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Representations on Lp-spaces

Throughout, (X , µ) will be a σ-finite measure space, p ∈ [1,∞).
Groups G will be locally compact and second countable (endowed
with Haar measure).

Definition (Phillips)

An (isometric) representation of G on Lp(X , µ) is a group
homomorphism ρ : G → B(Lp(X , µ)) satisfying:

1 ρg is invertible and ‖ρg (ξ)‖ = ‖ξ‖ for all ξ ∈ Lp(X , µ);

2 For ξ ∈ Lp(X , µ), the map g 7→ ρg (ξ) is continuous.

A representation of G on L2(X , µ) is just a unitary representation.

Example

Let λp : G → B(Lp(G )) be given by

(λp)g (ξ)(h) = ξ(g−1h) ∀g , h ∈ G , ∀ξ ∈ Lp(X , µ).
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Integrated form of a representation

Proposition

There is a one-to-one correspondence between representations
ρ : G → B(Lp(X , µ)) and

non-degenerated contractive
homomorphisms πρ : L1(G )→ B(Lp(X , µ)),given by

πρ(f )(ξ) =

∫
G
ρg (ξ)f (g) dg .

Example

The integrated form of λp is

λp(f )(ξ) = f ∗ ξ

for f ∈ L1(G ) and ξ ∈ Lp(X , µ).
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Group algebras

Definition (Group Lp-operator algebras)

Let λp : L1(G )→ B(Lp(G )) be the integrated form of the left
regular representation: λp(f )ξ = f ∗ ξ for f ∈ L1(G ), ξ ∈ Lp(G ).

The reduced group algebra of G is

F p
λ (G ) = λp(L1(G )) ⊆ B(Lp(G )).

The full group algebra F p(G ) is the completion of L1(G ) in

‖f ‖u = sup{‖ϕ(f )‖ : ϕ : L1(G )→ B(Lp(X , µ)) contractive}.

Write p′ for the conjugate of p.

Duality

For p > 1, there are canonical isometric isomorphisms

F p(G ) ∼= F p′(G ) and F p
λ (G ) ∼= F p′

λ (G ).

4 / 10



Group algebras

Definition (Group Lp-operator algebras)

Let λp : L1(G )→ B(Lp(G )) be the integrated form of the left
regular representation: λp(f )ξ = f ∗ ξ for f ∈ L1(G ), ξ ∈ Lp(G ).
The reduced group algebra of G is

F p
λ (G ) = λp(L1(G )) ⊆ B(Lp(G )).

The full group algebra F p(G ) is the completion of L1(G ) in

‖f ‖u = sup{‖ϕ(f )‖ : ϕ : L1(G )→ B(Lp(X , µ)) contractive}.

Write p′ for the conjugate of p.

Duality

For p > 1, there are canonical isometric isomorphisms

F p(G ) ∼= F p′(G ) and F p
λ (G ) ∼= F p′

λ (G ).

4 / 10



Group algebras

Definition (Group Lp-operator algebras)

Let λp : L1(G )→ B(Lp(G )) be the integrated form of the left
regular representation: λp(f )ξ = f ∗ ξ for f ∈ L1(G ), ξ ∈ Lp(G ).
The reduced group algebra of G is

F p
λ (G ) = λp(L1(G )) ⊆ B(Lp(G )).

The full group algebra F p(G ) is the completion of L1(G ) in

‖f ‖u = sup{‖ϕ(f )‖ : ϕ : L1(G )→ B(Lp(X , µ)) contractive}.

Write p′ for the conjugate of p.

Duality

For p > 1, there are canonical isometric isomorphisms

F p(G ) ∼= F p′(G ) and F p
λ (G ) ∼= F p′

λ (G ).

4 / 10



Group algebras

Definition (Group Lp-operator algebras)

Let λp : L1(G )→ B(Lp(G )) be the integrated form of the left
regular representation: λp(f )ξ = f ∗ ξ for f ∈ L1(G ), ξ ∈ Lp(G ).
The reduced group algebra of G is

F p
λ (G ) = λp(L1(G )) ⊆ B(Lp(G )).

The full group algebra F p(G ) is the completion of L1(G ) in

‖f ‖u = sup{‖ϕ(f )‖ : ϕ : L1(G )→ B(Lp(X , µ)) contractive}.

Write p′ for the conjugate of p.

Duality

For p > 1, there are canonical isometric isomorphisms

F p(G ) ∼= F p′(G ) and F p
λ (G ) ∼= F p′

λ (G ).

4 / 10



Group algebras

Definition (Group Lp-operator algebras)

Let λp : L1(G )→ B(Lp(G )) be the integrated form of the left
regular representation: λp(f )ξ = f ∗ ξ for f ∈ L1(G ), ξ ∈ Lp(G ).
The reduced group algebra of G is

F p
λ (G ) = λp(L1(G )) ⊆ B(Lp(G )).

The full group algebra F p(G ) is the completion of L1(G ) in

‖f ‖u = sup{‖ϕ(f )‖ : ϕ : L1(G )→ B(Lp(X , µ)) contractive}.

Write p′ for the conjugate of p.

Duality

For p > 1, there are canonical isometric isomorphisms

F p(G ) ∼= F p′(G ) and F p
λ (G ) ∼= F p′

λ (G ).

4 / 10



Group Lp-operator algebras

For p = 2, one gets F 2
λ(G ) = C ∗λ(G ) and F p(G ) = C ∗(G ).

For the other values of p, studying these algebras sometimes
becomes technically difficult:

1 Lp-operator norms are not unique;

2 Homomorphisms are not necessarily contractive and they
don’t have closed range;

3 No abstract characterization and no GNS construction, at
least so far;

4 No continuous functional calculus;

5 Quotients of an algebra acting on an Lp-space doesn’t
necessarily act on an Lp-space.

For example, we don’t know whether the canonical map
F p(G )→ F p

λ (G ) is surjective!
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Group and Banach algebra amenability

Proposition (Implicit in work of Herz)

When p = 1, we have

L1(G ) = F 1
λ(G ) = F 1(G ).

Proof: L1(G ) has a contractive approximate identity.

Theorem (G.-Thiel, independently by Phillips)

For p > 1, the following are equivalent:

1 G is amenable;

2 The map F p(G )→ F p
λ (G ) is an (isometric) isomorphism.

(Not true for p = 1 by the proposition above.)
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Group and Banach algebra amenability

Theorem (G.-Thiel)

For 1 ≤ p < q ≤ 2 or 2 ≤ q < p <∞,

there is a canonical
contractive homomorphism

γp,q : F p(G )→ F q(G )

with dense range. Moreover, γp,q is always injective, and it is
surjective only when G is finite.

Uses very crucially the geometry of Lp-spaces for different p.

Corollary

If G is discrete, then F p(G ) amenable ⇔ G amenable.

Well known for p = 1 (B. Johnson), and doesn’t need G discrete.
For the rest: L1(G )→ F p(G )→ C ∗(G ).
(Probably true for arbitrary G when p 6= 2.)
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Homomorphisms between reduced group algebras

Let G and H be discrete groups.

Theorem (G.-Thiel)

Suppose p ∈ [1,∞) \ {2}. Let ϕ : F p
λ (G )→ F p

λ (H) be a
contractive, unital homomorphism. Then there are a group
homomorphism θ : G → H and a group homomorphism
γ : G → S1 satisfying

ϕ(ug ) = γ(g)uϕ(g) ∀ g ∈ G .

Moreover,

1 ker(θ) is amenable.

2 θ is injective (surjective) iff ϕ is injective (surjective).

3 If ϕ is injective, then it is isometric. (This is unexpected.)

In other words, homomorphism F p
λ (G )→ F p

λ (H) come from
homomorphisms G → H.
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Consequences

Recall: homomorphism F p
λ (G )→ F p

λ (H) come from
homomorphisms G → H, for p 6= 2.

Theorem

Let G and H be discrete groups, and let p, q ∈ [1,∞) \ {2}. If
F p
λ (G ) ∼= F q

λ (H) contractively, then G ∼= H and either p = q or
1
p + 1

q = 1.

(For p = q = 1, this was first obtained by Wendel in the 60s.)

Theorem

Let G be a torsion free group and let p ∈ [1,∞) \ {2}. Then
F p
λ (G ) does not contain a bicontractive idempotent.

Proof: bicontractive idempotents correspond to unital
homomorphisms from F p(Z2).
Whether this is true for p = 2 is the content of the
Kadison-Kaplansky conjecture.

9 / 10



Consequences

Recall: homomorphism F p
λ (G )→ F p

λ (H) come from
homomorphisms G → H, for p 6= 2.

Theorem

Let G and H be discrete groups, and let p, q ∈ [1,∞) \ {2}. If
F p
λ (G ) ∼= F q

λ (H) contractively,

then G ∼= H and either p = q or
1
p + 1

q = 1.

(For p = q = 1, this was first obtained by Wendel in the 60s.)

Theorem

Let G be a torsion free group and let p ∈ [1,∞) \ {2}. Then
F p
λ (G ) does not contain a bicontractive idempotent.

Proof: bicontractive idempotents correspond to unital
homomorphisms from F p(Z2).
Whether this is true for p = 2 is the content of the
Kadison-Kaplansky conjecture.

9 / 10



Consequences

Recall: homomorphism F p
λ (G )→ F p

λ (H) come from
homomorphisms G → H, for p 6= 2.

Theorem

Let G and H be discrete groups, and let p, q ∈ [1,∞) \ {2}. If
F p
λ (G ) ∼= F q

λ (H) contractively, then G ∼= H and either p = q or
1
p + 1

q = 1.

(For p = q = 1, this was first obtained by Wendel in the 60s.)

Theorem

Let G be a torsion free group and let p ∈ [1,∞) \ {2}. Then
F p
λ (G ) does not contain a bicontractive idempotent.

Proof: bicontractive idempotents correspond to unital
homomorphisms from F p(Z2).
Whether this is true for p = 2 is the content of the
Kadison-Kaplansky conjecture.

9 / 10



Consequences

Recall: homomorphism F p
λ (G )→ F p

λ (H) come from
homomorphisms G → H, for p 6= 2.

Theorem

Let G and H be discrete groups, and let p, q ∈ [1,∞) \ {2}. If
F p
λ (G ) ∼= F q

λ (H) contractively, then G ∼= H and either p = q or
1
p + 1

q = 1.

(For p = q = 1, this was first obtained by Wendel in the 60s.)

Theorem

Let G be a torsion free group and let p ∈ [1,∞) \ {2}. Then
F p
λ (G ) does not contain a bicontractive idempotent.

Proof: bicontractive idempotents correspond to unital
homomorphisms from F p(Z2).
Whether this is true for p = 2 is the content of the
Kadison-Kaplansky conjecture.

9 / 10



Consequences

Recall: homomorphism F p
λ (G )→ F p

λ (H) come from
homomorphisms G → H, for p 6= 2.

Theorem

Let G and H be discrete groups, and let p, q ∈ [1,∞) \ {2}. If
F p
λ (G ) ∼= F q

λ (H) contractively, then G ∼= H and either p = q or
1
p + 1

q = 1.

(For p = q = 1, this was first obtained by Wendel in the 60s.)

Theorem

Let G be a torsion free group and let p ∈ [1,∞) \ {2}.

Then
F p
λ (G ) does not contain a bicontractive idempotent.

Proof: bicontractive idempotents correspond to unital
homomorphisms from F p(Z2).
Whether this is true for p = 2 is the content of the
Kadison-Kaplansky conjecture.

9 / 10



Consequences

Recall: homomorphism F p
λ (G )→ F p

λ (H) come from
homomorphisms G → H, for p 6= 2.

Theorem

Let G and H be discrete groups, and let p, q ∈ [1,∞) \ {2}. If
F p
λ (G ) ∼= F q

λ (H) contractively, then G ∼= H and either p = q or
1
p + 1

q = 1.

(For p = q = 1, this was first obtained by Wendel in the 60s.)

Theorem

Let G be a torsion free group and let p ∈ [1,∞) \ {2}. Then
F p
λ (G ) does not contain a bicontractive idempotent.

Proof: bicontractive idempotents correspond to unital
homomorphisms from F p(Z2).
Whether this is true for p = 2 is the content of the
Kadison-Kaplansky conjecture.

9 / 10



Consequences

Recall: homomorphism F p
λ (G )→ F p

λ (H) come from
homomorphisms G → H, for p 6= 2.

Theorem

Let G and H be discrete groups, and let p, q ∈ [1,∞) \ {2}. If
F p
λ (G ) ∼= F q

λ (H) contractively, then G ∼= H and either p = q or
1
p + 1

q = 1.

(For p = q = 1, this was first obtained by Wendel in the 60s.)

Theorem

Let G be a torsion free group and let p ∈ [1,∞) \ {2}. Then
F p
λ (G ) does not contain a bicontractive idempotent.

Proof: bicontractive idempotents correspond to unital
homomorphisms from F p(Z2).

Whether this is true for p = 2 is the content of the
Kadison-Kaplansky conjecture.

9 / 10



Consequences

Recall: homomorphism F p
λ (G )→ F p

λ (H) come from
homomorphisms G → H, for p 6= 2.

Theorem

Let G and H be discrete groups, and let p, q ∈ [1,∞) \ {2}. If
F p
λ (G ) ∼= F q

λ (H) contractively, then G ∼= H and either p = q or
1
p + 1

q = 1.

(For p = q = 1, this was first obtained by Wendel in the 60s.)

Theorem

Let G be a torsion free group and let p ∈ [1,∞) \ {2}. Then
F p
λ (G ) does not contain a bicontractive idempotent.

Proof: bicontractive idempotents correspond to unital
homomorphisms from F p(Z2).
Whether this is true for p = 2 is the content of the
Kadison-Kaplansky conjecture.

9 / 10



Thank you.
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