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Representations on LP-spaces

Throughout, (X, 1) will be a o-finite measure space, p € [1,00).
Groups G will be locally compact and second countable (endowed
with Haar measure).

Definition (Phillips)

An (isometric) representation of G on LP(X, i) is a group
homomorphism p: G — B(LP(X, ;1)) satisfying:

@ p; is invertible and || pg(&)|| = ||€]| for all £ € LP(X, p);
@ For { € LP(X, 1), the map g — pg(&) is continuous.

A representation of G on L?(X, ) is just a unitary representation.

Example
Let \p: G — B(LP(G)) be given by

(Ap)g(€)(h) = &(g7Mh) Vg, he G, V& € LP(X, p).
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Integrated form of a representation

Proposition

There is a one-to-one correspondence between representations
p: G — B(LP(X, 1)) and non-degenerated contractive
homomorphisms 7,: L}(G) — B(LP(X, u)),given by

T (F)(E) = /G pe(€)F(g) d.

Example
The integrated form of A, is

Ao(F)(€) =€
for f € L1(G) and & € LP(X, p).
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Group algebras

Definition (Group LP-operator algebras)

Let \p: LY(G) — B(LP(G)) be the integrated form of the left
regular representation: \,(f)¢ = f * £ for f € LY(G), € € LP(G).
The reduced group algebra of G is

FR(G) = Ap(LH(G)) € B(LP(G)).
The full group algebra FP(G) is the completion of L1(G) in
1 llu = sup{|l(F)||: ¢: LY(G) — B(LP(X, 1)) contractive}.

Write p’ for the conjugate of p.

Duality
For p > 1, there are canonical isometric isomorphisms

FP(G) = FP(G) and FP(G)= FF(G).
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Group LP-operator algebras

For p = 2, one gets FZ(G) = C;(G) and FP(G) = C*(G).
For the other values of p, studying these algebras sometimes
becomes technically difficult:

© LP-operator norms are not unique;

@ Homomorphisms are not necessarily contractive and they
don’t have closed range;

© No abstract characterization and no GNS construction, at
least so far;

@ No continuous functional calculus;

© Quotients of an algebra acting on an LP-space doesn't
necessarily act on an LP-space.

For example, we don't know whether the canonical map
FP(G) — F{(G) is surjective!
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Group and Banach algebra amenability

Proposition (Implicit in work of Herz)

When p =1, we have
LY(G) = Fx(G) = F1(6).

Proof: L1(G) has a contractive approximate identity.

Theorem (G.-Thiel, independently by Phillips)

For p > 1, the following are equivalent:

© G is amenable;
@ The map FP(G) — F{(G) is an (isometric) isomorphism.

(Not true for p = 1 by the proposition above.)
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Theorem (G.-Thiel)

Forl1<p<g<2o0r2<gqg<p< o0, there is a canonical
contractive homomorphism

Yp,q: FP(G) = F9(G)

with dense range. Moreover, 7, 4 is always injective, and it is
surjective only when G is finite.

Uses very crucially the geometry of LP-spaces for different p.

Corollary
If G is discrete, then FP(G) amenable < G amenable.
Well known for p =1 (B. Johnson), and doesn’t need G discrete.

For the rest: L1(G) — FP(G) — C*(G).
(Probably true for arbitrary G when p # 2.)
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Homomorphisms between reduced group algebras

Let G and H be discrete groups.
Theorem (G.-Thiel)

Suppose p € [1,00) \ {2}. Let p: FY(G) — F(H) be a
contractive, unital homomorphism. Then there are a group
homomorphism 6: G — H and a group homomorphism

v: G — S? satisfying

(p(ug) = V(g)uap(g) Vge G.

Moreover,
@ ker(0) is amenable.
@ 0 is injective (surjective) iff ¢ is injective (surjective).
@ If v is injective, then it is isometric. (This is unexpected.)

In other words, homomorphism F{(G) — F{(H) come from
homomorphisms G — H.
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Consequences

Recall: homomorphism F{(G) — F{(H) come from
homomorphisms G — H, for p # 2.

Theorem

Let G and H be discrete groups, and let p,q € [1,00) \ {2}. If
ll-_/’\’(Gl) > FJ(H) contractively, then G = H and either p = q or
Lyl=n

(For p =g =1, this was first obtained by Wendel in the 60s.)

Theorem

Let G be a torsion free group and let p € [1,00) \ {2}. Then
F{(G) does not contain a bicontractive idempotent.

Proof: bicontractive idempotents correspond to unital
homomorphisms from FP(Z,).

Whether this is true for p = 2 is the content of the
Kadison-Kaplansky conjecture.



Thank you.

10/10



