Eusebio Gardella

University of Oregon and Fields Institute, Toronto

Great Plains Operator Theory Symposium, Kansas State University, May 2014

Joint work with Luis Santiago from the Fields Institute

Definition

Let A be a C*-algebra and let $a, b \in A_+$. We write $a \lesssim b$ if there is $(d_n)_{n \in \mathbb{N}}$ in A such that

$$\lim_{n\to\infty}\|d_nbd_n^*-a\|=0.$$

Write $a \sim b$ if $a \lesssim b$ and $b \lesssim a$.

The Cuntz semigroup of A, denoted by $\mathrm{Cu}(A)$, is defined as the set of Cuntz equivalence classes of positive elements of $A\otimes\mathcal{K}$.

Definition

Let A be a C*-algebra and let $a, b \in A_+$. We write $a \lesssim b$ if there is $(d_n)_{n \in \mathbb{N}}$ in A such that

$$\lim_{n\to\infty}\|d_nbd_n^*-a\|=0.$$

Write $a \sim b$ if $a \lesssim b$ and $b \lesssim a$.

The Cuntz semigroup of A, denoted by $\mathrm{Cu}(A)$, is defined as the set of Cuntz equivalence classes of positive elements of $A\otimes\mathcal{K}$.

One shows that $\mathrm{Cu}(A)$ is a partially ordered abelian semigroup, and that $A \mapsto \mathrm{Cu}(A)$ is a functor from the category of C^* -algebras to a certain category of such semigroups.

The Cuntz semigroup has been very important in classification theory of C^* -algebras, as in some cases it is a much finer invariant than K-theory.

The Cuntz semigroup has been very important in classification theory of C^* -algebras, as in some cases it is a much finer invariant than K-theory.

Definition (Robert's algebras)

A unital C^* -algebra is in Robert's class \mathcal{R} if it is a direct limit of 1-dimensional NCCW-complexes with trivial K_1 -group.

The Cuntz semigroup has been very important in classification theory of C^* -algebras, as in some cases it is a much finer invariant than K-theory.

Definition (Robert's algebras)

A unital C^* -algebra is in Robert's class \mathcal{R} if it is a direct limit of 1-dimensional NCCW-complexes with trivial K_1 -group.

Theorem (Robert, 2010)

Algebras in ${\mathcal R}$ are classified by their Cuntz semigroup.

We first present the construction when the algebra is \mathbb{C} .

We first present the construction when the algebra is \mathbb{C} .

Definition (Representation semiring)

Let G be a compact group. Its representation semiring $\mathrm{Cu}(G)$ is the set of all unitary equivalence classes of unitary representations of G on separable Hilbert spaces. It is a semiring under direct sum and tensor product.

We first present the construction when the algebra is \mathbb{C} .

Definition (Representation semiring)

Let G be a compact group. Its representation semiring $\mathrm{Cu}(G)$ is the set of all unitary equivalence classes of unitary representations of G on separable Hilbert spaces. It is a semiring under direct sum and tensor product. $(\mathrm{Cu}(G)$ is really just $\mathrm{Cu}(C^*(G))$.)

We first present the construction when the algebra is \mathbb{C} .

Definition (Representation semiring)

Let G be a compact group. Its representation semiring $\mathrm{Cu}(G)$ is the set of all unitary equivalence classes of unitary representations of G on separable Hilbert spaces. It is a semiring under direct sum and tensor product. $(\mathrm{Cu}(G)$ is really just $\mathrm{Cu}(C^*(G))$.)

We take $\mathbb{N} = \{0, 1, \ldots\}$ and $\overline{\mathbb{N}} = \mathbb{N} \cup \{\infty\}$.

Example

Suppose that G is abelian. Then $Cu(G) = \overline{\mathbb{N}}[\widehat{G}]$.

Recall: Cu(G) is the set of equivalence classes of unitary representations of G.

Definition

Let G be a compact group, let A be a C^* -algebra and let $\alpha \colon G \to \operatorname{Aut}(A)$. The equivariant Cuntz semigroup $\operatorname{Cu}^G(A,\alpha)$ is defined using G-invariant positive elements in $A \otimes \mathcal{K}(\mathcal{H}_{\pi})$, where π ranges over all unitary representations of G, and $A \otimes \mathcal{K}(\mathcal{H}_{\pi})$ has the diagonal action of G.

Recall: Cu(G) is the set of equivalence classes of unitary representations of G.

Definition

Let G be a compact group, let A be a C^* -algebra and let $\alpha \colon G \to \operatorname{Aut}(A)$. The equivariant Cuntz semigroup $\operatorname{Cu}^G(A,\alpha)$ is defined using G-invariant positive elements in $A \otimes \mathcal{K}(\mathcal{H}_{\pi})$, where π ranges over all unitary representations of G, and $A \otimes \mathcal{K}(\mathcal{H}_{\pi})$ has the diagonal action of G.

 $\mathrm{Cu}^{\mathcal{G}}(A,\alpha)$ has a natural $\mathrm{Cu}(\mathcal{G})$ -action (tensor product) which makes it into a $\mathrm{Cu}(\mathcal{G})$ -semimodule.

Recall: Cu(G) is the set of equivalence classes of unitary representations of G.

Definition

Let G be a compact group, let A be a C^* -algebra and let $\alpha \colon G \to \operatorname{Aut}(A)$. The equivariant Cuntz semigroup $\operatorname{Cu}^G(A,\alpha)$ is defined using G-invariant positive elements in $A \otimes \mathcal{K}(\mathcal{H}_{\pi})$, where π ranges over all unitary representations of G, and $A \otimes \mathcal{K}(\mathcal{H}_{\pi})$ has the diagonal action of G.

 $\mathrm{Cu}^{\mathcal{G}}(A,\alpha)$ has a natural $\mathrm{Cu}(\mathcal{G})$ -action (tensor product) which makes it into a $\mathrm{Cu}(\mathcal{G})$ -semimodule.

 $\mathrm{Cu}^{\mathcal{G}}$ looks like equivariant K-theory on the surface, but it is harder to work with.

Recall $Cu(G) = \overline{\mathbb{N}}[\widehat{G}]$ when G is compact abelian.

Julg's Theorem for $\mathrm{Cu}^{\textit{G}}$

There is a natural isomorphism

$$Cu^{G}(A, \alpha) \cong Cu(A \rtimes_{\alpha} G)$$

as semigroups.

Recall $Cu(G) = \overline{\mathbb{N}}[\widehat{G}]$ when G is compact abelian.

Julg's Theorem for $\mathrm{Cu}^{\textit{G}}$

There is a natural isomorphism

$$Cu^{G}(A, \alpha) \cong Cu(A \rtimes_{\alpha} G)$$

as semigroups.

When G is abelian, the $\mathrm{Cu}(G)$ -semimodule structure is easy to describe: an element $\chi \in \widehat{G}$ acts via

$$\chi \cdot s = \mathrm{Cu}(\widehat{\alpha}_{\chi})(s)$$

for $s \in Cu(A \rtimes_{\alpha} G)$.

$\mathrm{Cu}^{\textit{G}}$ as an invariant for group actions

It is easy to see that if α and β are conjugate, then $\mathrm{Cu}^{\mathcal{G}}(A,\alpha)\cong\mathrm{Cu}^{\mathcal{G}}(B,\beta)$.

$\mathrm{Cu}^{ extsf{G}}$ as an invariant for group actions

It is easy to see that if α and β are conjugate, then $\mathrm{Cu}^{\mathsf{G}}(A,\alpha)\cong\mathrm{Cu}^{\mathsf{G}}(B,\beta)$.

Definition

Let $\alpha \colon G \to \operatorname{Aut}(A)$ be an action. An α -cocycle is a strongly continuous function $\omega \colon G \to \mathcal{U}(A)$ such that $\omega_{gh} = \omega_g \alpha_g(\omega_h)$ for all $g,h \in G$.

In this case, $\alpha^{\omega} \colon G \to \operatorname{Aut}(A)$ given by $\alpha_g^{\omega} = \operatorname{Ad}(\omega_g) \circ \alpha_g$ is also a continuous action.

$\mathrm{Cu}^{ extsf{G}}$ as an invariant for group actions

It is easy to see that if α and β are conjugate, then $\mathrm{Cu}^{\mathsf{G}}(A,\alpha)\cong\mathrm{Cu}^{\mathsf{G}}(B,\beta)$.

Definition

Let $\alpha \colon G \to \operatorname{Aut}(A)$ be an action. An α -cocycle is a strongly continuous function $\omega \colon G \to \mathcal{U}(A)$ such that $\omega_{gh} = \omega_g \alpha_g(\omega_h)$ for all $g, h \in G$.

In this case, $\alpha^{\omega} : G \to \operatorname{Aut}(A)$ given by $\alpha_g^{\omega} = \operatorname{Ad}(\omega_g) \circ \alpha_g$ is also a continuous action.

Theorem

There is a natural isomorphism $\mathrm{Cu}^{\mathcal{G}}(A,\alpha)\cong\mathrm{Cu}^{\mathcal{G}}(A,\alpha^{\omega})$ as $\mathrm{Cu}(\mathcal{G})$ -semimodules.

 $\mathrm{Cu}^{\mathcal{G}}$ does not distinguish cocycle conjugate actions.

Classification of Rokhlin actions

Definition

If G is finite, $\alpha \colon G \to \operatorname{Aut}(A)$ has the *Rokhlin property* if for every $\varepsilon > 0$ and every finite subset $F \subseteq A$, there exist projections $e_g \in A$ for $g \in G$ such that

The Rokhlin property is the main hypothesis in most classification theorems for actions, and we will add one more to the list using the (equivariant) Cuntz semigroup.

Classification of Rokhlin actions

Definition

If G is finite, $\alpha \colon G \to \operatorname{Aut}(A)$ has the *Rokhlin property* if for every $\varepsilon > 0$ and every finite subset $F \subseteq A$, there exist projections $e_g \in A$ for $g \in G$ such that

- $\sum_{g \in G} e_g = 1$,

The Rokhlin property is the main hypothesis in most classification theorems for actions, and we will add one more to the list using the (equivariant) Cuntz semigroup. Recall: algebras in $\mathcal R$ are direct limits of 1-dim NCCW-complexes with trivial $\mathcal K_1$ -group, and Cu classifies algebras in $\mathcal R$.

Classification of Rokhlin actions on \mathcal{R}

Theorem

Let G be finite, let $A, B \in \mathcal{R}$ and let α and β be actions on A and B with the Rokhlin property. For every Cu-morphism

$$\rho \colon (\mathrm{Cu}(A),\mathrm{Cu}(\alpha)) \to (\mathrm{Cu}(B),\mathrm{Cu}(\beta)) \ \text{ with } [1_A] \mapsto [1_B]$$

there is $\phi: (A, \alpha) \to (B, \beta)$ equivariant which lifts ρ .

Classification of Rokhlin actions on ${\cal R}$

Theorem

Let G be finite, let $A, B \in \mathcal{R}$ and let α and β be actions on A and B with the Rokhlin property. For every Cu-morphism

$$\rho \colon (\mathrm{Cu}(A),\mathrm{Cu}(\alpha)) \to (\mathrm{Cu}(B),\mathrm{Cu}(\beta)) \ \text{ with } [1_A] \mapsto [1_B]$$

there is $\phi: (A, \alpha) \to (B, \beta)$ equivariant which lifts ρ . If ρ is invertible, then ϕ can be chosen to be invertible.

Classification of Rokhlin actions on ${\cal R}$

Theorem

Let G be finite, let $A, B \in \mathcal{R}$ and let α and β be actions on A and B with the Rokhlin property. For every Cu-morphism

$$\rho \colon (\mathrm{Cu}(A), \mathrm{Cu}(\alpha)) \to (\mathrm{Cu}(B), \mathrm{Cu}(\beta)) \text{ with } [1_A] \mapsto [1_B]$$

there is $\phi: (A, \alpha) \to (B, \beta)$ equivariant which lifts ρ . If ρ is invertible, then ϕ can be chosen to be invertible.

The theorem above can be stated in terms of equivariant Cuntz semigroups, at least when G is abelian:

Classification of Rokhlin actions on \mathcal{R}

Theorem

Let G be finite, let $A, B \in \mathcal{R}$ and let α and β be actions on A and B with the Rokhlin property. For every Cu-morphism

$$\rho \colon (Cu(A), Cu(\alpha)) \to (Cu(B), Cu(\beta)) \text{ with } [1_A] \mapsto [1_B]$$

there is $\phi: (A, \alpha) \to (B, \beta)$ equivariant which lifts ρ . If ρ is invertible, then ϕ can be chosen to be invertible.

The theorem above can be stated in terms of equivariant Cuntz semigroups, at least when G is abelian: $\operatorname{Cu}(\widehat{G})$ -semimodule morphisms

$$\operatorname{Cu}^{\widehat{\mathsf{G}}}(A \rtimes_{\alpha} \mathsf{G}, \widehat{\alpha}) \to \operatorname{Cu}^{\widehat{\mathsf{G}}}(B \rtimes_{\beta} \mathsf{G}, \widehat{\beta})$$

preserving the unit can be lifted to equivariant homomorphisms. (The $\mathrm{Cu}(\widehat{G})$ -semimodule structure is crucial.)

Classification of Rokhlin actions on ${\cal R}$

Theorem

Let G be finite, let $A, B \in \mathcal{R}$ and let α and β be actions on A and B with the Rokhlin property. For every Cu-morphism

$$\rho \colon (Cu(A), Cu(\alpha)) \to (Cu(B), Cu(\beta))$$
 with $[1_A] \mapsto [1_B]$

there is $\phi: (A, \alpha) \to (B, \beta)$ equivariant which lifts ρ . If ρ is invertible, then ϕ can be chosen to be invertible.

The theorem above can be stated in terms of equivariant Cuntz semigroups, at least when G is abelian: $\operatorname{Cu}(\widehat{G})$ -semimodule morphisms

$$\operatorname{Cu}^{\widehat{\mathsf{G}}}(A \rtimes_{\alpha} \mathsf{G}, \widehat{\alpha}) \to \operatorname{Cu}^{\widehat{\mathsf{G}}}(B \rtimes_{\beta} \mathsf{G}, \widehat{\beta})$$

preserving the unit can be lifted to equivariant homomorphisms. (The $\mathrm{Cu}(\widehat{\mathcal{G}})$ -semimodule structure is crucial.)

Note: there is no cocycle.

Classification of locally representable actions on ${\mathcal R}$

We now turn to a different, though related, class of actions.

Definition

Let $A \in \mathcal{R}$, and write it $A = \varinjlim A_n$ as in the definition. If G is finite, an action $\alpha \colon G \to \operatorname{Aut}(A)$ will be called *locally representable* if it is the direct limit of inner actions on A_n .

Classification of locally representable actions on ${\cal R}$

We now turn to a different, though related, class of actions.

Definition

Let $A \in \mathcal{R}$, and write it $A = \varinjlim A_n$ as in the definition. If G is finite, an action $\alpha \colon G \to \operatorname{Aut}(A)$ will be called *locally* representable if it is the direct limit of inner actions on A_n .

These actions can also be classified.

Theorem

Let G be finite abelian, let $A, B \in \mathcal{R}$ and let α and β be locally representable actions on A and B. For every $\mathrm{Cu}(G)$ -semimodule morphism

$$\rho \colon \mathrm{Cu}^{\mathsf{G}}(\mathsf{A},\alpha) \to \mathrm{Cu}^{\mathsf{G}}(\mathsf{B},\beta) \text{ with } [1_{\mathsf{A}}] \mapsto [1_{\mathsf{B}}]$$

there are a β -cocycle ω and $\phi: (A, \alpha) \to (B, \beta^{\omega})$ lifting ρ .

Theorem (continuation)

Let G be finite abelian, let $A, B \in \mathcal{R}$ and let α and β be locally representable actions on A and B. For every Cu(G)-morphism

$$\rho \colon \mathrm{Cu}^{\mathsf{G}}(\mathsf{A}, \alpha) \to \mathrm{Cu}^{\mathsf{G}}(\mathsf{B}, \beta) \ \text{ with } [1_{\mathsf{A}}] \mapsto [1_{\mathsf{B}}]$$

there are a β -cocycle ω and a unital homomorphism $\phi\colon (A,\alpha)\to (B,\beta^\omega)$ lifting ρ .

Theorem (continuation)

Let G be finite abelian, let $A, B \in \mathcal{R}$ and let α and β be locally representable actions on A and B. For every Cu(G)-morphism

$$\rho \colon \mathrm{Cu}^{\mathsf{G}}(\mathsf{A}, \alpha) \to \mathrm{Cu}^{\mathsf{G}}(\mathsf{B}, \beta) \ \text{ with } [1_{\mathsf{A}}] \mapsto [1_{\mathsf{B}}]$$

there are a β -cocycle ω and a unital homomorphism $\phi \colon (A, \alpha) \to (B, \beta^{\omega})$ lifting ρ . Moreover,

ullet If ho is invertible, then ϕ can be chosen to be invertible.

Theorem (continuation)

Let G be finite abelian, let $A, B \in \mathcal{R}$ and let α and β be locally representable actions on A and B. For every Cu(G)-morphism

$$\rho \colon \mathrm{Cu}^{\mathsf{G}}(\mathsf{A}, \alpha) \to \mathrm{Cu}^{\mathsf{G}}(\mathsf{B}, \beta) \ \text{ with } [1_{\mathsf{A}}] \mapsto [1_{\mathsf{B}}]$$

there are a β -cocycle ω and a unital homomorphism $\phi \colon (A, \alpha) \to (B, \beta^{\omega})$ lifting ρ . Moreover,

- ullet If ho is invertible, then ϕ can be chosen to be invertible.
- ω is trivial iff $\rho([e_{\alpha}]) = [e_{\beta}]$.

Here e_{α} is the projection $e_{\alpha} = \frac{1}{|G|} \sum_{g \in G} u_g$ in the crossed product $A \rtimes_{\alpha} G$, and similarly for e_{β} .

Thank you.