Topological dynamics and classification

Eusebio Gardella

SFB Workshop, Westfälische Wilhelms-Universität Münster, October 2016

<ロ> < (回) < (回) < (目) < (目) < (目) > (目) < (日) < (日) < (日) < (日) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1)

Let X be a compact Hausdorff space and let $h: X \to X$ be a homeomorphism.

Let X be a compact Hausdorff space and let $h: X \to X$ be a homeomorphism. There is a "semidirect product" construction, called the *crossed product* (of C(X) by h) that produces a C^* -algebra $C(X) \rtimes_h \mathbb{Z}$ out of X, or rather C(X), and h.

Let X be a compact Hausdorff space and let $h: X \to X$ be a homeomorphism. There is a "semidirect product" construction, called the *crossed product* (of C(X) by h) that produces a C^* -algebra $C(X) \rtimes_h \mathbb{Z}$ out of X, or rather C(X), and h. Explicitly,

$$\mathcal{C}(X)
times_h\mathbb{Z}=\mathcal{C}^*\left(\mathcal{C}(X)\cup\{u\}\colon egin{array}{c}u ext{ is a unitary, and}\\ufu^*=f\circ h^{-1}orall f\in\mathcal{C}(X)
ight).$$

Let X be a compact Hausdorff space and let $h: X \to X$ be a homeomorphism. There is a "semidirect product" construction, called the *crossed product* (of C(X) by h) that produces a C^* -algebra $C(X) \rtimes_h \mathbb{Z}$ out of X, or rather C(X), and h. Explicitly,

$$C(X)
times_h \mathbb{Z} = C^* \left(C(X) \cup \{u\} \colon egin{array}{c} u ext{ is a unitary, and} \\ ufu^* = f \circ h^{-1} orall f \in C(X) \end{array}
ight)$$

Observe that $C(X) \rtimes_h \mathbb{Z}$ is never commutative when h is nontrivial.

Recall that unital simple C^* -algebras with finite nuclear dimension are determined by their K-theory and traces.

Unital: always (because X is compact).

- Unital: always (because X is compact).
- Simple: h must be minimal (no nontrivial closed invariant subsets).

- Unital: always (because X is compact).
- Simple: h must be minimal (no nontrivial closed invariant subsets).
- Solution Finite nuclear dimension: enough that $\dim(X) < \infty$.

- Unital: always (because X is compact).
- Simple: h must be minimal (no nontrivial closed invariant subsets).
- Solution Finite nuclear dimension: enough that $\dim(X) < \infty$.

How do we calculate the invariants?

- Unital: always (because X is compact).
- Simple: h must be minimal (no nontrivial closed invariant subsets).
- Solution Finite nuclear dimension: enough that $\dim(X) < \infty$.

How do we calculate the invariants? There is a very useful exact sequence that helps in the computation of K-theory of $C(X) \rtimes_h \mathbb{Z}$.

- Unital: always (because X is compact).
- Simple: h must be minimal (no nontrivial closed invariant subsets).
- Solution Finite nuclear dimension: enough that $\dim(X) < \infty$.

How do we calculate the invariants? There is a very useful exact sequence that helps in the computation of *K*-theory of $C(X) \rtimes_h \mathbb{Z}$. Traces are easy to describe: they are in one-to-one with invariant Borel measures on *X*.

Let $\theta \in \mathbb{R} \setminus \mathbb{Q}$, and let $h_{\theta} \colon S^1 \to S^1$ be $h_{\theta}(z) = e^{2\pi i \theta} z$ for $z \in S^1$.

One of the most important problems in C^* -algebras, solved in 1980

One of the most important problems in C^* -algebras, solved in 1980

When do we have $A_{\theta} \cong A_{\theta'}$?

One of the most important problems in C^* -algebras, solved in 1980

When do we have $A_{\theta} \cong A_{\theta'}$?

Becomes easy using classification.

Recall A_{θ} is the crossed product of S^1 by rotation by irrational angle θ .

Recall A_{θ} is the crossed product of S^1 by rotation by irrational angle θ . When do we have $A_{\theta} \cong A_{\theta'}$?

Recall A_{θ} is the crossed product of S^1 by rotation by irrational angle θ . When do we have $A_{\theta} \cong A_{\theta'}$? We just need to compute the invariants. Recall A_{θ} is the crossed product of S^1 by rotation by irrational angle θ . When do we have $A_{\theta} \cong A_{\theta'}$? We just need to compute the invariants. We have

 $K_0(A_{\theta}) \cong \mathbb{Z} + \theta \mathbb{Z}, K_1(A_{\theta}) \cong \mathbb{Z}^2 \text{ and } T(A_{\theta}) = \{ \text{Lebesgue} \}.$

Recall A_{θ} is the crossed product of S^1 by rotation by irrational angle θ . When do we have $A_{\theta} \cong A_{\theta'}$? We just need to compute the invariants. We have

$$\mathcal{K}_0(\mathcal{A}_{\theta}) \cong \mathbb{Z} + \theta \mathbb{Z}, \mathcal{K}_1(\mathcal{A}_{\theta}) \cong \mathbb{Z}^2 \text{ and } \mathcal{T}(\mathcal{A}_{\theta}) = \{ \text{Lebesgue} \}.$$

5/6

Thus $A_{\theta} \cong A_{\theta'}$ if and only if $\theta \pm \theta'$ is an integer.

Thank you.