2 C*-ALGEBRAIC PARTIAL DYNAMICAL SYSTEMS

Definition 2.1. Let *A* be a C*-algebra. Define the set of all partial automorphisms as

$$pAut(A) = \{ \phi : C \to D : C, D \triangleleft A \text{ closed two-sided ideals}, \phi \text{ *-isomorphism} \}$$

For a partial homoeomorphism $h: U \to V, h \in pHomeo(X)$ where X is locally compact Hausdorff space we can construct a partial automorphism

$$\phi_h: C_0(V) \to C_0(U)$$

between ideals of $C_0(X)$. Thus we obtain a semigroup isomorphism

$$pHomeo(X) \rightarrow pAuto(C_0(X)), \quad h \mapsto \phi_{h^{-1}}.$$
 (1)

Definition 2.2. A C*-algebraic partial action of the group G on the C*-algebra A is a pair

$$oldsymbol{ heta} = ig(\{D_g\}_{g\in G}, \{oldsymbol{ heta}_g\}_{g\in G}ig)$$

consisting of a family $\{D_g\}_{g\in G}$ of closed two-sided ideals of A and a family $\{\theta_g\}_{g\in G}$ of *-isomorphisms with

$$\theta_g: D_{g^{-1}} \to D_g,$$

such that

(i) $D_1 = X$ and $\theta_1 = id : D_1 \to D_1$, (ii) $\theta_g \circ \theta_h \subseteq \theta_{gh}$, for all $g, h \in G$.

 $(A, G, \{D_g\}_{g \in G}, \{\theta_g\}_{g \in G})$ is then called a *C*-algebraic partial dynamical system*.

Proposition 2.3. Let *G* be a group, *A* be a C*-algebra. A map θ : $G \rightarrow pAut(X)$ is a C*-algebraic partial action of *G* on *X* if an only if the following conditions are fullfilled:

(a) θ₁ is the identity map on X
(b) θ_{g⁻¹} = (θ_g)⁻¹,
(c) θ_gθ_hθ_{h⁻¹} = θ_{gh}θ_{h⁻¹}
(d) θ_{g⁻¹}θ_gθ_h = θ_{g⁻¹}θ_{gh}

Proof. See 1.2.(i) in the first lecture or 4.5 in Exel's book.

Corollay 2.4. If *G* is a group and *X* a locally compact Hausdorff space, then (1) induces a natural equivalence between topological partial actions of *G* on *X* and C*-algebraic actions of *G* on $C_0(X)$.

Now we will construct a **crossed product** of the C*-algebra *A* for a fixed group *G* and a fixed C*-algebraic partial action θ . For this let us first construct this product as follows:

$$A\rtimes_{alg}G:=\{\sum_{g\in G}a_g\delta_g\mid \ a_g\in D_g,\ a_g=0 \text{ for all but finitely many }g\in G,\}$$

The δ_g have to be seen as a sort of placeholder. Technically they indicate that $a_g \delta_g$ can be viewed as a

function
$$a_g \delta_g : G \to A, \ h \mapsto \begin{cases} a_g, & \text{if } h = g; \\ 0, & \text{if } h \neq g \end{cases}$$

 $A \rtimes_{alg} G$ can be seen as the set of all finitely supported functions $f: G \to A$ such that f(g) is in D_g . Addition and scalar multiplication are defined in the obvious way. Multiplication is determined by

$$(a\delta_g)(b\delta_h) = \theta_g(\theta_{g^{-1}}(a)b)\delta_{gh} \quad \forall g,h \in G, a \in D_g, b \in D_h.$$

The involution on $A \rtimes_{alg} G$ is given by

$$(a\delta_g)^* = \theta_{g^{-1}}(a^*)\delta_{g^{-1}}, \quad \forall g \in G, \forall a \in D_g.$$

The resulting algebra $A \rtimes_{alg} G$ is a *-algebra and associative. The problem is that it is not necessarily a C*-algebra. We need to define a norm and complete the algebra with it to achieve this.

(Remark: The associativity of $A \rtimes_{alg} G$ is hard to prove here and is not necessarily true if A is not a C*-algebra.)

Definition 2.5. A C*-seminorm on a complex *-algebra *B* is a seminorm $p : B \to \mathbb{R}_+$ such that for all $a, b \in B$ one has that

(i) $p(ab) \le p(a)p(b)$ (ii) $p(a^*) = p(a)$ (iii) $p(a^*a) = p(a)^2$

If *B* is a C*-algebra and *p* is a C*-seminorm on *B* we have $p(b) \le ||b||$ for all $b \in B$.

Proposition 2.6. Let *p* be a C*-seminorm on $A \rtimes_{alg} G$. Then for every $a = \sum_{g \in G} a_g \delta_g$ in $A \rtimes_{alg} G$ we have that

$$p(a) \le \sum_{g \in G} \|a_g\|.$$

Proof. $A\delta_1$ is isomorphic to *A* so one has $p(a\delta_1) \leq ||a||$ for all *a* in *A*. It follows

$$p(a_g \delta_g)^2 = p((a_g \delta_g)(a_g \delta_g)^*) = p(a_g a_g^* \delta_1) \le ||a_g a_g^*|| = ||a_g||^2$$

so the statement follows from the triangle inequality.

Now we define the seminorm $\|.\|_{max}$ on $A \rtimes_{alg} G$ by

 $||a||_{max} = \sup\{p(a): p \text{ is a C*-seminorm on } A \rtimes_{alg} G\}.$

In fact $\|.\|_{max}$ is a norm but we will not focus on that now.

Definition 2.7. The C*-algebraic crossed product of a C*-algebra *A* by a group *G* under a C*-algebraic partial action $\theta = (\{D_g\}_{g \in G}, \{\theta_g\}_{g \in G})$ is defined as

$$A \rtimes G := \overline{A \rtimes_{alg} G}^{\|.\|_{max}}.$$

Proposition 2.8. Let *B* be another C*-algebra and let

 $\varphi_0: A \rtimes_{alg} G \to B$

be a *-homomorphism. The there exists a unique *-homomorphism $\varphi : A \rtimes G \to B$ such that the diagram

commutes.

Proof. Notice that $p(x) := \|\varphi_0(x)\|$ defines a C*-seminorm on $A \rtimes_{alg} G$ which is therefore bounded by $\|.\|_{max}$. Thus φ_0 is continuous and hence extends the completion.

A bounded linear function $f: X \to Y$ can be uniquely extended to $\tilde{f}: \tilde{X} \to Y$

3 COVARIANT REPRESENTATIONS

In this section we will take a look at covariant representations and especially their connection to partial actions.

Definition 3.1. Let *G* be a discrete group an let *B* be a unital C*-algebra. A partial representation of *G* in *B* is a map $\rho : G \to B$ such that: (i) $\rho(e) = 1_B$. (ii) $\rho(g)\rho(h)\rho(h^{-1}) = \rho(gh)\rho(h^{-1})$ for all *g* and *h* in *G*. (iii) $\rho(g^{-1})\rho(g)\rho(h) = \rho(g^{-1})\rho(gh)$ for all *g* and *h* in *G*. (iv) $\rho(g^{-1}) = \rho(g)^*$ for all *g* in *G*.

Note that if the domains of a partial action are unital, then the map $g \mapsto 1_g \delta_g$ is a partial representation of *G* on the crossed product, where 1_g denotes the unit of D_g . To prove this just check the above conditions:

A covariant representation of a partial dynamical system $(A, G, \{D_g\}_{g \in G}, \{\theta_g\}_{g \in G})$ in a C*-algebra *B* is a pair (π, ρ) where (i) $\pi : A \to B$ is a homomorphism, (ii) $\rho : G \to B$ is a partial representation such that

$$\rho(g)\pi(a)\rho(g^{-1}) = \pi(\theta_g(a))$$
 for all $a \in D_{g^{-1}}$, for all $g \in G$.

Proposition 3.2. Given a covariant representation (π, ρ) of a C*-algebraic partial dynamical system $(A, G, \{D_g\}_{g \in G}, \{\theta_g\}_{g \in G})$ in a unital C*-algebra *B*, then there exists a unique *-homomorphism

$$\pi \times \rho : A \rtimes G \to B$$

such that $(\pi \times \rho)(a\delta_g) = \pi(a)\rho(g)$, for all $g \in G$ and all $a \in D_g$.

To prove this result we will use the following short lemma:

Lemma 3.3. Given the notation above, we have

$$\pi(a)\rho(g)\rho(g^{-1}) = \pi(a) = \rho(g)\rho(g^{-1})\pi(a)$$

for all $a \in D_g$ and $g \in G$.

Proof. Write *a* as $\theta_g(b)$ for some $b \in D_{g^{-1}}$. Then

$$\pi(a)\rho(g)\rho(g^{-1}) = \pi(\theta_g(b))\rho(g)\rho(g^{-1}) = \rho(g)\pi(b)\rho(g^{-1})\rho(g)\rho(g^{-1})$$

$$= \rho(g)\pi(b)\rho(g^{-1}) = \pi(\theta_g(a)) = \pi(a).$$

The right side of the equation works similar.

Proof of Proposition 3.2. Multiplicativity of $(\pi \times \rho)$:

$$((\pi \times \rho)(a\delta_g)) \cdot ((\pi \times \rho)(b\delta_h)) = \pi(a)\rho(g)\pi(b)\rho(h)$$

$$\stackrel{3.3}{=} \rho(g)\rho(g^{-1})\pi(a)\rho(g)\pi(b)\rho(h)$$

$$= \rho(g)\pi(\theta_{g^{-1}}(a)b)\rho(h)$$

$$= \rho(g)\pi(\theta_{g^{-1}}(a)b)\rho(g^{-1})\rho(g)\rho(h)$$

$$= \pi(\theta_g(\theta_{g^{-1}}(a)b))\rho(gh)$$

$$= (\pi \times \rho)((a\delta_g) \cdot (b\delta_h)).$$

Now we will see the main result of this chapter.

Theorem 3.4. Let $\theta = (\{D_g\}_{g \in G}, \{\theta_g\}_{g \in G})$ be a C*-algebraic partial action of a group *G* on a C*-algebra *A* and let

$$\psi: A \rtimes G \to \mathscr{L}(H)$$

be a *-representation, where *H* is a Hilbert space and ψ is non-degenerate (closed linear span of $\psi(A \rtimes G)H$ equals *H*). Then there exists a unique covariant representation (π, ρ) of θ in $\mathcal{L}(H)$, such that: (i) π is a non-degenerate representation of *A* (ii) $\rho(g)\rho(g^{-1})$ is the orthogonal projection onto the closed linear span of $\pi(D_g)H$ (iii) $\psi = \pi \times \rho$.

Proof. For simplicity we will assume that *A* is unital with unital element 1_A and that the D_g are also unital with unital element 1_g . Then $(1_A\delta_1)$ is a unital element in $A \rtimes G$. Also for representations of unital algebras non-degeneracy is equivalent to unitality.

Definition of π and condition (i):

The first step in our proof is to define π an check that it is unital. Define π as the representation of *A* on *H* given by

$$\pi(a) = \psi(a\delta_1)$$

As ψ is unital and $A \rtimes_{alg} G$ is dense in $A \rtimes G$ we know that ψ restricted to $A \rtimes_{alg} G$ is also unital. Thus π is unital.

Definition of ρ and condition (ii):

For each $g \in G$ define

$$H_g := \pi(1_g)H$$

and note that $e_g := \pi(1_g)$ is the orthogonal projection onto H_g . Note that $1_g 1_h = 1_h 1_g$ because D_g and D_h are two-sided ideals and as ψ is multiplicative it follows that $e_g e_h = e_h e_g$. Define ρ as follows:

$$\rho_g := \psi(1_g \delta_g).$$

Then we see immediately that ρ is a partial representation that fulfills

$$e_g = \rho_g \rho_g^* = \rho_g \rho_{g^{-1}}$$

which verifies condition (ii) of our theorem.

 (π, ρ) is covariant representation:

What needs to be show is

$$ho_g \pi(a)
ho_{g^{-1}} = \pi(heta_g(a)), \quad ext{for any } g \in G ext{ and } a \in D_{g^{-1}}.$$

We have

$$\rho_{g}\pi(a)\rho_{g^{-1}} = \psi(1_{g}\delta_{g}a1_{g^{-1}}\delta_{g^{-1}}) = \psi(\theta_{g}(a)1_{g}) = \pi(\theta_{g}(a))$$

so we indeed have a covariant representation.

Condition (iii):

We want to show

$$(\pi \times \rho)(a\delta_g) = \psi(a\delta_g), \text{ for every } g \in G \text{ and every } a \in D_g.$$

Write $a = a 1_g$ and we get

$$\begin{split} \psi(a\delta_g) &= \psi(1_g\delta_g\theta_{g^{-1}}(a)\delta_1) = \psi(1_g\delta_g)\pi(\theta_{g^{-1}}(a)) \\ &= \pi(a)\rho_g = (\pi \times \rho)(a\delta_g) \end{split}$$

With this we have proven condition (iii) and the existence of a covariant representation $(\pi \times \rho)$ was shown.

Uniqueness of the covariant representation:

Assume there is another covariant representation (π', ρ') as demanded in the theorem such that

$$\pi' \times \rho' = \psi.$$

For every *a* in *A* we then have $\pi'(a) = \psi(a\delta_1) = \pi(a)$, so π' and π must coincide. For a *g* in *G* and ξ in $H_{g^{-1}}$ we write $\xi = \pi(a)\eta$ for some *a* in $D_{g^{-1}}$ and η in *H*. Then

$$\rho_{g}'(\xi) = \rho_{g}'\pi(a)\eta = \rho_{g}'\pi'(a)\eta = (\pi'(a^{*})\rho_{g^{-1}})^{*}\eta$$
$$= ((\pi' \times \rho')(a^{*}\delta_{g^{-1}}))^{*}\eta = ((\pi \times \rho)(a^{*}\delta_{g^{-1}}))^{*}\eta$$
$$= \rho_{g}\pi(a)\eta = \rho_{g}(\xi)$$

which means that ρ'_g coincides with ρ_g on $H_{g^{-1}}$.

By condition (ii) we know that ρ'_g and ρ_g vanish on $H_{g^{-1}}^{\perp}$ so ρ'_g coincides with ρ_g on H. thus $\rho' = \rho$ and uniqueness is shown.