DUALITY FOR FELL BUNDLES

Morita-Rieffel equivalence

Holger Spellmann

09.06.2021

I Smash product and restricted smash product

2 Dual partial actions

3 Morita-Rieffel equivalence

I.

Smash product and restricted smash product

Smash product

Let G be a discrete group. $\ell^2(G)$, the space of functions $f: G \to \mathbb{C}$ with $(\sum_{g \in G} |f(g)|^2)^{\frac{1}{2}} < \infty$, is a Hilbert space and the space of compact operator on $\ell^2(G)$, $\mathscr{K}(\ell^2(G))$, is a nuclear C^* -algebra.

For every $g, h \in G$,

$$e_{g,h}: \ell^2(G) \to \ell^2(G) , \quad \xi \mapsto \langle \xi, e_h \rangle e_g$$

is a rank-one operator with $e_{g,h}(e_k) = \delta_{h,k}e_g$ for all $k \in G$, where $(e_g)_{g \in G}$ is the canonical basis of $\ell^2(G)$. We have

$$\mathscr{K}(\ell^2(G)) = [e_{g,h} : g, h \in G] ,$$

where $[\cdot]$ stands for the closed linear span.

Let $\mathscr{B}=\{B_g\}_{g\in G}$ be a Fell bundle. Consider the set

$$\mathscr{B}_0^{\sharp}G := \sum_{g,h \in G} B_{g^{-1}h} \otimes e_{g,h} \qquad \subseteq \quad C^*(\mathscr{B}) \otimes \mathscr{K}(\ell^2(G)) \; .$$

$$\mathfrak{B}_{0}^{\sharp}G \text{ is a }^{*}\text{-subalgebra.}$$

$$\rightarrow (B_{g^{-1}h} \otimes e_{g,h})(B_{k^{-1}l} \otimes e_{k,l}) = (B_{g^{-1}h}B_{k^{-1}l} \otimes e_{g,h} \circ e_{k,l})$$

$$\subseteq \delta_{h,k}(B_{g^{-1}h}B_{h^{-1}l} \otimes e_{g,l})$$

$$\subseteq (B_{g^{-1}l} \otimes e_{g,l})$$

Definition

The smash product $\mathscr{B}\sharp G$ of the Fell bundle \mathscr{B} by G is the closure of $\mathscr{B}_0^{\sharp}G$.

► The choice of C^{*}(𝔅) is arbitrary: The smash product is (up to isomorphism) independent of a C^{*}-algebra B with grading ⊕_{g∈G} B_g ≅ 𝔅! We have

$$\mathscr{B}\sharp G = \lim_{F\uparrow G} \sum_{g,h\in F} B_{g^{-1}h}\otimes e_{g,h} \qquad \text{with } F\subseteq G \text{ finite}$$

and

$$\sum_{g,h\in F}B_{g^{-1}h}\otimes e_{g,h}\subseteq B\otimes \mathscr{K}(\ell^2(G))$$

is a closed *-subalgebra for all G-graded C*-algebras B with grading isomorphic to \mathscr{B} .

Let $J \subseteq \mathscr{B} \sharp G$ be a closed subspace.

QUESTION: Let $w \in \mathscr{B} \sharp G$. Can we characterize $w \in J$?

Lemma

Let $g,h \in G$ be given. For every $w \in \mathscr{B} \sharp G$, there exists a unique $w_{g,h} \in B_{g^{-1}h}$ such that

$$(1 \otimes e_{g,g})w(1 \otimes e_{h,h}) = w_{g,h} \otimes e_{g,h}$$
.

Proof.

Let

$$w = \sum_{k,l \in G} b_{k^{-1}l} \otimes e_{k,l} \in \mathscr{B}_0^{\sharp}G$$

with $b_{k^{-1}l} \in B_{k^{-1}l}$ for all $k, l \in G$. Then we have

$$(1 \otimes e_{g,g})w(1 \otimes e_{h,h}) = \sum_{k,l \in G} (1 \otimes e_{g,g})(b_{k^{-1}l} \otimes e_{k,l})(1 \otimes e_{h,h})$$
$$= \sum_{k,l \in G} \delta_{g,k} \delta_{h,l}(b_{k^{-1}l} \otimes e_{k,l}) = b_{g^{-1}h} \otimes e_{g,l}$$

Set $w_{g,h} := b_{g^{-1}h}$. Since $\mathscr{B}_0^{\sharp}G$ is dense in $\mathscr{B}_{\sharp}G$, the uniqueness of $w_{g,h}$ for an arbitrary $w \in \mathscr{B}_{\sharp}G$ follows.

Holger Spellmann

Proposition

Let $J \subseteq \mathscr{B} \sharp G$ be a closed subspace and $w \in \mathscr{B} \sharp G$.

(i) If
$$w_{g,h} \otimes e_{g,h} \in J$$
 for all $g, h \in G$, then $w \in J$.

(ii) If $w \in J$ and $(1 \otimes \mathscr{K})J(1 \otimes \mathscr{K}) \subseteq J$, then $w_{g,h} \otimes e_{g,h} \in J$ for all $g, h \in G$.

Proof sketch.

For every finite subset
$$F \subseteq G$$
 set $P_F = \sum_{g \in F} 1 \otimes e_{g,g}$. Then

$$w = \lim_{F \uparrow G} P_F w P_F$$

for $w \in \mathscr{B} \sharp G$. From the previous proposition, we have

$$P_F w P_F = \sum_{g,h \in F} w_{g,h} \otimes e_{g,h} .$$

 \Rightarrow (i) follows, since *J* is closed. (ii) follows directly.

Definition

The restricted smash product $\mathscr{B} \flat G$ of the Fell bundle \mathscr{B} by G is defined as

$$\mathscr{B}\flat G := \overline{\sum_{g,h\in G} [B_{g^{-1}}B_h]\otimes e_{g,h}} \qquad \subseteq C^*(\mathscr{B})\otimes \mathscr{K}(\ell^2(G)) \; .$$

Remarks:

- (i) Since $[B_{g^{-1}}B_h] \subseteq B_{g^{-1}h}$, it holds that $\mathscr{B} \flat G \subseteq \mathscr{B} \sharp G$.
- (ii) If \mathscr{B} is saturated, i.e., $[B_g B_h] = B_{gh}$ for all $g, h \in G$, we also have $\mathscr{B} \flat G = \mathscr{B} \sharp G$.
- (iii) $\mathscr{B}\flat G$ is a closed two-sided ideal of $\mathscr{B}\sharp G$.
- (iv) For every $w \in \mathscr{B}\flat G$ it holds: $w_{g,h} \in [B_{g^{-1}}B_h]$ for all $g,h \in G \Leftrightarrow w \in \mathscr{B}\flat G$.

II.

DUAL PARTIAL ACTIONS

Dual global and partial actions

Let G be a discrete group. The left regular representation

$$\lambda_g^G: \ell^2(G) \to \ell^2(G) \ e_h \to e_{gh}$$

(for all $g \in G$) has the properties

$$\lambda_g^G \circ e_{h,k} = \lambda_g^G \langle \cdot, e_k \rangle e_h = \langle \cdot, e_k \rangle e_{gh} = e_{gh,k}$$

and

$$e_{h,k} \circ \lambda_g^G = \langle \lambda_g^G(\cdot), e_k \rangle e_h = \langle \circ, e_{g^{-1}k} \rangle = e_{h,g^{-1}k}$$

for all $g\in G, e_{h,k}\in \ell^2$ and hence,

$$\lambda_g^G \circ e_{h,k} \circ \lambda_{g^{-1}}^G = e_{gh,gk} \; .$$

Therefore,

$$(1 \otimes \lambda_g^G)(B_{h^{-1}k} \otimes e_{h,k})(1 \otimes \lambda_{g^{-1}}^G) = B_{(gh)^{-1}(gk)} \otimes e_{gh,gk} \in \mathscr{B} \sharp G$$

 $\implies \mathscr{B} \ \! \sharp G$ is invariant under this conjugation!

We also have

$$(1 \otimes \lambda_g^G)(B_{h^{-1}}B_k \otimes e_{h,k})(1 \otimes \lambda_{g^{-1}}^G) = B_{h^{-1}}B_k \otimes e_{gh,gk} \in \mathscr{B}\flat G$$

and in general

$$B_{h^{-1}}B_k \subsetneq \left[B_{(gh)^{-1}}B_{gk}\right]$$

 $\implies \mathscr{B} \flat G$ is <u>NOT</u> invariant under this conjugation!

Set

$$\Gamma_g: \mathscr{B}\sharp G \to \mathscr{B}\sharp G , \quad b \mapsto (1 \otimes \lambda_g^G)b(1 \otimes \lambda_{g^{-1}}^G)$$

for all $g \in G$.

Definition

Let \mathscr{B} be a Fell bundle.

- (i) $\Gamma = \{\Gamma_g\}$ is called the *dual global action* for \mathscr{B} .
- (ii) Δ , the restriction of Γ to $\mathscr{B}\flat G$, is called the *dual partial action* for \mathscr{B} .

The dual partial action

The spaces $E_g := \Gamma_g(\mathscr{B} \flat G) \cap \mathscr{B} \flat G$, which are domains and targets of Δ can be characterized in the following way:

Proposition

Set
$$D_g := [B_g B_{g^{-1}}]$$
 for every $g \in G$. Then

$$E_g = \sum_{h,k\in G} [B_{h^{-1}} D_g B_k] \otimes e_{h,k} \; .$$

Proof.

" \subseteq " An element $w \in E_g$ clearly fulfills $w \in \mathscr{B} \triangleright G$ and this is equivalent to the fact, that $w_{h,k} \in [B_{h-1}B_k]$ for all $h, k \in G$. For the inclusion " \subseteq " it suffices thus to show, that $w_{h,k} \in [B_{h-1}D_gB_k]$ for all $h, k \in G$. By the definition of E_g , we additionally have $w \in \Gamma_g(\mathscr{B} \triangleright G)$ and therefore we can set $y := \Gamma_{g-1}(w) \in \mathscr{B} \triangleright G$, which implies $w_{h,k} = y_{g-1h,g-1k} \in [B_{h-1g}B_{g-1k}]$. Since $[B_{h-1g}B_{g-1k}]$ is a left $[B_{h-1}B_h]$ - and a right $[B_{k-1}B_k]$ -ideal, we choose two approximate identities $\{e_\lambda\}_{\lambda \in \Lambda} \subset [B_{h-1}B_h]$ and $\{e_{\lambda'}\}_{\lambda' \in \Lambda'} \subset [B_{k-1}B_k]$ and we obtain

$$w_{h,k} = \lim_{\lambda,\lambda'} e_{\lambda} w_{h,k} e_{\lambda'} \in [B_{h^{-1}} B_h B_{h^{-1}g} B_{g^{-1}k} B_{k^{-1}} B_k] \subseteq [B_{h^{-1}} B_g B_{g^{-1}} B_k] ,$$

which means $w_{h,k} \in [B_{h^{-1}}D_gB_k]$ for all $h, k \in G$.

Proof.

" \supseteq " We have to prove that $B_{h-1}D_gB_k \otimes e_{h,k} \subseteq E_g$ for all $h, k \in G$. Firstly, $D_gB_k \subseteq B_k$ for all $g, k \in G$, because $D_g \subseteq B_1$, which implies $B_{h-1}D_gB_k \otimes e_{h,k} \subseteq B_{h-1}B_k \otimes e_{h,k} \subseteq \mathscr{B}\flat G$. Since

$$[B_{h^{-1}}D_gB_k] = [B_{h^{-1}}B_gB_{g^{-1}}B_k] \subseteq [B_{h^{-1}g}B_{g^{-1}k}]$$

we also obtain

$$B_{h^{-1}}D_gB_k \otimes e_{g^{-1}h,g^{-1}k} \in \mathscr{B}\flat G .$$

Therefore,

$$B_{h^{-1}}D_gB_k \otimes e_{h,k} = (1 \otimes \lambda_g^G)(B_{h^{-1}}D_gB_k \otimes e_{g^{-1}h,g^{-1}k})(1 \otimes \lambda_{g^{-1}}^G) \subseteq \Gamma_g(\mathscr{B}\flat G)$$

 $\text{and hence } B_{h^{-1}}D_gB_k\otimes e_{h,k}\subseteq \mathscr{B}\flat G\cap \Gamma_g(\mathscr{B}\flat G)=E_g \text{ for all } h,k\in G.$

Proposition

The dual global action for a Fell bundle $\mathscr{B} = \{B_g\}_{g \in G}$ is a globalization of the dual partial action for \mathscr{B} . Hence, the dual partial action of a Fell bundle \mathscr{B} is globalizable.

Proof.

By the definition of globalization, we have to show that $\sum_{g \in G} \Gamma_g(\mathscr{B} \triangleright G)$ is dense in $\mathscr{B} \sharp G$. Let $g, h \in G$. Clearly, $B_{g^{-1}h} \otimes e_{1,g^{-1}h} \in \mathscr{B} \triangleright G$. Since $\Gamma_g(B_{g^{-1}h} \otimes e_{1,g^{-1}h}) = B_{g^{-1}h} \otimes e_{g,h}$, every element of $\mathscr{B}_0^{\sharp}G$ is in the orbit of Γ_g . Hence, the statement follows, because $\mathscr{B} \sharp G$ is the closure of $\mathscr{B}_0^{\sharp}G$.

III.

Morita-Rieffel equivalence

Definition

Let A, B be C^* -algebras. A left Hilbert A-module and right Hilbert B-module M is called *Hilbert A-B-bimodule*, if

(i)
$$(a\xi)b = a(\xi b)$$
 and

(ii)
$$\langle \xi, \eta \rangle_A \zeta = \xi \langle \eta, \zeta \rangle_B$$
 for all $\xi, \eta, \zeta \in M, a \in A$ and $b \in B$.

Remark:

We have $\|\langle \xi, \xi \rangle_A \|_A = \|\langle \xi, \xi \rangle_B \|_B$ for all $\xi \in M$, i.e. the induced norms agree.

Definition

Let A, B be C^* -algebras. A Hilbert A-B-bimodule is called *left* (resp. *right*) *full*, if $\langle M, M \rangle_A$ (resp. $\langle M, M \rangle_B$) is dense in A (resp. B). If M is left and right full, it is a *imprimitivity bimodule*.

Definition

Let A, B be C^* -algebras. A and B are *Morita-Rieffel equivalent*, if there exists a imprimitivity bimodule A-B-bimodule.

Example

Let B be a C^* -algebra and A a C^* -subalgebra of B. Set M := [AB] and define

$$\langle \xi,\eta\rangle_A:=\eta\xi^*\quad\text{ and }\quad \langle \xi,\eta\rangle_B:=\eta^*\xi\quad\text{ for all }\eta,\xi\in M\;.$$

This is a well-defined Hilbert A-B-bimodule, if $ABA \subseteq A$, i.e. if A is a *hereditary* subalgebra.

- *M* is left full, since $A \subseteq M$.
- If A is a *full subalgebra*, i.e., if [BAB] = B, M is also right full.

Hence, M is an imprimitivity module and therefore, A and B are Morita-Rieffel equivalent.

Theorem

Let A, B to separable C^* -algebras. A and B are Morita-Rieffel equivalent if and only if they are *stably isomorphic*, i.e.,

 $\mathscr{K}\otimes A\simeq \mathscr{K}\otimes B$

with the algebra $\mathcal H$ of compact operators on a a separable, infinite-dimensional Hilbert space.

MR equivalence for C^* -algebraic partial dynamical systems

Definition

Let

$$\theta^k = (A^k, G, \{A_g^k\}_{g \in G}, \{\theta^k\}_{g \in G})$$

be C^* -algebraic partial dynamical systems with k = 1, 2. θ^1 and θ^2 are *Morita-Rieffel* equivalent, if there exists a Hilbert A^1 - A^2 -bimodule M and a (set-theoretical) partial action $\gamma = (\{M_g\}_{g \in G}, \{\gamma_g\}_{g \in G})$ such that

(i) M_g is a norm-closed, sub- A^1 - A^2 -bimodule of M for all $g \in G$

(ii)
$$A_g^k = [\langle M_g, M_g \rangle_{A^k}]$$
 for $k = 1, 2$ and all $g \in G$

(iii)
$$\gamma_g: M_{g^{-1}} \to M_g$$
 is a \mathbb{C} -linear map for all $g \in G$

(iv) $\langle \gamma_g(\xi), \gamma_g(\eta) \rangle_{A^k} = \theta_g^k (\langle \xi, \eta \rangle_{A^k})$ for k = 1, 2, all $\xi, \eta \in M_{g^{-1}}$ and all $g \in G$. The partial dynamical system

$$\gamma = (M, G, \{M_g\}_{g \in G}, \{\gamma_g\}_{g \in G})$$

is then called an *imprimitivity system* for θ^1 and θ^2 .

Remarks:

- (iv) is well-defined, since $\langle \xi, \eta \rangle_{A^k} \in A^k_{g^{-1}}$.
- By (ii), M_g is left and right full as a Hilbert A¹_g-A²_g-bimodule, and hence A¹_g and A²_g are Morita-Rieffel equivalent for all g ∈ G.
- In particular (g = 1), A^1 and A^2 are Morita-Rieffel equivalent.
- In general, γ_g are no Hilbert-(bi)module homomorphisms! We have

$$\gamma_g(a\xi) = \theta_g^1(a)\gamma_g(\xi)$$
 and $\gamma_g(\xi b) = \gamma_g(\xi)\theta_g^2(b)$

 $\text{for all } a \in A_{g^-}^1, b \in A_{g^{-1}}^2, \xi \in M_{g^{-1}} \text{ and } g \in G.$

Theorem

If two C^* -algebraic partial dynamical systems $\theta^k = (A^k, G, \{A_g^k\}_{g \in G}, \{\theta^k\}_{g \in G})$ with k = 1, 2 are Morita-Rieffel equivalent, then $A^1 \rtimes G$ and $A^2 \rtimes G$ are Morita-Rieffel equivalent as C^* -algebras.

Theorem

Every C^* -algebraic partial action $\theta = (\{D_g\}_{g \in G}, \{\theta_g\}_{g \in G})$ is Morita-Rieffel equivalent to the dual partial action Δ on $\mathscr{B}\flat G$, where \mathscr{B} is the semi-direct product bundle.

► Every *C**-algebraic partial action is Morita-Rieffel equivalent to a partial action which admits a globalization.

 \longrightarrow The proofs of these theorems can be found in notes of the subsequent talk!

Definition

Let A, B be two C^* -algebras and M a Hilbert A-B-bimodule. The *adjoint Hilbert* bimodule to M is a set M^* , such that there is a bijection $\xi \in M \mapsto \xi^* \in M^*$, with a vector space, B-left module and A-right module structure, defined by

$$\xi^* + \lambda \eta^* := (\xi + \overline{\lambda} \eta)^* \qquad b\xi^* := (\xi b^*)^* \qquad \xi^* a := (a^* \xi)^*$$

for all $a\in A,b\in B,\xi,\eta\in M$ and $\lambda\in\mathbb{C}$ and with an A-valued and B-valued inner product

 $\langle \xi^*, \eta^* \rangle_A := \langle \xi, \eta \rangle_A \qquad \langle \xi^*, \eta^* \rangle_B := \langle \xi, \eta \rangle_B$

for all $\xi, \eta \in M$. Then M^* is a Hilbert *B*-*A*-bimodule.

Let A, B be two C^* -algebras, M a Hilbert A-B-bimodule and M^* its adjoint. The complex vector space $A \times M \times M^* \times B$ written as

$$L = \begin{pmatrix} A & M \\ M^* & B \end{pmatrix}$$

is a C^* -algebra with the multiplication

$$\begin{pmatrix} a_1 & \xi_1 \\ \eta_1^* & b_1 \end{pmatrix} \begin{pmatrix} a_2 & \xi_2 \\ \eta_2^* & b_2 \end{pmatrix} := \begin{pmatrix} a_1 a_2 + \langle \xi_1, \eta_2 \rangle_A & a_1 \xi_2 + \xi_1 b_2 \\ \eta_1^* a_2 + b_1 \eta_2^* & \langle \eta_1, \xi_2 \rangle_B + b_1 b_2 \end{pmatrix} ,$$

and the involution

$$\begin{pmatrix} a & \xi \\ \eta^* & b \end{pmatrix}^* := \begin{pmatrix} a^* & \eta \\ \xi^* & b^* \end{pmatrix}$$

for all $a, a_1, a_2 \in A$, $b, b_1, b_2 \in B$ and $\xi, \xi_1, \xi_2, \eta, \eta_1, \eta_2 \in M$.

Taking the columns of the multiplication in *L*, there are representations

$$\pi_B: L \to \mathscr{L}(M \oplus B) , \quad \begin{pmatrix} a_1 & \xi_1 \\ \eta_1^* & b_1 \end{pmatrix} \mapsto \begin{pmatrix} \begin{pmatrix} \xi_2 \\ b_2 \end{pmatrix} \mapsto \begin{pmatrix} a_1\xi_2 + \xi_1b_2 \\ \langle \eta_1, \xi_2 \rangle_B + b_1b_2 \end{pmatrix} \end{pmatrix}$$

and

$$\pi_A: L \to \mathscr{L}(A \oplus M^*) , \quad \begin{pmatrix} a_1 & \xi_1 \\ \eta_1^* & b_1 \end{pmatrix} \mapsto \begin{pmatrix} a_2 \\ \eta_2^* \end{pmatrix} \mapsto \begin{pmatrix} a_1 a_2 + \langle \xi_1, \eta_2 \rangle_A \\ \eta_1^* a_2 + b_1 \eta_2^* \end{pmatrix} \end{pmatrix}$$

of L, where $M \oplus B$ is a right Hilbert B-module, $A \oplus M^*$ a left Hilbert A-module and $\mathscr{L}(M \oplus B)$ and $\mathscr{L}(A \oplus M^*)$ are the spaces of adjointable operators. Then

$$\|\cdot\|: L \to \mathbb{R}_{\geq 0}, \quad c \mapsto \max\{\pi_A(c), \pi_B(c)\}$$

defines a norm on L, whereby it becomes a C*-algebra, the so called *linking algebra*.

Morita-Rieffel equivalence and the linking algebra

Proposition

Let $\alpha = (A, G, \{A_g\}_{g \in G}, \{\alpha_g\}_{g \in G})$ and $\beta = (B, G, \{B_g\}_{g \in G}, \{\beta_g\}_{g \in G})$ be two C^* -algebraic partial dynamical systems that are Morita-Rieffel equivalence with the imprimitivity system $\gamma = (M, G, \{M_g\}_{g \in G}, \{\gamma_g\}_{g \in G})$ and the linking algebra L of M.

Proof Sketch.

 (i) LL_gL ⊆ L_g for all g ∈ G: By the definition of the multiplication, if suffices to show that

(a)
$$a_1a \in A_g$$
 for all $a_1 \in A_g$ and $a \in A$

(b)
$$\langle \xi_1, \eta \rangle_A \in A_g$$
 for all $\xi_1 \in M_g$ and $\eta \in M$

(c)
$$a_1 \xi \in M_g$$
 for all $a_1 \in A_g$ and $\xi \in M_g$

Morita-Rieffel equivalence and the linking algebra

Proof Sketch.

Since by the same reasoning (as in the following proofs) and by taking adjoints, it follows from

- (a) that $aa_1 \in A_g, b_1b \in B_g$ and $bb_1 \in B_g$ for all $a_1 \in A_g, a \in A, b_1 \in B_g$ and $b \in B$;
- (b) that $\langle \xi, \eta_1 \rangle_A \in A_g, \langle \xi_1, \eta \rangle_B \in B_g$ and $\langle \xi, \eta_1 \rangle_B \in B_g$ for all $\xi_1, \eta_1 \in M_g$ and $\xi, \eta \in M$
- (c) that $a\xi_1, \xi_1 b, \xi b_1 \in M_g, \eta_1^* a, \eta^* a_1, b_1 \eta^*, b\eta_1^* \in M_g^*$ for all $a_1 \in A_g, a \in A, b_1 \in B_g, b \in B, \xi_1 \in M_g, \xi \in M, \eta_1^* \in M_g^*, \eta^* \in M^*.$

Taking summads of these elements, we get $LL_g \subseteq L_g$ as well as $LL_g \subseteq L_g$, which imply that L_g is a two-sided ideal.

Proof of (a): This is immediately clear, since $A_g \subset A$ is a two-sided ideal for all $g \in G$.

 $\begin{array}{l} \underline{\operatorname{Proof}\ of\ (b):}\ M_g\ \text{is a left Hilbert}\ A_g\text{-module. Let}\ \xi,\eta\in M_g.\ \text{There exists an approximate unit}\\ \hline \{e_\lambda\}_{\lambda\in\Lambda}\subset A_g\ \text{such that}\ \xi=\lim_{\lambda\in\Lambda}e_\lambda\xi,\ \text{Then we obtain}\\ \langle\xi,\eta\rangle_A=\langle\lim_{\lambda\in\Lambda}e_\lambda\xi,\eta\rangle_A=\lim_{\lambda\in\Lambda}e_\lambda\langle\xi,\eta\rangle_A\in A_g.\\ \underline{\operatorname{Proof}\ of\ (c):}\ \text{Since}\ A_g=[\langle M_g,M_g\rangle_A],\ \text{there are}\ \chi,\zeta\in M_g\ \text{such that}\ a_1=\langle\chi,\zeta\rangle_A.\ \text{Therefore, we}\\ \overline{\operatorname{obtain}\ a_1\xi}=\langle\chi,\zeta\rangle_A\xi=\chi\langle\zeta,\xi\rangle_B\in M_g,\ \text{since}\ M\ \text{is a Hilbert}\ A\text{-}B\text{-bimodule.}\\ \text{Since the norm topology}\ of\ L\ \text{and}\ \text{the product topology}\ for\ L=A\times M\times M^*\times B\ \text{set up the same}\\ \operatorname{topology}\ on\ L\ \text{and}\ because\ A_g\subset A,\ B_g\subset B,\ M_g\subset M\ \text{and}\ M_g^*\subset M\ \text{are all closed,}\ L_g\subset L\ \text{is also a} \end{array}$

closed ideal for all $g \in G$.

Proof Sketch.

(ii) Using the definition of the involution for L and the properties, that α_g , β_g are *-isomorphisms and that γ_g is bijective, we have

$$\begin{split} \lambda_g \left(\begin{pmatrix} a & \xi \\ \eta^* & b \end{pmatrix}^* \right) &= \lambda_g \left(\begin{pmatrix} a^* & \eta \\ \xi^* & b^* \end{pmatrix} \right) = \begin{pmatrix} \alpha_g(a^*) & \gamma_g(\eta) \\ \gamma_g(\xi)^* & \beta_g(b^*) \end{pmatrix} = \begin{pmatrix} \alpha_g(a)^* & \gamma_g(\eta) \\ \gamma_g(\xi)^* & \beta_g(b)^* \end{pmatrix} \\ &= \begin{pmatrix} \alpha_g(a) & \gamma_g(\xi) \\ \gamma_g(\eta)^* & \beta_g(b) \end{pmatrix}^* = \lambda_g \left(\begin{pmatrix} a & \xi \\ \eta^* & b \end{pmatrix} \right)^* \end{split}$$

for $a\in A_{g^{-1}}, b\in B_{g^{-1}}$ and $\xi,\eta\in M_{g^{-1}}.$ Hence, it is a *-isomorphism.

 (iii) A direct sum of C^{*}-partial actions is again a C^{*}-algebraic partial action and λ_g is the direct sum of four partial actions.

Thank you for your attention!