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1. Introduction

The classification of simple, separable, nuclear C*-algebras has emerged as one
of the central themes in the modern theory of operator algebras. Motivated by the
success of Elliott’s original classification of AF-algebras using (scaled, ordered) K-
theory, the Elliott classification program anticipated that unital, simple, separable
nuclear C*-algebras ought to be completely classified, up to isomorphism, by K-
theoretic and tracial invariants. This vision has shaped a vast body of work over
the past three decades, connecting deep structural properties of C*-algebras with
the topology and geometry of noncommutative spaces.

A fundamental insight in the development of the program was the realization
that an additional regularity property, namely Z-stability, is essential for such
classification result to hold. This regularity condition, which reflects a kind of
“tameness” in the internal structure of the C*-algebras in question, now plays a
decisive role in distinguishing classifiable from non-classifiable examples.

After decades of work spread over thousands of pages in the literature with
at least a few dozen authors directly involved in the proof over this time, the
classification program of Elliott is now a theorem:
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Theorem 1.1. Let A and B be unital, simple, separable, nuclear C*-algebras which
are Z-stable and satisfy the UCT. Then A ∼= B if and only if Ell(A) ∼= Ell(B).

While the purely infinite case (namely, when A and B have no traces) was
established in the mid 90’s independently by Kirchberg and Phillips, the stably
finite case was completed in 2015 in work of Elliott-Gong-Lin-Niu. A few years later,
a shorter and more conceptual proof was proposed by Carrión-Gabe-Schafhauser-
Tikuisis-White, where the focus shifted towards obtaining first a classification of
homomorphisms between the algebras in question.

At the heart of the modern approach lie a number of powerful tools: intertwining
arguments; techniques from KK-theory; absorption of the Jiang-Su algebra Z and
other regularity propertyes; the trace-kernel extension; and the study of an extended
invariant which includes a variation of algebraic K1. The lecture series reviewed the
core arguments, results, and conceptual frameworks that underpin the classification
of nuclear C*-algebras, with an emphasis on the themes most relevant to current
research.

These notes collect the material presented in these lectures, incorporating some
background at some places, both to help my understanding and for the convenience
of future readers, if any will exist.

2. Classification of amenable von Neumann factors

The foundations for the advancement of the theory of von Neumann algebras
were laid by Murray and von Neumann in their groundbreaking works in the early
1940’s. Among other fundamental results, they showed that any von Neumann
algebra decomposes as a direct integral (a generalization of a direct sum) of von
Neumann algebras with trivial center (also called factors). Since many problems
about von Neumann algebras can be reduced to the case of a factor, it is important
to understand the structure of the latter. Factors can be classified into three types,
with corresponding subtypes:

• Type I: if there is a nonzero minimal projection.
– Type In, for n ∈ N: if the unit can be written as the sum of n minimal

projections.
– Type I∞: otherwise.

• Type II: if there are no minimal projections and there is a finite projection;
– Type II1: if the unit is a finite projection.
– Type II∞: if the unit is an infinite projection.

• Type III: if all nonzero projections are infinite;
– Type IIIλ, for 0 ≤ λ ≤ 1 depending on the Connes spectrum.

Factors of type In, for n < ∞, and of type II1, always posses a unique normal
tracial state.

A key notion in this area is that of hyperfiniteness1. A groundbreaking result of
Connes asserts that for a separably acting von Neumann factor, hyperfiniteness is
equivalent to injectivity, and also equivalent to amenability. Major breakthroughs
by Murray and von Neumann, Connes, Haagerup, Krieger, and Popa culminated
in the classification of hyperfinite factors:

1A von Neumann algebra is said to be hyperfinite if it contains an increasing net of finite
dimensional subalgebras whose union is dense in the weak operator topology.
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Theorem 2.1. There is a unique amenable, separably acting factor of type In, for
n ∈ N, I∞, II1, II∞, and IIIλ, for 0 < λ ≤ 1, while the ones of type III0 correspond
to certain ergodic flows.

Arguably the most special amenable factor is the one of type II1: this is the
hyperfinite factor R, which can be constructed as the von-Neumann direct limit of
M2n , for n ∈ N, with connecting maps a 7→ diag(a, a). (This is the same as the
weak closure of the CAR algebra M2∞ in the GNS representation associated to its
unique trace.)

For a separably acting injective II1-factor M , the following properties hold au-
tomatically:

(i) M is hyperfinite: the identity on M can be approximated, in the point-trace
norm topology, by homomorphisms from finite-dimensional algebras.

(ii) M is McDuff : M is isomorphic to M⊗R.
(iii) The order on projections is determined by its (unique) trace τM : for pro-

jections p, q ∈M , we have p -MvN q if and only if τM (p) ≤ τM (q).

C*-algebraic analogs of these properties will be studied later in the context of
the Toms-Winter regularity conjecture.

3. The classification theorem

It was George Elliott who first predicted that there should be a version of the
classification of amenable factors for C*-algebras, and his suspicion was formalized
as a conjecture which saw both great success and some reformulations to account
both for major technical difficulties when dealing with K-theory (thus incorporating
the assumption of the UCT, which may actually follow from nuclearity), as well
as for counterexamples (thus incorporating the assumption of Z-stability). After
decades of work, this is now a theorem:

Theorem 3.1. (Classification; many authors.) Unital, simple, separable, nuclear
C*-algebras which are Z-stable and satisfy the UCT are classified by K-theory,
traces, and their pairing.

More explicitly, for A and B satisfying said assumptions, we have A ∼= B if and
only if there are group isomorphisms αj : Kj(A) → Kj(B), for j = 0, 1, and an
affice homeomorphism γ : T (B) → T (A), such that α0([1A]) = [1B ] and γ(τ)(x) =
τ(α0(x)) for all x ∈ K0(A). Moreover, any tuple (α0, α1, γ) as above, is realized by
some isomorphism ϕ : A→ B, in the sense that αj = Kj(ϕ) and γ = T (ϕ).

One of the primary sources of examples of amenable von Neumann factors is
given by group actions on probability measure spaces:

Example 3.2. Let a countable group Γ act via probability-measure-preserving
transformations on the (atomless) standard probability space (X,µ). If Γ y (X,µ)
is free and ergodic, then the crossed product L∞(X,µ)oΓ is an amenable factor of
type II1. In particular, the isomorphism type of L∞(X,µ)oΓ does not depend on
Γ or the action; it is always isomorphic to R.

Generalizing this family of examples is its own independent line of research. We
describe the motivating setup:

Example 3.3. Let a countable group Γ act via homeomorphisms on a compact
metric space X. If Γ y (X,µ) is topologically free and minimal, then the crossed
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product C(X) o Γ is a unital, simple, separable, nuclear C*-algebra satisfying the
UCT. Very often this crossed product is Z-stable (for example, whenever dim(X) <
∞ and Γ is elementary amenable, by work of Kerr-Naryshkin), but not in generality
(by examples of Giol-Kerr).

As a particularly famous concrete example, we focus on the irrational rotation
algebras.

Example 3.4. Let θ ∈ R \ Q, and let the associated rotation algebra be denoted
by Aθ. (This is the universal C*-algebra generated by unitaries u and v satisfying
uv = e2πiθvu. Equivalently, this is the crossed product of the action of Z on S1 by
rotation by angle 2πθ.) Then Aθ is classifiable, and its invariant can be computed.
First, Aθ as a unique trace τ , induced by the normalized Lebesgue measure on S1

(which is the unique invariant Borel probability measure on S1). Its K-theory can
be computed using the Pimsner-Voiculescu exact sequence, and yields:

K0(Aθ) = 〈1, p〉 ∼= Z2, and K1(Aθ) = 〈u, v〉 ∼= Z2,

where p ∈ Aθ is a projection satisfying τ(p) = θ. For θ, θ′ ∈ R \Q, the only way to
distinguish Aθ from Aθ′ is with the pairing, which gives

τ(Aθ) = Z + θZ.

As a consequence, we get Aθ ∼= Aθ′ if and only if θ = ±θ′ mod Z, or equivalently, if
and only if the associated rotations are conjugate. This is not quite a consequence of
the classification theorem, since what the theorem is most useful for is to construct
an isomorphism between the algebras given an isomorphism between the invariants.
This is actually very easy in the case of irrational rotation algebras, and what was
actually challenging in this setting was to find invariants that dinstinguish them.

Notation 3.5. For a C*-algebra A, we write ρA : K0(A)×T (A)→ R for the canon-
ical pairing, and we will abbreviate the invariant (K0(A), [1A],K1(A), T (A), ρA)
used in Theorem 3.1 as KTu(A).

Remark 3.6. The classical Elliott invariant also incorporates the positive cone
K0(A)+ ⊆ K0(A) as part of the invariant. However, for unital, simple, separable,
nuclear Z-stable C*-algebras, this is encoded in KTu(A) as

K0(A)+ = {x ∈ K0(A) : ρA(x, τ) > 0 for all τ ∈ T (A)} ∪ {0}.

The range of the invariant in Theorem 3.1 is also known: it is as large as possible:

Theorem 3.7. For any separable, unital C*-algebra B, there is a unital, simple,
separable, nuclear Z-stable C*-algebra A satisfying the UCT such that KTu(A) ∼=
KTu(B). Moreover, A is unique up to isomorphism.

The range result also comes with concrete and tractable models constructed
in the stably finite case as certain direct limits of subhomogeneous C*-algebras,
and in the purely infinite case from certain ample groupoids. This has interesting
consequences, such as the following two results.

Theorem 3.8. (X. Li). Every classifiable C*-algebra has a Cartan subalgebra,
and thus admits a presentation as a twisted groupoid C*-algebra.

Theorem 3.9. (Spielberg, H. Li) A UCT Kirchberg algebra is weakly semiprojec-
tive if and only if its K-theory groups are direct sums of cyclic groups.
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The modern approach to the classifiation theorem consists in obtaining first a
classification of embeddings. Again, this is motivated by results from von Neumann
algebras:

Theorem 3.10. Let M be a separably acting amenable von Neumann algebra and
let N be a II1-factor.

(!) If ϕ,ψ : M → N are normal and unital, and satisfy τM ◦ ϕ = τM ◦ ψ, then
there exists a sequence (un)n∈N of unitaries in N such that unϕ(a)u∗n →
ψ(a) in the trace norm for all a ∈M .

(∃) If τM is a normal trace on M , then there exists a unital normal homomor-
phism ϕ : M → N such that τN ◦ ϕ = τM .

As it turns out, there is by now a complete C*-algebraic analog of this re-
sult. Recall that if B is a unital C*-algebra and A is a separable C*-algebra,
two homomorphisms ϕ,ψ : A → B are said to be approximately unitarily equiva-
lent, written ϕ ≈u ψ, if there exist a sequence (un)n∈N of unitaries in B such that
unϕ(a)u∗n → ψ(a) in norm for all a ∈ A. Similarly, we say that ϕ and ψ are unitarily
equivalent, written ϕ ∼u ψ, if there exists a unitary in B such that Ad(u) ◦ ψ = ϕ.

Theorem 3.11. Let A be a unital, separable, nuclear C*-algebra satisfying the
UCT, and let B be a unital, simple, Z-stable C*-algebra with QT (B) = T (B) (this
is automatic if B is exact). Then unital embeddings A ↪→ B are classified up to
approximate unitary equivalence by the total invariant:

KTu(A) =
(
K0(A), [1A],K1(A),K

alg

1 (A),K∗(·,Zn), T (A), ρA
)
.

The main techniques that go into the proof of Theorem 3.11 will be discussed in
subsequent sections, as well as how said theorem can be used to prove Theorem 3.1.

4. Elliott’s intertwining argument

In order to prove that an isomorphism between two C*-algebras exists, it is often
enough to prove something weaker, namely that there exist homomorphisms in both
directions that are mutual inverses up to approximate unitary equivalence. This is
the content of Elliott’s intertwining argument:

Theorem 4.1. (Elliott’s intertwining). Let A and B be unital, separable C*-
algebras. Then A ∼= B if and only if there exist homomorphisms ϕ : A → B and
ψ : B → A such that ψ ◦ ϕ ≈u idA and ϕ ◦ ψ ≈u idB .

In fact, given ϕ and ψ as above, there exists an isomorphism Φ: A → B with
Φ ≈u ϕ and Φ−1 ≈u ψ.

Proof. Set ϕ1 = ϕ, and note that ψ ◦ ϕ ≈u idA. For a fixed finite subset FA1 ⊆ A
and ε1 > 0, there exists a unitary u1 ∈ A such that

‖u1ψ(ϕ1(a))u∗1 − a‖ < ε1

for all a ∈ FA1 . Set ψ1 = Ad(u1) ◦ ψ. Then

ϕ ◦ ψ1 = ϕ ◦Ad(u1) ◦ ψ = Ad(ϕ(u1)) ◦ ϕ ◦ ψ ≈u ϕ ◦ ψ ≈u idB .

Thus, for a fixed finite subset FB1 ⊆ B, there exists a unitary v1 ∈ B such that

‖b1ϕ(ψ1(b))v∗1 − b‖ < ε1
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for all b ∈ FB1 . Set ϕ2 = Ad(v1) ◦ϕ1 : A→ B. Note that ψ1 ◦ϕ2 ≈u idA. Applying
a similar argument, for a finite subset FA2 ⊆ A and ε2 > 0, there exists a unitary
u2 ∈ A such that

‖u2ψ1(ϕ2(a))u∗2 − a‖ < ε2

for all a ∈ FA2 . Set ψ2 = Ad(u2) ◦ ψ1 : B → A.
Proceeding inductively, given sequences (FAn )n∈N and (FBn )n∈N of finite subsets

of A and B, respectively, and a sequence (εn)n∈N of positive real numbers, we get
corresponding homomorphisms ϕn : A→ B and ψn : B → A such that ϕn+1 ≈u ϕn
and ψn+1 ≈u ψn for all n ∈ N.

A
idA //

ϕ1
��

A
idA //

ϕ2
��

A
idA //

ϕ3
��

· · · // A

B
idB

//

ψ1

??

B
idB

//

ψ2

??

B //

>>

· · · // B.

(The triangles in the diagram do not commute exactly, only up to εn on FAn or FBn ,
as appropriate.)

If we choose the finite subsets of A and B to have dense union and satisfy
ϕn(FAn ) ⊆ FBn and ψn(FBn ) ⊆ FAn+1 for all n ∈ N, and the real numbers to be
summable, then one can check that (ϕn(a))n∈N and (ψn(b))n∈N are Cauchy for all
a ∈ A and b ∈ B. Define Φ: A→ B and Ψ: B → A by

Φ(a) = lim
n→∞

ϕn(a) and Ψ(b) = lim
n→∞

ψn(b)

for all a ∈ A and b ∈ B. Note that Φ ≈u ϕ and Ψ ≈u ψ, and that Ψ ◦Φ = idA and
Φ ◦Ψ = idB . This finishes the proof. �

Although Theorem 4.1 is not too difficult to prove, it leads to a template for
classifying C*-algebras: it suffices to classify homomorphisms up to approximate
unitary equivalence. This is the strategy taken in the classification theorem, and is
explained in the next corollary.

Corollary 4.2. Let C be a category and let F: C* → C be a functor from the
category C* of C*-algebras to C. Assume that S is a class of C*-algebras with the
following properties:

(!) If A,B ∈ S and ϕ,ψ : A→ B satisfy F(ϕ) = F(ψ), then ϕ ≈u ψ.
(∃) If A,B ∈ S and α : F(A) →F(B) is a morphism in C, then there exists a

homomorphism ϕ : A→ B with F(ϕ) = α.

Then A ∼= B if and only if F(A) ∼= F(B). If F is moreover invariant under approxi-
mate unitary equivalence (meanining that ϕ ≈u ψ implies F(ϕ) = F(ψ)), then any
isomorphism F(A) ∼= F(B) is induced by an isomorphism A ∼= B.

Proof. Use existence twice to find homomorphisms ϕ : A→ B and ψ : B → A with
F(ϕ) = α and F(ψ) = α−1. Then F(ψ ◦ ϕ) = F(idA) and F(ϕ ◦ ψ) = F(idB), so
that by uniqueness we get ψ ◦ ϕ ≈u idA and ϕ ◦ ψ ≈u idB . By Theorem 4.1, we
deduce that A ∼= B and there exists an isomorphism Φ: A → B with Φ ≈u ϕ. If
F is invariant under approximate unitary equivalence, we conclude thar F(Φ) =
F(ϕ) = α, as desired. �
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Remark 4.3. For S denoting the class of unital, simple, separable, nuclear C*-
algebras which are Z-stable and satisfy the UCT and F= KTu

2, the existence
assumption in Corollary 4.2 holds, but uniqueness fails!

The next two examples illustrate two ways in which uniqueness may fail in the
setting described in the remark above.

Example 4.4. Let A = B = O3⊗O3 and let α ∈ Aut(A) be the flip automorphism.
By the Künneth formula, we have K0(A) ∼= Z2 and K1(A) = {0}, and since [1A]
generates K0(A), any automorphism of A must be trivial on K-theory (and hence
it must induce the identity on KTu(A)). On the other hand, α is not approximately
inner (that is, it is not approximately unitarily equivalent to idA); a functorial way
to detect this is using total K-theory3.

Example 4.5. Let Z act on Z⊗Z via the Bernoulli shift and set A = Z⊗Z o Z.
Using the Pimsner-Voiculescu exact sequence, one can easily compute that

K0(A) ∼= 〈[1A]〉 ∼= Z and K1(A) ∼= 〈u〉 ∼= Z,

and it is clear that A has a unique trace. There are only two automorphisms
of this invariant: the identity, and the one that flips the sign on K1, so that
Aut(KTu(A)) ∼= Z2. On the other hand, one can show that Aut(A)/ ≈u is larger
than Z2. To see this, consider the dual action γ : T→ Aut(A). Then KTu(γz) = idA
for all z ∈ T, essentially by connectedness of T, while γz1 ≈u γz2 implies z1 = z2.
A functorial way to prove this is by using a variant of algebraic K-theory, namely

K
alg

1 (A) := lim−→ Un(A)
/[
Un(A),Un(A)

] ∼= T⊕ Z2.

We have seen that, in order to prove that an isomorphism between C*-algebras
exists, it is enough to show that there are homomorphisms between them whose
compositions are approximately unitarily equivalent to the respective identities
(Theorem 4.1). This reduces the isomorphism problem to the problem of con-
structing homomorphisms with specific properties, which is in practice easier.

Constructing homomorphisms is itself a challenging task, and in order to accom-
plish this we will begin by relaxing the requirement of multiplicativity.

Definition 4.6. Given C*-algebras A and B, an approximate homomorphism
Φ: A ⇒ B between them is a sequence Φ = (ϕn)n∈N of ucp maps ϕn : A → B
satisfying

lim
n→∞

∥∥ϕn(aa′)− ϕn(a)ϕn(a′)
∥∥ = 0

for all a, a′ ∈ A.
Equivalently (at least when A is nuclear), this is a homomorphism A→ B∞.

This perspective is useful for the following (heuristic) reasons:

• Existence of homomorphisms A → B is implied by the combination of
existence and uniqueness of approximate homomorphisms A⇒ B.
• Uniqueness of homomorphisms A→ B is implied by uniqueness of approx-

imate homomorphisms A⇒ B.

2In order to turn KTu into a functor, and in particular to address the fact that K∗ is covariant

by T is contravariant, one may replace T (A) with Aff(T (A)).
3This fact also follows from the fact that the infinite tensor product of O3 with itself is not a

strongly self-absorbing C*-algebra.



8 EUSEBIO GARDELLA

5. KK-theory and the Universal Coefficient Theorem

Kasparov’s KK-theory is a formidable tool in C*-algebra theory which pro-
vides a link between (and a simultaneous generalization of) operator K-theory and
the K-homology/extension theory of Atiyah and Brown–Douglas–Fillmore. Very
loosely speaking, KK-theory can be viewed as an abelianization of the category
of C*-algebras with homotopy classes of homomorphisms. It serves as a bridge
between C*-algebras and their K-theory groups. For instance, every morphism of
C*-algebras A→ B induces an element of KK(A,B) (see Remark 5.3), and every
element of KK(A,B) induces a morphism K∗(A)→ K∗(B) (this is the map γA,B
described in Remark 5.11). Moreover, the computational properties of KK-theory
allow for manipulations of elements of KK(A,B) which are not possible at the level
of homomorphisms.

The motivation for the constructionof KK-theory is to force an abelian group
structure on Hom(A,B)/ ≈u. One naive approach, which does not give the desired
outcome in general, is set V (A,B) = Hom(A,B⊗K)/ ∼h with diagonal/orthogonal
addition (this is what we need the tensorial copy of K for). This is an abelian
semigroup, and one can consider its Grothendieck enveloping group W (A,B) =
V (A,B)−V (A,B). Through some very basic examples, we see that this object has
some pitfalls.

Example 5.1. When A = C, we get V (C, B) = V (B) = Proj(B ⊗K)/ ∼h. When
B is unital, we get W (C, B) = K0(B), but in general this is not true. For example,
for B = C0(R) we get V (C, B) = W (C, B) = {0} although K0(B) ∼= Z, generated

by the Bott projection in C(S2) ∼= B̃.

The problem with the above definition is that B ⊗K does not in general admit
enough maps from A. The correct definition involves the use of Cuntz pairs (these
are sometimes called quasihomomorphisms).

Definition 5.2. Given C*-algebras A and B, a Cuntz pairs from A to B, is a
triple (ϕ,ψ,E) consisting of a C*-algebra E containing B ⊗ K as an ideal, and
homomorphisms ϕ,ψ : A → E such that ϕ(a) − ψ(a) ∈ B ⊗ K for all a ∈ A. We
write

(ϕ,ψ) : A⇒ E BB ⊗K.
Remark 5.3. Any homomorphism ϕ : A→ B induces a Cuntz pair, namely (ϕ⊗
e1,1, 0) : A→ B ⊗K BB ⊗K. We will abbreviate it to simply (ϕ, 0).

We will write Cun(A,B) for the set of all Cuntz pairs from A to B. Note that
Hom(A,B) ↪→ Cun(A,B) by

Remark 5.4. Up to a suitable notion of homotopy for Cuntz pairs, we can always
assume that E = M(B ⊗K) in Definition 5.2. We will make this assumption from
now on.

Remark 5.5. For any choices of A and B, there exist many homomorphisms
A → M(B ⊗ K) since B(H) = M(K) embeds into M(B ⊗ K). Thus Cun(A,B) is
a large object.

Definition 5.6. Two Cuntz pairs (ϕ0, ψ0), (ϕ1, ψ1) : A⇒M(B ⊗K)BB ⊗K are
said to be homotopic if there is a family (ϕt, ψt) : A⇒M(B⊗K)BB⊗K of Cuntz
pairs, for t ∈ [0, 1], such that for every a ∈ A, the assignments t 7→ ϕt(a) and
t 7→ ψt(a) are strictly continuous, and t 7→ ‖ϕt(a)− ψt(a)‖ is continuous.
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Definition 5.7. Given C*-algebras A and B, we define their KK-group

KK(A,B) = Cun(A,B)/ ∼h .

For a Cuntz pair (ϕ,ψ) ∈ Cun(A,B), we write [ϕ,ψ] for its homotopy class in
KK(A,B). We endow KK(A,B) with diagonal/orthogonal addition, and with
inverses given by −[ϕ,ψ] = [ψ,ϕ], and neutral element given by [ϕ,ϕ] for any
homomorphism A→M(B ⊗K).

What we defined above is really KK0(A,B). There is also a KK1(A,B), which
is defined as KK0(A,SB). We will (almost) not need this group in these notes.

In practice one needs to assume that A is separable for the theory to work (for
example, to prove the existence of the Kasparov product).

Example 5.8. Let B be a C*-algebra. Then

KK(C, B) ∼= K0(B) and KK(C0(R), B) ∼= K1(B).

Proposition 5.9. For a fixed C*-algebra A, the assignment B 7→ KK(A,B) is a
covariant functor from C* to the category of abelian groups, and similarly for a
fixed C*-algebra B, the assignment A 7→ KK(A,B) is a contravariant functor from
C* to the category of abelian groups. These functors share many properties with
the K-group functors: homotopy invariance, stability, direct sums, etc.

The KK-functors also interact well with respect to (certain) exact sequences.
Explicitly, if 0 → I → E → D → 0 is exact and there is a completely positive lift
D → E, then for every C*-algebra A there is a 6-term exact sequence

KK0(A, I) // KK0(A,E) // KK0(A,D)

��

KK1(A,D)

OO

KK1(A,E)oo KK1(A, I)oo

and similarly for KK∗(E,B) (with arrows going backwards).
Next, we establish the existence of the Kasparov product.

Theorem 5.10. For separable C*-algebras A, B and C, there is an associative
bilinear product

KK(A,B)×KK(B,C)→ KK(A,C),

called the Kasparov product, which extends compositio of homomorphisms, in the
sense that [ψ] · [ϕ] = [ψ ◦ ϕ] for homomorphisms ϕ : A→ B and ψ : B → C.

In the picture of KK-theory using correspondences, the Kasparov product corre-
sponds to the tensor product. (It takes a significant amount of work in this picture
to show that the finite-index conditions are met for the tensor product.)

Remark 5.11. Let A and B be separable C*-algebras. Using the Kasparov prod-
uct, we get

KK(C, A)×KK(A,B)→ KK(C, B),

and by Example 5.8 this shows that any KK-class κ ∈ KK(A,B) induces a group
homomorphism K0(A) → K0(B) and similarly K1(A) → K1(B). This gives a
well-defined group homomorphism

γA,B : KK(A,B)→ Hom(K∗(A),K∗(B)).
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Using six-term exact sequences, it can also be shown that any class κ ∈ ker(γA,B)
induces an extension (with a degree shift) of K∗(A) by K∗+1(B). This gives a well-
defined group homomorphism

εA,B : ker(γA,B)→ Ext(K∗(A),K∗+1(B)).

For well-behaved C*-algebras A, the groups KK(A,B) can be computed from
K∗(A) and K∗(B). This is the contect of the Universal Coefficient Theorem (UCT)
of Rosenberg-Schochet.

Theorem 5.12. For a separable C*-algebra A, the following are equivalent:

(1) For all separable C*-algebras B, γA,B is surjective and εA,B is an isomor-
phism.

(2) There exist a locally compact Hausdorff space X and a natural transforma-
tion KK(A, ·) ∼= KK(C0(X), ·). (In other words, A is KK-equivalent to a
commutative C*-algebra.)

Proof. (1) implies (2): Find X such that K∗(A) ∼= K∗(C0(X)); this is always
possible. Using surjectivity of γA,C0(X), it can be shown that an isomorphism in
Hom(K∗(A),K∗(C0(X))) lifts to a KK-invertible class in KK(A,C0(X)), which
gives the desired equivalence of the functors.

(2) implies (1): For any fixed B, the functor X 7→ KK(C0(X), B) is a generalized
homologyy theory on pointed compact spaces. Algebraic topology then gives the
conclusion. �

Corollary 5.13. (The UCT) Let A be a separable C*-algebra. If A satisfies one
of the equivalent conditions of Theorem 5.12, then for any separable C*-algebra B,
there is a short exact sequence

0 // Ext(K∗(A),K∗+1(B))
ε−1
A,B
// KK(A,B)

γA,B
// Hom(K∗(A),K∗(B)) // 0.

This is the Universal Coefficient Theorem for KK-theory, and in this setting we
say that A satisfies the UCT.

A fundamental problem is to determine which C*-algebras satisfy the UCT.
Obviously abelian C*-algebras do, and there are many more examples.

Proposition 5.14. The class of C*-algebras that satisfy the UCT is closed under
the following constructions:

(1) Direct limits.
(2) Two out of three in short exact sequences.
(3) Morita equivalente, and more generally KK-equivalence.
(4) Crossed products by Z (Pimsner-Voiculescu) and by R (Connes’ Thom

isomorphism).

Much less trivially, we also have:

Theorem 5.15. (Higson-Kasparov; Meyer-Nest) If A satisfies the UCT and G is
a torsion-free amenable group, then for any action G y A, the crossed product
AoG satisfies the UCT.

However, not all C*-algebras satisfy the UCT:

Example 5.16. (Skandalis) If Γ is an infinite biexact group with property (T),
then C∗λ(Γ) fails the UCT.
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More generally, if A is any C*-algebrafor which the functor B 7→ A⊗minB is not
exact, then A does not satisfy the UCT. There are by now more examples of such
C*-algebras besides the ones constructed by Skandalis, and they are never nuclear.

The following is the main open question around the UCT:

Question 5.17. Does every separable, nuclear C*-algebra satisfy the UCT?

For C*-algebras with a (twisted) groupoid model, the answer is positive:

Theorem 5.18. (Tu; Barlak-Li) Let G be a locally compact, Hausdorff, étale
groupoid with a twist Σ. If C∗(G,Σ) is nuclear, then it satisfies the UCT.

Although most functors that we care about are invariant under approximate
unitary equivalence, KK-theory is a remarkable exception: if ϕ,ψ : A→ B satisfy
ϕ ≈u ψ, it may happen that [ϕ] 6= [ψ] in KK(A,B), although this is true if we
assume the stronger statement that ϕ and ψ are asymptotically unitarily equivalent.
We now proceed to describe a quotient of KK(A,B) where approximately unitarily
equivalent homomorphisms induce the same classes.

Definition 5.19. There is a natural topology on KK(A,B) such that whenever
ϕ,ϕn : A → B, for n ∈ N, are homomorphisms, and ϕn(a) → ϕ(a) for all a ∈ A,
then [ϕn]→ [ϕ] in KK(A,B).

Set N+ = N ∪ {∞}.

Remark 5.20. We have ϕn → ϕ in the point-norm topology if and only if there

exists a homomorphism Φ: A→ C(N+, B) with Φ(a)(n) =

{
ϕn(a) if n ∈ N
ϕ(a) if n =∞,

for

all a ∈ A. In the topology on KK(A,B) that we described above, we have κn → κ
in KK(A,B) if and only if there exists κ̃ ∈ KK(A,C(N+, B)) such that

evn)∗(κ̃) =

{
κn if n ∈ N
κ if n =∞.

The topology on KK(A,B) is typically non-Hausdorff, and the closure of the
trivial element plays an important role.

Definition 5.21. (Rørdam-Dadarlat) For separable C*-algebras A and B, we de-
fine KL(A,B) to be the quotient of KK(A,B) by the closuer of {0} in KK(A,B).

The following is the desired result

Theorem 5.22. Let A and B be separable C*-algebras. If ϕ,ψ : A → B satisfy
ϕ ≈u ψ, then [ϕ] = [ψ] in KL(A,B),

Just as for KK-theory, under the UCT assumption it is possible to compute
KL(A,B) from K-theoretical data. For a C*-algebra A, we write K(A) for the
total K-theory of A, which consists of the direct sum of K∗(A) and K∗(A,Zn), for
all n ∈ N.

Theorem 5.23. (Dadarlat-Loring; Universal Multicoefficient Theorem). Let A be
a separable C*-algebra satisfying the UCT. Then for every C*-algebra B there is a
natural isomorphism

KL(A,B) ∼= HomΛ(K(A),K(B))

respecting Kasparov products.
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6. Non-stable KK-theory

The main drawback of KK-theory and extension theory is that one loses a lot
of information in the stabilizations and homotopy equivalences needed to obtain
computational tools. Non-stableKK-theory and non-stable extension theory focuse
on removing these stabilizations and replacing the homotopies with more rigid
equivalence relations (for example, approximate unitary equivalence). A landmark
result in this direction is the Kirchberg- Phillips theorem which, in one form, states
that for a separable nuclear C*-algebra A and simple, non-unital C*-algebra B,
the group KK(A,B) is naturally in bijection with asymptotic unitary equivalence
classes of homomorphisms A→ B ⊗O∞; see Theorem 6.1.

For the stably finite classification, the main underlying tool from non-stable
KK-theory is the Dadarlat–Eilers stable uniqueness theorem; see Theorem 6.3.
Roughly speaking, the theorem asserts the following: let A and B be separable
C*-algebras, and let (ϕ,ψ) : A⇒M(B ⊗K)BB ⊗K be a Cuntz pair. The stable
uniqueness theorem states that if [ϕ,ψ] = 0, then there exist a homomorphism
θ : A→M(B ⊗K) and a one-parameter family of unitaries (ut)t≥1 in the minimal
unitization of M2(B ⊗ K), which in the limit conjugates ϕ ⊕ θ to ψ ⊕ θ pointwise
in norm. The point of the theorem is that the stabilizations in KK-theory can
be collected in a single map θ (and there is some freedom in choosing θ), and the
homotopies can be implemented by unitaries.

Non-stable KK-theory is motivated by the following questions:

(!) Given (ϕ,ψ) : A ⇒ M(B ⊗ K) B B ⊗ K with [ϕ,ψ] = 0 in KK(A,B) (or
even two homomorphisms ϕ,ψ : A → B with same KK-class), how are ϕ
and ψ related?

(∃) Given κ ∈ KK(A,B), when is κ induced by a homomorphism A→ B?

The most satisfactory result in this context is due to Kirchberg and Phillips:

Theorem 6.1. (Kirchberg, Phillips) Let A be a separable, nuclear C*-algebra,
and let B be a simple, stable, purely infinite C*-algebra. Then there are natural
identifications

KK(A,B) ∼= {A ↪→ B}/ ∼h and KK(A,B) ∼= {A ↪→ B}/ ≈u .
Combining the above with an intertwining argument (applied both to the func-

tors KK and KL), one can prove the classification of purely infinite C*-algebras.
A C*-algebra is said to be a Kirchberg algebra if it is simple, separable, nuclear and
purely infinite. These are automatically Z-stable by deep results of Kirchberg.

Theorem 6.2. (Kirchberg, Phillips) Let A and B be stable Kirchberg algebras.
Then the following are equivalent:

(1) A ∼= B;
(2) There is an invertible element in KK(A,B) (in other words, A ∼KK B;
(3) There is an invertible element in KL(A,B) (in other words, A ∼KL B;
(4) Assuming the UCT: K∗(A) ∼= K∗(B).

We would like to know if equiality of KK-classes can be replaced by somehting
more rigid.

Theorem 6.3. (Dadarlat-Eilers’ stable uniqueness theorem). Let A and B be
separable C*-algebras. For a Cuntz pair (ϕ,ψ) : A ⇒ M(B ⊗ K) B B ⊗ K, the
following are equivalent:
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(1) [ϕ,ψ] = 0 in KK(A,B);
(2) There exist a homomorphism θ : A → M(B ⊗ K) and a norm-continuous

path (ut)t≥1 of unitaries in ˜M2(B ⊗K) such that∥∥∥∥ut(ϕ(a) 0
0 θ(a)

)
u∗t −

(
ψ(a) 0

0 θ(a)

)∥∥∥∥→ 0

as t→∞, for all a ∈ A.

There is some amount of flexibility in the choice of θ: any homomorphism satis-
fying the conclusion of Voiculescu’s theorem will do.

7. Z-stability

The Jiang-Su algebra Z is the only classifiable C*-algebra with KTu(Z) ∼=
KTu(C). It has the useful property that KTu(A ⊗ Z) ∼= KTu(A) for any unital
C*-algebra A.

Remark 7.1. Note that the positive cone of K0, equivalently, the order on K0,
may change when tensoring with Z, since for x ∈ K0(A⊗Z) we have that nx > 0
for some n ∈ N implies x ≥ 0, which this property is not true in the K0-group of
an arbitrary C*-algebra.

We will not try to define the Jiang-Su algebra very explicitly yet, and will rather
focus on a more tractable C*-algebra: the CAR algebra M2∞ = lim−→M2n .

Theorem 7.2. Let A be a unital, separable C*-algebra. If A ⊗M2∞
∼= A, then

there exist an isomorphism ϕ : A→M2(A) and a sequence (un)n∈N of unitaries in
M2(A) such that un( a 0

0 a )u∗n → ϕ(a) for all a ∈ A. In other words, the diagonal
map A → M2(A) is approximately unitarily equivalent to an isomorphism. The
converse is also true, but it will not be necessary here.

Proof. If A = M2∞ , this is easy since M2(M2∞) ∼= M2∞ and any two unital ho-
momorphisms M2∞ → M2∞ are approximately unitarily equivalent. In general,
fix an isomorphism ψ : A → A ⊗M2∞ and choose any isoomorphism θ0 : M2∞ →
M2(M2∞). Consider the following composition:

A
ψ
// A⊗M2∞

idA⊗θ0 // A⊗M2(M2∞) ∼= M2(A⊗M2∞)
M2(ψ)−1

// M2(A) .

Since idA ⊗ θ0 ≈u idA ⊗ diagM2∞
, the above composition is ≈u diagA. �

This argument can be mode more general, and the relevant condition on the
C*-algebra is the following:

Definition 7.3. (Toms-Winter) A C*-algebra D is said to be strongly self-absorbing
if it is unital, separable, infinite dimensional, and there exists an isomorphism
ϕ : D → D ⊗min D which is approximately unitarily equivalent to the first factor
embedding d 7→ d⊗ 1D.

Theorem 7.4. Every strongly self-absorbing C*-algebra is simple and nuclear, and
it is either purely infinite or has a unique trace (and is thus stably finite).

The Jiang-Su algebra is strongly self-absorbing, and it is in fact the “smallest”
such algebra, in the following sense.

Theorem 7.5. (Winter) Every strongly self-absorbing C*-algebra is Z-stable.
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The following are all the known examples of strongly self-absorbing C*-algebras;
they are in fact the only strongly self-absorbing C*-algebras that satisfy the UCT.

Examples 7.6. The following are strongly self-absorbing: UHF-algebras of infinite
type; Z, O2, O∞ and tensor products of O∞ with UHF-algebras of infinite type.

Theorem 7.7. Let A be a unital, separable C*-algebra, and let D be a strongly
self-absorbing C*-algebra. Then the following are equivalent:

(1) A⊗D ∼= A;
(2) There exists an isomorphism ϕ : A → A ⊗ D which is approximately uni-

tarily equivalent to the first factor embedding;
(3) There exists a unital embedding D → A∞ ∩A′.

If one has a presentation of D with generators and relations, then (3) above can
be rephrased as a finitary statement. For example, for D = M2∞ , condition (3) is
equivalent to:

(3’) For every finite subset F ⊆ A and every ε > 0, there exist n ∈ N and
matrix units {ej,k : j, k = 1, . . . , 2n} in A with

n∑
j=1

ej,j = 1A and ‖ej,ka− aej,k‖ < ε

for all a ∈ F .

We now turn to the construction of Z. Intuitively, we would like to define Z as
the “intersection” of Mn∞ , for all n ∈ N, or at least M2∞ ∩M3∞ . Although this is
of course not possible in this way, we can “deform” M2∞ into M3∞ by setting

Z2∞,3∞ =
{
f ∈ C([0, 1],M2∞ ⊗M3∞ : f(0) ∈M2∞ ⊗ 1 and f(1) ∈ 1⊗M3∞

}
This is the generalized dimension-drop algebra of type (2∞, 3∞).

Proposition 7.8. Z2∞,3∞ has no projections other than 0 and 1.

Proof. If p ∈ Z2∞,3∞ is a projection, then the map tr ◦ ev : [0, 1] → R given by
t 7→ tr(p(t)), is continuous and has range contained in Z

[
1
6

]
. At 0, the value

belongs to Z
[

1
2

]
and at 1 it belongs to Z

[
1
3

]
. Since Z

[
1
2

]
∩ Z

[
1
3

]
= Z, the result

follows. �

With a bit more care, one can show:

Theorem 7.9. K0(Z2∞,3∞) ∼= Z and K1(Z2∞,3∞) ∼= {0}.

The original construction of Z by Jiang and Su used the versions of Z2∞,3∞ where
the UHF-algebras are replaced by matrix algebras with relatively prime dimensions.
Their construction was very technical, and Rørdam-Winter, and later Schemaitat,
provided a cleaner presentation (respectively, construction), which we present next.

Theorem 7.10. (Rørdam-Winter, Schemaitat) There is a unital endomorphism
α : Z2∞,3∞ → Z2∞,3∞ such that for all τ ∈ T (Z2∞,3∞) we have τ ◦ α = τLebesgue.
Moreover, the stationary inductive limit of (Z2∞,3∞ , α) does not depend on α, and
it is the Jiang-Su algebra:

Z ∼= lim−→(Z2∞,3∞ , α).
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The really challenging result around Z was proving that Z ⊗ Z is isomorphic
to Z itself. The difficulty in doing this was that the most natural presentation of
Z ⊗Z as a direct limit uses two-dimensional building blocks, and there were at the
time no general classification results that applied to such algebras.

One of the nice consequences of Z-stability is the following:

Theorem 7.11. Let A be a unital, Z-stable C*-algebra. Then there is a natural
isomorphism K1(A) ∼= U(A)/U0(A). In particular, no matrix amplifications are
needed.

8. The trace-kernel extension and classification of lifts

The trace-kernel extension lies at the heart of the new approach to the classifi-
cation theorem. Let A and B be as in Theorem 3.1, and assume they have at least
one trace (the traceless case is precisely Theorem 6.2). Non-stable extension theory
cannot apply to A and B directly, as simple C*-algebras have no ideals. However,
the sequence algebra B∞ has a very natural ideal JB consisting of the “tracially
null sequences” in B. This is the trace-kernel ideal of B; see Definition 8.1.

The quotient B∞ = B∞/JB is naturally a von Neumann factor when B has
a unique trace (see Theorem 8.2; in general, it is loosely speaking a bundle of
II1-factors. Making use of the central sequences in B∞ arising from Z-stability,
Connes’ theorem can be combined with a partition of unity argument to classify
morphisms A → B∞ up to unitary equivalence by tracial data. This reduces the
classification of maps A→ B∞ to classifying lifts along the trace-kernel extension.

The techniques we will present in this section have been behind the tremendous
advancements in the field during the last 10 years. The ultimate goal is to show that
if A and B are unital, simple, separable, nuclear Z-stable C*-algebras satisfying
the UCT (or maybe a bit less), then unital embeddings A ↪→ B are classified up to
approximate unitary equivalence by the invariant

KTu =
(
K,K

alg

1 , Aff(T (·)), ρ
)
.

Using intertwining arguments, it is enough to classify embeddings A ↪→ B∞ (and
with some care, one can also replace B∞ with Bω). Passing to B∞ makes us lose a
number of properties of our algebra B: the sequence algebra is generally not simple
or nuclear, and it is certainly not separable. There are, however, some distinguished
ideals in Bω: given τ ∈ T (B), we set

Jτ =
{[

(bn)n∈N
]
∈ Bω : lim

n→ω
τ(b∗nbn)1/2 = 0

}
,

which is an ideal in Bω (and under very mild assumptions, this is a proper ideal).
We will assume from now on that T (B) 6= ∅, since otherwise we are in the

realm of purely infinite C*-algebras, whose classification uses significantly different
techniques. (For example, if B is purely infinite and simple, then B∞ is also purely
infinite and simple).

Definition 8.1. Let B be a unital, separable C*-algebra with T (B) 6= ∅. We define
the trace-kernel ideal JB as

JB =
{[

(bn)n∈N
]
∈ Bω : lim

n→ω
max
τ∈T (B)

τ(b∗nbn)1/2 = 0
}
.

The quotient of Bω by JB , which we will denote by Bω, turns out to be remark-
ably well-behaved. In the case of a unique trace, it is a von Neumann factor:
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Theorem 8.2. Let B be a unital, separable C*-algebra with a unique trace. Then
Bω ∼=

[
πτ (B)′′

]ω
, that is, the tracial ultrapower of πτ (B)′′. In particular, Bω is a

finite von Neumann factor.

Proof. Note that πτ (B)′′ is a factor because τ is an extreme trace (being the unique
one on B): this follows from the fact that πτ (B)′′ has a unique normal trace.
Moreover, tracial ultrapowers of factors are again factors, so we only need to show
that the isomorphism exists. The GNS map πτ : B → πτ (B)′′ induces a map
πωτ : Bω → (πτ (B)′′)ω, and we will show that this map is an isomorphism. Injec-
tivity is easy, while surjectivity follows from Kaplansky’s density theorem (which
says that the norm-unit ball of B is trace-norm dense in the norm-unit ball of
πτ (B)′′). �

We thus obtain what we call the trace-kernel extension:

0 // JB
jB // Bω

qB // Bω // 0.

This extension is vaguely reminiscent of Lin’s various tracial approximations: JB
plays the role of the tracially small “wild” corner, while Bω plays the role of the
tracially large “neat” corner.

The trace-kernel extension was first used by Matui and Sato in its relative com-
mutant version

0 // JB ∩B′
jB // Bω ∩B′

qB // Bω ∩B′ // 0.

Under nuclearity assumptions, there is a unital embedding R → Bω ∩B′, and the
major problem in the remaining implication of the Toms-Winter conjecture is to
show that, assuming strict comparison for B, one can product out of this a unital
homomorphism Z → Bω ∩B′.

Strategy 8.3. Returning to the classification theorem, our strategy for classifying
maps A→ Bω consists of the following three steps:

Step 1: Classify embeddings A ↪→ Bω.
Step 2: Prove the existence of, and classify, lifts of embeddings A ↪→ Bω along qB ,

using KK∗(A, JB).
Step 3: Compute KK∗(A, JB) in terms of A and B.

As we will see, the UCT plays a major in the third step (and only there).

Remark 8.4. At this point, we see one advantage of working with ultrafilters:
if B has a unique trace, then the same is true for Bω, while for B∞ traces are
parametrized by ultrafilters on N.

The following takes care of Step 1 in Strategy 8.3. We will assume for convenience
that B has a unique trace and that it has no finite-dimensional representations, so
that πτ (B)′′ is infinite-dimensional and hence a II1-factor.

Theorem 8.5. (Essentially Connes) Let A be a seprable, nuclear C*-algebra and
let B be a separable, unital C*-algebra with a unique trace and no finite-dimensional
representations. Then

(!) If ϕ,ψ : A→ Bω are homomorphisms and τω ◦ ϕ = τω ◦ ψ, then ϕ ≈u ψ.
(∃) Given τ ∈ T (A), there exists ϕ : A→ Bω such that τω ◦ ϕ = τ .
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Proof. We begin by proving uniqueness. Set τ = τω ◦ ϕ ∈ T (A). Extend ϕ and
ψ to ϕ,ψ : πτ (A)′′ → Bω. Then πτ (A)′′ is hyperfinite by Connes’ theorem, and it
follows from the work of Murray and von Neumann that ϕ ≈u ψ. The proof of
existence is similar. �

Outside of the unique trace case, one has to add Z-stability (or at least uniform
property Γ, or CPoU) for these arguments to go through. Note that T (Bω) = T (Bω)
in our setting. The outcome is the following:

Theorem 8.6. (Castillejos-Evington-Tikuisis-White-Winter) Let A be a seprable,
nuclear C*-algebra, and let B be a unital, Z-stable C*-algebra with T (B) 6= ∅.
Then there are canonical bijections:{

unital homomorphism A→ Bω
} ∼= {unital positive Aff(T (A))→ Aff(T (Bω))

}
∼=
{

continuous affine T (Bω)→ T (A)
}
.

We now move on to the second step. Recall that a homomorphism θ : A→ D is
said to be full if θ(a) generates D as an ideal for all nonzero a ∈ A. Equivalently,
θ is injective and θ(A) ∩ D0 = {0} for all proper ideals D0 C D. Note that θ is
automatically full whenever it is nonzero and D is simple.

We will apply the following result to the trace-kernel extension.

Theorem 8.7. (Classification of lifts) Let

0 // I // E
q
// D // 0

be an exact sequence with I stable, and E unital and Z-stable. Let A be separable
and nuclear, and let θ : A→ D be a unital, full homomorphism. Then

(1) There exists a unital homomorphism ψ : A → E with q ◦ ψ = θ if and
only if there exists κ ∈ KK(A,E) such that [q] · κ = [θ] in KK(A,E) and
κ0([1A]) = [1E ] in K0(E). In other words, a lift exists if and only if a
KK-lift exists.

(2) For a fixed lift ψ as above, there is a canonical bijection between{
unital homomorphism ϕ : A→ E : q ◦ ϕ = θ

}
/ ≈u,I

and the set
{
κ ∈ KL(A, I) : κ0([1A]) = 0 ∈ K0(I)

}
, which is given by

ϕ 7→ [ϕ,ψ].

In (2) above, we have

A

θ

��
ϕ

~~

ψ

~~

0 // I // E
q
// D // 0.

The two lifts for θ give rise to a Cuntz pair (ϕ,ψ) : A ⇒ E B I and thus define a
KK-class [ϕ,ψ] ∈ KK(A, I). In that item, we consider the induced KL-class.

We will sketch injectivity in (2) of Theorem 8.7.
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Assume that ϕ and ψ are lifts of θ and that [ϕ,ψ] = 0 in KL(A, I). Consider
the commutative diagram

A

θ

��
ϕ

zz

ψ

zz

0 // I //

=

��

E

λ

��

q
// D //

��

0

0 // I // M(I) // Q(I) // 0.

Thus (λ ◦ ϕ, λ ◦ ψ) : A ⇒ M(I) B I is a Cuntz pair vanishing in KL(A, I). The
stable uniqueness theorem of Dadarlat-Eilers tells us that in the situation described
above, there are a unital representation µA → M(I) and a sequence of unitaries

(un)n∈N in M2(Ĩ) such that

un

(
λ(ϕ(a)) 0

0 µ(a)

)
u∗n →

(
λ(ψ(a)) 0

0 µ(a)

)
for all a ∈ A. Their result does not just give us existence of some µ, but it also
allows for some choice: it can be taken to be any absorbing representation (that
is, any unital map µ : A → M(I) such that for any other such map ν, we have
µ ⊕ ν ≈u µ). The question then becomes when a representation A → M(I) is
absorbing. For this, we use the following result:

Theorem 8.8. (Elliott-Kucerovsky, Ortega-Perera-Rørdam) Let A be a separable,
unital C*-algebra, let I be stable and Z-stable, and let µ : A→ M(I) be a unital,
full homomorphism. Then µ is absorbing.

In our case, both λ ◦ ϕ and λ ◦ ψ are absorbing by the theorem above, so in
Dadarlat-Eilers we can take µ = λ◦ϕ. We have obtained the following: if ϕ,ψ : A→
E are lifts of θ with [ϕ,ψ] = 0 in KL(A, I), then

ϕ⊕ ϕ ≈u ψ ⊕ ψ.
If E⊗M2∞

∼= E, then this implies that ϕ ≈u ψ. In general, since we can also prove
that

ϕ⊕ ϕ⊕ ϕ ≈u ψ ⊕ ψ ⊕ ψ,
the rough idea is to patch these two equivalences together over Z2∞,3∞ to get
ϕ ≈u ψ. This finishes the sketch of injectivity in (2) of Theorem 8.7.

When we apply all of this to the trace-kernel extension, we will take E = Bω,
which is too large to be Z-stable. The correct notion in this setting, which makes
everything work, is the following.

Definition 8.9. A C*-algebra E is said to be separably Z-stable if for every sep-
arable subalgebra E0 ⊆ E there exists a Z-stable subalgebra E1 of E containing
E0.

Although Z-sability does not pass to ultrapowers, separable Z-stability does,
and hence Bω is separably Z-stable if B is Z-stable.

We have a similar issue with the ideal, which is assumed to be stable in Theo-
rem 8.7 and this never holds for JB . There is a similar notion of separable stability,
although checking it for JB takes a bit more work:
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Theorem 8.10. Let B be a simple, unital, separable Z-stable C*-algebra with
QT (B) = T (B). Then JB is separably stable.

Proof. We will assume that B has real rank zero so that JB does as well. In this
case, a result of Hjlemborg-Rørdam asserts that JB is (separably) stable if and only
if for every projection p ∈ JB there exists a projection q ∈ JB with pq = 0 and
p ∼MvN q. Now, given p ∈ JB , we have

τ(p) = 0 < 1 = τ(1− p)

for all τ ∈ T (Bω). Using Z-stability of B and QT (B) = T (B), this gives the Cuntz
subequivalence p - 1 − p. We can therefore find q ≤ 1 − p with q ∼MvN p, as
desired. �

We have now arrived at the completion of Step 1 in Strategy 8.3:

Theorem 8.11. (Classification of embeddings A ↪→ Bω) Let A be a seprable,
unital, nuclear C*-algebra, let B be a unital, Z-stable. Then there is a canonical
bijection{

unital A ↪→ Bω
}
/ ∼u∼=

{
unital positive Aff(T (A))→ Aff(T (Bω))

}
given by θ 7→ Aff(T (θ)). Also, θ is full if and only if τ ◦θ is faithful for all τ ∈ T (Bω).

We now move on to Step 2 in Strategy 8.3: classifying maps A→ Bω.

Proposition 8.12. Let A be a seprable, unital, nuclear C*-algebra, let B be a uni-
tal, Z-stable, simple C*-algebra with QT (B) = T (B). For unital homomorphisms
ϕ,ψ : A→ Bω with Aff(T (ϕ)) = Aff(T (ψ)), there exists a unitary u ∈ U(Bω) with
Im(Ad(u)◦ϕ−ψ) ⊆ JB , and the class

[
Ad(u)◦ϕ,ψ

]
∈ KL(A, JB) does not depend

on u.

Proof. We begin with existence of u. Consider the diagram

A

ϕ

��

ψ

��

0 // JB // Bω
qB // Bω // 0,

where Aff(T (ϕ)) = Aff(T (ψ)). Then Aff(T (qB ◦ ϕ)) = Aff(T (qB ◦ ψ)), and thus
there exists u ∈ U(Bω) with Ad(u) ◦ qB ◦ ϕ = qB ◦ ψ. When B has a unique trace,
then Bω is a von Neumann algebra by Theorem 8.2, so that U(Bω) is connected and
in this case u lifts to a unitary in Bω. In general, using Z-stability (via CPoU), it
can be shown that U(Bω) is connected, and thus there is u ∈ U(Bω) with qB(u) = u
and Ad(u) ◦ ϕ = qψ.

To show that
[
Ad(u) ◦ϕ,ψ

]
∈ KL(A, JB) does not depend on u, the key idea is

to show that U(Bω ∩ qB(ϕ(A))′) is connected. �

In view of the above, the can make the following definition.

Definition 8.13. Let A be a seprable, unital, nuclear C*-algebra, let B be a unital,
Z-stable, simple C*-algebra with QT (B) = T (B). For unital homomorphisms
ϕ,ψ : A → Bω with Aff(T (ϕ)) = Aff(T (ψ)), we define 〈ϕ,ψ〉 =

[
Ad(u) ◦ ϕ,ψ

]
∈

KL(A, JB), where u ∈ U(Bω) is as in the conclusion of the previous proposition.
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Given C*-algebras A and B, a map γ : Aff(T (A)) → Aff(T (B)) is said to be
faithful if the image of the dual map γ∗ : T (B)→ T (A) is contained in the faithful
traces.

We have arrived at the conclusion of Step 2 in Strategy 8.3:

Theorem 8.14. (Classifying maps A → Bω) Let A be a seprable, unital, nuclear
C*-algebra, let B be a unital, Z-stable, simple C*-algebra with QT (B) = T (B).
Let γ : Aff(T (A)) → Aff(T (B)) be positive, unital and faithful. Use ??? to fix a
unital, full map θ : A→ Bω with T (θ) = γ. Then

(1) There exists a unital homomorphism ψ : A → Bω with Aff(T (ψ)) = γ if
and only if there is κ ∈ KK(A,Bω) with [qB ] · κ = [θ] in KK(A,Bω) and
κ0([1A]) = [1Bω ] in K0(Bω).

(2) Given ψ : A→ Bω as above, there is a canonical bijection{
ϕ : A→ Bω unital : Aff(T (ϕ)) = γ

} ∼= {κ ∈ KK(A, JB) : κ0([1A]) = 0
}
,

which is given by ϕ 7→ 〈ϕ,ψ〉.
This is a complete classification of maps A → Bω using KK-theoretical and

tracial data. To make its use effective, one must decide when a class κ ∈ KK(A,Bω)
as in part (1) of the theorem above exists, and also be able to compute KL(A, JB).
For both of these tasks, the UCT is a crucial ingredient. Thus, in the stably finite
case, the UCT remains a much more fundamental hypothesis by comparison to
the purely infinite setting, where the actual classification uses KK-theory and the
UCT only enters in the very last step to turn an isomorphism of K-theory into a
KK-equivalence.

Without the UCT, there is still something that can be done. Note that in the
next result we must assume the existence of a nice map A→ B.

Theorem 8.15. (Schafhauser) If A and B are unital, simple, separable, nuclear, Z-
stable C*-algebras and ϕ : A → B is a homomorphism such that [ϕ] ∈ KK(A,B)
and T (ϕ) : T (B) → T (A) are invertible, then A ∼= B and ϕ is approximately
unitarily equivalent to an isomorphism.

Proving things without using the UCT (even if it turns out to be true for all
separable, nuclear C*-algebras) is important if one wants to extend the classification
of simple C*-algebras to more general settings, for example to obtain equivariant
classification results. (For group actions, equivariant UCTs either do not exist, or
are extremely hard to work with.)

Assuuming the UCT, the classification of embeddings A ↪→ Bω becomes simpler.
We consider existence of lifts:

Corollary 8.16. Let A be a seprable, unital, nuclear C*-algebra satisfying the
UCT, and let B be a unital, Z-stable, simple C*-algebra with QT (B) = T (B).
Given a unital homomorphism θ : A→ Bω, there is a unital lift ψ : A→ Bω of θ if
and only if there exists a group homomorphism α : K0(A)→ K0(Bω) with

K0(qB) ◦ α = K0(θ) and α([1A]) = [1Bω
].

Proof. The proof relies on the fact that U(Bω), and hence Un(Bω) for all n ∈ N,
is connected. In particular, we get K1(Bω) = {0}. Since projections in Bω are
classified by traces, we get K0(Bω) ∼= Aff(T (Bω)). Combining these things with
the UCT for A, we get

KK(A,Bω) ∼= Hom(K0(A),K0(Bω)).
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�

Next, we give a major application:

Theorem 8.17. (Tikuisis-White-Winter; quasidiagionality theorem) Let A be a
separable, nuclear C*-algebra satisfying the UCT. Then every faithful trace on A
is quasidiagonal. In particular, if A is stably finite, then it is quasidiagonal.

Proof. Without loss of generality, we may assume that A is unital. Let τA be a
faithful trace on A. By Voiculescu, if Q =

⊗
n∈NMn denotes the universal UHF-

algebra, using nuclearity we deduce that τA is quasidiagonal if and only if there is
a unital, trace-preserving embedding (A, τA) ↪→ (Qω, τQ). By Connes, there is a
unital, trace-preserving embedding

θ : (A, τA) ↪→ (Rω, τR).

We thus are in the setting of classification of lifts and the question is whether θ can
be lifted to Qω.

The original proof involved considering a cpc order zero lift and working hard
to replace it by a homomorphism. Using the machinery we developed, we can turn
this problem into the question of whether a certain extension splits. In our setting,
by Corollary 8.16, it is enough to show that there exists a K0-lift that preserves
units:

K0(A)

yy

K0(θ)

��

K0(Qω) // K0(Rω) // 0.

Since both K0(Qω) and K0(Rω) are vector spaces over Q, one can easily show that
a lift exists using linear bases. �

Finally, we turn to Step 3 in Strategy 8.3. Since K1(JB) ∼= K
alg

1 (Bω), this leads
to the total invariant KTu described earlier. One gets a classification of embeddings
A ↪→ Bω by KTu, and then also of embeddings A ↪→ B (also by KTu) using an
intertwining argument.

The K
alg

1 -group of a C*-algebra can be computed in terms of the invariant KTu,
since one can show that

K
alg

1 (A) ∼= K1(A)⊕ Aff(T (A))

Im
(
ρA : K0(A)→ Aff(T (A))

) .
This explains why, in the classification theorem up to isomorphism, it is only the
invariant KTu that is needed, and not KTu.

9. Equivariant classification

The study of the structure of the flip automorphism of an injective factor was
instrumental in Connes’ proof that injectivity implies hyperfiniteness. Following his
work, Jones studied finite group actions on R, obtaining a remarkable uniqueness
result for outer actions:

Theorem 9.1. (Connes, Jones) Let G be a finite group. Then any two outer
actions of G on R are conjugate.
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When trying to generalize the above results to infinite groups, conjugacy is
not the right notion of equivalence. This arises naturally whenever one wants
to implement an intertwining argument, as we proceed to explain. Indeed, given
a discrete group G and actions α : G → Aut(A) and β : G → Aut(B) on unital
C*-algebras, two equivariant homomorphisms ϕ,ψ : (A,α)→ (B, β) are said to be
G-approximately unitarily equivalent, written ϕ ≈G,u ψ, if there exist a sequence
(un)n∈N of unitaries in B such that unϕ(a)u∗n → ψ(a) in norm for all a ∈ A and
‖βg(un)− un‖ → 0 for all g ∈ G.

The most naive generalization of Elliott’s intertwining argument (Theorem 4.1)
would assert that if there exist two equivariant homomorphisms ϕ : (A,α)→ (B, β)
and ψ : (B, β)→ (A,α) satisfying ψ ◦ ϕ ≈G,u idA and ϕ ◦ ψ ≈G,u idB , then α and
β are conjugate. This is, however, not true. What one does conclude is that α and
β are cocycle conjugate, in the sense of the following definition.

Definition 9.2. Let G be a discrete group, let A be a unital C*-algebra, and let
α : G→ Aut(A) be an action. A function w : G→ U(A) is said to be an α-cocycle
if

wgh = wgαg(wh)

for all g, h ∈ G. Given an α-cocycle w, we denote by αw : G → Aut(A) the action
given by αwg = Ad(wg) ◦ αg for all g ∈ G.

We say that an action β : G→ Aut(B) is cocycle conjugate to α, written α ∼=cc β,
if there exists an α-cocycle w such that αw is conjugate to β.

With this terminology in place, we can state Ocneanu’s generalization of Theo-
rem 9.1.

Theorem 9.3. (Connes, Jones) Let G be an amenable group. Then any two outer
actions of G on R are cocycle conjugate.

Remark 9.4. One may wonder why one does not need to consider cocycle conju-
gacy in Theorem 9.1, and this is because one can show that the stronger statement
using conjugacy follows from cocycle conjugacy for outer actions in R, since one
can use the Rokhlin property for the model action. What is at the heart of the
argument is the fact that if we consider the strengthening of G-approximate unitary
equivalence where the unitaries un are assume to be in the fixed point algebra (and
not approximately in it), then the naive version of Elliott’s intertwining holds. On
the other hand, when G is finite, then the condition ‖βg(un) − un‖ → 0 for all
g ∈ G can be made uniform, and one gets maxg∈G ‖βg(un)− un‖ → 0. A standard
argument involving functional calculus allows one to replace un with a G-invariant
unitary in this case, thus obtaining the stronger version of G-approximate unitary
equivalence.

It is useful to regard cocycle conjugacies as the isomorphisms of a certain category
of C*-dynamical systems. This was conceptualized by Szabo, and we now describe
these morphisms:

Definition 9.5. Let G be a discrete group and let α : G → Aut(A) and β : G →
Aut(B) be actions on unital C*-algebras. A cocycle morphism between them, writ-
ten (ϕ, u) : (A,α) → (B, β), consists of a homomorphism A → B and a β-cocycle
u : G→ Aut(B) satisfying

Ad(ug) ◦ βg ◦ ϕ = ϕ ◦ αg



23

for all g ∈ G. In other words, ϕ : (A,α)→ (B, βu) is an equivariant homomorphism.
Composition of cocycle morphisms is given by

(ϕ, u) ◦ (ψ, v) = (ϕ ◦ ψ,ϕ(v)u).

Example 9.6. For an action β : G → Aut(B) on a unital C*-algebra B and for
u ∈ U(B), we define the associated β-cocycle ∂βu : G→ U(B)

(∂βu)g = uβg(u)∗

for all g ∈ G. Then (Ad(u), ∂βu) : (B, β) → (B, β) is a cocycle morphism, and we
say that (Ad(u), ∂βu) is an inner cocycle morphism.

We now define the appropriate notion of approximate unitary equivalence be-
tween cocycle morphisms.

Definition 9.7. Let G be a discrete group and let α : G → Aut(A) and β : G →
Aut(B) be actions on unital C*-algebras. We say that two cocycle morphisms
(ϕ, u), (ψ, v) : (A,α) → (B, β) are approximately unitarily equivalent, in symbols
(ϕ, u) ≈u (ψ, v), if there is a sequence (wn)n∈N in U(B) such that (Ad(wn), ∂βwn)◦
(ϕ, w)→ (ψ, v) in the point-norm topology; equivalently

‖wnϕ(a)w∗n − ψ(a)‖ → 0 and ‖wnugβg(wn)∗ − vg‖ → 0

for all a ∈ A and all g ∈ G.

The following is the desired intertwining argument.

Theorem 9.8. (Szabo) Let G be a discrete group and let α : G → Aut(A) and
β : G→ Aut(B) be actions on unital C*-algebras. Let

(ϕ, u) : (A,α)→ (B, β) and (ψ, v) : (B, β)→ (A,α)

be cocycle morphisms satisfying

(ψ, v) ◦ (ϕ, u) ≈u (idA, 1A) and (ϕ, u) ◦ (ψ, v) ≈u (idB , 1B).

Then (A,α) ∼=cc (B, β). Moreover, there exist a β-cocycle w and an equivariant
isomorphism Φ: (A,α)→ (B, βw) such that (ϕ, u) ≈u (Φ, w).

The equivariant classification in the purely infinite setting has been recently
settled. The result is more general than what we state here, covering nonamenable
groups (with amenable actions) and also applying to locally compact groups.

Theorem 9.9. (Gabe-Szabo) Let G be a discrete, amenable group, and let α : G→
Aut(A) and β : G→ Aut(B) be actions on unital Kirchberg algebras. Then we have
(A,α) ∼=cc (B, β) if and only if (A,α) ∼KKG (B, β) unitally.

Deciding if two actions are KKG-equivalent is often much easier than computing
the entire KKG-group, particularly when G is torsion-free.

Theorem 9.10. (Higson-Kasparov; Meyer-Nest) Let G be a discrete, amenable,
torsion-free group, and let α : G→ Aut(A) and β : G→ Aut(B) be actions. Then a
class in KKG

(
(A,α), (B, β)

)
is invertible if and only if it is invertible in KK(A,B).
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10. Actions on O2

We now specialize to a particular case, namely actions on the Cuntz algebra O2.
Our goal will be to show that any two O2-stable outer actions of an amenable group
are cocycle conjugate. For convenience, we will assume that G is infinite. First,
we point out O2-stability is automatic when G is torsion-free, essentially by the
Baum-Connes conjecture.

Theorem 10.1. Let G be a countable, amenable, torsion-free group. Then any
outer action of G on O2 absorbs idO2 up to cocycle conjuacy.

Thus, for torsion-free, amenable groups, it will follow that there is a unique outer
action on O2.

We will need some preparation.

Definition 10.2. Let G be an infinite, countable group. Label the canonical
generators of O∞ as sg, for g ∈ G, and let γG : G→ Aut(O∞) be given by γGg (sh) =
sgh for all g, h ∈ G.

The following is essentially due to Kishimoto, and follows from the fact that
Bω ∩B′ is purely infinite simple (due to Kirchberg), and that βω is outer.

Theorem 10.3. Let G be an infinite, countable group and let β : G → Aut(B)
be an outer action on a Kirchberg algebra B. Then (B, β)⊗ (O∞, γG) ∼=cc (B, β).
Equivalently, there exists a unital, equivariant homomorphism

(O∞, γG)→ (Bω ∩B′, βω).

The property that (B, β) absorbs (O∞, γG) up to cocycle conjugacy is called
isometric shift-absorption in the work of Gabe-Szabo.

The main step in showing that there is a unique outer, O2-stable action on O2

is the following.

Theorem 10.4. Let G be a countable, amenable group, let α : G→ Aut(A) be an
action on a unital, separable, nuclear C*-algebra A, and let β : G → Aut(O2) be
outer and O2-stable. Then there exists a cocycle morphism

(ϕ, w) : (A,α)→ (O2, β),

and any two such morphisms are approximately unitarily equivalent.

Proof. We begin with existence. Note that A oα G is a separable, unital, nuclear
C*-algebra. By Kirchberg’s embedding theorem, it follows that there exists a unital
embedding ϕ̃ : A oα G → O2. For g ∈ G, denote by ug ∈ A oα G the canonical
unitary. Set ϕ = ϕ̃|A and wg = ϕ(ug) for all g ∈ G. Then (ϕ, w) is a cocycle
morphism (A,α)→ (O2, idO2). The desired cocycle morphism is then the following
composition:

(A,α)
(ϕ,w)

// (O2, idO2
) �
�

// (O2, idO2
)⊗ (O2, β)

∼=cc // (O2, β).

We now turn to uniqueness. For convenience, we will consider equivariant ho-
momorphisms ϕ,ψ : (A,α) → (O2, β) and we will show that ψ ∼G,u ϕ. By non-
equivariant classification, there exists a unitary w0 ∈ (O2)ω with Ad(w∗0) ◦ ϕ = ψ.
Using Theorem 10.3 with B = O2, we fix Cuntz isometries sg ∈ (O2)ω ∩ O′2 with
βg(sh) = sgh for all g, h ∈ G.
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Given a finite subset F ⊆ G, define

w =
1

|F |1/2
∑
g∈G

sgβg(w0) ∈ (O2)ω.

Using centrality of the Cuntz isometries at the second step, using that ϕ is equi-
variant at the third step, and using that Ad(w∗0) ◦ ϕ = ψ at the fourth step, we
get

w∗ϕ(a)w =
1

|F |
∑
g,h∈G

βg(w0)∗s∗gϕ(a)shβh(w0)

=
1

|F |
∑
g∈G

βg(w0)∗ϕ(a)βg(w0)

=
1

|F |
∑
g∈G

βg(w
∗
0ϕ(αg−1(a)w0)

= ψ(a)

for all a ∈ A. Moreover,

βg(w) =
1

|F |1/2
∑
h∈G

sghβgh(w0),

and thus ‖βg(w) − w‖ ≤ |gF4F|F | , which is small if F is a Følner set. Finally, note

that w∗w = 1 (but ww∗ 6= 1).
Using a standard diagonal argument in the ultrapower, we deduce that there

is an isometry v ∈ (O2)ω with βg(v) = v and Ad(v∗) ◦ ϕ = ψ. We will denote
this by ψ -G ϕ. By symmetry, we also get ϕ -G ψ. Our goal is to show that
this implies ϕ ∼G,u ϕ in (O2)ω. For this, we will use Connes’ 2-by-2 matrix

trick: set π =
(
ϕ 0
0 ψ

)
: A → M2(O2), and set p = ( 1 0

0 0 ) and q = ( 0 0
0 1 ). It is a

standard fact that if p ∼MvN q in
(
M2(O2)ω ∩ π(A)′

)G
, then ϕ ≈u,G ψ in O2. This

fixed point algebra is separably O2-stable and p and q are properly infinite, full
projections in it (they are full because they generate the same ideal and p+ q = 1,
so the ideal they generate is everything). A result of Cuntz says that p ∼MvN q in(
M2(O2)ω ∩ π(A)′

)G
if and only if

[p]0 = [q]0 in K0

((
M2(O2)ω ∩ π(A)′

)G)
.

Since the above K0-group is zero by separable O2-stability, this show that p ∼MvN q
and thus ϕ ≈G,u ψ, as desired. �
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