2 C*-ALGEBRAIC PARTIAL DYNAMICAL SYSTEMS
Definition 2.1. Let A be a C*-algebra. Define the set of all |partial automorphisms  as
pAut(A) ={¢:C — D: C,D <A closed two-sided ideals, ¢ *-isomorphism}

For a partial homoeomorphism 4 : U — V,h € pHomeo(X) where X is locally compact Hausdorff space

we can construct a partial automorphism
on: Co(V) — Co(U)
between ideals of Cy(X). Thus we obtain a semigroup isomorphism
pHomeo(X) — pAuto(Cy(X)), h+—> ¢p1. (1)
Definition 2.2. A |C*-algebraic partial action of the group G on the C*-algebra A is a pair

0= ({Dg}gGGa {eg}géG)

consisting of a family {D, },c¢ of closed two-sided ideals of A and a family {6, },cc of *-isomorphisms
with

Og : Dg—l — Dg,

such that
(i)D] =X and 91 :id1D1 — Dy,
(ii) 8,06, C Oy, for all g,h € G.

(A,G,{Dg}eei, {0 }gec) is then called a |C*-algebraic partial dynamical system .

Proposition 2.3. Let G be a group, A be a C*-algebra. A map 0 : G — pAut(X) is a C*-algebraic
partial action of G on X if an only if the following conditions are fullfilled:

(a) 0 is the identity map on X

(b) B,-1 = (6,)7",

(€) 056,61 = 0,0,

(d) 8,-10,6;, = 6,-16y,

Proof. See 1.2.(i) in the first lecture or 4.5 in Exel’s book. ]

Corollay 2.4. If G is a group and X a locally compact Hausdorff space, then (1) induces a natural

equivalence between topological partial actions of G on X and C*-algebraic actions of G on Cp(X).




Now we will construct a crossed product of the C*-algebra A for a fixed group G and a fixed C*-algebraic

partial action 8. For this let us first construct this product as follows:

AxagG:={) azb,| a, €D, a,=0forall but finitely many g € G, }.
geG
The 9, have to be seen as a sort of placeholder. Technically they indicate that a,8, can be viewed as a
ag, ifh=g;
0, ifh#g
A x4, G can be seen as the set of all finitely supported functions f: G — A such that f(g) is in D,.

function a6, : G — A, h—

Addition and scalar multiplication are defined in the obvious way. Multiplication is determined by
(ad,)(b8y) = 65(6,-1(a)b)Og Vg, h € G,a € Dg,b € Dy,

The involution on A X4, G is given by

(ady)" = 6,-1(a")8,-1, Vg€ G,Vae D,

The resulting algebra A x4 G is a *-algebra and associative. The problem is that it is not necessarily a
C*-algebra. We need to define a norm and complete the algebra with it to achieve this.

(Remark: The associativity of A x4, G is hard to prove here and is not necessarily true if A is not a
C*-algebra.)

Definition 2.5. A [C*-seminorm on a complex *-algebra B is a seminorm p : B — R such that for all
a,b € B one has that

(i) p(ab) < p(a)p(b)

(i) p(a”) = p(a)

(iii) p(a*a) = p(a)®

If B is a C*-algebra and p is a C*-seminorm on B we have p(b) < ||b|| for all b € B.

Proposition 2.6. Let p be a C*-seminorm on A x4, G. Then for every a = Y ,cGag6, in A x4, G

we have that

pla) < Y llagll-

geCG

Proof. Ad is isomorphic to A so one has p(ad;) < ||a|| for all a in A. It follows

P(ag58)2 = P((agag)(“g5g)*) = p(aga§51) < Hagazﬂ = HagHZa
so the statement follows from the triangle inequality. O

Now we define the seminorm |.|/,nqx 0N A X474 G by
l|la||max = sup{p(a) : pis a C*-seminorm on A x4, G}.
In fact ||.||;nqx is @ norm but we will not focus on that now.
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Definition 2.7. The | C*-algebraic crossed product of a C*-algebra A by a group G under a C*-algebraic
partial action 6 = ({Dg}cq,{0; }occ) is defined as

AXNG:=Axgg G lm.

Proposition 2.8. Let B be another C*-algebra and let
Qo : A Nalg G—B

be a *-homomorphism. The there exists a unique *-homomorphism ¢ : A x G — B such that the

diagram
A Nalg G B
AXG
commutes.

Proof. Notice that p(x) := ||@o(x)|| defines a C*-seminorm on A x4, G which is therefore bounded by
I|-||max- Thus ¢y is continuous and hence extends the completion.
A bounded linear function f : X — Y can be uniquely extended to f: X — Y O



3 COVARIANT REPRESENTATIONS

In this section we will take a look at covariant representations and especially their connection to partial

actions.

Definition 3.1. Let G be a discrete group an let B be a unital C*-algebra. A  partial representation of G
in Bis amap p : G — B such that:

(i) p(e) =1g.

(i) p(g)p(M)p(h~"') = p(gh)p(h~") for all g and h in G.

(iii) p(g~")p(g)p(h) = p(g~")p(gh) for all g and /1 in G.

(iv) p(g~ ') =p(g)* forall gin G.

Note that if the domains of a partial action are unital, then the map g — 1,8, is a partial represen-
tation of G on the crossed product, where 1, denotes the unit of D,. To prove this just check the above

conditions:

A |covariant representation of a partial dynamical system (A,G,{Dg}eci,{0g}gec) in a C*-algebra
B is a pair (7, p) where

(i) T : A — B is a homomorphism,

(i1) p : G — B is a partial representation

such that

p(g)m(a)p(g™") = m(6,(a)) forallac D, forallg € G.

Proposition 3.2. Given a covariant representation (7, p) of a C*-algebraic partial dynamical system

(A, G,{D;}¢ca, {Gg}gEG) in a unital C*-algebra B, then there exists a unique *-homomorphism
TXP:AxG—B

such that (7 x p)(ad,) = m(a)p(g), forall g € G and all a € D,.

To prove this result we will use the following short lemma:

Lemma 3.3. Given the notation above, we have

n(a)p(g)p(s™") = m(a) = p(g)p(g~")n(a)

foralla € Dy and g € G.

Proof. Write a as 6,(b) for some b € D,-1. Then

w(a)p(g)p(g~") =n(6,(b)p(g)p(s~") =p(g)m(b)p(g " )p(e)p(g™")
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=p(g)m(b)p(s™") = m(8s(a)) = 7(a).
The right side of the equation works similar. O

Proof of Proposition 3.2 . Multiplicativity of (7 x p):

((mx p)(ady)) - (7w x p)(bh)) =

Now we will see the main result of this chapter.

Theorem 3.4. Let 0 = ({Dg}sci,{0;}scc) be a C*-algebraic partial action of a group G on a
C*-algebra A and let

Y:AxG— Z(H)

be a *-representation, where H is a Hilbert space and y is non-degenerate (closed linear span of
V(A x G)H equals H).

Then there exists a unique covariant representation (7, p) of 6 in .Z(H), such that:

(i) 7 is a non-degenerate representation of A

(ii) p(g)p(g~") is the orthogonal projection onto the closed linear span of 7(Dg)H

(i) y=m xp.

Proof. For simplicity we will assume that A is unital with unital element 14 and that the D, are also
unital with unital element 1,. Then (146;) is a unital element in A x G. Also for representations of unital

algebras non-degeneracy is equivalent to unitality.

Definition of 7 and condition (i):

The first step in our proof is to define & an check that it is unital.

Define 7 as the representation of A on H given by

7(a) = w(ad)).

As y is unital and A X, G is dense in A X G we know that y restricted to A X, G is also unital. Thus 7

18 unital.



Definition of p and condition (ii):

For each g € G define

and note that e, := 7(1,) is the orthogonal projection onto H,.
Note that 1,1, = 1,1, because D, and D), are two-sided ideals and as y is multiplicative it follows that

eqey, = epe,. Define p as follows:
Pg = Y(140,).
Then we see immediately that p is a partial representation that fulfills
eg = PgPy = PPy

which verifies condition (ii) of our theorem.

(m,p) is covariant representation:

What needs to be show is
pgm(a)p,1 = m(6y(a)), forany g€ Ganda€ D, 1.
We have
pe(@)pg 1 = W(1eSealy 18,1) = w(B,(a)1,) = n(8(a))

so we indeed have a covariant representation.

Condition (iii):

We want to show
(mxp)(ad,) = y(ad,), forevery g€ G andeverya € D,.

Write a = al, and we get

v(ad;) = W(1g5g9g*‘ (a)é1) = ‘I’(lg5g>7r(9g*1 (a))
_r(@)pg = (2 % p)(ady)

With this we have proven condition (iii) and the existence of a covariant representation (7 x p) was

shown.



Uniqueness of the covariant representation:

Assume there is another covariant representation (7', p’) as demanded in the theorem such that

/ !

' xp =w.

For every a in A we then have ' (a) = y(ad;) = n(a), so &’ and & must coincide.

Fora gin G and § in H,-1 we write § = 7(a)n for some a in D,-1 and 17 in H. Then

/

Pe(&) = pem(a)n = pem'(a)n = (7' (a")p,-1)"n
=((2 % p')(a*8,1)) 0 = (T x p)(a"8, 1))
=pg7(a)n = py(&)
which means that pé’, coincides with p, on H,-1.

By condition (ii) we know that p; and p, vanish on H g{ 1 0 pg coincides with pg on H. thus p’ = p and

uniqueness is shown. 0



