
2 C*-ALGEBRAIC PARTlAL DYNAMICAL SYSTEMS

Definition 2.1. Let A be a C*-algebra. Define the set of all partial automorphisms as

pAut(A) = {φ : C→ D : C,D C A closed two-sided ideals, φ *-isomorphism}

For a partial homoeomorphism h : U →V,h ∈ pHomeo(X) where X is locally compact Hausdorff space

we can construct a partial automorphism

φh : C0(V )→C0(U)

between ideals of C0(X). Thus we obtain a semigroup isomorphism

pHomeo(X)→ pAuto(C0(X)), h 7→ φh−1 . (1)

Definition 2.2. A C*-algebraic partial action of the group G on the C*-algebra A is a pair

θ =
(
{Dg}g∈G,{θg}g∈G

)
consisting of a family {Dg}g∈G of closed two-sided ideals of A and a family {θg}g∈G of *-isomorphisms

with

θg : Dg−1 → Dg,

such that

(i) D1 = X and θ1 = id : D1→ D1,

(ii) θg ◦θh ⊆ θgh, for all g,h ∈ G.

(
A,G,{Dg}g∈G,{θg}g∈G

)
is then called a C*-algebraic partial dynamical system .

Proposition 2.3. Let G be a group, A be a C*-algebra. A map θ : G→ pAut(X) is a C*-algebraic

partial action of G on X if an only if the following conditions are fullfilled:

(a) θ1 is the identity map on X

(b) θg−1 = (θg)
−1,

(c) θgθhθh−1 = θghθh−1

(d) θg−1θgθh = θg−1θgh

Proof. See 1.2.(i) in the first lecture or 4.5 in Exel’s book.

Corollay 2.4. If G is a group and X a locally compact Hausdorff space, then (1) induces a natural

equivalence between topological partial actions of G on X and C*-algebraic actions of G on C0(X).
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Now we will construct a crossed product of the C*-algebra A for a fixed group G and a fixed C*-algebraic

partial action θ . For this let us first construct this product as follows:

Aoalg G := {∑
g∈G

agδg | ag ∈ Dg, ag = 0 for all but finitely many g ∈ G,}.

The δg have to be seen as a sort of placeholder. Technically they indicate that agδg can be viewed as a

function agδg : G→ A, h 7→

ag, if h = g;

0, if h 6= g
.

Aoalg G can be seen as the set of all finitely supported functions f : G→ A such that f (g) is in Dg.

Addition and scalar multiplication are defined in the obvious way. Multiplication is determined by

(aδg)(bδh) = θg(θg−1(a)b)δgh ∀g,h ∈ G,a ∈ Dg,b ∈ Dh.

The involution on Aoalg G is given by

(aδg)
∗ = θg−1(a∗)δg−1 , ∀g ∈ G,∀a ∈ Dg.

The resulting algebra Aoalg G is a *-algebra and associative. The problem is that it is not necessarily a

C*-algebra. We need to define a norm and complete the algebra with it to achieve this.

(Remark: The associativity of Aoalg G is hard to prove here and is not necessarily true if A is not a

C*-algebra.)

Definition 2.5. A C*-seminorm on a complex *-algebra B is a seminorm p : B→ R+ such that for all

a,b ∈ B one has that

(i) p(ab)≤ p(a)p(b)

(ii) p(a∗) = p(a)

(iii) p(a∗a) = p(a)2

If B is a C*-algebra and p is a C*-seminorm on B we have p(b)≤ ‖b‖ for all b ∈ B.

Proposition 2.6. Let p be a C*-seminorm on Aoalg G. Then for every a = ∑g∈G agδg in Aoalg G

we have that

p(a)≤ ∑
g∈G
‖ag‖.

Proof. Aδ1 is isomorphic to A so one has p(aδ1)≤ ‖a‖ for all a in A. It follows

p(agδg)
2 = p

(
(agδg)(agδg)

∗)= p(aga∗gδ1)≤ ‖aga∗g‖= ‖ag‖2,

so the statement follows from the triangle inequality.

Now we define the seminorm ‖.‖max on Aoalg G by

‖a‖max = sup{p(a) : p is a C*-seminorm on Aoalg G}.

In fact ‖.‖max is a norm but we will not focus on that now.
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Definition 2.7. The C*-algebraic crossed product of a C*-algebra A by a group G under a C*-algebraic

partial action θ =
(
{Dg}g∈G,{θg }g∈G

)
is defined as

AoG := Aoalg G‖.‖max .

Proposition 2.8. Let B be another C*-algebra and let

ϕ0 : Aoalg G→ B

be a *-homomorphism. The there exists a unique *-homomorphism ϕ : AoG→ B such that the

diagram

Aoalg G B

AoG g

ϕ0

ϕ

commutes.

Proof. Notice that p(x) := ‖ϕ0(x)‖ defines a C*-seminorm on Aoalg G which is therefore bounded by

‖.‖max. Thus ϕ0 is continuous and hence extends the completion.

A bounded linear function f : X → Y can be uniquely extended to f̃ : X̃ → Y
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3 COVARIANT REPRESENTATIONS

In this section we will take a look at covariant representations and especially their connection to partial

actions.

Definition 3.1. Let G be a discrete group an let B be a unital C*-algebra. A partial representation of G

in B is a map ρ : G→ B such that:

(i) ρ(e) = 1B.

(ii) ρ(g)ρ(h)ρ(h−1) = ρ(gh)ρ(h−1) for all g and h in G.

(iii) ρ(g−1)ρ(g)ρ(h) = ρ(g−1)ρ(gh) for all g and h in G.

(iv) ρ(g−1) = ρ(g)∗ for all g in G.

Note that if the domains of a partial action are unital, then the map g 7→ 1gδg is a partial represen-

tation of G on the crossed product, where 1g denotes the unit of Dg. To prove this just check the above

conditions:

.

A covariant representation of a partial dynamical system
(
A,G,{Dg}g∈G,{θg}g∈G

)
in a C*-algebra

B is a pair (π,ρ) where

(i) π : A→ B is a homomorphism,

(ii) ρ : G→ B is a partial representation

such that

ρ(g)π(a)ρ(g−1) = π(θg(a)) for all a ∈ Dg−1 , for all g ∈ G.

Proposition 3.2. Given a covariant representation (π,ρ) of a C*-algebraic partial dynamical system(
A,G,{Dg}g∈G,{θg}g∈G

)
in a unital C*-algebra B, then there exists a unique *-homomorphism

π×ρ : AoG→ B

such that (π×ρ)(aδg) = π(a)ρ(g), for all g ∈ G and all a ∈ Dg.

To prove this result we will use the following short lemma:

Lemma 3.3. Given the notation above, we have

π(a)ρ(g)ρ(g−1) = π(a) = ρ(g)ρ(g−1)π(a)

for all a ∈ Dg and g ∈ G.

Proof. Write a as θg(b) for some b ∈ Dg−1 . Then

π(a)ρ(g)ρ(g−1) = π(θg(b))ρ(g)ρ(g−1) = ρ(g)π(b)ρ(g−1)ρ(g)ρ(g−1)
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=ρ(g)π(b)ρ(g−1) = π(θg(a)) = π(a).

The right side of the equation works similar.

Proof of Proposition 3.2 . Multiplicativity of (π×ρ):

((π×ρ)(aδg)) · ((π×ρ)(bδh)) = π(a)ρ(g)π(b)ρ(h)
3.3
= ρ(g)ρ(g−1)π(a)ρ(g)π(b)ρ(h)

= ρ(g)π(θg−1(a)b)ρ(h)

= ρ(g)π(θg−1(a)b)ρ(g−1)ρ(g)ρ(h)

= π(θg(θg−1(a)b))ρ(gh)

= (π×ρ)((aδg) · (bδh)).

Now we will see the main result of this chapter.

Theorem 3.4. Let θ =
(
{Dg}g∈G,{θg}g∈G

)
be a C*-algebraic partial action of a group G on a

C*-algebra A and let

ψ : AoG→L (H)

be a *-representation, where H is a Hilbert space and ψ is non-degenerate (closed linear span of

ψ(AoG)H equals H).

Then there exists a unique covariant representation (π,ρ) of θ in L (H), such that:

(i) π is a non-degenerate representation of A

(ii) ρ(g)ρ(g−1) is the orthogonal projection onto the closed linear span of π(Dg)H

(iii) ψ = π×ρ .

Proof. For simplicity we will assume that A is unital with unital element 1A and that the Dg are also

unital with unital element 1g. Then (1Aδ1) is a unital element in AoG. Also for representations of unital

algebras non-degeneracy is equivalent to unitality.

Definition of π and condition (i):

The first step in our proof is to define π an check that it is unital.

Define π as the representation of A on H given by

π(a) = ψ(aδ1).

As ψ is unital and Aoalg G is dense in AoG we know that ψ restricted to Aoalg G is also unital. Thus π

is unital.
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Definition of ρ and condition (ii):

For each g ∈ G define

Hg := π(1g)H

and note that eg := π(1g) is the orthogonal projection onto Hg.

Note that 1g1h = 1h1g because Dg and Dh are two-sided ideals and as ψ is multiplicative it follows that

egeh = eheg. Define ρ as follows:

ρg := ψ(1gδg).

Then we see immediately that ρ is a partial representation that fulfills

eg = ρgρ
∗
g = ρgρg−1

which verifies condition (ii) of our theorem.

(π,ρ) is covariant representation:

What needs to be show is

ρgπ(a)ρg−1 = π(θg(a)), for any g ∈ G and a ∈ Dg−1 .

We have

ρgπ(a)ρg−1 = ψ(1gδga1g−1δg−1) = ψ(θg(a)1g) = π(θg(a))

so we indeed have a covariant representation.

Condition (iii):

We want to show

(π×ρ)(aδg) = ψ(aδg), for every g ∈ G and every a ∈ Dg.

Write a = a1g and we get

ψ(aδg) = ψ(1gδgθg−1(a)δ1) = ψ(1gδg)π(θg−1(a))

=π(a)ρg = (π×ρ)(aδg)

With this we have proven condition (iii) and the existence of a covariant representation (π ×ρ) was

shown.
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Uniqueness of the covariant representation:

Assume there is another covariant representation (π ′,ρ ′) as demanded in the theorem such that

π
′×ρ

′ = ψ.

For every a in A we then have π ′(a) = ψ(aδ1) = π(a), so π ′ and π must coincide.

For a g in G and ξ in Hg−1 we write ξ = π(a)η for some a in Dg−1 and η in H. Then

ρ
′
g(ξ ) = ρ

′
gπ(a)η = ρ

′
gπ
′(a)η = (π ′(a∗)ρ ′g−1)

∗
η

=
(
(π ′×ρ

′)(a∗δg−1)
)∗

η =
(
(π×ρ)(a∗δg−1)

)∗
η

=ρgπ(a)η = ρg(ξ )

which means that ρ ′g coincides with ρg on Hg−1 .

By condition (ii) we know that ρ ′g and ρg vanish on H⊥g−1 so ρ ′g coincides with ρg on H. thus ρ ′ = ρ and

uniqueness is shown.
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