a sequence.

Proof. Let {x1, x2, . . .} be a countable dense subset and let (eλ)λ∈Λ an approximate identity. Choose λ1 ∈ Λ
such that ‖eλx1 − x1‖ < 1

2 for all λ ≥ λ1. Now choose λ2 such that λ2 ≥ λ1 and ‖eλxj − xj‖ < 1
4 for j = 1, 2.

Proceeding inductively, we get a sequence {λn}n∈Z>0
such that

‖eλnxk − xk‖ → 0 as n→∞, for all k ∈ Z>0.

Since ‖eλn‖ ≤ 1, a routine ε
3 -argument shows that ‖eλnx− x‖ → 0 as n→∞ for all x ∈ A. �

Definition 7.6. A C∗-algebra is said to be σ-unital if it admits a countable approximate identity.

The above corollary shows that every separable C∗-algebra is σ-unital.

7.2. Hereditary subalgebras.

Definition 7.7. A C∗-subalgebra B of A is said to be hereditary if for any a ∈ A+, b ∈ A+, a ≤ b implies that
a ∈ B.

The subalgebras A and {0} of A are clearly hereditary. Moreover, the intersection of an arbitrary family of
hereditary subalgebras is again an hereditary subalgebra. If S ⊆ A, then the hereditary subalgebra generated by
S is the smallest hereditary subalgebra of A containing S. Equivalently, it is the intersection of all hereditary
subalgebras of A that contain S. It is denoted by Her(S).

Example 7.8. Let p ∈ A be a projection. Then pAp ≤ A is an hereditary subalgebra.

Proof. Assume that 0 ≤ b ≤ pap for some b ∈ A. Then 0 ≤ (1 − p)b(1 − p) ≤ (1 − p)pap(1 − p) = 0, so

(1−p)b(1−p) = 0. Thus, ‖b 1
2 (1−p)‖2 = ‖(1−p)b(1−p)‖ = 0, and hence b(1−p) = 0. This implies that b = bp,

and similarly b = pb. Hence b = pbp ∈ pAp, so pAp is hereditary. �

Theorem 7.9. Let A be a C∗-algebra and let B be a subalgebra. Then the following are equivalent:

(1) B is a hereditary subalgebra.
(2) There exists a closed left ideal L of A such that L ∩ L∗ = B.
(3) There exist closed left and right ideals L and R of A such that L ∩R = B.
(4) For all a ∈ A and for all b, c ∈ B, the element bac belongs to B.
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(5) For all a ∈ A+ and all b ∈ B+, the element bab belongs to B+.

Moreover, the correspondence L 7→ L ∩ L∗ is an order preserving bijection from closed left ideals to hereditary
subalgebras. Given B, we set L = {a ∈ A : a∗a ∈ B}.

Corollary 7.10. If I is an ideal in A, then I is an hereditary subalgebra of A.

Proposition 7.11. Let A be a C∗-algebra and a ∈ A+. Then aAa is the hereditary subalgebra generated by a.

Proof. The subset aAa is a ∗-subalgebra and hence its closure is a C∗-algebra. We have a3 ∈ aAa and since
a ≥ 0, it follows that a = (a3)1/3 ∈ aAa by functional calculus. Now,

(aAa)A(aAa) ⊆ aAaAaAa ⊆ aAa,
and by condition (d) in the Theorem, aAa is hereditary. �

Proposition 7.12. Suppose that B ≤ A is hereditary and B is separable. Then there exists a ∈ A such that
B = aAa.

Proof. Let (un)n∈Z>0
be a countable approximate identity for B. Then a =

∑
n∈Z>0

un
2n ∈ B+, and hence

aAa ⊆ B. Since 0 ≤ un ≤ a, we get that un ∈ aAa. Now, if b ∈ B, then b = limn unbun ∈ aAa, so B = aAa. �

For the pair K(H) ≤ B(H), the converse is also true: there exists u ∈ K+ such that K = uB(H)u if and only
if H is separable. Notice that K(H) is a hereditary subalgebra of B(H) since it is an ideal.

Example 7.13. Let H be a Hilbert space and assume that there exists u ∈ K(H)+ such that K(H) = uB(H)u.

If x ∈ H, then θx,x = limn uvnu for some sequence (vn)n∈Z>0
⊆ B(H). Hence x = θx,x

(
x
‖x‖2

)
∈ u(H). In

particular, H = u(H), and hence H is separable, because so is the range of any compact operator.
In particular, if H is not separable, the hereditary subalgebra K(H) is not singly generated as an hereditary

subalgebra.

Theorem 7.14. Let A be a C∗-algebra, let B be a hereditary subalgebra and let J be an ideal in B. Then
there exists an ideal I of A such that I ∩B = J .

Corollary 7.15. If A is simple and B ≤ A is hereditary, then B is simple.

Example 7.16. The above result is not true if B is not hereditary. For example, let A = M2(C) and B = C⊕C.
Then B is not simple although A is.

Theorem 7.17. A C∗-algebra A is σ-unital if and only if there is a ∈ A+ such that Her(a) = A.

Proof. The second claim in the above theorem shows that Her(a) is always σ-unital.
Conversely, assume that A is σ-unital and let (en)n∈Z>0 be a countable approximate identity. Take a =∑
n∈Z>0

en
2n and B = Her(a). Since 0 ≤ en ≤ 2na, it follows that en ∈ B, and in particular (en)n∈Z>0 is an

approximate identity for B. Now, if b ∈ A, we have that enben → b in norm, but since enben ∈ B, it follows that
b ∈ B. Hence, A = B = Her(a). �

7.3. Ideals and quotients.

The most important consequence of the following theorem is that ideals are hereditary C∗-algebras. In par-
ticular, they are self-adjoint.

Comment: this is actually automatic by Theorem 7.9. In a better version of these notes, this should be fixed.

Theorem 7.18. Let I be an ideal of A. Then I is a hereditary subalgebra of A. Moreover, if (eλ)λ∈Λ is an
approximate identity for I, then

‖πI(a)‖ = ‖a+ I‖ = inf
b∈I
‖a+ b‖ = lim

λ
‖a− eλa‖ = lim

λ
‖a− aeλ‖.

Proof. Let B = I ∩ I∗. Then B is a C∗-subalgebra of A. Let (eλ)λ∈Λ be an approximate identity for B. Note
that eλ ∈ B ⊆ I. If a ∈ I, then limλ ‖a∗a− a∗aeλ‖ = 0. Hence

‖a− aeλ‖ = lim
λ
‖(1− eλ)a∗a(1− eλ)‖ ≤ lim

λ
‖a∗a− a∗aeλ‖ → 0 as λ→∞.

Therefore a = limλ aeλ and also a∗ = limλ a
∗eλ. Since eλ ∈ I, we conclude that a∗ ∈ I. In particular B = I and

I is a C∗-subalgebra.

We still need to show that I is hereditary. Let 0 ≤ a ≤ b with b ∈ I+. We want to show that a ∈ I as
well. By definition, c ∈ Her(a) = aAa. But since aAa ⊆ I, we conclude that c ∈ I and I is an hereditary
subalgebra.
The claim about the norms is just a clever computation. �
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Corollary 7.19. Let A be a C∗-algebra, let I be an ideal of A, and let J be an ideal of I. Then J is an ideal
of A.

Proof. Let (eλ)λ∈Λ be an approximate identity for I. Let a ∈ A and let x ∈ J . Then ax ∈ I since I is an ideal.
In particular, ax = limλ aeλx belongs to J . By taking adjoints, xa also belongs to J . �

Example 7.20. The above corollary is not true in purely algebraic situations. What is the example?

Corollary 7.21. If I is an ideal of A, then A/I equipped with its natural operations is a C∗-algebra.

Proof. Notice that A/I is a Banach ∗-algebra (because I = I∗). Hence it remains to show that ‖a‖2 = ‖a∗a‖:
‖a∗a‖ = lim

λ
‖a∗a(1− eλ)‖ ≥ lim

λ
‖(1− eλ)a∗a(1− eλ)‖ = lim

λ
‖(1− eλ)a‖2 = ‖a‖2.

For the reverse inequality, notice that ‖a∗a‖ ≤ ‖a∗‖‖a‖ = ‖a‖2, since the involution in A/I is an isometry (this
is clear from the formula for the norm in A/I in the previous theorem, and the fact that the involution in A is
an isometry). �

Theorem 7.22. If ϕ : A → B is a homomorphism of C∗-algebras, then ϕ is norm-decreasing and ϕ(A) is a
C∗-subalgebra of B. Moreover, ϕ is injective if and only if it is isometric.

Proof. If b ∈ Asa, then sp(ϕ(b)) \ {0} ⊆ sp(b) \ {0}. Since ‖b‖ = r(b), we conclude that for any a ∈ A,

‖ϕ(a)‖2 = ‖ϕ(a∗a)‖ = r(ϕ(a∗a)) ≤ r(a∗a) = ‖a∗a‖ = ‖a‖2,
so ϕ is norm-decreasing.

Assume that ϕ is injective. To show that ϕ is isometric, if suffices to show it for positive elements since
‖ϕ(a)‖2 = ‖ϕ(a∗a)‖ (if the latter equals ‖a∗a‖ = ‖a‖2, then the result follows). So let a ∈ A+, and by restricting
ϕ to C∗(a), we may assume that A is commutative. Also, by considering unitizations of A,B and ϕ, we may
assume that A,B are unital. Thus, we may assume that A = C(X), B = C(Y ) for some compact Hausdorff
spaces X,Y (the latter assumption follows from the fact that ϕ(A) is commutative, and by taking the closure

we may assume that ϕ(A) = B).
Define ϕ∗ : Y → X by ϕ∗(y) = εy ◦ ϕ. Since ϕ is injective, ϕ∗ is surjective. Hence, for each g ∈ C(Y ),

‖g‖ = sup
y∈Y
|g(y)| = sup

x∈X
|g(ϕ∗(x))| = ‖ϕ(g)‖,

and thus ϕ is an isometry.
To complete the proof, if ϕ is any homomorphism, then I = kerϕ is a closed ideal of A, and hence ϕ induces an

isometric isomorphism between A/I and ϕ(A), which is therefore a C∗-subalgebra of B. Finally, since ϕ = ϕ̂◦πI ,
where πI is norm-decreasing and ϕ̂ is isometric, it follows that ϕ is norm-decreasing. �

Corollary 7.23. If I CA and B ≤ A, then B + I ≤ A and

B + I

I
∼=

B

B ∩ I
.

8. Positive linear functionals.

Definition 8.1. A linear map φ : A→ B is said to be positive if φ(A+) ⊆ B+.
If B = C, a positive map φ : A→ C is usually called positive linear functional. If moreover φ is bounded and

‖φ‖ = 1, then we say that φ is a state on A.
A positive linear functional τ : A→ C is called a trace if τ(ab) = τ(ba) for all a, b ∈ A. A trace which is also

a state is called a tracial state.

Examples 8.2. Positive linear functionals in some C∗-algebras.

(1) Let A = C(X), where X is a compact Hausdorff space, and let µ be a finite positive Borel measure on
X. Then the linear functional τ : A→ C given by

τ(f) =

∫
X

f dµ

is positive. Since A is commutative, τ is also a trace. Finally, since ‖τ‖ = µ(X), it follows that τ is a
tracial state if and only if µ(X) = 1.

(2) Let A = Mn(C). Define a linear functional Tr on A by

Tr ((aij)ij) =

n∑
i=1

aii.

Then Tr is a trace, and it is usually called the standard trace on Mn(C). The normalized trace on
Mn(C), denoted by tr, is defined by tr = 1

nTr.
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(3) Let A ≤ B(H), where H is a Hilbert space, and v ∈ H, v 6= 0. Define f(a) = 〈a(v), v〉 for a ∈ A. Then
f is positive. Indeed, if a = c∗c, then f(a) = 〈a∗a(v), v〉 = 〈a(v), a(v)〉 = ‖a(v)‖2 ≥ 0. This functional is
in general not a trace.

Lemma 8.3. Every positive linear functional on a C∗-algebra A is bounded.

Proof. Let φ : A → B be a positive linear functional. It is enough to show that there exists M ≥ 0 such that
‖φ(a)‖ ≤M‖a‖ whenever a ∈ A+, since every element in A is a linear combination of four positive elements.
Assume by contradiction that no such M exists. Then, for each n ∈ Z>0, there exists an ∈ A+, ‖an‖ = 1 such
that ‖φ(an)‖ > 22n. Consider a =

∑
n∈Z>0

an
2n ∈ A+. Then a ≥ an

2n and hence ‖φ(a)‖ ≥ ‖φ(an2n )‖ > 2n. Since

this is true for all n, it follows that ‖φ(a)‖ =∞, which is a contradiction. Hence, φ is bounded. �

The following is the Cauchy-Schwarz inequality.

Lemma 8.4. If φ : A→ C is a positive linear functional on a C∗-algebra A, then for all a, b ∈ A
|φ(b∗a)|2 ≤ φ(b∗b)φ(a∗a).

Theorem 8.5. Let φ ∈ A∗. Then the following are equivalent:

(1) φ is positive.
(2) limλ φ(eλ) = ‖φ‖ for any approximate identity.
(3) limλ φ(eλ) = ‖φ‖ for some approximate identity.

Proof. (a) implies (b). Let φ ≥ 0 and (eλ)λ∈Λ be any approximate identity. Then {φ(eλ)}λ∈Λ is increasing, and
since it is bounded (by ‖φ‖ < ∞), it has a limit L ≤ ‖φ‖. For each a ∈ A, ‖a‖ ≤ 1, Cauchy-Schwarz inequality
gives us

|φ(eλa)|2 ≤ φ(e2
λ)φ(a∗a) ≤ φ(eλ)‖φ‖ ≤ L‖φ‖.

Since φ is continuous (being positive), making λ → ∞ we get |φ(a)|2 ≤ L‖φ‖, so ‖φ‖ ≤ L. Since the other
inequality holds by definition of L, we get ‖φ‖ = L.

(b) implies (c). Immediate.
(c) implies (a). Suppose that (φ(eλ))λ∈Λ converges to ‖φ‖. We want to show that φ is positive, that is, that

if a ≥ 0 then φ(a) ≥ 0 as well. Let’s start by proving that φ(Asa) ⊆ R. Let a ∈ Asa with ‖a‖ ≤ 1. Write
φ(a) = α+ iβ. By multiplying by −1 we can assume that b ≥ 0. We want to show that actually β = 0.

Given n ∈ Z>0, choose eλ such that ‖eλa− aeλ‖ < 1
n . Then

‖neλ − ia‖2 = ‖n2eλ + a2 − in(aeλ − eλa)‖ ≤ n2 + 2.

On the other hand, limλ |φ(neλ − ia)|2 = (n‖φ‖+ β)2 + α2. Combining these two inequalities, we get

(n‖φ‖+ β)2 + α2 ≤ (n2 + 2)‖φ‖2

for all n ∈ Z>0. Hence 2n‖φ‖β + β2 + α2 ≤ 2‖φ‖2. If β 6= 0, we would get ‖φ‖ = ∞, so β = 0 and hence
φ(Asa) ⊆ R.

Now, if a ∈ A+ with ‖a‖ ≤ 1, then eλ − a ∈ Asa and eλ − a ≤ eλ ≤ 1. Hence φ(eλ − a) ≤ ‖φ‖. Taking limit
on λ, we get ‖φ‖ − φ(a) ≤ ‖φ‖, which implies φ(a) ≥ 0. This proves that φ ≥ 0. �

Corollary 8.6. If A is unital, then a linear map φ : A→ C is positive if and only if ‖φ‖ = φ(1).

Corollary 8.7. Let A be a C∗-algebra and let φ1 and φ2 be two positive functionals on A. Then ‖φ1 + φ2‖ =
‖φ1‖+ ‖φ2‖.

Corollary 8.8. If A is unital and φ ∈ A∗, then any two of the following imply the other:

(1) φ(1) = 1.
(2) ‖φ‖ = 1.
(3) φ is positive.

Remark 8.9. The set of all states on A, denoted S(A), is convex, and if A is unital then it is weak*-closed, and
hence weak*-compact.

Example 8.10. If A is not unital, then S(A) may not be closed. For example, let A = C0(R) and for x ∈ R,
set τx = evx. Then τx is a state, and the weak limit of τx as x→∞ is 0, which is not a state.

Definition 8.11. A state φ on A is said to be pure if it is an extreme point in S(A).

We will see that pure states on A correspond to irreducible representations of A.

Proposition 8.12. Let X be a locally compact Hausdorff space. Then the states on C0(X) are exactly the
Borel regular probability measures (via the Riesz Representation Theorem), and the pure states are the point
mass measures.
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Lemma 8.13. Let A be a C∗-algebra. For each positive linear functional φ : A → C define an extension
φ+ : A : → C by setting φ+(1) = ‖φ‖. Then φ+ is positive on A+ and ‖φ+‖ = ‖φ‖. Moreover, the extension is
unique.

Proof. We only need to show that ‖φ+‖ = ‖φ‖, because positiveness will follow from the previous theorem. Let
(eλ)λ∈Λ be an approximate unit in A.

Let a+ α · 1 ∈ A+, with ‖a+ α · 1‖ < 1. Then

|φ+(a+ α · 1)| = |φ(a) + α‖φ‖| = |φ(a) + α lim
λ
φ(eλ)| = lim

λ
|φ(a+ α · eλ)|

Since a+α · eλ ∈ A converges to a+α · 1, which has norm strictly less than 1, it follows that there exists λ0 ∈ Λ
such that for all λ ≥ λ0, ‖a+ α · eλ‖ ≤ 1. Hence

|φ+(a+ α · 1)| = lim
λ
|φ(a+ α · eλ)| ≤ ‖φ‖,

and ‖φ+‖ ≤ ‖φ‖. Since the other inequality holds by definition of φ+ (an extension of φ), we get ‖φ+‖ = ‖φ‖. �

Lemma 8.14. Let φ be a state on A, and denote by φ+ the unique state on A+ such that φ+|A = ω. Then φ+

is pure if and only if φ is pure.

Proposition 8.15. Let B be a C∗-subalgebra of A. For each positive linear functional φ on B there exists a

positive linear functional φ̃ on A extending φ and such that ‖φ̃‖ = ‖φ‖. Moreover, if φ is pure, then there exists
a pure extension. Finally, if furthermore B is hereditary, the extension is unique.

Proof. In view of the preceding lemma, we may assume that A and B are unital, and that 1 ∈ B. By the

Hahn-Banach theorem, there is a linear functional φ̂ defined on A extending φ such that ‖φ̂‖ = ‖φ‖. Since

φ̂(1) = φ(1) = ‖φ‖ = ‖φ̂‖, it follows that φ̂ is positive.
To prove the second part, assume that B is hereditary and let (eλ)λ∈Λ be an approximate identity for B. If ψ is

a positive linear functional on A extending φ with ‖φ‖ = ‖ψ‖, then ‖ψ‖ = limλ φ(eλ). Hence limλ ψ(1− eλ) = 0.
It follows that

ψ
(
(1A − eλ)2

)
≤ ψ(1A − eλ)→ 0.

Therefore, for any c ∈ A we have |ψ ((1− eλ)ac) |2 ≤ ψ
(
(1− eλ)2

)
ψ(c∗a∗ac)→ 0. Therefore, by taking c = eλ,

we get that ψ(a) = limλ ψ(eλaeλ). Since B is hereditary and eλ ∈ B, eλAeλ ⊆ B for all λ ∈ Λ. Hence

ψ(a) = lim
λ
ψ(eλaeλ) = lim

λ
φ(eλaeλ)

for every a ∈ A. Therefore, ψ = φ̂. �

In short, the idea of the proof is that whenever (eλ) is an approximate identity for B, then ψ(a) can be
obtained from the values that ψ takes in ∪λeλAeλ (this is essentially because limλ ψ(eλ) = ψ(1)). When B is

hereditary, ∪λeλAeλ ⊆ B, where ψ agrees with φ. Hence there is only one choice for ψ(a), which must be ψ̃(a).

Remark 8.16. If the extension of a pure state is not unique, then not every extension will be pure. For example,
if φ is pure and µ, ν are distinct extensions, then µ+ν

2 is a non-pure extension of φ.

Problem 8.17. (Kasidon-Singer, 1950’s) Let A = B(`2(Z)) and B = `∞(Z), embedded in A as multiplicative
operators. Let φ be a pure state of B. Then it extends to a pure state µ of A. Is the extension unique?

Corollary 8.18. Let a ∈ A be a normal element. Then there is a state φ on A such that |φ(a)| = ‖a‖.

Proof. By the preceding proposition, we can assume that A is commutative, by restricting to C∗(a) ∼= C0(X).
Let x0 ∈ X such that ‖a‖ = |a(x0)| and define a Borel probability measure µ by µ = δx0 , and define a state
τ : A→ C via τ(f) =

∫
X
f(x)dµ = f(x0) for f ∈ C0(X). Then |τ(a)| = |a(x0)| = ‖a‖. �

9. Basic representation theory for C∗-algebras and the Gelfand-Naimark Theorem.

Recall the following definition given at the beginning of the section.

Definition 9.1. A representation of the C∗-algebra A is a pair (π,H), where π : A→ B(H) is a homomorphism
of C∗-algebras. We usually say that π is a representation of A (by bounded operators) on H.
We say that (H, π) is

• faithful, if π is injective.
• non-degenerate, if {π(a)x : a ∈ A, x ∈ H} is dense in H.
• cyclic, if there exists v ∈ H such that {π(a)v : a ∈ A} is dense in H.

Remark 9.2. If π has a cyclic vector, then π is non-degenerate.

An application of Zorn’s lemma shows that every non-degenerate representation can be written as the direct
sum of cyclic representations.



14

Definition 9.3. Let A be a ∗-algebra and let π : A → B(H) be a representation. A closed subspace E ⊆ H is
said to be invariant if for all a ∈ A and all ξ ∈ E, we have that π(a)ξ ∈ E.

The following proposition is straightforward.

Proposition 9.4. Let A be a ∗-algebra, let π : A → B(H) be a representation and let E ⊆ H be an inveriant
subspace. Then E⊥ is also invariant.

Definition 9.5. A representation π : A → B(H) is said to be irreducible if there are no non-trivial closed
invariant subspaces. Equivalently, there is no non-trivial direct sum decomposition π = π1 ⊕ π2.

Fact: If A is a C∗-algebra and π is irreducible, then there are no non-trivial, not necessarily closed, invariant
subspaces.

Remark 9.6. π is irreducible if and only if every non-zero vector is cyclic.

Lemma 9.7. A closed subspace E is invariant if and only if the orthogonal projection p ∈ B(H) onto E commutes
with π(a) for all a ∈ A.

Proof. This is also straightforward. �

We present a number of examples.

Example 9.8. Let A = C ⊕ C, let H = C3, and consider π : A → M3 given by π(λ1, λ2) = diag(λ1, λ1, λ2).
We can recover the summands associated with the 1-dimensional irreducible representations σ1(λ2, λ2) = λ1 and
σ2(λ1, λ2) = λ2 by E1 = im(π(1, 0)) and E2 = im(π(0, 1)). These spaces are uniquely determined by π1 in the
sense that if π = σ1 ⊕ σ1 ⊕ σ2, then the range of σ1 ⊕ σ1 must be E1 and the range of σ2 must be E2. Notice
that E2 is irreducible but E1 is not.

Example 9.9. Let X be any locally compact Hausdorff space, and set A = C0(X) and Hµ = L2(X,µ) for some
Borel measure µ. Let πµ : A→ B(Hµ) be the multiplication operator.

If µ is the counting measure on a countable set S ⊆ X, then πµ ∼= ⊕s∈Sevs, with no multiplicities. If S is
dense, then πµ is isometric. It is a fact that irreducible representations of C0(X) correspond to point evaluations.

Let µ be the Lebesgue measure for X ⊆ Rm. The invariant subspaces of πµ are exactly the subspaces of the
form L2(Y, µ) for Y ⊆ X measurable. So πµ has many invariant subspaces, all of them infinite dimensional,
except the zero subspace. None of these are irreducible, except for 0. Indeed, if µ(E) > 0, there exist disjoint
subsets E1, E2 ⊆ E such that E1 ∪ E2 = E and µ(E1), µ(E2) > 0.

Theorem 9.10. (Gelfand-Naimark-Segal construction) Let A be a C∗-algebra. Then for every state ω on A
there is a triple (Hω, πω, ξω) consisting of a Hilbert space Hω, a representation πω of A on Hω, and a cyclic
vector ξω such that ‖ξω‖ = 1 and

ω(a) = 〈πω(a)ξω, ξω〉
for all a ∈ A, and such that ξ is a cyclic vector for π, this is, π(A)ξ = H.

Moreover,

(1) This triple is unique up to unitary equivalence.
(2) The representation πω is irreducible if and only if ω is pure.
(3) Every triple (H, π, ξ) as above comes in this way from a state.

Proof. We only sketch the main steps of the proof.
Existence. Define a sesquilinear form 〈·, ·〉ω on A by 〈a, b〉ω = ω(b∗a) for a, b ∈ A. Set

Nω = {a ∈ A : 〈a, b〉ω = 0 for all b ∈ A} = {a ∈ A : 〈a, a〉ω = 0}.
Standard methods give a non-degenerate scalar product on A/Nω. Complete it to get a Hilbert space which we
denote Hω. The action of A on A/Nω by left multiplication induces an action of A on Hω which we denote by
πω. One shows that it is bounded and preserves the adjoints, so that it is a C∗-algebra representation.

If A is unital, the cyclic vector is ξω = 1 + N ∈ Hω (notice that π(a)ξ = a + N for all a ∈ A, and hence

π(A)ξ = Hω). In the general case, if (eλ)λ∈Λ is an approximate unit for A, then one shows that (eλ +N)λ∈Λ is
a Cauchy net in Hω, and its limit ξω is a cyclic vector since π(a)ξ = limλ aeλ +N = a+N for all a ∈ A.

(1) Uniqueness. Given (H1, π1, ξ1) and (H2, π2, ξ2), define u : H1 → H2 by u(π1(a)ξ1)π2(a)ξ2. One checks
that u is well-defined and it is unitary, and that u(ξ1) = ξ2.

(2) Uses a proposition below, and its proof is omitted.
(3) Define ω(a) = 〈π(a)ξ, ξ〉 for a ∈ A. One checks that ω is a state on A and that (Hω, πω, ξω) = (H, π, ξ). �

Theorem 9.11. (Gelfand-Naimark Representation Theorem) Every C∗-algebra has a faithful representation.
In other words, every C∗-algebra is (isomorphic to) a C∗-subalgebra of B(H) for some Hilbert space H. If A is
separable, then H can be chosen to be separable.
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Proof. Let S be a dense subset of A. For a ∈ S, choose a state ωa on A such that |ωa(a)| = ‖a‖. Take
π = ⊕a∈Sπωa , and note that

〈πωaξωa , ξωa〉 = |ωa(a)| = ‖a‖ ≤ ‖πωa(a)‖‖ξωa‖2 = ‖πωa(a)‖,
so ‖a‖ ≤ ‖πωa(a)‖. That ‖πωa(a)‖ ≤ ‖a‖ is clear. Hence ‖πωa(a)‖ = ‖a‖ for all a ∈ A, and hence for all a ∈ A.

If A is separable, choose S to be countable. �

Corollary 9.12. Let A be a C∗-algebra. Make Mn(A) into a ∗-algebra in the obvious way. Then there is a
unique norm on Mn(A) making it a C∗-algebra.

Proof. Uniqueness was done before. For existence, if A is represented on H, represent Mn(A) on Hn. �

Suppose X is a subset of B(H). Set X ′ = {a ∈ B(H) : ax = xa for all x ∈ X}. If X is self-adjoint, then X ′ is
a C∗-algebra. It is in fact a von Neumann algebra.

Proposition 9.13. Let A be a ∗-algebra and let π : A→ B(H) be a representation. Then π is irreducible if and
only if π(A)′ = C · 1H.

10. Examples.

10.1. Algebra of compact operators and Calkin algebra.

Throughout this section, H will denote a Hilbert space.

Recall that T ∈ B(H) is said to be compact if the closure of the image of the closed unit ball is com-
pact. The C∗-algebra of all compact operators in H is denoted by K(H) or simply K (especially when H is
separable). Clearly every finite-rank operator on H is compact (in this case the closure is not needed!), and we
moreover have the following result.

Lemma 10.1. Let F(H) denote the set of all finite-rank operators on H. Then K(H) = F(H).

Proof. It suffices to show that every positive element 0 ≤ x ∈ K is in the closure of F(H). We use the fact that 0
is the only possible limit point in sp(x). Hence, there is a sequence tn ∈ (0, 1] such that tn ↘ 0 and pn = ftn(x)
are projections. These projections necessarily belong to K because so does x. Since any compact projection has
finite rank, pn ∈ F(H) and moreover ‖pnx − x‖ = ‖ftn − Idsp(x)‖∞ → 0. Since F(H) is an algebraic ideal of

B(H), we conclude that pnx ∈ F(H) and x ∈ F(H). �

Definition 10.2. The Calkin algebra of H is Q(H) = B(H)/K.

The goal of this subsection is to prove that K(H) and Q are simple algebras, that is, that they have no
non-trivial closed two-sided ideals.

Theorem 10.3. The algebra of compact operators K(H) is a simple C∗-algebra.

Proof. It suffices to show that if I0 ⊆ K(H) is a non-zero algebraic ideal, then F(H) ⊆ I0. Let 0 6= x ∈ I0.
Then there is v ∈ H with ‖v‖ = 1 such that x(v) 6= 0. If p ∈ B(H) is a rank one projection, we may write
p(w) = 〈w, e〉e for some unit vector e ∈ H. Define y(w) = 〈w, x(v)〉e and z(w) = 〈w, v〉v. Then y, z ∈ F(H) and
p = (yx)z(x∗y∗) ∈ I0. Since p is arbitrary, F(H) ⊆ I0. �

Theorem 10.4. Let H be a separable Hilbert space. Then Q is simple.

Proof. Let I C B(H) such that K  I. Let 0 ≤ x ∈ I be a non-compact operator. For any ε > 0 let pε be the
projection in C∗(x) ⊆ I associated with χ[ε,‖x‖]. Then f ε

2
≥ χ[ε,‖x‖] (because f ε

2
is nonzero between ε

2 and ε).
Hence 0 ≤ pε ≤ f ε

2
. Since I is an hereditary subalgebra and f ε

2
∈ I, it follows that pε ∈ I as well. Moreover,

pεx − x‖ < ε, and hence pε is not compact (because otherwise x could be approximated by elements in K).
Hence pε is a projection onto an infinite-dimensional subspace of H, which must be isomorphic to H because
it is separable. Therefore, there exists an isometry v ∈ B(H) such that v∗v = IH and vv∗ = p. In particular
v∗pεv = v∗vv∗v = IH ∈ I, and hence I = B(H). �

10.2. Group C∗-algebras.

Definition 10.5. Let G be a locally compact Hausdorff topological group. A unitary representation of G on a
Hilbert space H is a strongly continuous homomorphism π : G→ U(H). Continuity means that the map G→ H,
given by g 7→ π(g)ξ is continuous (for every fixed ξ ∈ H).

A unitary representation π : G → B(H) is said to be irreducible if π(G) doesn’t commute with any proper
projection in B(H). This is equivalent to asking that C∗(π(G)) has no non-trivial invariant subspaces.
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Definition 10.6. Let
∏

be the collection of unitary representations of G. The group C∗-algebra of G, denoted
by C∗(G), is the closure of the universal representation

⊕
π∈

∏ π of G.

For every locally compact group G there exists a regular Borel measure µG such that µG(gE) = µG(E) for
all Borel subsets E ⊆ G and all g ∈ G. It is unique up to scalar multiples, and it is known as the left Haar
measure. Moreover, µG is finite if and only if G is compact, in which case we normalize it so that µG(G) = 1. If
G is infinite and discrete, then we normalize it so that µG({e}) = 1, were e is the unit of the group G.

Examples 10.7. Examples of group C∗-algebras.

(1) If G = Z, then C∗(Z) ∼= C(S1).

(2) More generally, if G is abelian, then C∗(G) ∼= C(Ĝ).
(3) If Fn is the free group on n generators, then C∗(Fn) is a simple C∗-algebra with a unique tracial

state and no non-trivial projections. It is known that C∗(Fn) ∼= C∗(Fm) if and only if n = m, since
K1(C∗(Fn)) = Zn. However, if we take their weak closures, it is not known whether L(Fn) ∼= L(Fm) for
some n 6= m.

Theorem 10.8. Let G be a locally compact group. Then the unitary representations of G are in one-to-one
correspondence with the non-degenerate representations of C∗(G).

Remark 10.9. Every locally compact Hausdorff group has a distinguished representation, called the left regular
representation on L2(G,µG), which is defined by λt(f)(s) = f(t−1s), for g, h ∈ G and f ∈ L2(G,µG). Then

〈λt(f), λt(g)〉L2(G) =

∫
G

f(t−1s)g(t−1s)dµG(s) =

∫
G

f(r)g(r)dµG(r) = 〈f, g〉L2(G).

Hence λt is unitary, and one can check that λ is strongly continuous. Hence λ is a unitary representation.

The reduced group C∗-algebra is C∗(λ(G)), and it is denoted by C∗r (G). There is a surjective homomorphism
C∗(G)→ C∗r (G), because C∗r (G) is a factor of C∗(G). This surjection is an isomorphism exactly when the group
G is amenable. (See Definition 10.10 and Theorem 10.13 below.)

Definition 10.10. Let G be a locally compact group. A mean on G is a positive linear functional Λ ∈
Hom(L∞(G),R) of norm 1. A mean Λ is said to be left invariant (respectively, right invariant), if Λ(g · a) =
Λ(a) (respectively, Λ(a · g) = Λ(a)) for all g ∈ G, a ∈ L∞(G), where the action of G on L∞(G) is given by
g · a(h) = a(g−1h) for h ∈ G (respectively, a · g(h) = a(hg) for h ∈ G).

The group G is said to be amenable if it admits a left (or right) invariant mean.

Remark 10.11. Suppose that G is discrete. Then G is amenable if and only if there is a finitely additive
probability measure µ (also called a mean), such that µ(gA) = µ(A) for all g ∈ G and all A ⊆ G.

Having a measure µ on G allows us to define integration of bounded functions on G via f 7→
∫
G
fdµ. This is

sometimes called Lebesgue integration.

Examples 10.12. Some examples of amenable groups.

(1) Finite groups are amenable: use the (normalized) counting measure.
(2) More generally, compact groups are amenable: use the Haar measure.
(3) Subgroups of amenable groups are amenable.
(4) The direct product of finitely many amenable groups is amenable. The infinite direct product of amenable

groups need not be amenable.
(5) The group Z is amenable.

Proof. We will show the existence of a shift invariant, finitely additive probability measure on Z. Let S
be the shift operator on `∞(Z), given by Sxj = xj+1 for j ∈ Z. Let u ∈ `∞(Z) be the constant sequence
uj = 1 for all j ∈ Z. Any element y ∈ Y = range(S − I) has a distance larger or equal to 1 from
u, since otherwise yj = xj+1 − xj would be positive an bounded away from 0, hence xj could not be
bounded. This implies that there is a well defined norm one linear functional on the subspace R · u+ Y
given by tu+y 7→ t. By the Hahn-Banach theorem, this functional can be extended to a norm-one linear
functional on all of `∞(Z), which is by construction a shift-invariant finitely additive probability measure
on Z. �

(6) A group is amenable if and only if all its finitely generated subgroups are.
(7) In particular, any abelian group is amenable.

Theorem 10.13. A locally compact group G is amenable if and only if the natural map C∗(G)→ C∗r (G) is an
isomorphism.



17

10.3. Toeplitz and Cuntz algebras, and their generalizations.

Example 10.14. Fix n ∈ {2, 3, . . .}, and choose isometries s1, . . . , sn ∈ B(L2([0, 1])) such that the range of sj
is L2([ j−1

n , jn ]). Denote by On the C∗-algebra generated by s1, . . . , sn inside of B(L2([0, 1])). Then On is simple,
purely infinite, separable and traceless. For different values of n, they are not isomorphic since K0(On) = Zn−1.

Example 10.15. Let s ∈ B(`2(Z>0)) be the unilateral shift. Let τ = C∗(s) ≤ B(`2(Z>0)). Then K ⊆ τ is
an ideal, and τ/K ∼= C(S1). Fact: there is no unitary u ∈ τ such that π(u) = ξ, where π : τ → C(S1) is the
canonical surjection, and ξ ∈ C(S1) is the canonical unitary that generates C(S1).

Example 10.16. Generalizations of the above algebras include Cuntz-Krieger algebras and graph algebras.

11. Inductive limits of C∗-algebras.

Definition 11.1. Let C be a category and let D be a directed set (this is, for all µ, λ ∈ D there exists ν ∈ D
such that ν ≥ µ, λ). A directed system in C is a pair of families ((Aλ)λ∈D, (ϕλ,µ)µ,λ∈D,λ≥µ) where (Aλ)λ is a
family of objects of C indexed by D and (ϕλ,µ)µ,λ∈D,λ≥µ is a family of morphisms ϕλ,µ : Aµ → Aλ such that
ϕλ,µ ◦ ϕµ,ν = ϕλ,ν for all λ ≥ µ ≥ ν.

The direct limit of the directed system ((Aλ)λ∈D, (ϕλ,µ)µ,λ∈D,λ≥µ) is an object A = lim−→Aλ in C together with
maps ϕ∞,λ : Aλ → A for λ ∈ D such that ϕ∞,λ ◦ ϕλ,µ = ϕ∞,µ for all λ ≥ µ, that satisfy the following universal
property. Given an object B of C and morphisms ψλ : Aλ → B for all λ such that ψλ ◦ ϕλ,µ = ψµ for all λ ≥ µ,
then there exists a unique morphism ψ : A→ B such that ψ ◦ ϕλ = ψλ for all λ ∈ D.

Aµ
ϕλ,µ //

ψµ
**

Aλ
ψλ

&&

ϕ∞,λ // A

ψ

��
B.

We will usually take D = Z>0, and express the directed system as a pair of sequences ((An)n∈Z>0 , (ϕn)n∈Z>0),
where ϕn : An → An+1 is a morphism. For n ≥ m, we set ϕn,m = ϕn−1 ◦ · · · ◦ ϕm.

Direct limits, if they exist, are unique up to unique isomorphism.

Theorem 11.2. Direct limits exist in the categories of abelian groups, groups, R-modules for any ring R,
algebras over C and C∗-algebras.

Proof. We only sketch the proof. Given a directed system (Aλ), define A = tλ∈DAλ/ ∼, where if x ∈ Aλ and
y ∈ Aµ, we say that x ∼ y if there is ν ≥ λ, µ such that ϕν,λ(x) = ϕν,µ(y).

We briefly describe how to define the relevant operations on A. Given a, b ∈ A, choose λ, µ ∈ D and
x ∈ Aλ, y ∈ Aµ such that a = [x] and b = [y]. Define a+ b = [ϕν,λ(x) + ϕν,µ(y)]. The operation is well-defined,
is associative, has an identity, inverses and is commutative. One defines the other operations analogously.

For λ ∈ D, define ϕ∞,λ : Aλ → A by ϕ∞,λ(a) = [a]. To check the universal property, let B and (ψλ)λ∈D be
as in the definition, and define ψ(ϕ∞,λ(a)) = ψλ(a) for a ∈ Aλ. One checks that ψ has the desired property and
that it is unique. This finishes the proof for all categories mentioned except for C∗-algebras.

We describe the proof for the category of C∗-algebras. We will assume that (Aλ)λ∈D is a directed system of
C∗-algebras with injective maps. Let A(0) be the algebraic direct limits as ∗-algebras. Define ‖ϕ∞,λ(a)‖ = ‖a‖
for λ ∈ D and a ∈ Aλ. Since all maps are isometric, this is well-defined. Algebraic arguments show that this
really defines a norm and that (A(0), ‖ · ‖) is a normed ∗-algebra with ‖a∗a‖ = ‖a‖2 for all a ∈ A(0). Take
lim−→Aλ = A to be the completion of A(0). It remains to check the universal property, but this follows from the

corresponding universal property for A(0).
For the general case (this is, when the connecting maps are not necessarily injective), one defines the norm

by ‖ϕ∞,λ(a)‖ = limµ≥λ ‖ϕµ,λ(a)‖ and then one completes a suitable quotient of A(0). �

Remark 11.3. In the category of C∗-algebras, lim−→Aλ = ∪λ∈Dϕ∞,λ(Aλ).

The closure really enlargens a lot. For instance, M2∞ = lim−→M2n is a Banach space, so it can’t have a countable

(algebraic) basis, by the Baire category theorem. However, ∪n∈Z>0
M2n certainly has a countable basis.

Example 11.4. Suppose that A is a C∗-algebra and A0 ⊆ A1 ⊆ · · · ⊆ A are subalgebras such that ∪n∈Z>0
An =

A. Then A ∼= lim−→An, where the connecting maps are the inclusions.

Theorem 11.5. Let (Aλ)λ∈D be a directed system of C∗-algebras with injective maps. Let A = lim−→Aλ and let
I be an ideal of A. Then

I = lim−→ϕ−1
λ (I) =

⋃
λ∈D

ϕ∞,λ(A) ∩ I).
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Proof. We give a rough sketch of the proof. Let J = ∪λ∈DI ∩ ϕ∞,λ(Aλ). It suffices to show that J = I.
Notice that J is an ideal (closure of an algebraic ideal in the direct limit) and that J ⊆ I. The canonical map
ψ : A/I → A/J is isometric and has dense range, hence is an isomorphism, and it follows from the definition of
ψ that in this case, I = J . �

Corollary 11.6. If Aλ is simple for all λ ∈ D, then A = lim−→Aλ is simple.

Example 11.7. C → M2(C) → M4(C) → · · · is a directed system, where the map M2n → M2n+1 is given
by a 7→ diag(a, a). The direct limit, denoted M2∞ , is called the 2∞ UHF-algebra, or the CAR algebra. Let’s
construct a representation on a Hilbert space.

Set H = L2
(∏

n∈Z>0
{0, 1}

)
with the product of the normalized counting measures. Take the matrix units in

M2n to be the obvious partial isometries from

L2

(
{x} ×

∞∏
n+1

{0, 1}

)
to

L2

(
{y} ×

∞∏
n+1

{0, 1}

)
for x, y ∈

∏n
1{0, 1}. In this way we may regard M2∞ as a C∗-subalgebra of B(H).

This is a particular case of a more general construction that we study in the following section.

12. UHF-algebras and their classification.

Definition 12.1. Let (dn)n∈Z>0 be a sequence in Z>0. The UHF-algebra associated with it is the direct limit
of the sequence

C→Md1 →Md1d2 → · · · ,
where the map Md1···dn →Md1···dndn+1 is given by a 7→ diag(a, . . . , a) (there are dn+1 copies of a) The choice of
the homomorphism, as long as it is unital, is irrelevant, as we will see.

These direct limit C∗-algebras are called UHF-algebras of type d = (dn)n∈Z>0 . They are simple and have a
unique tracial state. UHF-algebras can be classified up to isomorphism in terms of the sequence (dn)n∈Z>0

for
any choice of unital homomorphisms in the system. The most convenient expression uses K-theory.

Notation 12.2. If n ∈ Z>0, we denote by Mn∞ the UHF-algebra lim−→m
Mnm .

Lemma 12.3. Let n and m be natural numbers. Then Mn∞ and Mm∞ are non-isomorphic if (n,m) = 1. In
fact, there are no non-zero homomorphisms Mn∞ →Mm∞ whenever n doesn’t divide m.

Proof. We just sketch the proof.

Mnr

�� ))

// · · · // Mn∞

��
Mms

// · · · // Mm∞

Start with a unital map Mn∞ → Mm∞ . Choose any r ∈ Z>0 and consider the associated unital map Mns →
Mm∞ . Using semiprojectivity of Mns , lift this map to a unital map Mns →Mmr for some r ∈ Z>0. If n doesn’t
divide m, then such a map doesn’t exist. �

Definition 12.4. Denote by P the set of all prime numbers. A supernatural number if a function S : P →
Z>0 ∪ {∞}. We call if infinite if

∑
p∈P S(p) =∞, and finite otherwise.

If S is finite, we associate to it the natural number n =
∏
p∈P p

S(p).

Definition 12.5. Given supernatural numbers S1 and S2, we say that S1 divides S2, written S1/S2, if S1(p) ≤
S2(p) for all prime numbers p. Notice that this extends the usual notion of divisibility in Z>0.

Remark 12.6. S1/S2 if and only if for all finite supernatural number S such that S/S1, it follows that S/S2.

Definition 12.7. Let S be a supernatural number. We say that a UHF-algebra is of type S if A ∼= lim−→An with

An ∼= Mr(n) for some r(n) ∈ Z>0 with unital maps, and S = supn Sn, with NSn = r(n) for all n ∈ Z>0.

Notice that such a system exists if and only if r(n)/r(n+ 1) for all n ∈ Z>0.
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Remark 12.8. To each sequence d = (dn)n∈Z>0
, associate the function Sd : P → Z>0 ∪ {∞} given by

Sd(p) = sup{` : there is n ∈ Z>0 with p`/d1 · · · dn}.
Then the UHF-algebra associated to d has type Sd. Notice that it isn’t clear that every UHF-algebra has a
unique type.

We need several intermediate results.

Lemma 12.9. Let m,n ∈ Z>0. Then there exists a unital homomorphismMn →Mm if and only if n/m.

Proof. If n/m, set a 7→ diag(a, . . . , a). Conversely, assume that ϕ : Mn → Mm is a unital homomorphism. Set
r = rank(ϕ(e1,1)). Then n = rank(1) = m · r, so n/m. �

Lemma 12.10. Suppose n/m. Then any two unital homomorphisms ϕ,ψ : Mn →Mm are unitarily equivalent.

Proof. Let (ej,k)1≤j,k≤n be a system of matrix units for Mn. Then ϕ(e1,1) and ψ(e1,1) are both projections
in Mm with rank m/n, so there exists a partial isometry s ∈ Mm with s∗s = ϕ(e1,1) and ss∗ = ψ(e1,1).
Take u =

∑n
j=1 ψ(ej,1)sϕ(e1,j). One checks that u is a unitary in Mm, and that uϕ(ek,l) = ψ(ek,l)u for all

1 ≤ j, k ≤ n. �

Lemma 12.11. Let A be an UHF-algebra of type S, let n ∈ Z>0 and let ϕ : Mn → A be a unital homomorphism.
Then n/S.

Proof. Lift Mn → A to a finite stage in the S-decomposition of A. �

Theorem 12.12. Let A and B be UHF-algebras of type SA and SB respectively. Then A ∼= B if and only if
SA = SB .

In particular, every UHF-algebra has a unique type.

Proof. Suppose A ∼= B. Then for every n ∈ Z>0, we have that n/SA if and only if n/SB , by the Lemma above.
Hence SA = SB , and in particular the type of a UHF-algebra is well-defined.

Conversely, suppose that A and B have the same type. Write A = lim−→An and B = lim−→Bn with An ∼= Mr(n)

and Bn ∼= Ms(n) satisfying r(n)/r(n+1) and s(n)/s(n+1) for all n ∈ Z>0. Denote by ϕn and ψn the connecting
maps. Having the same type means that for all n there exists m such that r(n)/s(m), and that for every m there
exists n such that s(m)/r(n).

Construct by induction sequences (nk)k∈Z>0
and (mk)k∈Z>0

and homomorphisms αk : Ank → Bmk and
βk : Bmk → Ank+1

such that βk ◦ αk = ϕnk+1,nk and αk+1 ◦ βk = ψmk+1,mk for all k ∈ Z>0.

An1
//

α1

��

An2
//

α2

��

An3

α3

��

// · · · // A

α

��
Bm1

//

β1

<<

Bm2
//

β2

<<

Bm3
// · · · // B.

β

OO

Using the universal property of direct limits, this will imply that α ◦ β = idB and β ◦ α = idA, so A and B are
isomorphic.

Take n1 = 1. Find m1 such that r(n1)/s(m1). Then there exists a unital homomorphism α1 : An1 → Bm1 .

Find n2 such that s(m1)/r(n2). Then there exists a unital homomorphism β
(0)
1 : Bm1

→ An2
. Now, β

(0)
1 ◦ α1

and ϕn2,n1
are unital maps An1

→ An2
, and by a previous Lemma, they are unitarily equivalent. Let u2 ∈Mn2

be the unitary that implements the equivalence. Replace β
(0)
1 by β1 = Ad(u) ◦ β(0)

1 . This gives β1 ◦α1 = ϕn2,n1
.

Construct the other maps analogously using correcting unitaries. �

Proposition 12.13. If A has supernatural number S and B has supernatural number T , then there exists a
unital homomorphism A → B if and only if S divides T . Moreover, any two such maps are approximately
unitarily equivalent.

13. Real rank and stable rank.

13.1. C∗-algebras of lower rank.

Almost all of the known classification results apply to classes of C∗-algebras for which every algebra has either
real rank zero or stable rank one. This section contains the definitions of these properties as well as some of its
basic properties.

Definition 13.1. Let A be a unital C∗-algebra. Se say that

(1) The real rank of A is zero, written RR(A) = 0, if Inv(A)sa is dense in Asa.
(2) The topological stable rank of A is one, written tsr(A) = 1, if Inv(A) is dense in A.
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If A is not unital, then the real (topological stable) rank of A is zero (one) if so is that of A+.

Theorem 13.2. Let A be a C∗-algebra, and suppose that RR(A) = 0 (or tsr(A) = 1). Then

(1) For every ideal I of A, both I and A/I have real rank zero (topological stable rank one).
(2) For every n ∈ Z>0, the algebra Mn(A) has real rank zero (topological stable rank one).
(3) Every hereditary subalgebra of A has real rank zero (topological stable rank one).
(4) In particular, every corner of A has real rank zero (topological stable rank one).

Moreover, A is an arbitrary C∗-algebra and p is a projection in M(A) such that both pAp and (1− p)A(1− p)
have real rank zero (topological stable rank one), then A itself has real rank zero (topological stable rank one).

Proof. We only sketch the proof.
(a) Is straightforward.
(b) Follows from the fact that if pAp and (1− p)A(1− p) have real rank zero (stable rank one), then so does

A. Indeed, for n = 2, if we let p = e1,1, then pM2(A)p and (1− p)M2(A)(1− p) are isomorphic to A. For general
n, use induction: Mn(A) has complementary corners A and Mn−1(A).

(c) This proof is omitted.
(d) Follows from (c).

The last claim uses the following fact. Write x ∈ A as x =

(
a b
c d

)
for a ∈ pAp and d ∈ (1 − p)A(1 − p).

If d is invertible in (1 − p)A(1 − p), then x is invertible in A if and only if a − db−1c is invertible. Moreover, if
a is self-adjoint, then d and a − db−1c are self-adjoint as well. Using this, one approximates the diagonals by
invertible elements and works out the estimates. �

Proposition 13.3. Direct limits of C∗-algebras with real rank zero (topological stable rank one) have real rank
zero (topological stable rank one).

Example 13.4. AF-algebras have real rank zero and topological stable rank one.

Topological stable rank was introduced by Rieffel with the purpose of showing that the irrational rotation
algebras have cancelation of projections. In fact, topological stable rank is closely related to this property.
Indeed, we have the following:

Lemma 13.5. If tsr(A) = 1, then A has cancelation of projections: p ⊕ q ∼ p ⊕ q′ implies q ∼ q′, for
p, q, q′ ∈M∞(A).

Lemma 13.6. If A is a unital C∗-algebra such that tsr(A) = 1, then U(A)/U0(A)→ K1(A) is surjective. If A
is moreover commutative, then it is an isomorphism.

Theorem 13.7. Let A be a unital C∗-algebra. Then the following are equivalent:

(1) RR(A) = 0;
(2) Every hereditary subalgebra of A has an increasing countable approximate identity consisting of projec-

tions;
(3) The elements of Asa of finite spectrum are dense in Asa.

Theorem 13.8. Let A be a unital C∗-algebra. Then the following are equivalent:

(1) tsr(A) = 1;
(2) The elements of U0(A) of finite spectrum are dense in U0(A).

13.2. Higher values of real rank and stable rank.

For every n ∈ Z>0 ∪ {∞}, there are definitions of real rank n and topological stable rank n, which we define
below. Real rank is supposed to match dimension theory for topological spaces, and real rank is supposed to
match what is called the Bass stable rank for unital rings.

Definition 13.9. (Higson) Given a unital C∗-algebra A and given n ∈ Z>0, we say that A has real rank no
more than n, written RR(A) ≤ n, if for every ε > 0 and for all x0, . . . , xn ∈ Asa, there exist y0, . . . , yn ∈ Asa
such that

∑n
j=0 ‖xj − yj‖ < ε and

∑n
j=0 y

2
j is invertible.

Moreover, we say that the real rank of A is n, written RR(A) = n, if RR(A) ≤ n and RR(A) � n−1. Finally,
the real rank of A is infinity, written RR(A) =∞, if RR(A) � n for all n ∈ Z>0.

Remark 13.10. In the commutative case, the real rank and the dimension theory of the underlying space
coincide.

Let X be a compact Hausdorff space and interpret x0, . . . , xn ∈ C(X)sa as a continuous function f : X →
Rn+1, and y0, . . . , yn ∈ C(X)sa with

∑n
j=0 y

2
j invertible to be a function g : X → Rn+1 that misses 0. Hence,

RR(C(X)) ≤ n is the statement that any function X → Rn+1 can be perturbed to miss the origin. One
eventually gets that RR(C(X)) = dimX, where dim denotes the covering dimension of X.
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Example 13.11. We claim that RR(C([−1, 1])) 6= 0. Take f(t) = t for t ∈ [−1, 1]. If g is a real valued
continuous function and ‖f −g‖ < 1, then the Intermediate Value Theorem implies that there exists t0 ∈ (−1, 1)
such that g(t0) = 0. It is intuitively clear that RR(C([−1, 1])) ≤ 1, and hence RR(C([−1, 1])) = 1.

Remark 13.12. If X is a compact Hausdorff space, then RR(C(X)) = 0 if and only if X is totally disconnected.

Definition 13.13. (Rieffel) The topological stable rank of a unital C∗-algebra A, denoted tsr(A), is the smallest
n such that for every a1, . . . , an ∈ A and for every ε > 0, there exist b1, . . . , bn ∈ A such that ‖bj − aj‖ < ε and
there exist c1, . . . , cn ∈ A such that

∑n
j=1 cjbj = 1 (equivalently,

∑n
j=1 b

∗
j bj is invertible).

There is an entirely algebraic condition for n being the “Bass stable range” of a unital ring R. Moreover, the
Bass stable rank of a unital ring R, denoted Bsr(R), is the least n ∈ Z>0 such that m is in the Bass stable range
of R for all m ≥ n.

Theorem 13.14. (Rieffel) For any Banach algebra A, we have Bsr(A) ≤ tsr(A).

Theorem 13.15. (Vaserstein) For any unital C∗-algebra A, we have Bsr(A) = tsr(A).

Remark 13.16. In the commutative case, the real rank and the dimension theory of the underlying space are
related.

Let X be a compact Hausdorff space and interpret x1, . . . , xn ∈ C(X) as continuous functions f : X → Cn ∼=
R2n, and y1, . . . , yn ∈ C(X) with

∑n
j=0 y

∗
j yj invertible to be a function g : X → Cn ∼= R2n that misses 0. Hence,

tsr(C(X)) ≤ n is the statement that any function X → R2n can be perturbed to miss the origin. One gets that
2n > dimX, and the stable rank of C(X) is the smallest such integer.

In particular, if X is a compact Hausdorff space, then

RR(C(X)) = 2tsr(C(X))− 1.

For example, tsr(C([−1, 1])) = 1.

Proposition 13.17. In general, one has that RR(A) ≤ 2tsr(A)− 1.

The inequality can be strict.

Example 13.18. Let H be an infinite dimensional Hilbert space. Then RR(B(H)) = 0 using bounded Borel
functional calculus. However, tsr(B(H)) = ∞, which follows from the fact that if s is a non-unitary isometry
and x ∈ B(H) is such that ‖s− x‖ < 1, then x is not invertible. How does this help?.

Theorem 13.19. Let A be a unital C∗-algebra and let n ∈ Z>0. Then

tsr(Mn(A)) =

⌈
tsr(A)− 1

n

⌉
+ 1.

In particular:

(1) If tsr(A) ≥ 2, then tsr(Mn(A)) = 2 for n large enough.
(2) tsr(A) = 1 if and only if tsr(Mn(A)) = 1 for all n if and only if tsr(A⊗K) = 1.
(3) tsr(A) =∞ if and only if tsr(Mn(A)) =∞ for all n, although tsr(A) ≥ 2 implies tsr(A⊗K) = 2!

There is no formula for the real rank of Mn(A) in terms of the real rank of A and n, except when A is
commutative in which case we have

RR(Mn(C(X))) =

⌈
RRC(X)− 1

n

⌉
+ 1.

It is conjectured that this formula holds for noncommutative unital C∗-algebras.
On the other hand, RR(A⊗K) = 1 as long as RR(A) ≥ 1, and RR(A) = 0 if and only if RR(Mn(A)) = 0 for

all n if and only if RR(A⊗K) = 0.
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