Fell's absorption principle and graded C^* -algebras

Julian Kranz

May 17, 2021

Disclaimer on notation

Convention

We make no notational distinction between a representation

$$\pi: \mathcal{B} \to \mathcal{L}(H)$$

of a Fell bundle $\ensuremath{\mathcal{B}}$ and its integrated form

 $\pi: C^*(\mathcal{B}) \to \mathcal{L}(H).$

Convention

Denote by

$$\lambda^{G}: C^{*}(G) \rightarrow \mathcal{L}(\ell^{2}G), \quad (\lambda^{G}(u_{g})f)(h) := f(g^{-1}h)$$

the left regular representation. We have $C_r^*(G) = \lambda^G(C^*(G))$.

Tensor products of C^* -algebras

Let A and B be C*-algebras and denote by $A \odot B$ their algebraic tensor product (as \mathbb{C} -vector spaces). We turn $A \odot B$ into a *-algebra via

$$(a_1\otimes b_1)\cdot(a_2\otimes b_2):=(a_1a_2)\otimes(b_1b_2),\quad (a_1\otimes b_1)^*:=a_1^*\otimes a_2^*$$

We want to complete $A \odot B$ in order to get a C^* -algebra.

Theorem (Takesaki?)

There is a minimal and a maximal C^* -norm on $A \odot B$.

Definition

The completions w.r.t. these norms are the *minimal tensor product* $A \otimes B$ and the *maximal tensor product* $A \otimes_{max} B$.

Proposition

Let $A \subseteq \mathcal{L}(H)$ and $B \subseteq \mathcal{L}(K)$ be C*-algebras. Let $H \otimes K$ be the completion of $H \odot K$ w.r.t. the inner product

$$\langle \xi_1 \otimes \eta_1, \xi_2 \otimes \eta_2 \rangle := \langle \xi_1, \xi_2 \rangle \langle \eta_1, \eta_2 \rangle.$$

We get a representation

$$A \odot B \subseteq \mathcal{L}(H \otimes K), \quad (a \otimes b)(\xi \otimes \eta) = (a\xi) \otimes (b\eta).$$

Then

$$A \otimes B \cong \overline{A \odot B}^{\|\cdot\|} \subseteq \mathcal{L}(H \otimes K).$$

The maximal tensor product

Proposition

Let A and B be C^{*}-algebras. Then $A \otimes_{max} B$ satisfyies the following universal property:

For all *-homomorphisms $\pi : A \rightarrow C$ and $\rho : B \rightarrow C$ satisfying

$$\pi(a)
ho(b)=
ho(b)\pi(a),\quad orall a\in A,b\in B,$$

there is a (unique) *-homomorphisms

$$\pi \times \rho : A \otimes_{\mathsf{max}} B \to C$$

satisfying

$$\pi \times \rho(a \otimes b) = \pi(a)\rho(b)$$

Fell's absorption principle

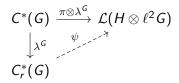
Fell's absorption principle for unitary representations

Theorem (Fell's absorption principle)

Let G be a discrete group and $\pi : C^*(G) \to \mathcal{L}(H)$ a (non-degenerate) representation. Then there is a *-homomorphism

$$\psi: C^*_r(G) \to \mathcal{L}(H \otimes \ell^2 G)$$

such that the following diagram commutes.



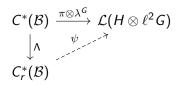
Moreover, ψ is faithful. Slogan: λ^{G} absorbs π .

Fell's absorption principle for Fell bundles

Theorem (Fell's absorption principle) Let \mathcal{B} be a Fell bundle and let $\pi : C^*(\mathcal{B}) \to \mathcal{L}(\mathcal{H})$ be a representation. Then the representation

$$\pi\otimes\lambda^{\mathsf{G}}:\mathsf{C}^*(\mathcal{B}) o\mathcal{L}(\mathsf{H}\otimes\ell^2\mathsf{G}),\quad\mathcal{B}_{\mathsf{g}}
ibegin{array}{c} b\mapsto\pi(b)\otimes\lambda^{\mathsf{G}}(\mathsf{g}) \end{array}$$

factors through $C_r^*(\mathcal{B})$, i.e. we have a commutative diagram



If π_1 is faithful, then so is ψ .

Proof #1: Existence of ψ

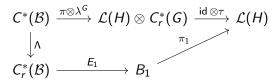
We have to show

 $\ker \Lambda \subseteq \ker \pi \otimes \lambda^{\mathcal{G}}.$

Consider the canonical faithful trace (= 1st Fourier coefficient)

$$au = E_1: C^*_r(G) o \mathbb{C}, \quad \lambda^G(g) \mapsto egin{cases} 1, & g = 1 \ 0, & g
eq 1 \end{cases}$$

Check that the following diagram commutes!



For $x^*x \in \ker \Lambda$, we get

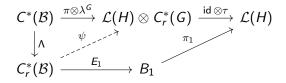
$$egin{aligned} \Lambda(x^*x) &= 0 &\Rightarrow & (\operatorname{id}\otimes au)\circ(\pi\otimes\lambda^{\mathcal{G}})(x^*x) = 0 \ & \stackrel{ au ext{ faithful}}{\Rightarrow} & (\pi\otimes\lambda^{\mathcal{G}})(x^*x) = 0 \end{aligned}$$

Proof #2: Faithfulness of ψ

Now suppose that $\pi_1: B_1 \to \mathcal{L}(H)$ is faithful. We have to check that

$$\psi: C^*_r(\mathcal{B}) \to \mathcal{L}(H \otimes \ell^2 G)$$

is faithful. Again, consider the diagram



For $x^*x \in \text{ker}(\psi)$, we get

 $\pi_1 \circ E_1(x^*x) = 0 \quad \stackrel{\pi_1 \text{ faithful}}{\Rightarrow} \quad E_1(x^*x) = 0 \quad \stackrel{E_1 \text{ faithful}}{\Rightarrow} \quad x^*x = 0.$

Corollary

We have canonical inclusions (into spatial tensor products)

$$\operatorname{id}_{C^*(\mathcal{B})} \otimes \lambda^G : C^*_r(\mathcal{B}) \hookrightarrow C^*(\mathcal{B}) \otimes C^*_r(G)$$
$$\Lambda \otimes \lambda^G : C^*_r(\mathcal{B}) \hookrightarrow C^*_r(\mathcal{B}) \otimes C^*_r(G).$$

both given by

$$B_g \ni b \mapsto b \otimes \lambda^G(g).$$

Theorem Let \mathcal{B} be a Fell bundle. Then the representation

$$\mathcal{S}: \mathcal{C}^*(\mathcal{B})
ightarrow \mathcal{C}^*_r(\mathcal{B}) \otimes_{\sf max} \mathcal{C}^*_r(\mathcal{G}), \quad B_g
i b \mapsto b \otimes \lambda^\mathcal{G}(g)$$

is faithful.

Caveat The analogous map

$$C^*(\mathcal{B}) o C^*_r(\mathcal{B}) \otimes_{\min} C^*_r(\mathcal{G})$$

is not injective since it factors through $C_r^*(\mathcal{B})!$

Proof of the Theorem

Let $\pi: C^*(\mathcal{B}) \hookrightarrow \mathcal{L}(\mathcal{H})$ be faithful and write

$$\psi := \pi \otimes \lambda^{\mathcal{G}} : C_r^*(\mathcal{B}) \hookrightarrow \mathcal{L}(\mathcal{H} \otimes \ell^2 \mathcal{G}).$$

Denote the right regular representation by

$$ho^{\mathsf{G}}: C^*_r(\mathsf{G})
ightarrow \mathcal{L}(\ell^2 \mathsf{G}), \quad
ho^{\mathsf{G}}_g(\xi)(h) := \xi(hg).$$

Now check that ψ and $1\otimes\rho^{\textit{G}}$ commute. The composition

$$C^*(\mathcal{B}) \xrightarrow{\mathcal{S}} C^*_r(\mathcal{B}) \otimes_{\max} C^*_r(G) \xrightarrow{\psi \times (1 \otimes \rho^G)} \mathcal{L}(H \otimes \ell^2 G) \xrightarrow{(1 \otimes e_{11}) - (1 \otimes e_{11})} \mathcal{L}(H)$$

is equal to π and thus faithful.

Graded C*-algebras

Graded C*-algebras

Definition

A (G-)graded C*-algebra is a C*-algebra B together with a choice of linearly independent closed linear subspaces $B_g \subseteq B, g \in G$ satisfying

$$B_g^* = B_{g^{-1}}$$

$$B_g B_h \subseteq B_{gh}$$

$$\overline{\sum_{g \in G} B_g} = B$$

Example

If B is a graded C*-algebra, then $\mathcal{B} := \{B_g\}_{g \in G}$ is a Fell bundle.

Question

When do we have $C^*(\mathcal{B}) = B$ or $C^*_r(\mathcal{B}) = B$?

Reconstructing a graded C^* -algebra from its Fell bundle

Remark

Let B be a graded C*-algebra with associated Fell-bundle $\mathcal{B} := \{B_g\}_{g \in G}$. Then there is a surjective *-homomorphism

$$\varphi: C^*(\mathcal{B}) \to B, \quad B_g \ni b \mapsto b.$$

Question

When do we have a *-homomorphism

$$B o C^*_r(\mathcal{B}), \quad B_g \ni b \mapsto \Lambda(b)$$
 ?

Definition

A graded C*-algebra B is called *topologically graded*, if there is a bounded linear map $F : B \to B_1$ such that $F|_{B_1} = \text{id}$ and $F|_{B_g} = 0$, $g \neq 1$.

Topologically graded C^* -algebras lie between $C^*(\mathcal{B})$ and $C^*_r(\mathcal{B})$

Theorem

Let B be a graded C*-algebra. The following conditions are equivalent:

- 1. *B* is topologically graded (i.e. \exists bounded linear $F : B \to B_1$ with $F|_{B_1} = \text{id}$ and $F|_{B_g} = 0, g \neq 1$)
- 2. There exists a surjective *-homomorphism

$$\psi: B \to C^*_r(\mathcal{B}), \quad B_g \ni b \mapsto \Lambda(b)$$

In this case, $F : B \rightarrow B_1$ is a conditional expectation.

Proof of the theorem

" \Leftarrow " : Suppose we have $\psi : B \to C_r^*(\mathcal{B})$ as above. Then $F := E_1 \circ \psi$ does the trick. " \Rightarrow " : Suppose we have a map $F : B \to B_1$ as above. Define

$$\langle b, c \rangle_{B_1} := F(b^*c), \quad b, c \in B.$$

Let $X := \overline{B}^{\langle,\rangle_{B_1}}$ be the separated completion of B. We have a representation $L : B \to \mathcal{L}_{B_1}(X)$ by left multiplication. The map

$$U: X \to \ell^2(\mathcal{B}), \quad B_g \ni b \mapsto b$$

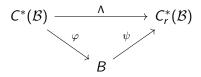
defines an isometry of Hilbert- B_1 -modules such that

$$UL(b) = \Lambda(b)U, \quad \forall b \in B_g$$

Define $\psi := \operatorname{Ad}(U) \circ L : B \to C^*_r(\mathcal{B}).$

Theorem

Let B be a topologically graded C^{*}-algebra with associated Fell bundle $\mathcal{B} = \{B_g\}_{g \in G}$. We have a commutative diagram



Corollary

Let B be a topologically graded C^{*}-algebra with conditional expectation $F : B \to B_1$ and $\psi : B \to C^*_r(\mathcal{B})$ as before. Then

$$\ker(\psi) = \{ x \in B : F(x^*x) = 0 \}.$$

Moreover, F is faithful if and only if ψ is an isomorphism.

Proof.

This follows from faithfulness of $E_1 : C_r^*(\mathcal{B}) \to B_1$ and $F = E_1 \circ \psi$.

A non-topologically graded C^* -algebra

Example

Let $X \subsetneq \mathbb{T}$ be an infinite, closed proper subset. Then C(X) is a graded C^* -algebra with grading subspaces

$$C(X)_n := \{az^n, a \in \mathbb{C}\}.$$

However, C(X) is not topologically graded.

Proof.

Suppose $F : C(X) \to \mathbb{C}$ was continuous and bounded with $F(\sum_n a_n z^n) = a_0$. By using density of polynomials, we get

$$F(f|_X) = \int_{\mathbb{T}} f(z) dz, \quad \forall f \in C(\mathbb{T}).$$

Pick $0 \neq f \in C(\mathbb{T})_{\geq 0}$ with $f|_X = 0$. We get $F(f|_X) \neq 0$, contradiction!

Thank you for your attention!