
Globalization in the C∗-context

Zahra Hassanpour

Zahra Hasanpour Globalization in the C∗-context 1 / 33



Uniqueness of C ∗-globalization
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Definition

C∗-Partial Action: Let A be a C∗-algebra. A partial action
α = ({At}t∈G , {αt}t∈G ) on A, such that for every t ∈ G , At is a closed
two sided ideal and αt : At−1 → At is a ∗-isomorphism.
In the case, At = A, for every t ∈ G , α is called a C∗-global action.

Definitin

C∗-globalization: Let α be a C∗-partial action of G on C∗-algebra A. A
4-tuple (B, β, I , i), where B is C∗-algebra, β is a C∗-global action of G on
B, I is a C∗-ideal of B and i : α→ β|I is an isomorphism of C ∗-partial
actions.

Remark

If α has a C∗-globalization, then A is ∗-isomorphic to a C∗-subalgebra of
B. A C∗-globalization of C∗-partial action α, is minimal if and only if

B = Σt∈Gαt(A)
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Proposition

Let α = ({At}t∈G , {αt}t∈G ) be a partial action of group G on the
C∗-algebra A. Suppose that for k = 1, 2 minimal C∗-globalization βk

acting on a C∗-algebra Bk is given. Then there is an equivariant
∗-isomorphism

φ : B1 → B2

such that is the identity on the respective copies of A within B1 and B2.
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proof: Step1

claim: For every a and b in A,

β1t (a)b = β2t (a)b, t ∈ G .

Given t ∈ G , let {νi}i∈I be an approximate unit for At−1 . Note that
{αt(νi )}i∈I is an approximate identity for At . Also, since

βkt (a)b ∈ βkt (A) ∩ A = At ∩ A = At , t ∈ G .

Now, since for every t ∈ G , At is a closed two sided ideal of A, we have

βkt (a)b = lim
i→∞

αt(νi )β
k
t (a)b = lim

i→∞
βkt (νia)b = αt(νia)b, k = 1, 2.

Since, the right hand side does not depend on k , the desired result holds.
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Proof: Step2

Suppose that we are given C∗-algebra B, such that B = Σi∈I Ji , where
{Ji}i∈I is a family of closed two sided ideals of B. Then,

‖b‖ = sup
i∈I

sup
x∈Ji1
‖bx‖
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Proof: Step 3

Construction of the desired equivarinat ∗-isomorphism φ : B1 → B2 .
Let a1, a2, ..., an ∈ A, t1, t2, ..., tn ∈ G . Considering step 2, one can see
that the correspondence

Σn
i=1β

1
ti

(ai ) 7→ Σn
i=1β

2
ti

(ai )

is well-defined and preserves the norms. Also, by minimality of action βkt ,
it extends to an isometric onto mapping φ : B1 → B2. Moreover, the
restriction of φ to the respective copy of A in B1 and B2 is the identity
map.
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C ∗-globalization of C ∗-partial Actions
Acting on a Commutative C ∗-algebra
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Proposition

Let β be a C ∗-globalization of C∗-partial action α. If α acts on a
commutative C ∗algebra, then so does β.

Proof

Assume that C ∗-partial action α acts on commutative C ∗-algebra A. Also,
β is a minimal C ∗-globalization α, acting on B.
Step1: A ⊆ Z (B).
Let a ∈ A and b ∈ B. Using Cohen-Hewitt, we may write a = a1a2, where
a1, a2 ∈ A. Then, since A can be considered a closed two sided ideal of B,

ab = (a1a2)b = a1(a2b) = a1(ba2) = (ba2)a1 = b(a1a2) = ba.

Step2: For every s, t ∈ G , For every a, b ∈ A,

βt(a)βs(b) = βt(aβt−1s(b)) = βt(βt−1s(b)a) = βs(b)βt(a).

Step3: From the previous step and minimality of the C ∗-globalization β
of α, for every b1, b2 ∈ B, b1b2 = b2b1.
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Corollary

Let α be a partial action of a group G on a LCH space X . Denote be α′

the C ∗-partial action of G on C0(X ) corresponding to α. A necessary and
sufficient condition for α′ to admit a (top)globalization is that the
globalization of α takes place on a Hausdorff space.

Proof

Let (β,Y ) be a globalization of α and Y is Hausdorff. Then the
corresponding action β′ of G on B is a C ∗-globalization of α′.
On the other hand, if (β′,B) is a C ∗-globalization of α′, then B is a
commutative C ∗-algebra, hence isomorphic to C0(Y ), for some Hausdorff
space Y . Denoting β the global action of G on Y , corresponding to β′. β
is a globalization of α.
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Theorem

Every C∗-algebraic partial action is Morita-Rieffel equivalent to one
admitting a globalization. More precisely, every C∗-algebraic partial action
is Morita-Reiffel equivalent to the dual action ∆ on the restricted smash
product for the corresponding semi-direct product bundle (which admits a
globalization).

Zahra Hasanpour Globalization in the C∗-context 11 / 33



sketch of proof

Let α = ({At}t∈G , {αt}t∈G ) be a C∗-partial action of the group G on
C∗-algebra A. Consider its semi-direct product bundle B. By the definition
of Morita-Rieffel equivalence, the structure of a Hilbert A− B[G -bimodule
and a set theorical partial action γ = ({Mg}g∈G , {γg}g∈G ) of G on M is
required such that

(M,G , {Mg}g∈G , {γg}g∈G )

satisfies the properties of an imprimitivity system.
Let M be the subspace of B[G given by

M = Σh∈GBh ⊗ e1,h.
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sketch of proof

1 Left A-module structure of M: A is identified with B1 ⊗ e1,1, via

a ∈ A 7→ aδ1 ⊗ e1,1.

2 Right B[G -module structure of M: M is a right ideal in β[G .

(Bh ⊗ e1,h)(Bk−1 ,Bl ⊗ ek,l) = δh,k(BhBh−1Bl ⊗ e1,l) ⊂ Bl ⊗ e1,l ⊂ M.

3 A-valued inner product: Given ξ, η ∈ M, ξη∗ ∈ B1 ⊗ e1,1.

ξη∗ = 〈ξ, η〉Aδ1 ⊗ e1,1.

4 B[G -valued inner product: Given ξ, η ∈ M,

〈ξ, η〉B[G = ξ∗η.
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sketch of proof

The structure of partial action on M Given t ∈ G ,

Mt = Σt∈G [BtBt−1Bs ]⊗ e1,hs .

Mt is a Hilbert A− B[G - bimodule.

(BtBt−1Bs)⊗ e1,s(Bs−1Br )⊗ es,r ⊂ Mt .

Observe that Bt = Atδt , hence

[BtBt−1 ] = [AtδtAt−1δt−1 ] = [Agαt(A
−1
t )δ1] = Atδ1.

[BtB
−1
t Bs ] = [AtAsδs ] = (At ∩ As)δs , s, t ∈ G .

Consequently, Mt = Σs∈G (At ∩ As)δs ⊗ e1,s . γt : Mt−1 → Mt , given by

γt(aδs)⊗ e1,s = θt(a)δts ⊗ e1,ts .
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Theorem

Let α and β be Morita-Rieffel equivalent

α = (A,G , {At}t∈G , {αt}t∈G ), β = (B,G , {Bt}t∈G , {βt}t∈G )

Then

Aored G and B ored G are Rieffel-Morita equivalent.

Ao G and B o G are Rieffel-Morita equivalent.
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Proof

An imprimitivity system for α and β:

γ = (M,G , {Mt}t∈G , {γt}t∈G )

The linking algebra of M:

L =

[
A M
M∗ B

]
The partial action of G on L:

λ = ({Lt}t∈G , {λt}t∈G )

where, for every t ∈ G ,

Lt =

[
At Mt

M∗t Bt

]
λt :

[
a ξ
η∗ b

]
7→

[
αt(a) γt(ξ)
γt(η) βt(b)

]
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Proof

Since A is a closed subspace of L that is λ invariant:

Aored G ⊆ Lo redG .

Claim:Aored G is a full hereditary subalgebra of Lored G .
Consider the formal left or right multiplication of

e1,1 =

[
1 0
0 0

]
by elements of L to define a multiplier of L.
The inclusion of L in Lored G is a non-degenerate ∗-homomorphism that
can be extended to a ∗-homomorphism

M(L)→M(Lored G )

denote the image of e1,1 under this map by e1,1δ1.
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proof

Given t ∈ G and

x =

[
a m
n∗ b

]
∈ Lt .

Notice that

(e1,1δ1)(xδt)(e1,1δ1) = (λtλt−1(e1,1x)e1,1)δt =

[
a 0
0 0

]
δt

Hence,
(e1,1δ1)(Lored G )(e1,1δ1) = Aored G (1)

Consequently, Aored GLored GAored GAored G ⊂ Aored G .
In other words, Aored G is a hereditary subalgebra of Aored G .
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Proof

Claim: Aored G is a hereditary subalgebra of Lored G . In other words,
considering

Lo = Lored G , Ao = Aored G , p = e1,1δt

We first check that:
[LoAoLo] = [LopLo].

Note that [LopLo]. is an ideal of Lo. So:

[LopLo] = [LopLoLopLo] = [LopLopLo] = [LoAoLo].
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Proof

Given t ∈ G , x =

[
a m
n∗ b

]
∈ L, x ′ =

[
a′ m′

n′∗ b′

]
∈ Lt , We have:

(xδ1)(e1,1δ1)(xδt) = xe1,1x
′δt =

[
aa′ am′

n∗a′ 〈n,m′〉B

]
δt

This implies that

[
[AAt ] [AMt ]

[(AtM)∗] [〈M,Mt〉B ]

]
δg ⊆ [LoAoLo]. Observe that:

At is an ideal of A, so [AAt ] = At .

Mt is a left A-module, so [AMt ] = Mt .

Given ξ ∈ M, ξ = limn→∞〈ξ, ξ〉1/nξ = ξ, so Mt ⊂ [AtM].

Bt = [〈Mt ,Mt〉B ] ⊂ [〈M,Mt〉B ]

So, [LoAoLo] contains Lδt , for every t ∈ G , consequently, Lored G .
Hence, Aored G is Morita-Rieffel equivalent to Lored G .
Similarly, B ored G is Morita-Rieffel equivalent to Lored G .
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Proof

claim: Ao G ⊂ Lo G . Consider the semi direct product bundles A,L
associated to actions α and λ. We show that there is a conditional
expextion

P = {Pt}t∈G : L→ A.

Hence, the calim holds. Since L is faithfully represented in C ∗red(L) (via
Λ ◦ κ), We can work with elements of C ∗red(L) or equivalently Lo G . For
every t ∈ G , consider

Pt : x ∈ Lo G 7→ (e1,1δ1)x(e1,1δ1) ∈ Ao G .

By Equation 1, the map Pt is well-defined. One can easily check that
P = {Pt}t∈G is a conditional expectation. Hence, the claim holds.
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Theorem

Let
α = (A,G , {At}t∈G , {αt}t∈G )

be a C∗-algebraic partial action admitting a globalization η, acting on a
C∗-algebra B. Then:

Aored G is a full hereditary subalgebra of B ored G in a natural way,
hence, Aored G and B ored G are Morita-Rieffel equivalent.

Ao G is a full hereditary subalgebra of B o G in a natural way,
hence, Ao G and B o G are Morita-Rieffel equivalent.
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Proof

Since A is a closed subspace of B that is β invariant:

Aored G ⊆ B o redG .

Aored G is a full sublagebra of B o G :
Let

Ao = Aored G , Bo = Aored G .

Consider
J = [BoAoBo].

Given s, t ∈ G , we have

[BδsAδ1Bδs−1t ] = [Bβs (AB)δt ] = βs(A)δt .

So
Bδg ⊂ J.

Consequently,
J = B ored G .
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Characterizing Partial Actions Admitting C ∗-globalization

Characterizing Partial Actions
Admitting C∗-globalization
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Definition

∗-Partial Action: Let A be a ∗-algebra. A partial action
α = ({At}t∈G , {αt}t∈G ) on A, such that for every t ∈ G , At is a ∗-ideal
and αt : At−1 → At is a ∗-homeomorphism.
In the case, At = A, for every t ∈ G , α is called a ∗-global action.

Definition

∗-globalization: Let α be a ∗-partial action. A 4-tuple (B, β, I , i), where
B is a ∗-algebra, β is a ∗-global action of G on B, I is a ∗-ideal of B and
i : α→ β|I is an isomorphism of partial actions.

A ∗-globalization (B, β, I , i) of ∗-partial action α of G on ∗-algebra A is
said minimal if

[I ] = span{βt(I ) : t ∈ G} = B.

Also, it is said to be non degenerate if B is a non degenerate ∗-algebra
(bB = 0→ b = 0).
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Theorem

Let α be a C ∗-partial action of G on C ∗-algebra A. TFAE:

α has a ∗-globalization.

For every (t, a, b) ∈ G × A× A, there is a unique u ∈ At , such that
for every c ∈ At−1 , αt(c)u = αt(ca)b.
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Theorem

Let α = ({At}t∈G , {αt}t∈G ) be a C∗-partial action. Then, the following
are equivalent:

1 α has a C∗-globalization.

2 α has a ∗-globalization.

3 For every (t, a, b) ∈ G × A× A, there is a u ∈ At , such that for every
c ∈ At−1 , αt(c)u = αt(ca)b.
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Proof: Step1

Let (B, β, I , i) be a ∗-globalization of α. Consider AG , the ∗-algebra of all
functions from G to A. Consider π : B → M(AG ) defined by

π(b)f |r = i−1(βr (b)i(f |r )).

Also, consider the canonical action of G on M(AG ),
Θ : G → Auto(M(AG )), defined by

Θt(L,R) = (θt ◦ L ◦ θt−1 , θt ◦ R ◦ θt−1).

Where, θt is the automorphism of AG , defined by: θt(f )|r = f |rt .

Zahra Hasanpour Globalization in the C∗-context 28 / 33



Step 2

The set of bounded functions from G to A, AG
b is a C∗-algebra with the

∗-algebra structure inherited from AG and the sup norm. Define:

C := {T ∈ M(AG ) : T (AG
b ) ∩ T ∗AG

b ⊂ AG
b }.

We have:

1 C is Θ invariant.

2 π(B) ⊆ C .
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Step2

Note that π is injective. Assume b ∈ ker(π). Given a ∈ A, g ∈ G , consider
aδr ∈ AG taking the value a at r and 0, otherwise. Then

0 = i(π(b)aδr |r ) = βr (b)i(a).

This implies that bB = spanbβr (i(A)) = 0. Hence, b = 0. Since
(B, β, I , i) is a non-degenerate ∗-globalization.
Consider M(AG

b ) as a C∗-algebra and let

ρ : π(B)→ M(AG
b ), ρ(T )f = Tf .

ρ is injective: In order to show it, it suffices to show that ρ ◦ π is injective.
Let b ∈ B, given that [I ] = B, we have there are t1, t2, ..., tn ∈ I and
a1, a2, ..., an ∈ I , such that b = Σn

i=1βti (bi ). Given r ∈ G and c ∈ A

bβr (c) = βr (βr−1(b)c) = βr (ρ ◦ π(b)δcr−1 |r−1) = 0 → bB = 0 → b = 0.
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Step2

Given t ∈ G , set

ψt : AG
b → AG

b , ψt(f )|r = f |rt .

Also, let

Ψt : M(AG
b )→ M(AG

b ) Ψ(T ) = ψt ◦ T ◦ ψt−1 .

Ψ is a C∗-global action of G on M(AG
b ).

ρ ◦ π : β → Ψ is a morphism of C ∗-partial actions.
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Step2

Let D = ρ ◦ π(B).
D is a Ψ invariant C∗-subalgebra of M(AG

b ).

Let γ = Ψ|D .

Let J = ρ(π(A)).
J is a C∗-ideal of D because ρ ◦ π|A has a closed range

and J is an ideal of ρ ◦ π(B).

We have γ|J = Ψ|D |rho◦π(A) = Ψ|ρ◦π(A) = Ψ|ρ◦π(B)|ρ◦π(A). Besides,

ρ : Θ|π(B) → Ψ|ρ◦π(B)is an isomorphism.

Then,

ρ ◦ π|A : α→ Ψ|J is an isomorphism of partial actions.

Then, (D, γ, J, ρ ◦ π|A) is a C∗-globalization of α.
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Thank you for your attention!
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