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Topological dynamics

Let X be a compact Hausdorff space and let h : X → X be a
homeomorphism.

There is a “semidirect product” construction,
called the crossed product (of C (X ) by h) that produces a
C ∗-algebra C (X )oh Z out of X , or rather C (X ), and h. Explicitly,

C (X ) oh Z = C ∗

(
C (X ) ∪ {u} :

u is a unitary, and

ufu∗ = f ◦ h−1∀f ∈ C (X )

)
.

Observe that C (X )oh Z is never commutative when h is nontrivial.
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Classifiability of C (X ) oh Z

Recall that unital simple C ∗-algebras with finite nuclear dimension
are determined by their K -theory and traces.

So when is
C (X ) oh Z classifiable?

1 Unital: always (because X is compact).

2 Simple: h must be minimal (no nontrivial closed invariant
subsets).

3 Finite nuclear dimension: enough that dim(X ) <∞.

How do we calculate the invariants? There is a very useful exact
sequence that helps in the computation of K -theory of C (X ) oh Z.
Traces are easy to describe: they are in one-to-one with invariant
Borel measures on X .
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Example: irrational rotation algebras

Let θ ∈ R \Q, and let hθ : S1 → S1 be hθ(z) = e2πiθz for z ∈ S1.

The crossed product C (S1) ohθ Z is called the irrational rotation
algebra (associated to θ), written Aθ. (Also called
noncommutative torus, since A0 = T2.)

One of the most important problems in C ∗-algebras, solved in 1980

When do we have Aθ
∼= Aθ′?

Becomes easy using classification.
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Example: irrational rotation algebras

Recall Aθ is the crossed product of S1 by rotation by irrational
angle θ.

When do we have Aθ
∼= Aθ′?

We just need to compute the invariants.
We have

K0(Aθ) ∼= Z + θZ,K1(Aθ) ∼= Z2 and T (Aθ) = {Lebesgue}.

Thus Aθ
∼= Aθ′ if and only if θ ± θ′ is an integer.
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Thank you.
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