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Order zero maps

For positive elements a, b ∈ A, write a ⊥ b if ab = ba = 0.

Definition (Winter)

Let A and B be C∗-algebras, and let ϕ : A→ B be a cp map. We say
that ϕ has order zero if a, b ∈ A+ and a ⊥ b imply ϕ(a) ⊥ ϕ(b).

Theorem (Winter-Zacharias)

Let A and B be C∗-algebras. A cpc order zero map ϕ : A→ B induces
the homomorphism ρϕ : C0((0, 1])⊗ A→ B determined by

ρϕ(id(0,1] ⊗ a) = ϕ(a) a ∈ A.

Conversely, if ρ : C0((0, 1])⊗ A→ B is a homomorphism, then the
induced cpc order zero map ϕρ : A→ B is

ϕρ(a) = ρ(id(0,1] ⊗ a) a ∈ A.
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Rokhlin dimension

All C∗-algebras are unital, and all groups are compact and second
countable.

Definition

We say that α has Rokhlin dimension d , written dimRok(α) = d , if d is
the least integer such that there exist equivariant completely positive
contractive order zero maps

ϕ0, . . . , ϕd : C (G )→ A∞,α ∩ A′

such that ϕ0(1) + . . .+ ϕd(1) = 1.
If one can choose the maps ϕ0, . . . , ϕd to have commuting ranges, then
we say that α has Rokhlin dimension with commuting towers d , and
denote it dimc

Rok(α) = d .

It is not hard to check that this definition agrees with that of
Hirshberg-Winter-Zacharias for finite groups.
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Rokhlin dimension

Compact group actions with finite Rokhlin dimension have the following
permanence properties (with analogous results for commuting towers version):

Theorem

Let α : G → Aut(A) be any action.

1 Let β : G → Aut(B) be a continuous action of G on B. Then

dimRok(α⊗ β) ≤ min {dimRok(α), dimRok(β)} .

2 Let I be an α-invariant ideal in A, and set α : G → Aut(A/I ). Then

dimRok(α) ≤ dimRok(α)

Furthermore,

3 Let (An, ιn, α
(n))n∈N be an equivariant direct system. Set A = lim−→An and

α = lim−→α(n). Then

dimRok(α) ≤ lim inf
n→∞

dimRok(α(n)).
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Rokhlin dimension and subgroups

Theorem

Let G be a finite dimensional compact group, let H be a closed subgroup
of G , and let α : G → Aut(A) be an action. Then

dimRok(α|H) ≤ (dim(G )− dim(H) + 1)(dimRok(α) + 1)− 1.

The key point is the existence of local cross-sections G/H → G . One
assembles these to get cpc order zero equivariant maps C (H)→ C (G ),
which are then combined with the ones corresponing to α to get the
result.

Remark

Rokhlin dimension can increase when passing to subgroups. Also, there
are examples of circle actions such that all of the restrictions to Zn ⊆ T
have Rokhlin dimension zero, but the action has infinite Rokhlin
dimension.
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Free actions on spaces and Rokhlin dimension

For actions on C(X ), towers commute automatically.

Theorem

Let G be a Lie group and let X be a compact Hausdorff space. Let
α : G → Aut(C(X )) be induced by G y X .

1 If α has finite Rokhlin dimension, then G y X is free.

2 If G y X is free, then dimRok(α) <∞. Moreover, if dim(X ) <∞, we
have

dimRok(α) ≤ dim(X )− dim(G).

Corollary

Let G be a Lie group, and let G y X be a free action with dim(X ) = dim(G).
Then α : G → Aut(C(X )) has the Rokhlin property. We even have
X ∼= X/G × G equivariantly.
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Comparison with other notions of freeness

Theorem

Let G be a Lie group. An action α : G → Aut(A) has finite Rokhlin dimension
with commuting towers if and only if

there exist a finite dimensional compact
free G -space X and an equivariant unital embedding

ϕ : C(X )→ A∞,α ∩ A′.

Moreover, there are estimates of dim(X ) in terms of dimc
Rok(α).

A bit of notation: We write KG
∗ (A) for the equivariant K -theory of A, and IG

for the augmentation ideal in R(G), which is the kernel of the dimension
homomorphism R(G)→ Z.

Corollary

If dimc
Rok(α) <∞, then α has discrete K-theory, this is, there is n ∈ N such

that
I n
G · KG

∗ (A) = 0.

This uses (still unpublished) work of Hirshberg and Phillips.
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Comparison with other notions of freeness

One would hope that the smallest n as in the corollary above determined
dimc

Rok(α).

This doesn’t seem to be the case, though: one gets the same n for
dimc

Rok(α) = 0 and dimc
Rok(α) = 1.

Definition

Let α : G → Aut(A) be an action.

1 We say that α has locally discrete K-theory if for every prime ideal P of
R(G) not containing the augmentation ideal IG , the localization KG

∗ (A)P

is zero.

2 We say that α is K-free if for every invariant ideal I of A, the induced
action α|I : G → Aut(I ) has locally discrete K -theory.

3 We say that α is totally K-free if for every closed subgroup H of G , the
restriction α|H is K -free.
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Comparison with other notions of freeness

For a Lie group G , we have the following implications:

X − Rokhlin property dimRok(α) <∞ +3 outerness

Rok prop +3 dimc
Rok(α) <∞

��

KS 5=tttttttttttttttttttt

tttttttttttttttttttt
+3

!)KKKKKKKKKKKKKKKKKKKK

KKKKKKKKKKKKKKKKKKKK
Discrete K -theory

Total K -freeness.
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Comparison with other notions of freeness

None the above arrows can be reversed in full generality, and presumably there
are no other implications between the stated conditions.

In addition:

1 If A is commutative, then all conditions except for the Rokhlin property
and outerness are equivalent to each other, and equivalent to freeness of
the action on the maximal ideal space. (Uses Atiyah-Segal completion
theorem.)

2 If α is a locally representable AF-action, then all conditions except for
dimRok(α) <∞ and pointwise outerness are equivalent. (Uses
classification of such actions by Handelman-Rossmann, and results of
Phillips.)

3 If A is a Kirchberg algebra and G = Z2 (and possibly also if G is any finite
group), then dimRok(α) <∞ is equivalent to outerness
(Barlak-Enders-Matui-Szabo-Winter).

4 If G is finite, A has strict comparison and at most countably many
extreme traces, then dimc

Rok(α) <∞ implies the weak tracial Rokhlin
property (G-Hirshberg-Santiago).
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Crossed product

Theorem

Let G be any compact group and let α : G → Aut(A) be an action.

1 (G. for arbitrary G ; H-W-Z when G is finite.) We have

dr(A oα G) ≤ (dr(A) + 1)(dimRok(α) + 1)− 1

dimnuc(A oα G) ≤ (dimnuc(A) + 1)(dimRok(α) + 1)− 1.

2 (G-Hirshberg-Santiago) If A⊗D ∼= A for D s.s.a. and dimc
Rok(α) <∞,

(A oα G)⊗D ∼= A oα G .

3 (G-Hirshberg-Santiago) For G = Zn, if A is AF and dimc
Rok(α) ≤ 1, then

A oα Zn is AT.

Corollary

(G-Hirshberg-Santiago) For α : G → Aut(O2), we have

dimc
Rok(α) <∞⇔ α has the Rokhlin property.
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