
COMPACT GROUP ACTIONS ON C∗-ALGEBRAS: CLASSIFICATION,

NON-CLASSIFIABILITY, AND CROSSED PRODUCTS

AND

RIGIDITY RESULTS FOR LP -OPERATOR ALGEBRAS.

by

EMILIO EUSEBIO GARDELLA

A DISSERTATION

Presented to the Department of Mathematics
and the Graduate School of the University of Oregon

in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy

June 2015



DISSERTATION APPROVAL PAGE

Student: Emilio Eusebio Gardella

Title: Compact Group Actions on C∗-algebras: Classification, Non-classifiability, and Crossed
Products and Rigidity Results for Lp-operator Algebras

This dissertation has been accepted and approved in partial fulfillment of the requirements for the
Doctor of Philosophy degree in the Department of Mathematics by:

N. Christopher Phillips Chair
Boris Botvinnik Core Member
Marcin Bownik Core Member
Huaxin Lin Core Member
Michael Kellman Institutional Representative

and

Scott L. Pratt Dean of the Graduate School

Original approval signatures are on file with the University of Oregon Graduate School.

Degree awarded June 2015

ii



c© 2015 Emilio Eusebio Gardella

iii



DISSERTATION ABSTRACT

Emilio Eusebio Gardella

Doctor of Philosophy

Department of Mathematics

June 2015

Title: Compact Group Actions on C∗-algebras: Classification, Non-classifiability, and Crossed
Products and Rigidity Results for Lp-operator Algebras

This dissertation is concerned with representations of locally compact groups on different

classes of Banach spaces.

The first part of this work considers representations of compact groups by automorphisms

of C∗-algebras, also known as group actions on C∗-algebras. The actions we study enjoy a

freeness-type of property, namely finite Rokhlin dimension. We investigate the structure of

their crossed products, mainly in relation to their classifiability, and compare the notion of

finite Rokhlin dimension with other existing notions of noncommutative freeness. In the case of

Rokhlin dimension zero, also known as the Rokhlin property, we prove a number of classification

theorems for these actions. Also, in this case, much more can be said about the structure of the

crossed products. In the last chapter of this part, we explore the extent to which actions with

Rokhlin dimension one can be classified. Our results show that even for Z2-actions on O2, their

classification is not Borel, and hence it is intractable.

The second part of the present dissertation focuses on isometric representations of groups

on Lp-spaces, for p ∈ [1,∞). For p = 2, these are the unitary representations on Hilbert spaces.

We study the Lp-analogs of the full and reduced group C∗-algebras, particularly in connection

to their rigidity. One of the main results of this work asserts that for p ∈ [1,∞) \ {2}, the

isometric isomorphism type of the reduced group Lp-operator algebra recovers the group. Our

study of group algebras acting on Lp-spaces has also led us to answer a 20-year-old question of

Le Merdy and Junge: for p 6= 2, the class of Banach algebras that can be represented on an Lp-

space is not closed under quotients. We moreover study representations of groupoids, which are
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a generalization of groups where multiplication is not always defined. The algebras associated

to these objects provide new examples of Lp-operator algebras and recover some previously

existing ones. Groupoid Lp-operator algebras are particularly tractable objects. For instance,

while groupoid Lp-operator algebras can be classified by their K0-group (an ordered, countable

abelian group), we show that UHF-Lp-operator algebras not arising from groupoids cannot be

classified by countable structures.

This dissertation includes unpublished coauthored material.
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CHAPTER I

INTRODUCTION

The study of group actions on C∗-algebras, as well as their associated crossed products, has

been the object of very intensive research since the early beginnings of operator algebra theory.

Both in the von Neumann algebra and in the C∗-algebra case, crossed products have provided a

great many highly nontrivial examples via a construction that combines the dynamical properties

of the action with the structural properties of the underlying algebra.

A crucial result in the context of measurable dynamics is the Rokhlin Lemma, which

asserts that an aperiodic measure preserving action of Z can be “approximated”, in a suitable

sense, by finite cyclic shifts. Its reformulation in terms of outer automorphisms of (commutative)

von Neumann algebras using partitions of unity consisting of orthogonal projections has led to

a number of versions of the Rokhlin property, both in the von Neumann algebra and in the

C∗-algebra case. Indeed, the Rokhlin property for discrete group actions on C∗-algebras first

appeared in the late 1970’s and early 1980’s, in the work of Kishimoto [154], Fack and Maréchal

[67], and Herman and Jones [113], on cyclic group actions on UHF-algebras, as well as in the

work of Herman and Ocneanu [114] on integer actions on UHF-algebras. The term ‘Rokhlin

property’ was used in later work of Kishimoto [157] and Izumi [131] for integer actions, and Izumi

[132], [133] and Osaka-Phillips [191] in the finite group case. This notion was also extended to

flows (actions of the reals) by Kishimoto in [158], as well as second countable compact groups by

Hirshberg and Winter, in [122].

On the side of topological dynamics, the notion of freeness of a group action is central.

Recall that an action of a group G on a space X is said to be free if no non-trivial group element

of G acts with fixed points. Unfortunately, the Rokhlin Lemma from ergodic theory no longer

holds in the topological case. A useful substitute for it is Corollary 5.2 in [256], where Szabo

shows that free homeomorphisms of finite dimensional compact metric spaces satisfy a higher-

dimensional version of the Rokhlin Lemma. (When the homeomorphism is free and minimal, this

result was first obtained by Hirshberg, Winter and Zacharias in [123].) The relevant notion here is

that of ‘Rokhlin dimension’, introduced in [123] for finite group and integer actions on arbitrary

C∗-algebras. Roughly speaking, the above mentioned result on topological dynamics asserts that

1



free homeomorphisms of finite dimensional compact metric spaces can be approximated, in a

suitable sense, by a finite number of cyclic shifts (and how many shifts are needed is essentially

its Rokhlin dimension). It is believed that finite dimensionality of the underlying space is

unnecessary, and that this condition should be replaced by the weaker assumption that the

homeomorphism have “mean dimension zero”.

Viewing C∗-algebras as noncommutative topological spaces, it is natural to look for

generalizations of the concept of freeness to the case of group actions on C∗-algebras. It turns

out that there is not a single version of noncommutative freeness. Indeed, the book [199] provides

a detailed presentation and comparison of a number of them, mainly for compact Lie groups,

including (locally) discrete K-theory, (total) K-freeness, (hereditary) saturation, and others.

(Many of these are inspired in Atiyah-Segal’s characterization of freeness from [5].) We refer the

reader to [202] for a motivation of the study of free actions on C∗-algebras, as well of a survey

that includes other more recent notions of freeness.

In Part I of this thesis, we study compact group actions with finite Rokhlin dimension, with

the understanding that this could be the right notion of noncommutative freeness (particularly

in its commuting towers version). We focus our study on their classification and the structure

of the associated crossed products. Our stronger results assume the Rokhlin property, but we

are nevertheless able to say a number of things in the more general setting of finite Rokhlin

dimension.

Classification of Actions

Classification is a major subject in all areas of mathematics, and has attracted the

attention of many talented mathematicians. In the category of C∗-algebras, the program of

classifying all simple amenable C∗-algebras was initiated by Elliott, first with the classification

of AF-algebras, and later with the classification of certain simple C∗-algebras of real rank zero.

His work was followed by many other classification results for nuclear C∗-algebras, both in the

stably finite and the purely infinite case. (Of particular importance in this dissertation will be the

classification theorem of Kirchberg and Phillips; see [150] and [200].)

The classification theory for von Neumann algebras precedes the classification program

initiated by Elliott. In fact, the classification of amenable von Neumann algebras with separable
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predual, which is due to Connes, Haagerup, Krieger and Takesaki, was completed more than

30 years ago. Connes moreover classified automorphisms of the type II1 factor up to cocycle

conjugacy in [30]. This can be regarded as the first classification result for actions on von

Neumann algebras, which was complemented by his own work on the classification of pointwise

outer actions of amenable groups on von Neumann algebras in [28].

Several people have since then tried to obtain similar classification results for actions on

C∗-algebras. Early results in this direction include the work of Fack and Maréchal in [67] and [68]

for cyclic groups actions on UHF-algebras, and the work of Handelman and Rossmann [109] for

locally representable compact group actions on AF-algebras. Other results have been obtained

by Elliott and Su in [61] for direct limit actions of Z2 on AF-algebras, and by Izumi in [132] and

[133], where he proved a number of classification results for actions of finite groups on arbitrary

unital separable C∗-algebras with the Rokhlin property, as well as for approximately representable

actions. The classification result of Izumi for actions with the Rokhlin property has been extended

recently by Nawata in [188] to cover actions on not necessarily unital separable C∗-algebras

with what he called “almost stable rank one”. It should be emphasized that the classification of

group actions on C∗-algebras is a far less developed and generally more difficult subject than the

classification of C∗-algebras, and it is even less developed than the classification of group actions

on von Neumann algebras.

When trying to classify actions on C∗-algebras, one usually has to restrict oneself to a

specific classifiable class of C∗-algebras, and also focus on a specific class of actions on them.

The main feature that distinguishes the class of actions on which Izumi focused is the fact that

they are not specified by the way they are constructed. Indeed, the previous known results only

considered a rather limited class of finite (and sometimes compact) group actions, which in

particular are direct limit actions. The class of actions considered by Izumi is the class of finite

group actions with the Rokhlin property.

When the group is abelian, the dual action of a locally representable action has the Rokhlin

property. This fact explains, at least heuristically, why locally representable actions can be

classified in terms of their crossed products and dual actions. (In fact, Izumi obtains some of

the classification theorems of the other cited authors as consequences of his results.) In this sense,

it is fair to claim that the Rokhlin property is the main technical device in the majority of the
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classification results for finite group actions so far available. This should come as no surprise, in

the light of Connes’ classification of outer actions of amenable discrete groups on the hyperfinite

II1-factor in [28], where the main technical tool is the fact that all such actions have the Rokhlin

property.

It is natural to explore the classification of Rokhlin actions of compact groups on certain

classes of classifiable C∗-algebras, complementing and generalizing Izumi’s work for finite group

actions with the Rokhlin property. This was probably the problem that attracted me the most in

the past few years, and a number of chapters in this dissertation are devoted to it:

– In Chapter III, based on joint work with Luis Santiago, we develop the general theory of

the equivariant Cuntz semigroup, which is an analog of equivariant K-theory using positive

elements instead of projections. Although this result is not included here, Luis Santiago

and I have successfully used the equivariant Cuntz semigroup to classify approximately

representable actions of finite groups on direct limits of one-dimensional noncommutative

CW-complexes (generalizing the results in [109], where the authors used equivariant K-

theory for actions on AF-algebras).

– In Chapter VI, we study compact group actions with the Rokhlin property. Even though no

classification results are proved here, we develop the theory and obtain important properties

that are needed in Chapters XIX and X.

– In Chapter VIII, which is based on joint work with Luis Santiago, we generalize and extend

Izumi’s results from [132] and [133] to actions of finite groups on not necessarily unital C∗-

algebras, classifying also equivariant homomorphisms.

– In Chapter XIX, we classify circle actions with the Rokhlin property on Kirchberg algebras.

This is arguably the main chapter of this dissertation.

– In Chapter X, we classify actions of totally disconnected groups with the Rokhlin property,

extending the results of Izumi for finite groups. We also prove the following automatic total

disconnectedness result: if a compact group G acts with the Rokhlin property on a unital

C∗-algebra A that has exactly one vanishing K-group, then G must be totally disconnected.

– In Chapter XI, we make a connection between the Rokhlin property for a circle action

and the Rokhlin property for its restrictions to finite cyclic groups, under the assumption
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that the underlying algebra tensorially absorbs a UHF-algebra of infinite type. Although

this application will not appear here, we mention that this result enables one to use

classifications results of Izumi in the finite group case (applied to the restrictions), to deduce

some classification results for the circle action.

– In Chapter XII, which is based on joint work with Martino Lupini, we show that the

problem of classifying finite group actions with finite Rokhlin dimension is intractable from

the Borel complexity point of view.

Structure of Crossed Products

Crossed products have provided some of the most interesting examples of C∗-algebras, and

studying their structure is a particularly active field of research within C∗-algebras. The focus

is usually put on properties related to the classification program. This is relevant because it is

useful to know what constructions preserve the different conditions and properties that appear as

hypotheses in the main classification theorems.

Some properties are preserved under formation of crossed products in great generality.

For example, crossed products of type I C∗-algebras by compact groups are type I, and crossed

products of nuclear C∗-algebras by amenable groups are nuclear, regardless of the action. On

the other hand, for preservation of other finer properties, one must assume some kind of freeness

condition on the action. For example, reduced crossed products by pointwise outer actions of

countable discrete groups preserve the class of purely infinite simple C∗-algebras, by Corollary 4.6

in [135] (here reproduced as part (2) of Theorem II.2.8). As a consequence, the class of Kirchberg

algebras (separable, simple, nuclear and purely infinite C∗-algebras) is preserved by formation of

crossed products by pointwise outer actions of countable discrete amenable groups.

In the finite group case, the Rokhlin property implies very strong structure preservation

results for crossed products; see Theorem 2.3 in [202] for a list of properties that are preserved

by Rokhlin actions, and see [122], [191] and [203] for the proofs of most of them. Some of these

properties, specifically absorption of a strongly self-absorbing C∗-algebra and approximate

divisibility, were shown in [122] to be preserved by Rokhlin actions of not just finite, but also

compact groups.
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On the side of finite Rokhlin dimension, one should expect far fewer preservation results in

this context, due to the additional flexibility allowed. Moreover, there seems to be a significant

difference between the commuting and noncommuting towers versions. As of positive results, the

work of Hirshberg-Winter-Zacharias ([123]) shows that formation of crossed products by finite

group actions with finite Rokhlin dimension (in any version) preserve finiteness of the nuclear

dimension and decomposition rank. Furthermore, in the commuting towers version, the class of

Jiang-Su stable C∗-algebras is also preserved. Little seems to be known regarding preservation of

other properties. (This problem will be studied in [87].)

It should also be pointed out that the class of separable, nuclear, unital, simple C∗-

algebras of tracial rank zero (in the sense of Lin; see [167]) is preserved under formation of crossed

products by finite groups actions with the tracial Rokhlin property; see [203].

One of the projects I pursued during my studies was extending such results to the context

of compact group actions. (In the case of finite Rokhlin dimension, this also required introducing

a suitable definition.) The questions and problems addressed in each the works mentioned above

are different, and consequently the approaches used by these authors are substantially distinct in

some cases. Extending the results of [203], [191] and [194] to the case of arbitrary compact groups

required new insights, since the main technical tool in all of these works (Theorem 3.2 in [191])

seems not to have a satisfactory analog in the compact group case. A similar problem arose when

extending the results in [123], since the authors made essential use of the positive elements in the

algebra coming from the different towers.

Chapters IV, V (finite Rokhlin dimension) and VII (Rokhlin property) are devoted to the

study of these problems.

Notation

Most of the notation will be established as it gets used. Here, we collect some standard

symbols that will be assumed to be familiar throughout.

Let A be a C∗-algebra. We denote by Aut(A) the automorphism group of A, and the

identity map of A is denoted idA. The suspension of A is denoted by SA. We denote by M(A) its

multiplier algebra and by Ã its unitization (that is, the C∗-algebra obtained by adjoining a unit

to A, even if A is unital). If A is unital, we denote by U(A) its unitary group. Homomorphisms of
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C∗-algebras will always be assumed to preserve the adjoint operation (and hence they will always

be contractive and have closed range).

An action of a topological group G on a C∗-algebra A will always mean a group

homomorphism α : G → Aut(A) which is continuous in the following sense: for a ∈ A, the map

G → A given by g 7→ α(g)(a) is continuous. As usual, we abbreviate α(g) to αg, and therefore

write αg(a) instead of the cumbersome α(g)(a). We denote by AG or Aα the subalgebra of A

consisting of those elements that are fixed by αg for all g ∈ G.

For a positive integer n ≥ 2, we denote by On the Cuntz algebra on n generators. That

is, the universal unital C∗-algebra generated by n isometries whose range projections add up to

the unit. The C∗-algebra O∞ is the universal unital C∗-algebra generated by countably many

isometries with orthogonal ranges.

For Hilbert spaces H1,H2, we write B(H1,H2) for the Banach space of bounded, linear

operators from H1 to H2, we write K(H1,H2) for the closed subspace of compact operators, and

we write U(H1,H2) for the set of unitaries from H1 to H2. When H1 = H2 = H, we write

B(H), K(H) and U(H) for B(H,H), K(H,H) and U(H,H). (In this case, B(H) is a C∗-algebra,

K(H) is a closed, two-sided ideal in B(H), and U(H) is a group.) When H is separable and infinite

dimensional, we usually write K for K(H).

We write N for {1, 2, . . .}; we write N for N ∪ {∞}; we write Z≥0 for {0, 1, 2, . . .}; and we

write Z≥0 for Z≥0 ∪ {∞}.

For n ∈ N, the finite cyclic group of order n will be denoted by Zn. The circle will be

denoted by T when it is regarded as a group, and by S1 when it is regarded as a topological space.
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CHAPTER II

BACKGROUND AND PRELIMINARIES

This chapter contains background material which is essentially well-known and established.

It is nevertheless included here for the sake of completeness, and to establish the notation and

terminology. In each section, the reader is referred to either the original source or a standard

reference for further reading.

Topological Groups: Representations, Dual Group, and Haar

Measure

This dissertation is mostly concerned with group representations (or actions) on different

kinds of objects (C∗-algebras, Banach algebras, Banach spaces). We devote the first preliminary

subsection to recalling the basics of topological groups, particularly the dual group and the Haar

measure.

The reader is referred to the first chapter of [268] for more about topological groups.

Definition II.1.1. A topological group (usually just ‘group’), is a Hausdorff topological space

whose underlying set has a group structure such that multiplication and inversion are continuous

maps. A (topological) group is said to be locally compact, compact, discrete, connected, etc., if

the underlying topological space has the corresponding property.

Remark II.1.2. Finite groups admit a unique topology making them into a topological groups,

namely the discrete topology. It is also easy to see that a compact, discrete group must be finite.

For most of this dissertation, topological groups will be locally compact and second

countable. (Many things work without any countability assumption, but second countable groups

are enough for our purposes.) By a theorem of Birkoff-Kakutani (Theorem 1.22 in [184]), a

topological group is metrizable if and only if it is first countable. In particular, all our groups

will be metrizable.

It is well-known that a compact metrizable group admits a translation-invariant metric. We

will implicitly choose such a metric on all our (compact) groups, which will be denoted by d.

8



Irreducible representations and the dual group

Definition II.1.3. Let G be a locally compact group. A unitary representation u of G on a

Hilbert space Hu is a group homomorphism u : G → U(Hu) from G to the unitary group of Hu,

such that for ξ ∈ Hu, the function G → Hu given by g 7→ u(g)ξ, is continuous (in the norm

topology of Hu). We say that u is irreducible if the only closed subspaces E of Hu satisfying

u(g)E ⊆ E for all g ∈ G are E = {0} and E = Hu.

Two unitary representations u : G → U(Hu) and v : G → U(Hv) are said to be unitarily

equivalent if there exists a unitary operator W : Hu → Hv such that

u(g) = W ∗v(g)W

for all g ∈ G.

We define the dual of G, which we denote by Ĝ, to be the set of unitary equivalence classes

of irreducible unitary representations of G.

It is not completely trivial that Ĝ is indeed a set, since the class of all unitary

representations of G is not a set even if G is the trivial group. One possible argument is as

follows. First, if a Hilbert space has an orthonormal basis whose cardinality is bigger than that

of G, then there cannot be any irreducible representations of G on it. (In particular, if G is

second countable, then the Hilbert space must be separable.) It follows that the dimension of the

Hilbert spaces appearing in the definition of Ĝ is bounded. Since all Hilbert spaces of the same

dimension are isometrically isomorphic, we can choose one Hilbert space for each dimension not

exceeding the cardinality of G. The resulting class of Hilbert spaces is then a set, and the class of

all irreducible unitary representations of G on elements of this set is also a set.

When G is abelian, the dual of G can be given a group structure as well as a (locally

compact) topology, making Ĝ into a group in its own right. A concrete picture of Ĝ when G is

abelian is:

Ĝ = {γ : G→ T : γ is a continuous group homomorphism},

endowed with the topology of uniform convergence, and pointwise product. It is well-known that

G is compact (discrete) if and only if Ĝ is discrete (compact), and that G is connected (torsion-

free) if and only Ĝ is torsion-free (connected).
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A celebrated theorem of Pontryagin asserts that there is a canonical topological group

isomorphism ϕG→ ̂̂
G given by ϕg(γ) = γ(g) for all g ∈ G and all γ ∈ Ĝ.

Haar measure

Haar measures are a generalization of the Lebesgue measure on the Euclidean space to

abstract locally compact groups. Their existence is in fact equivalent to local compactness

of the group, so we will exclusively deal with this class. The Haar measure will be crucial in

Chapter XIV.

Topological groups will always be endowed with their Borel σ-algebras.

Definition II.1.4. A measure µ on a topological group G is said to be left (respectively, right)

translation invariant if µ(gE) = µ(E) (respectively, µ(Eg) = µ(E)) for every g ∈ G and for every

Borel set E ⊆ G.

A measure is said to be translation invariant if it is both left and right translation

invariant.

Examples of Haar measures are the Lebesgue measure on Rn, the arc length measure on T,

and the counting measure on any discrete group.

Positive left (right) invariant measures are called left (right) Haar measures, and they

always exist on locally compact groups, thanks to the following fundamental result of Haar.

Theorem II.1.5. Every locally compact group admits a left (right) Haar measure, which is

unique up to scalar factors.

In contrast to Haar’s theorem, not every locally compact group admits a translation

invariant measure. (One such example is the so-called ax + b group.) The modular function, to

be defined below, is a measurement of how far the left Haar measure is from being right invariant.

Theorem II.1.6. Let G be a locally compact group, and fix a left Haar measure µ. Then there

exists a continuous group homomorphism ∆: G→ R+ such that

∫
G

f(gh) dµ(g) = ∆(h)

∫
G

f(hg) dµ(g)

for all f ∈ Cc(G).
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This function moreover satisfies

∫
G

f(g) dµ(g) =

∫
G

∆(g−1)f(g−1) dµ(g)

for all f ∈ Cc(G).

Furthermore, the function ∆ is independent of the choice of the left Haar measure.

Corollary II.1.7. Denote by µ and ν a left and a right Haar measure on G. Then µ and ν are

mutually absolutely continuous, and its Radon-Nykodim derivative is given by ∆. In other words,

∆ satisfies ∫
G

f(g) dµ(g) =

∫
G

f(g)∆(g) dν(g)

for all f ∈ Cc(G).

It is clear that ∆(g) = 1 for all g ∈ G if and only if G has a left and right invariant Haar

measure.

Definition II.1.8. The function ∆: G → R+ is called the modular function of G. A locally

compact group is said to be unimodular if its modular function is identically one.

The following classes consist of unimodular groups:

1. Abelian groups (left and right translation agree);

2. Discrete groups (counting measure is left and right invariant);

3. Compact groups (the only compact subgroup of R+ is {1}, so it must be ∆(G) = {1});

4. Simple groups.

Group Actions on C∗-algebras and Crossed Products

This section contains the basic definitions of group actions on C∗-algebras and their crossed

products. The reader can find much more additional information in Chapter 2 of [268].

Definition II.2.1. Let G be a locally compact group and let A be a C∗-algebra. An action of G

on A is a group homomorphism α : G→ Aut(A) such that, for every a ∈ A, the map G→ A given

by g 7→ αg(a), is continuous. (This last condition is usually referred to as ‘strong continuity’.)
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The continuity requirement in the definition above is designed in such a way that actions of

a group G on commutative C∗-algebras are in one-to-one correspondence with continuous actions

of G by homeomorphisms of the maximal ideal space.

Examples of actions on C∗-algebras are plentiful. The reader is referred to Section 3 in

[212] for the construction of some interesting ones, and Section 10 there for the computation of

some of their crossed products (which we define later).

For the rest of this section, we fix a locally compact group G, a C∗-algebra A, and an

action α : G → Aut(A). The triple (G,A, α) is usually referred to as a C∗-dynamical system.

Similarly, we may sometimes say that (A,α) is a G-algebra.

Definition II.2.2. We define the twisted convolution algebra L1(G,A, α) as follows. Its

underlying Banach space is just L1(G,A) (with the obvious norm), while its multiplication and

involution are given by

(ab)(g) =

∫
G

a(h)αh(b(h−1g)) dµ(g) and a∗(g) = ∆(g−1)αg(a(g−1))∗

for all a, b ∈ L1(G,A, α) and all g ∈ G.

The (full) crossed product of (G,A, α) will be defined as a the completion of L1(G,A, α)

with respect to contractive ∗-representations on Hilbert spaces. Such representations are in one-

to-one correspondence with what is usually called a covariant representation of the dynamical

system (G,A, α). We define these representations below.

Definition II.2.3. A (nondegenerate) covariant representation of (G,A, α) is a triple (H, u, π),

consisting of a Hilbert space H, a (nondegenerate) representation π : A → B(H), and a unitary

representation u : G→ U(H), that satisfy

π(αg(a)) = ugπ(a)u∗g

for all g ∈ G and all a ∈ A.

The proof of the following proposition is routine in the case of discrete groups, and requires

some additional work in the locally compact case.
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Proposition II.2.4. Nondegenerate covariant representations of (G,A, α) are in one-to-one

correspondence with contractive, nondegenerate ∗-representations of L1(G,A, α) on Hilbert

spaces. For a nondegenerate covariant representation (H, u, π), the corresponding representation of

L1(G,A, α) is sometimes denoted

π o u : L1(G,A, α)→ B(H),

and it is given by

(π o u)(a)(ξ) =

∫
G

π(a(g))ug(ξ) dg

for all a ∈ L1(G,A, α) and all ξ ∈ H.

We will call the representation π o u in the proposition above the integrated form of

(H, u, π).

In principle, it is not clear whether covariant representations always exist, or whether there

are ‘many’ of them. There is a class of them which is particularly easy to construct: the regular

covariant representations.

Example II.2.5. Let H0 be a Hilbert space, and let π0 : A → B(H0) be a non-degenerate

representation. Set H = L2(G,H0). Let u : G→ U(H) be given by

ug(ξ)(h) = ξ(g−1h)

for all g, h ∈ G and all ξ ∈ H, and let π : A→ B(H) be given by

(π(a)ξ)(g) = π0(αg−1(a))(ξ(g))

for all a ∈ A, for all ξ ∈ H, and for all g ∈ G. Then the triple (H, u, π) is a covariant

representation, called the (left) regular covariant representation associated to the quintuple

(G,A, α,H0, π0).

The integrated form of a regular covariant representation is a nondegenerate contractive,

homomorphism of L1(G,A, α), and it will be called a regular representation of L1(G,A, α).
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Remark II.2.6. The term ‘regular’ in the example above is justified because the regular

covariant representation associated to the quintuple (G,C, idC,C, idC) is the left regular

representation of G.

We proceed to give the definition of full and reduced crossed products.

Definition II.2.7. The full crossed product of (G,A, α), denoted A oα G, is the completion of

L1(G,A, α) in the norm

‖a‖AoαG = sup
{
‖σ(a)‖ : σ : L1(G,A, α)→ B(H) is a contractive ∗-representation

}
.

The reduced crossed product of (G,A, α), denoted A oλα G, is the completion of L1(G,A, α)

in the norm

‖a‖AoλαG = sup
{
‖σ(a)‖ : σ : L1(G,A, α)→ B(H) is a regular contractive ∗-representation

}
.

By definition, it is clear that

‖a‖AoλαG ≤ ‖a‖AoαG

for all a ∈ L1(G,A, α). It follows that the identity map on L1(G,A, α) extends to a contractive

homomorphism

κ : Aoα G→ Aoλα G,

whose range is dense, since it contains L1(G,A, α). Basic properties of C∗-algebras imply that κ is

a quotient map.

It is well-known that κ is an isomorphism whenever G is amenable. This fact will be

repeatedly used without particular reference throughout this work.

The structure of crossed products and fixed point algebras is one of the main concerns

in the first part of this dissertation. Generally speaking, one is interested in finding suitable

conditions on a group action, which ensure that relevant properties of the C∗-algebra that is

being acted on, are inherited by the crossed product and the fixed point algebra. The results

summarized in the following theorem are a first step in this direction, and will be used repeatedly

throughout this work. The condition on the action is rather weak, which makes the result very
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useful in applications. On the other hand, for preservation of finer properties, stronger conditions

on the actions must be imposed.

Recall that a simple C∗-algebra A is said to be purely infinite, if for every a, b ∈ A with

a 6= 0, there exist x, y ∈ A such that xay = b.

Theorem II.2.8. Let A be a C∗-algebra, let G be a countable discrete group, and let α : G →

Aut(A) be an action. Assume that αg is not inner for all g ∈ G \ {1}.

1. If A is simple, then so is Aoλα G. (Theorem 3.1 in [155].)

2. If A is simple and purely infinite, then so is Aoλα G. (Corollary 4.6 in [135].)

The conclusions of the above theorem fail in general for actions of arbitrary locally compact

groups, or even compact groups. For example, the gauge action γ of T on the Cuntz algebra O∞,

given by γζ(sj) = ζsj for all ζ in T and all j in N, is pointwise outer by the Theorem in [181],

and its crossed product O∞ oγ T is a non-simple AF-algebra, so it is far from being (simple and)

purely infinite.

The following result is useful when working with compact group actions. Since its proof is

concise and very conceptual, we include it here for the sake of completeness.

Let α : G → Aut(A) be a continuous action of a compact group G on a C∗-algebra A, and

let a ∈ AG. We denote by ca : G → A the continuous function that is constantly equal to a. Then

ca belongs to L1(G,A, α), and that the assignment a 7→ ca defines an injective homomorphism

c : AG → L1(G,A, α). (Recall that the product in L1(G,A, α) is given by twisted convolution.)

Theorem II.2.9. (Theorem in [238].) Let A be a C∗-algebra, let G be a compact group, and let

α : G → Aut(A) be a continuous action. Then the image of Aα in A oα G under the map c is a

corner.

Proof. Denote by 1 the unit of M(A), and by c1 the function on G which is constantly equal to 1.

Then c1 belongs to M(Aoα G) (and it belongs to Aoα G if A is unital). Since ca = c1cac1 for all

a ∈ Aα, we clearly have c(Aα) ⊆ c1(Aoα G)c1. Let us show the converse inclusion.

Given f ∈ L1(G,A, α) and t ∈ G, we have

(f · c1)(t) =

∫
G

f(r)αs(c1(r−1t) dr =

∫
G

f(r) dr,
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and thus

(c1 · f · c1)(t) =

∫
G

c1(s)αs((f · c(1))(s−1t) ds =

∫
G

∫
G

αs(f(r)) drds.

In particular, c1 · f · c1 is a constant function whose constant value belongs to Aα. It follows that

c1(Aoα G)c1 ⊆ c(Aα), and the proof is complete.

Equivariant K-theory

Equivariant K-theory for compact groups acting on topological spaces was introduced

by Atiyah (the paper [249], by Segal, contains a basic treatment of the theory). One of the first

applications of this theory was a striking characterization of freeness of a compact Lie group

action ([5]; see also Theorem 1.1.1 in [199]). Equivariant K-theory was later defined and studied

for actions of compact groups on noncommutative C∗-algebras. A fundamental result in this area

is Julg’s identification ([139]) of the equivariant K-theory of a given action with the ordinary K-

theory of its associated crossed product. In a different direction, each of the different statements

in Atiyah-Segal’s characterization of freeness, interpreted in the context of C∗-algebras, can

be taken as possible definitions of “noncommutative freeness”. This is the approach taken by

Phillips in [199]. Equivariant K-theory has also been used as an invariant for compact group

actions ([109], [80]), and its definition has been extended to actions of more general objects, such

as quantum groups ([64]).

We devote this subsection to recalling the definition and some basic facts about equivariant

K-theory. A thorough development can be found in [199], whose notation we will follow. We

denote the suspension of a C∗-algebra A by SA.

Definition II.3.1. Let G be a compact group and let (G,A, α) be a unital G-algebra. Let PG(A)

be the set of all G-invariant projections in all of the algebras B(V ) ⊗ A, for all unitary finite

dimensional representations λ : G → U(V ), the G-action on B(V ) ⊗ A being the diagonal action,

that is, the one determined by g 7→ Ad(λ(g)) ⊗ αg for g ∈ G. There is no ambiguity about the

tensor product norm on B(V )⊗A since V is finite dimensional.

Two G-invariant projections p, q ∈ PG(A) are said to be Murray-von Neumann equivalent

if there exists a G-invariant element s ∈ B(V,W ) ⊗ A such that s∗s = p and ss∗ = q. Given

a unitary finite dimensional representation λ : G → U(V ) of G and a G-invariant projection

p ∈ B(V ) ⊗ A, and to emphasize role played by the representation λ, we denote the element in
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PG(A) it determines by (p, V, λ). We let SG(A) be the set of equivalence classes in PG(A) with

addition given by direct sum.

We define the equivariant K0-group of (G,A, α), denoted KG
0 (A), to be the Grothendieck

group of SG(A).

Define the equivariant K1-group of (G,A, α), denoted KG
1 (A), to be KG

0 (SA), where the

action of G on SA is trivial in the suspension direction.

If confusion is likely to arise as to with respect to what action the equivariant K-theory of

A is being taken, we will write Kα
0 (A) and Kα

1 (A) instead of KG
0 (A) and KG

1 (A).

Remark II.3.2. The equivariant K-theory of (G,A, α) is a module over the representation ring

R(G) of G, which can be identified with KG
0 (C), with the operation given by tensor product. This

is, if (p, V, λ) ∈ PG(A) and (W,µ) is a finite dimensional representation space of G, we define

(W,µ) · (p, V, λ) = (p⊗ 1W , V ⊗W,λ⊗ µ).

The induced operation R(G)×KG
0 (A)→ KG

0 (A) makes KG
0 (A) into an R(G)-module. One defines

the R(G)-module structure on KG
1 (A) analogously.

The following result is Julg’s Theorem (Theorem 2.6.1 in [199]).

Theorem II.3.3. Let G be a compact group, let A be a C∗-algebra, and let α : G → Aut(A) be

an action. Then there is a natural (Z2-graded) isomorphism

J : KG
j (A) ∼= Kj(Aoα G).

The isomorphism J in Theorem II.3.3 (which we will usually suppress from the notation)

induces a canonical R(G)-module structure on K∗(A oα G) which is easiest to describe when

G is abelian. In this case, the dual group Ĝ is discrete and there is a canonical identification

R(G) = Z[Ĝ]. It follows that the R(G)-module structure is determined by the action of the

elements in Ĝ.

The following theorem specifies this module structure: it is given by the dual action of α.
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Theorem II.3.4. Let G be a compact abelian group, let A be a C∗-algebra, and let α : G →

Aut(A) be an action. For χ ∈ Ĝ and x ∈ K∗(Aoα G), we have

χ · J−1(x) = J−1(K∗(α̂χ)(x)).

Let A and B be C∗-algebras, let G be a locally compact group, and let α : G→ Aut(A) and

β : G → Aut(B) be continuous actions of G on A and B respectively. We say that α and β are

conjugate if there exists an isomorphism ϕ : A→ B such that

αg = ϕ−1 ◦ βg ◦ ϕ

for all g in G. Isomorphisms of this form are called equivariant, and we usually use the notation

ϕ : (A,α)→ (B, β) to mean that ϕ satisfies the condition above.

A weaker form of equivalence for action is given by exterior equivalence, which we define

below.

Definition II.3.5. Let G be a locally compact group, let A and B be a C∗-algebras, and let

α : G → Aut(A) and β : G → Aut(B) be continuous actions. We say that α and β are cocycle

conjugate if there exist an isomorphism θ : A→ B and a function u : G→ U(M(B)) such that:

1. ugh = ugθ(αg(θ
−1(uh))) for all g, h ∈ G,

2. For each b ∈ B, the map G→ B given by g 7→ ugb is continuous,

such that Ad(ug) ◦ αg = βg for all g ∈ G.

The following result is folklore, and its proof is included here for the convenience of the

reader.

Proposition II.3.6. Let G be a locally compact abelian group, let A and B be a C∗-algebras,

and let α : G → Aut(A) and β : G → Aut(B) be cocycle conjugate actions. Then there exists an

isomorphism φ : A oα G → A oβ G that intertwines the dual actions, that is, such that for every

χ ∈ Ĝ, we have β̂χ ◦ φ = φ ◦ α̂χ.

Proof. Let θ : A → B and let u : G → U(M(B)) be as in the definition of exterior equivalence

above. Define

φ0 : L1(G,A, α)→ L1(G,B, β)
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by φ0(a)(g) = θ(a(g))u∗g for a ∈ L1(G,A, α) and g ∈ G. One readily checks that φ0 is an isometric

isomorphism of Banach ∗-algebras, and it therefore extends to an isomorphism φ : A oα G →

B oβ G of C∗-algebras.

In order to check that φ intertwines the dual actions, it is enough to check it on Cc(G,A).

(Note that φ0(Cc(G,A)) ⊆ Cc(G,B).) Given a continuous function a ∈ Cc(G,A), a group element

g ∈ G and a character χ ∈ Ĝ, we have

φ (α̂χ(a)) (g) = θ (α̂χ(a)(g))u∗g

= χ(g)θ(a(g))u∗g

= χ(g)φ(a)(g)

= β̂χ(φ(a))(g),

and the proof follows.

(Central) Sequence Algebras

Let A be a unital C∗-algebra. Let `∞(N, A) denote the set of all bounded sequences

(an)n∈N in A, endowed with the supremum norm

‖(an)n∈N‖ = sup
n∈N
‖an‖

and pointwise operations. Then `∞(N, A) is a unital C∗-algebra, the unit being the constant

sequence 1A. Let

c0(N, A) =
{

(an)n∈N ∈ `∞(N, A) : lim
n→∞

‖an‖ = 0
}
.

Then c0(N, A) is an ideal in `∞(N, A), and we denote the quotient

`∞(N, A)/c0(N, A)

by A∞. Write κA : `∞(N, A) → A∞ for the quotient map. We identify A with the unital

subalgebra of `∞(N, A) consisting of the constant sequences, and with a unital subalgebra of

A∞ by taking its image under κA. We write A∞ ∩ A′ for the relative commutant of A inside of
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A∞. (We warn the reader that what we denote by A∞ is sometimes denoted by A∞, and what we

denote by A∞ ∩A′ is sometimes denoted by A∞; see, for example, [122].)

If α : G → Aut(A) is an action of G on A, there are actions of G on `∞(N, A) and on A∞,

which we denote α∞ and α∞, respectively. Note that

(α∞)g(A∞ ∩A′) ⊆ A∞ ∩A′,

for all g ∈ G, so that α∞ restricts to an action on A∞ ∩A′, also denoted by α∞.

When G is not discrete, these actions are not necessarily continuous, as the next example

shows.

Example II.4.1. Let α : T→ Aut(C(T)) be the action induced by left translation. For n ∈ N, let

un ∈ C(T) be the unitary given by un(ζ) = ζn for all ζ ∈ T. Set u = (un)n∈N ∈ `∞(N, C(T)). It is

not difficult to check that the assignments

ζ 7→ (α∞)ζ(u) and ζ 7→ (α∞)ζ(u),

are not continuous as a maps T → `∞(N, C(T)) and T → C(T)∞ = C(T)∞ ∩ C(T)′, respectively.

We leave the details to the reader.

To remedy this issue, we set

`∞α (N, A) = {a ∈ `∞(N, A) : g 7→ (α∞)g(a) is continuous},

and A∞,α = κA(`∞α (N, A)). By construction, A∞,α is invariant under α∞, and the restriction of

α∞ to A∞,α, which we also denote by α∞, is continuous.

Remark II.4.2. We note that if ϕ : A → B is a unital homomorphism of unital C∗-algebras,

then ϕ induces unital homomorphisms `∞(N, ϕ) : `∞(N, A) → `∞(N, B) and ϕ∞ : A∞ → B∞.

The assignments A 7→ `∞(N, A) and A 7→ A∞ are functorial for unital C∗-algebras and unital

homomorphisms.

Functoriality of the assignment A 7→ A∞ ∩ A′ is more subtle, since not every map between

C∗-algebras induces a map between the corresponding central sequences. In Lemma II.4.3 and
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Lemma II.4.4, we show two instances in which this is indeed the case. These two cases will be

needed in the following section.

Lemma II.4.3. Let ϕ : A → B be a surjective unital homomorphism of unital C∗-algebras. Then

the restriction of ϕ∞ to A∞ ∩A′ induces a unital homomorphism ϕ∞ : A∞ ∩A′ → B∞ ∩B′.

Moreover, if G is a locally compact group and α : G → Aut(A) and β : G → Aut(B) are

continuous actions of G on A and B respectively, then ϕ also induces a unital homomorphism

ϕ∞ : A∞,α ∩A′ → B∞,β ∩B′, which is equivariant if ϕ : A→ B is.

Proof. We only need to check that ϕ∞(A∞ ∩ A′) ⊆ B∞ ∩ B′. Let a = (an)n∈N be in A∞ ∩ A′ and

let b ∈ B. We have to show that ϕ∞(a) commutes with κB(b). Choose c ∈ A such that ϕ(c) = b.

Since κB ◦ ϕ = ϕ∞ ◦ κA, we have

[ϕ∞(a), b] = [ϕ∞(a), κB(ϕ(c))] = [a, κA(c)] = 0,

and the result follows.

The proof of the second claim is analogous.

An important case in which a unital homomorphism between unital C∗-algebras induces a

unital homomorphism between the central sequence algebras is that of the unital inclusion A ↪→

A ⊗ B of a unital C∗-algebra as the first tensor factor. This homomorphism is not covered by the

previous lemma, so we shall prove it separately.

Lemma II.4.4. Let A and B be unital C∗-algebras, let A ⊗ B be any C∗-algebra completion of

the algebraic tensor product of A and B, and let ι : A → A ⊗ B be given by ι(a) = a ⊗ 1 for all

a ∈ A. Then ι∞ restricts to a unital homomorphism

ι∞ : A∞ ∩A′ → (A⊗B)∞ ∩ (A⊗B)′.

Moreover, if G is a locally compact group and α : G → Aut(A) and β : G → Aut(B) are

continuous actions of G on A and B respectively, and if the tensor product action

g 7→ (α⊗ β)g = αg ⊗ βg
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extends to A⊗B, then ι induces a unital equivariant homomorphism

ι∞ : A∞,α ∩A′ → (A⊗B)∞,α⊗β ∩ (A⊗B)′.

Proof. Let a = (an)n∈N in A∞ ∩ A′ and let x ∈ A ⊗ B. We may assume that x is a simple tensor,

say x = c⊗ b for some c ∈ A and some b ∈ B. Then

[ι∞(a), x] = [(an ⊗ 1)n∈N, κA⊗B(c⊗ b)] = 0,

since lim
n→∞

‖[an, c]‖ = 0.

The proof of the second claim is straightforward.

The following proposition relates the crossed product functor with the sequence algebra

functor.

Proposition II.4.5. Let A be a unital C∗-algebra, let G be a compact group and let α : G →

Aut(A) be an action. Then there is a canonical embedding

A∞,α oα∞ G ↪→ (Aoα G)∞.

Proof. Note that if B is a C∗-algebra, then there is a unital map M(B)∞ → M(B∞). The

canonical maps A→M(Aoα G) and G→M(Aoα G) induce canonical maps

A∞,α → (M(Aoα G))∞ →M((Aoα G)∞)

and

G→ (M(Aoα G))∞ →M(Aoα G)∞

which satisfy the covariance condition for α∞. It follows from the universal property of the

crossed product A∞,α oα∞ G that there is a map as in the statement. This map is injective

because so is A∞,α → (M(A oα G))∞ and the group G is amenable, being compact (see, for

example, part (1) in Theorem 9.22 of [212]).
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In the proposition above, the canonical embedding will in general not be surjective unless G

is the trivial group.

Completely Positive Maps of Order Zero

We briefly recall some of the basics of completely positive order zero maps. See [271] for

more details and further results.

Let A be a C∗-algebra, and let a, b be elements in A. We say that a and b are orthogonal,

and write a ⊥ b, if ab = ba = a∗b = ab∗ = 0. If a, b ∈ A are selfadjoint, then they are orthogonal if

and only if ab = 0.

Definition II.5.1. Let A and B be C∗-algebras, and let ϕ : A→ B be a completely positive map.

We say that ϕ has order zero if for every a and b in A, we have ϕ(a) ⊥ ϕ(b) whenever a ⊥ b.

Remark II.5.2. It is straightforward to check that C∗-algebra homomorphisms have order zero,

and that the composition of two order zero maps again has order zero.

The following is the main result in [271].

Theorem II.5.3. (Theorem 2.3 and Corollary 3.1 in [271]) Let A and B be C∗-algebras. There

is a bijection between completely positive contractive order zero maps A → B and C∗-algebra

homomorphisms C0((0, 1])⊗ A → B. A completely positive contractive order zero map ϕ : A → B

induces the homomorphism ρϕ : C0((0, 1]) ⊗ A → B determined by ρϕ(id(0,1] ⊗ a) = ϕ(a) for all

a ∈ A. Conversely, if ρ : C0((0, 1]) ⊗ A → B is a homomorphism, then the induced completely

positive contractive order zero map ϕρ : A → B is the one given by ϕρ(a) = ρ(id(0,1] ⊗ a) for all

a ∈ A.

The following easy corollary will be used throughout without reference.

Corollary II.5.4. Let A and B be unital C∗-algebras, let G be a locally compact group, let

α : G → Aut(A) and β : G → Aut(B) be continuous actions of G on A and B respectively, and

let ϕ : A → B be a completely positive order zero map. Denote by ρϕ : C0((0, 1]) ⊗ A → B

the induced homomorphism given by Theorem II.5.3. Give C0((0, 1]) the trivial action of G, and

give C0((0, 1]) ⊗ A the corresponding diagonal action. Then ϕ is equivariant if and only if ρϕ is

equivariant.
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Proof. We denote by α̃ : G → Aut(C0((0, 1]) ⊗ A) the diagonal action described in the statement.

Assume that ρ is equivariant. Given g in G and a in A, we have

ρϕ(α̃g(id(0,1] ⊗ a)) = ρϕ(id(0,1] ⊗ αg(a))

= ρ(αg(a))

= βg(ρ(a))

= βg(ρϕ(id(0,1] ⊗ a)).

Since id(0,1] generates C0((0, 1]), we conclude that ϕρ is equivariant.

Conversely, if ρϕ is equivariant, it is clear that the map A→ B given by a 7→ ρϕ(id(0,1] ⊗ a),

which clearly agrees with ρ, is also equivariant. This finishes the proof.

It is a well-known fact that equivariant homomorphisms between dynamical systems induce

homomorphisms between the crossed products, a fact that can be easily seen by considering the

universal property of such objects. Using the structure of order zero maps, it follows that an

analogous statement holds for completely contractive order zero maps that are equivariant.

Proposition II.5.5. Let A and B be C∗-algebras, let G be a locally compact group, let α : G →

Aut(A) and β : G → Aut(B) be actions, and let ρ : A → B be an equivariant completely positive

contractive order zero map. Then ρ induces a canonical completely positive contractive order zero

map

σ : Aoα G→ B oβ G.

Proof. Denote by ϕρ : C0((0, 1]) ⊗ A → B be the homomorphism determined by ρ as in

Theorem II.5.3. Denote by α̃ the diagonal action α̃ = idC0((0,1])⊗α of G on C0((0, 1])⊗A. Since ϕρ

is equivariant with respect to this action by Corollary II.5.4, there is a canonical homomorphism

ψ : (C0((0, 1])⊗A)oα̃ G→ B oβ G.

Identify (C0((0, 1]) ⊗ A) oα̃ G with C0((0, 1]) ⊗ (A oα G) in the usual way. Then the order zero

map σ : AoαG→ Boβ G, given by σ(x) = ψ(id(0,1]⊗x) for x in AoαG, is the desired order zero

map.
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The Cuntz Semigroup, the Cu∼ Semigroup, and the Category Cu

The Cuntz semigroup Cu(A) of a C∗-algebra A, first considered by Cuntz in the 70’s

([40]), has been intensively studied in the last decade since Toms successfully used it ([263]) to

distinguish two non-isomorphic C∗-algebras with identical Elliott invariant (as well as identical

real and stable ranks). Coward, Elliott and Ivanescu ([36]) suggested that the Cuntz semigroup

could be used as an invariant for C∗-algebras (in many cases, finer than K0), and this semigroup

has since then been used to obtain positive classification results of not necessarily simple C∗-

algebras. We refer the reader to [23] and [4] for thorough developments of the theory of the Cuntz

semigroup. On the other hand, the Cu∼ semigroup was introduced by Robert in [230], where he

showed that the Cuntz semigroup is a complete invariant for (not necessarily simple) direct limits

of 1-dimensional noncommutative CW-complexes with trivial K1, a class that contains all AI-

algebras. (When the algebra in question is unital, Robert showed that the Cu∼ semigroup can be

replaced by the Cuntz semigroup.)

In this section, we will recall the definitions of the Cuntz and Cu∼ semigroups, as well as

the category Cu, to which these semigroups naturally belong. The author is referred to the papers

[36] and [23] for much more about the Cuntz semigroup and the category Cu, and to the paper

[230] for more on the Cu∼ semigroup.

The category Cu

Let S be an ordered semigroup and let s, t ∈ S. We say that s is compactly contained

in t, and denote this by s � t, if whenever (tn)n∈N is an increasing sequence in S such that

t ≤ sup
n∈N

tn, there exists k ∈ N such that s ≤ tk. A sequence (sn)n∈N is said to be rapidly increasing

if sn � sn+1 for all n ∈ N.

Definition II.6.1. An ordered abelian semigroup S is an object in the category Cu if it has a

zero element and it satisfies the following properties:

(O1) Every increasing sequence in S has a supremum;

(O2) For every s ∈ S there exists a rapidly increasing sequence (sn)n∈N in S such that s = sup
n∈N

sn;
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(O3) If (sn)n∈N and (tn)n∈N are increasing sequences in S, then

sup
n∈N

sn + sup
n∈N

tn = sup
n∈N

(sn + tn);

(O4) If s1, s2, t1, t2 ∈ S satisfy s1 � t1 and s2 � t2, then s1 + s2 � t1 + t2.

Let S and T be semigroups in the category Cu. An order preserving semigroup map

ϕ : S → T is a morphism in the category Cu if it preserves the zero element and it satisfies the

following properties:

(M1) If (sn)n∈N is an increasing sequence in S, then

ϕ

(
sup
n∈N

sn

)
= sup
n∈N

ϕ(sn);

(M2) If s, t ∈ S satisfy s� t, then ϕ(s)� ϕ(t).

The following observation will be used repeatedly.

Remark II.6.2. Let M be a partially ordered semigroup with identity element, and let S be a

semigroup in Cu. Suppose that there exists a semigroup morphism ϕ : M → S (or ϕ : S → M)

preserving the zero element and such that:

1. ϕ preserves the order, that is, x ≤ y in M implies ϕ(x) ≤ ϕ(y) in S;

2. ϕ is an order embedding, that is, ϕ(x) ≤ ϕ(y) in S implies x ≤ y in M (this implies that ϕ

is injective); and

3. ϕ is bijective.

Then M belongs to Cu, and ϕ is a Cu-isomorphism. In particular, ϕ automatically preserves

suprema of increasing sequences, and the compact containment relation.

The next result will be important in Chapter VIII:

Theorem II.6.3. (Theorem 2 in [36].) The category Cu is closed under sequential inductive

limits.

The following description of inductive limits in the category Cu follows from the proof of

this theorem.
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Proposition II.6.4. Let (Sn, ϕn)n∈N, with ϕn : Sn → Sn+1, be an inductive system in the

category Cu. For m,n ∈ N with m ≥ n, let ϕn,m : Sn → Sm denote the composition ϕn,m =

ϕm−1 ◦ · · · ◦ ϕn. A pair (S, (ϕn,∞)n∈N), consisting of a semigroup S and morphisms ϕn,∞ : Sn → S

in the category Cu satisfying ϕn+1,∞ ◦ ϕn = ϕn,∞ for all n ∈ N, is the inductive limit of the

system (Sn, ϕn)n∈N if and only if:

(1) For every s ∈ S there exist elements sn ∈ Sn for n ∈ N such that ϕn(sn) � sn+1 for all

n ∈ N and

s = sup
n∈N

ϕn,∞(sn);

(2) Whenever s, s′, t ∈ Sn satisfy ϕn,∞(s) ≤ ϕn,∞(t) and s′ � s, there exists m ≥ n such that

ϕn,m(s′) ≤ ϕn,m(t).

The Cuntz semigroup

Let A be a C∗-algebra and let a, b ∈ A be positive elements. We say that a is Cuntz

subequivalent to b, and denote this by a - b, if there exists a sequence (dn)n∈N in A such that

lim
n→∞

‖d∗nbdn − a‖ = 0. We say that a is Cuntz equivalent to b, and denote this by a ∼ b, if a - b

and b - a. It is clear that - is a preorder relation on the set of positive elements of A, and thus ∼

is an equivalence relation. We denote by [a] the Cuntz equivalence class of the element a ∈ A+.

The following result, due to Rørdam, will be technically important in a number of our

proofs. Given ε > 0, let fε : R→ R be the continuous function given by

fε(t) = (t− ε)+ =

 t− ε, if t ≥ ε;

0, otherwise.

for t ∈ T. For a positive (or selfadjoint) element a in a C∗-algebra A, and for ε > 0, we denote by

(a− ε)+ the element fε(a) obtained via continuous functional calculus.

Proposition II.6.5. (Rørdam’s Lemma; Proposition 2.4 in [232].) Let A be a C∗-algebra, and let

a, b ∈ A be positive elements. Then the following are equivalent:

1. a - b;
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2. There exist sequences (rn)n∈N and (sn)n∈N in A such that

lim
n→∞

‖rnbsn − a‖ = 0.

3. For every ε > 0 there exist δ > 0 and d ∈ A such that

(a− ε)+ = d(b− δ)+d
∗.

If, in addition, A has stable rank one, then the above are also equivalent to

4. For every ε > 0 there exists a unitary u ∈ U(A) such that u(a − ε)+u
∗ belongs to the

hereditary subalgebra of A generated by b.

The first conclusion of the following lemma was proved in [232, Proposition 2.2] (see also

[152, Lemma 2.2]). The second statement was shown in [231, Lemma 1].

Lemma II.6.6. Let A be a C∗-algebra and let a and b be positive elements in A such that ‖a −

b‖ < ε. Then (a− ε)+ - b. More generally, if r is a non-negative real number, then (a− r − ε)+ -

(b− r)+.

The Cuntz semigroup of A, denoted by Cu(A), is defined as the set of Cuntz equivalence

classes of positive elements of A⊗K. Addition in Cu(A) is given by

[a] + [b] = [a′ + b′],

where a′, b′ ∈ (A ⊗ K)+ are orthogonal and satisfy a′ ∼ a and b′ ∼ b. Furthermore, Cu(A)

becomes an ordered semigroup when equipped with the order [a] ≤ [b] if a - b. If φ : A → B

is a homomorphism, then φ induces an order preserving map Cu(φ) : Cu(A) → Cu(B), given by

Cu(φ)([a]) = [(φ⊗ idK)(a)] for every a ∈ (A⊗K)+.

Remark II.6.7. Let A be a C∗-algebra, let a ∈ A and let ε > 0. It can be checked that [(a −

ε)+]� [a] and that [a] = sup
ε>0

[(a− ε)+], thus showing that Cu(A) satisfies Axiom O2.

Theorem II.6.8. (Theorems 1 and 2 in [36].) Cu is a functor from the category of C∗-algebras to

the category Cu, and it preserves inductive limits of sequences.
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More recently, Antoine, Perera and Thiel have shown in Corollary 3.1.11 in [4], that

the category Cu is in fact closed under arbitrary inductive limits, and that the functor Cu is

continuous in full generality.

The Cu∼-semigroup

Here we define the Cu∼-semigroup of a C∗-algebra. This semigroup was introduced in [230]

in order to classify certain inductive limits of 1-dimensional NCCW-complexes. [230]

Definition II.6.9. Let A be C∗-algebra and let π : Ã→ Ã/A ∼= C denote the quotient map. Then

π induces a semigroup homomorphism

Cu(π) : Cu(Ã)→ Cu(C) ∼= Z≥0.

We define the semigroup Cu∼(A) by

Cu∼(A) = {([a], n) ∈ Cu(Ã)× Z≥0 | Cu(π)([a]) = n}/ ∼,

where ∼ is the equivalence relation defined by ([a], n) ∼ ([b],m) if there exists k ∈ N such that

[a] +m[1] + k[1] = [b] + n[1] + k[1],

The image of the element ([a], n) under the canonical quotient map is denoted by [a]− n[1].

Addition in Cu∼(A) is induced by pointwise addition in Cu(Ã) × Z≥0. The semigroup

Cu∼(A) can be endowed with an order: we say that [a]−n[1] ≤ [b]−m[1] in Cu∼(A) if there exists

k in Z≥0 such that

[a] + (m+ k)[1] ≤ [b] + (n+ k)[1]

in Cu(Ã).

The assignment A 7→ Cu∼(A) can be turned into a functor as follows. Let φ : A → B be a

homomorphism and let φ̃ : Ã→ B̃ denote the unital extension of φ to the unitizations of A and B.

Let us denote by Cu∼(φ) : Cu∼(A)→ Cu∼(B) the map defined by

Cu∼(φ)([a]− n[1]) = Cu(φ̃)([a])− n[1].

29



It is clear that Cu∼(φ) is order preserving, and thus Cu∼ becomes a functor from the category of

C∗-algebras to the category of ordered semigroups.

It was shown in [230] that the Cu∼-semigroup of a C∗-algebra with stable rank one belongs

to the category Cu, that Cu∼ is a functor from the category of C∗-algebras of stable rank one to

the category Cu, and that it preserves inductive limits of sequences.

30



CHAPTER III

THE EQUIVARIANT CUNTZ SEMIGROUP

This Chapter is based on joint work with Luis Santiago ([92]).

We introduce an equivariant version of the Cuntz semigroup, which takes an action of a

compact group into account. The equivariant Cuntz semigroup is naturally a semimodule over

the representation semiring of the given group. Moreover, this semimodule satisfies a number

of additional structural regularity properties. We show that the equivariant Cuntz semigroup,

as a functor, is continuous and stable. Moreover, cocycle conjugate actions have isomorphic

associated equivariant Cuntz semigroups. One of our main results is an analog of Julg’s theorem:

the equivariant Cuntz semigroup is canonically isomorphic to the Cuntz semigroup of the crossed

product. We compute the induced semimodule structure on the crossed product, which in the

abelian case is given by the dual action. As an application of our results, we show that freeness

of a compact Lie group action on a compact Hausdorff space can be characterized in terms of a

canonically defined map into the equivariant Cuntz semigroup, extending results of Atiyah and

Segal for equivariant K-theory.

Introduction

In this chapter, which is based on [92], we study an equivariant version of the Cuntz

semigroup for compact group actions on C∗-algebras. For an action α : G → Aut(A) of a compact

group G on a C∗-algebra A, we denote its equivariant Cuntz semigroup by CuG(A,α). This is a

partially ordered semigroup, and it has a natural semimodule structure over the representation

semiring Cu(G) of G. We explore some basic properties of the functor (A,α) 7→ CuG(A,α), such

as continuity, stability, passage to full hereditary subalgebras, cocycle equivalence invariance,

etc. One of the main results of this chapter (Theorem III.5.3) is an analog of Julg’s theorem for

the Cuntz semigroup: CuG(A,α) is naturally isomorphic to Cu(A oα G). The induced Cu(G)-

semimodule structure on Cu(A oα G) is computed in Theorem III.5.13 (see Proposition III.5.15

for a simpler description when G is abelian). Finally, we use the equivariant Cuntz semigroup
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to prove an analog of Atiyah-Segal’s characterization of freeness; see Theorem III.6.6. Further

applications of the equivariant Cuntz semigroup will appear in subsequent work.

We have organized this chapter as follows. In Section III.2, and after reviewing the

definition of the Cuntz semigroup and the Cuntz category Cu, we introduce the equivariant

Cuntz semigroup using positive invariant elements in suitable stabilizations of the algebra

(Definition III.2.3). The main result of this section, Corollary III.2.8, asserts that the equivariant

Cuntz semigroup is a functor from the category of G-C∗-algebras (that is, C∗-algebras with an

action of G), to the category Cu.

In Section III.3, we introduce the representation semiring Cu(G) of G (Definition III.3.1),

which corresponds to the equivariant Cuntz semigroup of G acting on C (Theorem III.3.3), and

define a canonical Cu(G)-action on CuG(A,α); see Definition III.3.9. With this semimodule

structure, the equivariant Cuntz semigroup becomes a functor from G-C∗-algebras to a

distinguished category of Cu(G)-semimodules (see Definition III.3.6 and Theorem III.3.10). We

finish this section by showing that the functor CuG is stable (Proposition III.3.11) and continuous

with respect to countable inductive limits (Proposition III.3.12).

Section III.4 is devoted to giving two pictures of the equivariant Cuntz semigroup using

equivariant Hilbert modules. In one of these pictures, we identify CuG(A,α) with the ordinary

Cuntz semigroup of K(HA)G, where HA is the universal equivariant Hilbert module for (A,α)

introduced by Kasparov in [144] (see Definition III.4.3). In the second picture, we identify

CuG(A,α) with the Cu(G)-semimodule obtained by taking a suitable equivalence relation

(Definition III.4.2) on the class of equivariant Hilbert modules; see Corollary III.4.16.

Section III.5 contains some of our main results. In Theorem III.5.3, we construct a natural

Cu-isomorphism CuG(A,α) ∼= Cu(A oα G). (This is a Cuntz semigroup analog of Julg’s theorem

for K-theory; see [139].) The induced Cu(G)-semimodule structure on Cu(Aoα G) is computed in

Theorem III.5.13, with an easier description available when G is abelian; see Proposition III.5.15.

As an application, we show that invariant full hereditary subalgebras have canonically isomorphic

equivariant Cuntz semigroups (Proposition III.5.16).

Finally, in Section III.6, we apply the theory developed in the previous sections to prove

a characterization of freeness of a compact Lie group action on a compact Hausdorff space, in

terms of a certain canonical map into the equivariant Cuntz semigroup; see Theorem III.6.6. This
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characterization resembles (and depends on) Atiyah-Segal’s characterization of freeness using

equivariant K-theory ([5]).

Throughout this chapter, for a compact group G, we denote by Cu(G) the class of unitary

equivalence classes of unitary representations of G on separable Hilbert spaces. It is easy to see,

fixing a separable Hilbert space and restricting to representations on it, that Cu(G) is in fact a

set. This set has important additional structure that will not be discussed until it is needed in

Section III.3. The set Cu(G) will play mostly a notational role in the first few sections.

We sometimes make a slight abuse of notation and do not distinguish between elements in

Ĝ (or Cu(G)) and irreducible (separable) unitary representations of G. A unitary representation

µ : G → U(Hµ) of G on a Hilbert space Hµ will usually be abbreviated to (Hµ, µ). We say that

(Hµ, µ) is separable, or finite dimensional, if Hµ is. The unitary equivalence class of (Hµ, µ) is

denoted by [µ].

The Equivariant Cuntz Semigroup

In this section, for a continuous action α : G → Aut(A) of a compact group G on a

C∗-algebra A, we define its equivariant Cuntz semigroup CuG(A,α) (Definition III.2.3), and

explore some basic properties. The main result of this section, Corollary III.2.8, asserts that

the equivariant Cuntz semigroup is a functor from the category of G-C∗-algebras to the Cuntz

category Cu.

The equivariant Cuntz semigroup

For the rest of this section, we fix a compact group G, a C∗-algebra A, and a continuous

action α : G→ Aut(A).

Let (Hµ, µ) and (Hν , ν) be separable unitary representations of G. We endow the Banach

space B(Hµ,Hν) with the G-action given by

g · T = νg ◦ T ◦ µg−1 ,
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for g ∈ G and T ∈ B(Hµ,Hν). It is clear that K(Hµ,Hν) is an invariant, closed subspace,

which we will endow with the restricted G-action. With these actions, a G-invariant linear map

is precisely a map Hµ → Hν that is µ− ν equivariant.

Definition III.2.1. Let (Hµ, µ) and (Hν , ν) be separable unitary representations of G, and let

a ∈ (K(Hµ) ⊗ A)G and b ∈ (K(Hν) ⊗ A)G be positive elements. We say that a is G-Cuntz

subequivalent to b, and denote this by a -G b, if there is a sequence (dn)n∈N in (K(Hµ,Hν) ⊗ A)G

such that lim
n→∞

‖dnbd∗n−a‖ = 0. We say that a is G-Cuntz equivalent to b, and denote this by a ∼G

b, if a -G b and b -G a. The G-Cuntz equivalence class of a positive element a ∈ (K(Hµ) ⊗ A)G

will be denoted by [a]G.

We claim that the relation -G is transitive. To see this, let (Hµ, µ), (Hν , ν) and (Hλ, λ)

be separable unitary representation of G, and let a ∈ (K(Hµ) ⊗ A)G, b ∈ (K(Hν) ⊗ A)G, and

c ∈ K(Hλ ⊗ A)G satisfy a -G b and b -G c. Fix ε > 0, and find x ∈ (K(Hµ,Hν) ⊗ A)G such that

‖a− xbx∗‖ < ε
2 . Also, since b -G c there exists y ∈ (K(Hν ,Hλ)⊗A)G such that

‖a− xycy∗x∗‖ < ε

2‖x‖
.

The element z = xy belongs to (K(Hµ,Hλ) ⊗ A)G, and satisfies ‖a − zcz∗‖ < ε. Since ε > 0 is

arbitrary, this implies that a -G c. In particular, it follows that ∼G is an equivalence relation.

The following lemma is a simple corollary of [152, Lemma 2.4] and the definition of G-

Cuntz subequivalence.

Proposition III.2.2. Let (Hµ, µ) and (Hν , ν) be separable unitary representations of G, and let

a ∈ (K(Hµ)⊗A)G and b ∈ (K(Hν)⊗A)G be positive elements. The following are equivalent:

1. a -G b.

2. For every ε > 0, there exists d ∈ (K(Hµ,Hν)⊗A)G such that

(a− ε)+ = dbd∗.

3. For every ε > 0, there exist δ > 0 and d ∈ (K(Hµ,Hν)⊗A)G, such that

(a− ε)+ = d(b− δ)+d
∗.
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Definition III.2.3. Let G be a compact group, let A be a C∗-algebra, and let α : G→ Aut(A) be

a continuous action. Define the equivariant Cuntz semigroup CuG(A,α), of the dynamical system

(G,A, α), to be the set of G-Cuntz equivalence classes of positive elements in all of the algebras of

the form (K(Hµ)⊗A)G, where (Hµ, µ) is a separable unitary representation of G.

We define addition on CuG(A,α) as follows. Let (Hµ, µ) and (Hν , ν) be separable unitary

representations of G, and let a ∈ (K(Hµ) ⊗ A)G and b ∈ (K(Hν) ⊗ A)G be positive elements.

Denote by a⊕ b the positive element

a⊕ b =

a 0

0 b


in (K(Hµ ⊕ Hν) ⊗ A)G, and set [a]G + [b]G = [a ⊕ b]G. (One must check that the definition is

independent of the representatives, but this is routine.)

Finally, we endow CuG(A,α) with the partial order given by [a]G ≤ [b]G if a -G b. (One

has to again check that the order is well defined; we omit the proof.)

It is clear that if β : G → Aut(B) is another continuous action of G on a C∗-algebra

B, and if ψ : A → B is an equivariant homomorphism, then ψ induces an ordered semigroup

homomorphism CuG(ψ) : CuG(A,α)→ CuG(B, β), given by

CuG(ψ)([a]G) = [(idK(Hµ) ⊗ ψ)(a)]G

for a ∈ (K(Hµ)⊗A)G.

The rest of this section is devoted to proving that the equivariant Cuntz semigroup is a

functor from the category of G-C∗-algebras to the category Cu (Definition II.6.1). This will be

done by showing that CuG(A,α) can be written as an inductive limit of semigroups in Cu; see

Theorem III.2.6.

We point out that in Section III.3, we will show that the equivariant Cuntz semigroup

has additional structure, and that CuG(A,α) belongs to a certain category of semimodules; see

Definition III.3.6 and Theorem III.3.10.
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Lemma III.2.4. Let (Hµ, µ) and (Hν , ν) be separable unitary representations of G, and let

a ∈ (K(Hµ) ⊗ A)G be a positive element. Suppose that there exists V ∈ (B(Hµ,Hν) ⊗ A)G

satisfying V ∗V = idHµ ⊗ 1A. Then V aV ∗ is a positive element in (K(Hν)⊗A)G, and a ∼G V aV ∗.

Moreover, if W ∈ (B(Hµ,Hν)⊗ A)G is another element satisfying W ∗W = idHµ ⊗ 1A, then

WaW ∗ ∼G V aV ∗.

Proof. It is clear that V aV ∗ is a G-invariant element in K(Hν) ⊗ A. Likewise, for n ∈ N, we have

a
1
nV ∗ ∈ (K(Hν)⊗A)G. Now,

lim
n→∞

∥∥∥(a1/nV ∗
)

(V aV ∗)
(
a1/nV ∗

)∗
− a
∥∥∥ = lim

n→∞

∥∥∥a1/naa1/n − a
∥∥∥ = 0,

so a -G V aV ∗. Similarly, V a
1
n ∈ (K(Hµ)⊗A)G, and one shows that

lim
n→∞

∥∥∥(V a1/n
)
a
(
V a1/n

)∗
− V aV ∗

∥∥∥ = 0.

We conclude that a ∼G V aV ∗, as desired.

The last part of the statement is immediate.

Let (Hµ, µ) and (Hν , ν) be separable unitary representations of G, such that (Hµ, µ) is

unitarily equivalent to a subrepresentation of (Hν , ν). Then there exists Wµ,ν ∈ B(Hµ,Hν)G

satisfying W ∗µ,νWµ,ν = idHµ . Set

V Aµ,ν = Wµ,ν ⊗ 1A ∈ B(Hµ,Hν)⊗M(A).

It is clear that V Aµ,ν is G-invariant and that (V Aµ,ν)∗V Aµ,ν = idHµ ⊗ 1A.

Set

ιAµ,ν = Ad(V Aµ,ν) : (K(Hµ)⊗A)G → (K(Hν)⊗A)G.

Then ιµ,ν is a ∗-homomorphism, since Vµ,ν is an isometry. Let

jAµ,ν = Cu(Ad(Vµ,ν)) : Cu((K(Hµ)⊗A)G)→ Cu((K(Hν)⊗A)G)

be the Cu-morphism given by jAµ,ν = Cu(ιAµ,ν). Whenever A and α are clear from the context, we

will write Vµ,ν for V Aµ,ν , and similarly for ιµ,ν and jµ,ν .
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Lemma III.2.5. Adopt the notation from the discussion above.

1. The map jµ,ν is independent of the choice of Vµ,ν .

2. If (Hµ, µ) is a separable unitary representation of G which is unitarily equivalent to a

subrepresentation of (Hν , ν), then jµ,ν ◦ jλ,µ = jλ,ν .

Proof. The first part is an immediate consequence of Lemma III.2.4. The second one is

straightforward.

Let us consider the action on K(`2(N) ⊗Hµ ⊗ A)G induced by tensor product of the trivial

action of G on `2(N) and the given action of G on Hµ ⊗A. Then K(`2(N)⊗Hµ ⊗A)G is naturally

isomorphic to K(`2(N)) ⊗ ((K(Hµ) ⊗ A)G). Thus, the Cuntz semigroup of (K(Hµ) ⊗ A)G can be

naturally identified with the set of (ordinary) Cuntz equivalences classes of positive elements in

(K(`2(N)⊗Hµ)⊗A)G.

Fix [µ] ∈ Cu(G). Then the inclusion

(K(`2(N)⊗Hµ)⊗A)G ↪→
⊔

[ν]∈Cu(G)

(K(Hν)⊗A)G

induces a semigroup homomorphism

iµ : Cu((K(Hµ)⊗A)G)→ CuG(A,α), (III.1)

which is given by iµ([a]) = [a]G for a positive element a ∈ (K(`2(N) ⊗ Hµ) ⊗ A)G. By

Lemma III.2.4, the map iµ satisfies

iµ ◦ jν,µ = iν

for all ν ∈ Cu(G), whenever µ is equivalent to a subrepresentation of ν. It is also clear that iµ

preserves the compact containment relation and that it is an order embedding.

Define a preorder ≤ on Cu(G) by setting [µ] ≤ [ν] if µ is equivalent to a subrepresentation

of ν. It is clear that (Cu(G),≤) is a directed set. For use in the next theorem, we recall that by

Corollary 3.1.11 in [4], the category Cu is closed under direct limits indexed over an arbitrary

directed set.
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Theorem III.2.6. The direct limit of the direct system

(
(Cu((K(Hµ)⊗A)G))µ∈Cu(G), (jµ,ν)µ,ν∈Cu(G)

)
,

in the category Cu, is naturally isomorphic to the pair

(CuG(A,α), (iµ)µ∈Cu(G)).

In particular, CuG(A,α) belongs to Cu.

Proof. We will show that (CuG(A,α), (iµ)µ∈Cu(G)) satisfies the universal property of the direct

limit in Cu. Let (S, (γµ)µ∈Cu(G)) be a pair consisting of a semigroup S in the category Cu and

Cu-morphisms

γµ : Cu((K(Hµ)⊗A)G)→ S,

for µ ∈ Cu(G), satisfying γν ◦ jµ,ν = γµ for all ν, µ ∈ Cu(G) with µ ≤ ν. Define a map

γ : CuG(A,α) =
⋃

µ∈Cu(G)

iµ(Cu((K(Hµ)⊗A)G))→ S

by

γ(iµ(s)) = γµ(s)

for s ∈ Cu((K(Hµ)⊗A)G).

The proof will be finished once we prove that γ is a well-defined morphism in Cu. We

divide the proof into a number of claims.

Claim: γ is a well defined order preserving map. For this, it is enough to show the

following. Given µ, ν ∈ Cu(G) and given s ∈ Cu((K(Hµ) ⊗ A)G) and t ∈ Cu((K(Hν) ⊗ A)G),

if iµ(s) ≤ iν(t), then

γ(iµ(s)) ≤ γ(iν(t)).

Let µ, ν, s and t be as above. Then

iµ⊕ν(jµ,µ⊕ν(s)) ≤ iµ⊕ν(jν,µ⊕ν(t)).
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Since iµ⊕ν is an order embedding, we deduce that jµ,µ⊕ν(s) ≤ jν,µ⊕ν(t). Hence,

γ(iµ(s)) = γµ(s) = γµ⊕ν(jµ,µ⊕ν(s)) ≤ γµ⊕ν(jν,µ⊕ν(t)) = γν(t) = γ(iν(t)).

The claim is proved.

Claim: γ is a semigroup homomorphism. Given µ, ν ∈ Cu(G), given s ∈ Cu((K(Hµ)⊗A)G),

and given t ∈ Cu((K(Hν)⊗A)G), we have

γ(iµ(s) + iν(t)) = γµ⊕ν(jµ,µ⊕ν(s) + jν,µ⊕ν(t))

= γµ⊕ν(jµ,µ⊕ν(s)) + γµ⊕ν(jν,µ⊕ν(t))

= γ(iµ(s)) + γ(iν(t)),

so the claim follows.

Claim: γ preserves suprema of increasing sequences (condition M1 in Definition II.6.1).

Let (xn)n∈N be an increasing sequence in CuG(A,α), and let x ∈ CuG(A,α) be its supremum. For

each n ∈ N, choose [µn] ∈ Cu(G) and an element sn ∈ Cu((K(Hµn)⊗A)G) such that iµn(sn) = xn.

Likewise, choose [µ] ∈ Cu(G) and an element s ∈ Cu((K(Hµ)⊗A)G) such that iµ(s) = x.

Set ν =
∞⊕
n=1

µn. Then

iµn(sn) = iν(jµn,ν(sn)) ≤ iν(jµn+1,ν(sn+1)) = iµn(sn+1)

for all n ∈ N. It follows that jµn,ν(sn) ≤ jµn+1,ν(sn+1) for all n ∈ N, since iν is an order

embedding. In other words, (jµn,ν(sn))n∈N is an increasing sequence in Cu(K(Hν ⊗ A)G). Since

suprema of increasing sequences exist in Cu(K(Hν ⊗A)G) and iν and γν are maps in Cu we get

γ(x) =γ(iµ(s)) = γ

(
sup
n∈N

iµn(sn)

)
= γ

(
sup
n∈N

iν(jµn,ν(sn))

)
= γ(iν

(
sup
n∈N

jµn,ν(sn)

)
) = γν(sup

n∈N
jµn,ν(sn)) = sup

n∈N
γν(jµn,ν(sn))

= sup
n∈N

γ(iµn(sn)) = sup
n∈N

γ(xn).

Hence γ(x) is the supremum of (γ(xn))n∈N, proving the claim.
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Claim: γ preserves the compact containment relation (condition M2 in Definition II.6.1).

Given µ, ν ∈ Cu(G), and given s ∈ Cu((K(Hµ) ⊗ A)G) and t ∈ Cu((K(Hν) ⊗ A)G), suppose that

iµ(s)� iν(t). Then

iµ⊕ν(jµ,µ⊕ν(s))� iν(jν,µ⊕ν(t)).

Since iµ⊕ν is a morphism in the category Cu and it is an order embedding, we deduce that

jµ,µ⊕ν(s)� jν,µ⊕ν(t). Hence,

γ(iµ(s)) = γµ⊕ν(jµ,µ⊕ν(s))� γν⊕ν(jν,µ⊕ν(t)) = γ(iν(t)).

We conclude that γ is a morphism in Cu, so the proof is complete.

We can now show that the semigroup homomorphism between the equivariant Cuntz

semigroups induced by an equivariant ∗-homomorphism is a morphism in Cu.

Proposition III.2.7. Let β : G → Aut(B) be a continuous action of G on a C∗-algebra B, and

let φ : A → B be an equivariant homomorphism. Then the induced map CuG(φ) : CuG(A,α) →

CuG(B, β) is a morphism in the category Cu.

Proof. For [µ] ∈ Cu(G), set

φµ = idK(Hµ) ⊗ φ : (K(Hµ)⊗A,Ad(µ)⊗ α)→ (K(Hµ)⊗B,Ad(µ)⊗ β).

Then φµ is equivariant. Its induced map

Cu(φµ) : Cu((K(Hµ)⊗A)G)→ Cu((K(Hµ)⊗B)G),

between the Cuntz semigroups of the corresponding fixed point algebras, is a morphism in Cu.

For [µ] ≤ [ν], we have

jBµ,ν ◦ Cu(φµ) = Cu(φν) ◦ jAµ,ν .

Consequently, the maps

iBµ ◦ Cu(φµ) : Cu((K(Hµ)⊗A)G)→ CuG(B, β)
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satisfy

iBµ ◦ Cu(φµ) = (iBν ◦ Cu(φν)) ◦ jAµ,ν

for [µ] ≤ [ν]. The universal property of the direct limit provides a Cu-morphism

κ : CuG(A,α)→ CuG(B, β)

satisfying κ ◦ iAµ = iBµ ◦ Cu(φµ) for all [µ] ∈ Cu(G). For s ∈ Cu((K(Hµ)⊗A)G), we have

κ(iAµ (s)) = iBµ (Cu(φµ)(s)) = iBµ (Cu(idK(Hµ) ⊗ φ)([a])) = CuG(φ)([a]).

We conclude that κ = CuG(φ), and hence CuG(φ) is a morphism in Cu.

Since CuG obviously preserves composition of maps, we get the following.

Corollary III.2.8. The equivariant Cuntz semigroup CuG is a functor from the category of

G-C∗-algebras to the category Cu.

The Semiring Cu(G) and the Category CuG

The semiring Cu(G)

Let G be a compact group. Denote by V (G) the semigroup of equivalence classes of finite

dimensional representations of G, the operation being given by direct sum. Recall that the

representation ring R(G) of G is the Grothendieck group of V (G). The product structure on

R(G) is induced by the tensor product of representations. The construction of R(G) resembles

that of K-theory, while the object we define below is its Cuntz analog.

Recall that a semiring is a set R with two binary operations + and · on R, which satisfy all

axioms of a unital ring except for the axiom demanding the existence of additive inverses.

Definition III.3.1. The representation semiring of G, denoted by Cu(G), is the set of all

equivalence classes of unitary representations of G on separable Hilbert spaces. Addition in

Cu(G) is given by the direct sum of representations, while product in Cu(G) is given by the

tensor product. We endow Cu(G) with the order: [µ] ≤ [ν] if µ is unitarily equivalent to a

subrepresentation of ν.
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Since the tensor product of representations is associative, it is clear that Cu(G) is indeed a

semiring.

Lemma III.3.2. Let A be a C∗-algebra, let G be a compact group, and let α : G→ Aut(A) be an

action. Let (Hµ, µ) be a separable unitary representation of G, and let a ∈ K(Hµ)G be a positive

element. Set H = a(Hµ), and let a′ be the restriction of a to H. Then a′ is a G-invariant strictly

positive element in K(H), and there exists a sequence (dn)n∈N in K(Hµ,H)G such that

lim
n→∞

‖d∗na′dn − a‖ = 0 and lim
n→∞

‖dnad∗n − a′‖.

Proof. Denote by BHµ and BH the unit balls Hµ and H, respectively. Since a′(BH) ⊆ a(BHµ), it

is clear that a′ is compact.

Since lim
n→∞

a
1
n (ξ) = ξ for all ξ ∈ H, we conclude that a′ is strictly positive. For n ∈ N,

let dn : Hµ → H be the operator defined by restricting the codomain of a
1
n to H. Then dn ∈

K(Hµ,H)G, and d∗n : H → Hµ is given by d∗n(ξ) = a
1
n (ξ) for all ξ ∈ H. It is now clear that

lim
n→∞

‖d∗na′dn − a‖ = 0 and lim
n→∞

‖dnad∗n − a′‖,

so the proof is complete.

Let (Hµ, µ) be a separable unitary representation of G. Since Hµ is separable, K(Hµ) has

a strictly positive element s̃µ. Moreover, by integrating g · s̃µ over G, we get an invariant strictly

positive element sµ of K(Hµ).

Theorem III.3.3. Adopt the notation from the comments above. Then the map s : Cu(G) →

CuG(C) given by s([µ]) = [sµ], for [µ] ∈ Cu(G), is well defined. Moreover, it is an isomorphism of

ordered semigroups.

Proof. We begin by showing that s is well defined. Let (Hµ, µ) and (Hν , ν) be separable unitary

representations of G, with [µ] ≤ [ν]. Then there exists V ∈ B(Hµ,Hν)G such that V ∗V = idHµ .

By Lemma III.2.4, we have sµ ∼G V sµV
∗. Since sν is strictly positive, we also have V sµV

∗ -G

sν . Thus, sµ -G sν . It follows that s is well defined and order preserving.

We now show that s is an order embedding. Let sµ ∈ K(Hµ)G and sν ∈ K(Hν)G be strictly

positive elements such that sµ -G sν . By [27, Proposition 2.5], there is x ∈ K(Hµ,Hν) such that
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sµ = x∗x and xx∗ ∈ K(Hν)G. Also, by simply inspecting the proof of that proposition, one sees

that x can be taken in K(Hµ,Hν)G. Let x = v(x∗x)
1
2 be the polar decomposition of x. Then v

belongs to B(Hµ,Hν)G, and v∗v = idHµ . This implies that [µ] ≤ [ν]. In particular, s is injective.

To finish the proof, we show that s is surjective. Let (Hµ, µ) be a separable unitary

representation of G, and let a be a strictly positive element in K(Hµ)G. Set Hν = a(Hµ), let ν

be the compression of µ to Hν , and let a′ : Hν → Hν be the restriction of a. By Lemma III.3.2, a′

is a strictly positive element in K(Hν)G, and a′ ∼G a. It follows that s([ν]) = [a], and the proof is

complete.

Corollary III.3.4. The semigroup Cu(G) is an object in Cu. In addition,

1. If ([µn])n∈N is an increasing sequence in Cu(G), then sup
n∈N

[µn] exists. Moreover, [µ] is the

supremum of ([µn])n∈N if and only if [sµ] = sup
n∈N

[sµn ];

2. [µ]� [ν] if and only if [sµ]� [sν ].

Recall that when G is compact, every unitary representation of G is equivalent to a direct

sum of finite dimensional representations.

Corollary III.3.5. Let (Hµ, µ) be a separable unitary representation of G. Let (Hνk , νk)k∈N be a

family of non-zero finite dimensional representations of G such that

(Hµ, µ) ∼=
⊕
k∈N

(Hνk , νk).

For n ∈ N, set µn =
n⊕
k=1

νk. Then [µn]� [µ] for all n ∈ N, and

[µ] = sup
n∈N

[µn].

Proof. Let sµ be a strictly positive element of K(Hµ)G. For each n ∈ N, let pn be the unit of

B(Hµn). Then [sµ] = sup
n∈N

[pn] since Hµ ∼=
⊕
k∈N
Hνk . Also, [pn] � [sµ] for all n ∈ N, because pn is a

projection. The result then follows from Theorem III.3.3.
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The Cu(G)-semimodule structure on CuG(A,α)

Throughout the rest of this section, we fix a compact group G, a C∗-algebra A, and a

continuous action α : G→ Aut(A).

Recall that a (left) semimodule over a semiring R, or an R-semimodule, is a commutative

monoid S together with a function · : R × S → S satisfying all the axioms of a module over a ring,

except for the axiom demanding the existence of additive inverses.

In this subsection, we show that CuG(A,α) has a natural Cu(G)-semimodule structure,

which moreover satisfies a number of additional regularity properties. It follows that the

equivariant Cuntz semigroups belong to a distinguished class of partially ordered semirings

over Cu(G). We begin by defining this category, and then show that CuG(A,α) belongs to it;

see Theorem III.3.10.

Definition III.3.6. Denote by CuG the category defined as follows. The objects in CuG are

partially ordered Cu(G)-semimodules (S,+, ·) such that:

(O1) S is an object in Cu;

(O2) if x, y ∈ S and s, t ∈ Cu(G) satisfy x ≤ y and r ≤ s, then r · x ≤ s · y;

(O3) if x, y ∈ S and s, t ∈ Cu(G) satisfy x� y and r � s, then r · x� s · y;

(O4) if (xn)n∈N is an increasing sequence in S, and (rn)n∈N is an increasing sequence in Cu(G),

then

sup
n∈N

(rn · xn) =

(
sup
n∈N

rn

)
·
(

sup
n∈N

xn

)
.

The morphisms in CuG between two Cu(G)-semimodules S and T are all Cu(G)-semimodule

homomorphisms ϕ : S → T in the category Cu.

Lemma III.3.7. Axiom O4 in Definition III.3.6 is equivalent to the following. If (xn)n∈N is an

increasing sequence in S, and (rn)n∈N is an increasing sequence in Cu(G), then

sup
n∈N

(rn · x) =

(
sup
n∈N

rn

)
· x and sup

n∈N
(r · xn) = r ·

(
sup
n∈N

xn

)
for all r ∈ Cu(G) and for all x ∈ S.
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Proof. That Axiom (O4) implies the condition in the statement is immediate. Conversely, suppose

that S satisfies Axioms (O1), (O2) and (O3), and the condition in the statement. Let (xn)n∈N be

an increasing sequence in S, and let (rn)n∈N be an increasing sequence in Cu(G). For m ∈ N, we

have rm · xm ≤ sup
n∈N

rn · sup
n∈N

xn by Axiom (O2), so

sup
m∈N

(rm · xm) ≤ sup
n∈N

rn · sup
n∈N

xn.

For the opposite inequality, given m ∈ N we have

sup
n∈N

(rn · xn) ≥ sup
n∈N

(rn · xm) =

(
sup
n∈N

rn

)
xm.

By taking supm∈N, we conclude that Axiom (O4) is also satisfied.

We will need to know the following:

Theorem III.3.8. The category CuG is closed under countable direct limits.

Proof. Let (Sn, ϕn)n∈N be a direct system in the category CuG, with CuG-morphisms ϕn : Sn →

Sn+1. For m ≥ n, we write ϕm,n : Sn → Sm+1 for the composition ϕm,n = ϕm ◦ · · · ◦ ϕn. By

Theorem 2 in [36], the limit of this direct system exists in the category Cu, and we denote it by

(S, (ψn)n∈N), where ψn : Sn → S is a Cu-morphism satisfying ψn+1 ◦ ϕn = ϕn+1 for all n ∈ N.

We will use the description of the direct limit given in the proof of Theorem 2 in [36], in the form

given in Proposition 2.2 in [91].

We define a Cu(G)-semimodule structure on S as follows. Let x ∈ S, and choose elements

xn ∈ Sn, for n ∈ N, such that ϕn(xn) � xn+1 and sup
n∈N

ψn(xn) = x. Given r ∈ Cu(G), set

r · x = sup
n∈N

ψn(r · xn).

Claim: the Cu(G)-semimodule structure is well-defined and satisfies Axiom O2. It is clearly

enough to check Axiom O2. Let x, y ∈ S with x ≤ y, and let r, s ∈ Cu(G) with r ≤ s. Choose

elements xn, yn ∈ Sn, for n ∈ N, satisfying ϕn(xn) � xn+1 and sup
n∈N

ψn(xn) = x, as well as

ϕn(yn)� yn+1 and sup
n∈N

ψn(yn) = y.

Given n ∈ N, we have ψn(xn+1) � x ≤ y = supm∈N ψm(ym), so there exists m0 ∈ N such

that ψn(xn+1) ≤ ψm(ym) for all m ≥ m0. Without loss of generality, we may assume m0 ≥ n.

Since ϕn(xn) � xn+1, part (ii) of Proposition 2.2 in [91] implies that there exists n0 ∈ N with
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n0 ≥ m such that ϕk,n(xn) ≤ ϕk,m(ym) for all k ≥ n0. It follows that

ϕk,n(r · xn) ≤ ϕk,m(s · ym)

for all k ≥ n0. Taking the supremum over k, we deduce that ψn(r · xn) ≤ ψm(s · ym) for all

m ≥ m0. Taking first the supremum over m, and then the supremum over n, we conclude that

sup
n∈N

ψn(r · xn) ≤ sup
m∈N

ψm(s · ym).

The claim is proved.

Claim: S satisfies Axiom (O3).

Let x, y ∈ S with x � y, and let r, s ∈ Cu(G) with r � s. Then there exist n ∈ N, and

x′, y′ ∈ Sn such that x′ � y′ and x� ψn(x′)� ψn(y′)� y. Then r · x′ � s · y′, and hence

r · x ≤ ψn(r · x′)� ψn(s · y′) ≤ s · y,

as desired.

Claim: S satisfies Axiom (O4). It suffices to check the condition in the statement of

Lemma III.3.7. Let (rn)n∈N be an increasing sequence in Cu(G), and let x ∈ S. Choose elements

xm ∈ Sm, for m ∈ N, such that ϕm(xm)� xm+1 and sup
m∈N

ψm(xm) = x. Then

sup
n∈N

(rn · x) = sup
n∈N

sup
m∈N

ψm(rn · xm) = sup
n∈N

rn ·
(

sup
m∈N

ψm(xm)

)
=

(
sup
n∈N

rn

)
· x,

as desired. The other property in Lemma III.3.7 can be checked analogously, so we omit it. This

concludes the proof.

We now define a Cu(G)-semimodule structure on CuG(A,α).

Definition III.3.9. Let (Hµ, µ) and (Hν , ν) be separable unitary representations of G, and let

a ∈ (K(Hµ) ⊗ A)G be a positive element. In this definition, and to stress the role played by µ,

we write [(Hµ, µ, a)]G for the G-Cuntz equivalence class of a. Use separability of Hν to choose a
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G-invariant strictly positive element sν ∈ K(Hν)G. We set

[ν] · [(Hµ, µ, a)]G = [(Hν ⊗Hµ, ν ⊗ µ, sν ⊗ a)]G .

The following is one of the main results in this section. For use in its proof, we recall that

any tensor product of C∗-algebras respects Cuntz subequivalence.

Theorem III.3.10. The Cu(G)-semimodule structure from Definition III.3.9 is well defined.

Moreover, with this structure, the semigroup CuG(A,α) becomes an object in CuG, and the

equivariant Cuntz semigroup is a functor from the category of G-C∗-algebras to the category

CuG.

Proof. We will prove that the Cu(G)-semimodule structure is well defined together with condition

O2 in Definition III.3.6. So let [µ], [ν] ∈ Cu(G) and [a]G, [b]G ∈ CuG(A,α) satisfy [µ] ≤ [ν]

and [a]G ≤ [b]G. By Theorem III.3.3, we have sµ -G sν . Since we also have a -G b, we get

sµ ⊗ a -G sν ⊗ b. Hence,

[µ] · [a]G = [sµ ⊗ a] ≤ [sν ⊗ b] = [ν] · [b]G,

as desired.

It is immediate that

[µ] · ([a]G + [b]G) = [µ] · [a]G + [µ] · [b]G

and

[µ] · ([ν] · [a]G) = ([µ] · [ν]) · [a]G,

for all [µ], [ν] ∈ Cu(G) and for all [a]G, [b]G ∈ CuG(A,α). We conclude that CuG(A,α) is a Cu(G)-

semimodule, and that it satisfies condition O2 in Definition III.3.6.

We now proceed to show that CuG(A,α) is an object in CuG. We already showed in

Theorem III.2.6 that it is an object in Cu, so condition O1 in Definition III.3.6 is satisfied.

We check condition O3. Suppose that [µ], [ν] ∈ Cu(G) and [a]G, [b]G ∈ CuG(A,α) satisfy

[µ] � [ν] and [a]G � [b]G. By Theorem III.3.3, we get [sµ] � [sν ] in CuG(C). Without loss of
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generality, we may assume that sν and b are contractions. Recall that

[sν ] = sup
ε>0

[(sν − ε)+]G and [b]G = sup
ε>0

[(b− ε)+]G.

Using the definition of the compact containment relation, find ε > 0 such that

[sµ] ≤ [(sν − ε)+] and [a]G ≤ [(b− ε)+].

Use ‖sν‖ ≤ 1 and ‖b‖ ≤ 1 at the third step to get

[µ] · [a]G = [sµ ⊗ a]

≤ [(sν − ε)+ ⊗ (b− ε)+]

≤ [(sν ⊗ b− ε2)+]

� [sν ⊗ b] = [ν] · [b]G,

so condition O3 is satisfied.

We now check condition O4. Let ([µn])n∈N and ([an])n∈N be increasing sequences in Cu(G)

and CuG(A,α), respectively, and set [µ] = sup
n∈N

[µn] and [a] = sup
n∈N

[an]. Without loss of generality,

we may assume that a is a contraction. For n ∈ N, denote by sµn an invariant strictly positive

element in K(Hµn), and denote by sµ an invariant strictly positive element in K(Hµ). By part (1)

of Corollary III.3.4, we have [sµ] = sup
n∈N

[sµn ] in CuG(C). As before, we may assume that sµ is a

contraction. Then the sequence ([sµn ⊗ an])n∈N in CuG(A,α) is increasing. Set

[c] = sup
n∈N

[sµn ⊗ an].

We claim that [c] = [sµ ⊗ a]. It is clear that [c] ≤ [sµ ⊗ a]. To check the opposite inequality,

let ε > 0. Then there exists n ∈ N such that

[(sµ − ε)+] ≤ [sµn ] and [(a− ε)+] ≤ [an].

It follows that

[(sµ ⊗ a− ε)+] ≤ [(sµ − ε)+ ⊗ (a− ε)+] ≤ [sµn ⊗ an].
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Hence, [(sµ ⊗ a − ε)+] ≤ [c]. Since [sµ ⊗ a] = sup
ε>0

[(sµ ⊗ a − ε)+], we deduce that [sµ ⊗ a] ≤ [c], as

desired. We have checked condition O4.

Since CuG(A,α) is an object in Cu by Theorem III.2.6, we conclude that CuG(A,α) is an

object in CuG.

It remains to argue that CuG is a functor into CuG. Let β : G → Aut(B) be a continuous

action of G on a C∗-algebra B, and let φ : A → B be an equivariant homomorphism. By

Corollary III.2.8, CuG(φ) is a morphism in Cu, so we only need to check that it is a morphism

of Cu(G)-semimodules. This is immediate, so the proof is complete.

We mention here, without proof, that the isomorphism in Theorem III.2.6 becomes a CuG-

isomorphism when

lim−→
(
(Cu((K(Hµ)⊗A)G))µ∈Cu(G), (jµ,ν)µ,ν∈Cu(G)

)
is endowed with the following Cu(G)-action. For separable representations (Hµ, µ) and (Hν , ν) of

G, and for x ∈ Cu((K(Hµ)⊗A)G), we set [ν] · x = jν⊗µ,µ(x).

Toolkit for computing examples

It would be desirable to compute now some examples of equivariant Cuntz semigroups

together with their Cu(G)-semimodule structure. However, equivariant Cuntz semigroups are in

general hard to compute, and a major tool to do this will be the Cuntz semigroup analog of Julg’s

Theorem, together with the computation of the Cu(G)-semimodule structure of Cu(A oα G); see

Theorem III.5.3 and Proposition III.5.15.

We mention two trivial cases: when G = {1}, then CuG(A,α) = Cu(A), and when A = C,

then CuG(C) = Cu(G) (with the obvious Cu(G)-action). The next step would be computing

CuG(A, idA), where G acts trivially on A. The answer is

CuG(A, idA) ∼= {f : Ĝ→ Cu(A) : f has countable support},

where multiplication by elements in Cu(G) is applied to the input (decomposing a separable

representation as sums of irreducibles). We could carry out this computation here, but we

choose to delay it until the end of Section III.5, since it will then be an easy consequence of

Theorem III.5.13; see Proposition III.5.14.
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Here, we give some tools for computing further examples in Proposition III.3.11 and

Proposition III.3.12. (These propositions will be needed in Section III.5.)

Proposition III.3.11. Let q be any rank one projection on `2(N), and denote by

ιq : A→ A⊗K(`2(N))

the inclusion obtained by identifying A with q(A ⊗ K(`2(N)))q. Give `2(N) the trivial G-

representation. Then ιq induces a natural CuG-isomorphism

CuG(ιq) : CuG(A,α)→ CuG(A⊗K(`2(N)), α⊗ idK(`2(N))).

Proof. We abbreviate K(`2(N)) to K. By Theorem III.3.10, CuG(ιq) is a morphism in CuG. It

thus suffices to check that it is an isomorphism in Cu.

Let (Hµ, µ) be a separable unitary representation of G. Denote by

κqµ : Cu((K(Hµ)⊗A)G)→ Cu((K(Hµ)⊗A)G ⊗K)

the Cu-morphism induced by the inclusion as the corner associated to q. Then κqµ is an

isomorphism (see Appendix 6 in [36]). With the notation from Theorem III.3.10, it is clear that

jA⊗Kµ,ν ◦ κqν = κqµ ◦ jAµ,ν .

By the universal property of the direct limit in Cu, applied to the object CuG(A ⊗ K, α ⊗

idK) and the maps iA⊗Kµ ◦ κqµ, for µ ∈ Cu(G), it follows that there is a Cu-morphism

κq : CuG(A,α)→ CuG(A⊗K, α⊗ idK)

satisfying κq ◦ iAµ = iA⊗Kµ ◦ κqµ. Since κq is induced by ιq, we must have κq = CuG(ιq). Finally,

since κqµ is an isomorphism for all µ, the same holds for κq, so the proof is complete.

Proposition III.3.12. Let (An, ιn)n∈N be a direct system of C∗-algebras with connecting maps

ιn : An → An+1. For n ∈ N, let α(n) : G → Aut(An) be a continuous action, and suppose that

α(n+1) ◦ ιn = ιn ◦α(n) for all n ∈ N. Set A = lim−→(An, ιn), and α = lim−→α(n). Then there is a natural
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CuG-isomorphism

lim−→CuG(An, α
(n)) ∼= CuG(A,α).

Proof. There is an inductive system

(
CuG(An, α

(n)),CuG(ιn)
)
n∈N

in CuG. By Theorem III.3.8, its inductive limit exists in CuG, and we will denote it by

lim−→CuG(An, α
(n)).

For n ∈ N, denote by ι∞,n : An → A the equivariant map into the direct limit. Then

CuG(ι∞,n) is a morphism in CuG, and the universal property of inductive limits, there is a CuG-

morphism ϕ : lim−→CuG(An, α
(n))→ CuG(A,α).

We claim that ϕ is an isomorphism. For this, it is enough to check that it is an

isomorphism in Cu. The rest of the proof is analogous to that of Proposition III.3.11, using

Theorem 2 in [36]. We omit the details.

We point out that in the previous proposition, we may allow direct limits over arbitrary

directed sets, using Corollary 3.1.11 in [4] instead of Theorem 2 in [36].

A Hilbert Module Picture of CuG(A,α)

In analogy with the non-equivariant case, the equivariant Cuntz semigroup can be

constructed in terms of equivariant Hilbert modules. The goal of this section is to present this

construction and identify it with CuG(A,α) in a canonical way.

The description of CuG(A,α) provided in this section will be needed in Section III.5, where

we will prove that CuG(A,α) can be naturally identified with Cu(Aoα G) (Theorem III.5.3).

Equivariant Hilbert C*-modules

Throughout this section, we fix a C∗-algebra A, a compact group G, and an action

α : G → Aut(A). All modules will be right modules and a Hilbert A-module will mean a Hilbert

C*-module over A. The reader is referred to [162] for the basics of Hilbert C*-modules.

Given Hilbert A-modules E and F , we let L(E,F ) and K(E,F ) denote the spaces of

adjointable operators and compact operators from E to F , respectively. We write U(E,F ) for
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the set of unitaries between E and F . When E = F , we write L(E), K(E), and U(E) for L(E,E),

K(E,E), and U(E,E), respectively.

Definition III.4.1. A Hilbert (G,A, α)-module is a pair (E, ρ) consisting of

1. a Hilbert A-module E, and

2. a strongly continuous group homomorphism ρ : G→ U(E), satisfying

(a) ρg(x · a) = ρg(x) · αg(a) for all g ∈ G, all x ∈ E and all a ∈ A, and

(b) 〈ρg(x), ρg(y)〉E = αg (〈x, y〉E) for all g ∈ G and all x, y ∈ E.

(The continuity condition for ρ means that for x ∈ E, the map G → E given by g 7→ ρg(x) is

continuous.)

A pair (F, η) consisting of a Hilbert submodule F of E satisfying ρg(F ) ⊆ F for all g ∈ G,

and an action η : G → Aut(F ) with ηg = ρg|F for all g ∈ G, will be called a Hilbert (G,A, α)-

submodule of (E, ρ).

We say that E is countably generated if there exists a countable subset {ξn}n∈N ⊆ E such

that {
k∑

n=1

ξnan : an ∈ A, k ∈ N

}

is dense in E.

We will sometimes call Hilbert (G,A, α)-modules G-Hilbert (A,α)-modules, or just G-

Hilbert A-modules if the action α is understood.

Given G-Hilbert A-modules (E, ρ) and (F, η), we let L(E,F )G and K(E,F )G denote the

subsets of L(E,F ) and K(E,F ), respectively, consisting of the equivariant operators. That is,

L(E,F )G = {T ∈ L(E,F ) : T ◦ ρg = ηg ◦ T for all g ∈ G},

K(E,F )G = {T ∈ K(E,F ) : T ◦ ρg = ηg ◦ T for all g ∈ G}.

(Note that L(E,F )G is the set of fixed points of L(E,F ), where for an adjointable operator

T : E → F and g ∈ G, we set g · T = ηg ◦ T ◦ ρg−1 .)

As before, L(E)G and K(E)G denote L(E,E)G and K(E,E)G, respectively.
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Definition III.4.2. Let (E, ρ) and (F, η) be G-Hilbert A-modules. We say that (E, ρ) is

isomorphic to (F, η), in symbols (E, ρ) ∼= (F, η), if there exists a unitary in L(E,F )G. We say

that (E, ρ) is subequivalent to (F, η), in symbols (E, ρ) � (F, η), if (E, ρ) is isomorphic to a direct

summand of (F, η). (That is, if there exists V ∈ L(E,F )G such that V ∗V = idE .)

Let I be a set and let (Ej , ρj)j∈I be a family of Hilbert A-modules. Then the Hilbert direct

sum

(⊕
j∈I

Ej ,
⊕
j∈I

ρj

)
is the completion of the corresponding algebraic direct sum with respect to

the norm defined by the scalar product

〈⊕
j∈I

ξj ,
⊕
j∈I

ζj

〉
=
∑
j∈I
〈ξj , ζj〉.

Let H be a Hilbert space. By convention, the scalar product on H is linear in the second

argument and conjugate linear in the first one. Let H ⊗ A denote the exterior tensor product of

H and A, where A is considered as a right A-module over itself ([162, Chapter 4]). That is, H⊗ A

is the completion of the algebraic tensor product H ⊗alg A in the norm given by the A-valued

product

〈ξ1 ⊗ a1, ξ2 ⊗ a2〉 = 〈ξ1, ξ2〉a∗1a2

for ξ1, ξ2 ∈ H and a1, a2 ∈ A.

Definition III.4.3. For each element [π] ∈ Ĝ, choose a representative π : G→ U(Hπ). Denote by

HC the Hilbert space direct sum

HC =
⊕

[π]∈Ĝ

∞⊕
n=1

Hπ,

and let πC : G→ U(HC) be the unitary representation given by

πC =
⊕

[π]∈Ĝ

∞⊕
n=1

π.

The unitary representation (HC, πC) is easily seen not to depend on the choices of representatives

π : G→ U(Hπ) up to unitary equivalence.

We define the universal G-Hilbert (A,α)-module (HA, πA) to be HA = HC ⊗ A and πA =

πC ⊗ α.
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Remark III.4.4. It is easy to check, using the Peter-Weyl theorem, that (HC, πC) is (unitarily

equivalent) to the representation (L2(G)⊗ `2, λ⊗ id`2).

An equivalent presentation of HC (and therefore of HA), which will be more convenient for

our purposes, is

HC =
⊕

[µ]∈Cu(G)

Hµ,

with πC =
⊕

[µ]∈Cu(G)

µ. (This presentation will be used when defining a Cu(G)-module structure on

Cu(K(HA)G).)

Remark III.4.5. It is a classical result of Kasparov that when G is second countable, then every

countably generated G-Hilbert A-module is isomorphic to a direct summand of (HA, πA); see [144,

Theorem 2].

Lemma III.4.6. Let (E, (πA)|E) be a countably generated G-Hilbert A-submodule of (HA, πA).

Then there exists a separable subrepresentation (Hµ, µ) of (HC, πC) such that E ⊆ Hµ ⊗ A and

(πA)|E = (µ⊗ α)|E .

Proof. Since HA =
⊕

[ν]∈Cu(G)

(Hν ⊗A) for any ξ ∈ HA, there exists a countable set Xξ ⊆ Cu(G)

such that ξ belongs to
⊕

[ν]∈Xξ
(Hν ⊗A).

Now let {ξn}n∈N be a countable generating subset of E. Then X =
⋃
n∈N

Xξn is a countable

subset of Cu(G). Set

(Hµ, µ) =
⊕

[ν]∈X

(Hν , ν) .

Then Hµ is separable. It is immediate that E ⊆ Hµ ⊗ A and (πA)|E = (µ ⊗ α)|E , so the proof is

complete.

Let (E, ρ) be a G-Hilbert A-module. Then the action G on E induces an action of G on the

C∗-algebra K(E) by conjugation. The fixed point algebra of this action will be denoted by K(E)G.

When (E, ρ) is the G-Hilbert A-module (Hµ ⊗A,µ⊗α), for some separable unitary representation

(Hµ, µ) of G, then the induced action on K(Hµ ⊗A) will be denoted by Ad(µ⊗ α).

Let E be a Hilbert A-module, and let ξ, ζ ∈ E. We denote by Θξ,ζ : E → E the A-rank one

operator given by Θξ,ζ(η) = ξ · 〈ζ, η〉 for η ∈ E.
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Lemma III.4.7. Let a ∈ K(HA)G, and set E = span{a(HA) ∪ a∗(HA)}, endowed with the

restricted G-representation ρ. Then (E, ρ) is a countably generated G-Hilbert A-module and

a|E ∈ K(E)G.

Proof. It is clear that E is invariant under (πA)g for all g ∈ G; thus (E, ρ) is a G-Hilbert A-

module. Let ε > 0. Since a ∈ K(HA)G, there exist k ∈ N, and ξ1, . . . , ξk, ζ1, . . . , ζk ∈ HA satisfying

∥∥∥∥∥∥a−
k∑
j=1

Θξj ,ζj

∥∥∥∥∥∥ < ε

8
.

Use a ∈ (aa∗)K(HA) and a ∈ K(HA)(a∗a) to choose n ∈ N with

‖aa∗‖
1
n < 2 and ‖a∗a‖

1
n < 2

such that, in addition, ∥∥a− (aa∗)1/na(a∗a)1/n
∥∥ < ε

2
.

It follows that∥∥∥∥∥∥a−
k∑
j=1

Θ(aa∗)1/n(ξj),(a∗a)1/n(ζj)

∥∥∥∥∥∥ =

∥∥∥∥∥∥a−
k∑
j=1

(aa∗)1/nΘξj ,ζj (a
∗a)1/n

∥∥∥∥∥∥
≤
∥∥a− (aa∗)1/na(a∗a)1/n

∥∥
+ ‖aa∗‖1 /n

∥∥∥∥∥∥a−
k∑
j=1

Θξj ,ζj

∥∥∥∥∥∥ ‖a∗a‖1 /n
< ε.

For j = 1, . . . , k, the map Θ
(aa∗)

1
n (ξj),(a∗a)

1
n (ζj)

leaves E invariant, so its restriction to E

is a rank one operator in K(E). It follows that a|E is the limit of a sequence finite rank operators

on E, and hence it is compact. In particular, E is countably generated, because the range of each

finite rank operator is finitely generated. Finally, it is clear that a is invariant, so a ∈ K(E)G.

The following observation will be used throughout without particular reference. Recall

that a positive element x in a C∗-algebra A is said to be strictly positive if τ(x) > 0 for every

continuous linear map τ : A→ C.
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Remark III.4.8. Let G be a compact group, let A be a C∗-algebra, and let α : G → Aut(A) be

an action. Denote by µ the normalized Haar measure on G. If x ∈ A is a strictly positive element,

then y =
∫
G

αg(x) dµ(g) is strictly positive in A. Indeed, let τ : A→ C be a linear map. For g ∈ G,

the map τ ◦ αg : A → C is also linear, and so τ(αg(x)) > 0. Since g 7→ τ(αg(x)) is continuous, we

deduce that

τ(y) = τ

∫
G

αg(x) dµ(g)

 =

∫
G

τ(αg(x)) dµ(g) > 0,

so y is strictly positive, as desired.

Lemma III.4.9. Let (E, ρ) be a countably generated G-Hilbert A-module, and let (F, µ|F ) be

a countably generated G-Hilbert submodule of E. Then there exists a ∈ K(E)G such that F =

a(F ) = a(E).

Proof. Use [162, Proposition 6.7] to choose a strictly positive element c ∈ K(F ). Then the element

c′ =
∫
G

(g · c) dg is strictly positive and G-invariant Since c(F ) = c′(F ) and c(E) = c′(E), we may

assume that c is invariant.

Using strict positivity of c, choose a sequence (bn)n∈N in K(F ) such that

lim
n→∞

‖cbn − c
1
n ‖ = 0.

By [162, Equation 1.5], we have lim
n→∞

cbnξ = ξ for all ξ ∈ F . It follows that c(F ) = F . Using

[144, Theorem 2], one shows that c can be extended to an element b ∈ K(E) satisfying b(E) =

c(F ) = F . Now, the desired element is obtained by integrating g · b over G (using normalized Haar

measure).

The Hilbert module picture of CuG(A,α)

We now define the relevant equivalence and subequivalence relations of G-Hilbert modules

that will give rise to a different description of the equivariant Cuntz semigroup.

Definition III.4.10. Let (E, ρ) be a G-Hilbert A-module, and let (F, η) be a G-Hilbert A-

submodule. We say that (F, η) is G-compactly contained in (E, ρ), and denote this by (F, η) b

(E, ρ), if there exists a contraction T ∈ K(E) whose restriction to F is idF .
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We claim that the operator T in the definition above can be taken in the fixed point

algebra K(E)G. To see this, first note that if ξ ∈ F , then

(g · T )(ξ) = ρg(T (ρg−1(ξ))) = ξ.

With dg denoting the normalized Haar measure on G, it follows that T ′ =
∫
G

(g · T ) dg is

invariant and its restriction to F is the identity.

Definition III.4.11. Let (E, ρ) and (F, η) be G-Hilbert A-modules. We say that (E, ρ) is G-

Cuntz subequivalent to (F, η), and denote this by (E, ρ) -G (F, η), if every compactly contained

G-Hilbert submodule of (E, ρ) is unitarily equivalent to a G-Hilbert submodule of (F, η).

We say that (E, ρ) is G-Cuntz equivalent to (F, η), and denote this by (E, ρ) ∼G (F, η), if

(E, ρ) -G (F, η) and (F, µ) -G (E, ν). The G-Cuntz equivalence class of the G-Hilbert A-module

(E, ρ) is denoted by [(E, ρ)].

We denote by CuGH(A,α) the set of Cuntz equivalence classes of G-Hilbert A-modules.

It is easy to check that the direct sum of G-Hilbert A-modules induces a well defined

operation on CuGH(A,α). Endow CuGH(A,α) with the partial order given by [(E, ρ)] ≤ [(F, η)]

if (E, ρ) -G (F, η). With this structure, it is clear that CuGH(A,α) is a partially ordered abelian

semigroup.

The proof of the following lemma is easy, and it is left to the reader.

Lemma III.4.12. The notion of G-compact containment for equivariant Hilbert modules from

Definition III.4.10 induces the compact containment relation on CuGH(A,α).

We now define a Cu(G)-semimodule structure on CuGH(A,α). For [(E, ρ)] ∈ CuGH(A,α) and

[µ] ∈ Cu(G), we set

[µ] · [(E, ρ)] = [(Hµ ⊗ E,µ⊗ ρ)].

Similarly, Cu(K(HA)G) has a natural Cu(G)-semimodule structure (see Definition III.4.3

for the definition of HA). Let a ∈ K(HA)G be a positive element. For a separable unitary

representation (Hµ, µ) of G, let sµ ∈ K(Hµ)G be a strictly positive element. Identify Hµ ⊗ HA

with a submodule of HA using the product in Cu(G), and set

[µ] · [a] = [sµ ⊗ a].

57



Let (Hµ, µ) be a separable unitary representation of G. Then (Hµ, µ) is unitarily equivalent

to a subrepresentation of (HC, πC), and hence there exists an operator

Vµ = Vµ,πA ∈ L(Hµ ⊗A,HA)G

satisfying V ∗µ Vµ = idHµ .

Define a map χ : CuG(A,α) → Cu(K(HA)G) as follows. Given a separable unitary

representation (Hµ, µ) of G, and given a positive element a ∈ (K(Hµ)⊗A)G, set

χ([a]G) = [VµaV
∗
µ ].

Proposition III.4.13. The map χ : CuG(A,α) → Cu(K(HA)G), described above, is well defined.

Moreover, it is an isomorphism in CuG.

Proof. We divide the proof into a number of claims.

Claim: χ is well defined, and it preserves the order. Let (Hµ, µ) and (Hν , ν) be separable

unitary representations of G, and let a ∈ (K(Hµ) ⊗ A)G and b ∈ (K(Hν) ⊗ A)G satisfy a -G b.

Then there exists a sequence (dn)n∈N in (K(Hν ,Hµ) ⊗ A)G, such that lim
n→∞

‖dnbd∗n − a‖ = 0. It

follows that VµdnV
∗
ν belongs to K(HA)G, and

(VµdnV
∗
ν )(VνbV

∗
ν )(VµdnV

∗
ν )∗ = VµdnbdnV

∗
µ → VµaV

∗
µ ,

in the norm of (K(Hµ) ⊗ A)G, as n → ∞. This shows that VµaV
∗
µ - VνbV

∗
ν , and the claim is

proved.

Claim: χ is an order embedding. Let (Hµ, µ) and (Hν , ν) be separable unitary

representations of G, and let a ∈ (K(Hµ) ⊗ A)G and b ∈ (K(Hν) ⊗ A)G satisfy χ([a]G) ≤ χ([b]G).

Set a′ = VµaV
∗
µ and b′ = VνbV

∗
ν . Then there exists a sequence (d′n)n∈N in K(HA)G such that

lim
n→∞

‖d′nb′(d′n)∗ − a′‖ = 0.

For each n ∈ N, set En = span (d′n(HA) ∪ (d′n)∗(HA)). Then En is a countably generated G-

Hilbert A-module by Lemma III.4.7. Use Lemma III.4.6 to choose a separable subrepresentation

(Hn, (πC)Hn) of (HC, πC), satisfying E ⊆ Hn ⊗ A ⊆ HA as G-Hilbert A-modules. Let Wµ,πA ∈

B(Hµ) and Wν,πA ∈ B(Hν) be the partial isometries implementing the isomorphisms of Hµ and
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Hν with Hilbert subspaces H′µ and H′ν of HC, respectively. Set

H = span

(
H′µ ∪H′ν ∪

⋃
n∈N
Hn

)
⊆ HC.

Then H is separable and the operators a′, b′, d′n, and (d′n)∗, for n ∈ N, map H ⊗ A to itself.

Moreover, the restrictions a′′, b′′, d′′n of a′, b′, d′n, for n ∈ N, to H ⊗ A, belong to K(H ⊗ A)G.

Moreover, we have

lim
n→∞

‖d′′nb′′(d′′n)∗ − a′′‖ = 0,

and thus a′′ - b′′ in K(H⊗A)G. Consequently, a′′ -G b′′. Lemma III.2.4 implies that a ∼G a′′ and

b ∼G b′′. We conclude that a -G b, as desired.

Claim: χ is surjective. Let a ∈ K(HA)G. By Lemma III.4.9, there exists a

subrepresentation (Hµ, µ) of (HC, πC) such that a(HA) ⊆ Hµ ⊗ A as G-Hilbert A-modules. Let a′

be the restriction of a to Hµ ⊗A. It is then clear that χ([a′]G) = [a], so the claim is proved.

It follows that χ is a Cu-isomorphism.

Claim: χ is a Cu(G)-semimodule morphism (and hence a CuG-isomorphism). It is enough

to check that χ preserves the Cu(G)-action. This is immediate from the definitions.

We record here the following useful corollary.

Corollary III.4.14. Let [µ] ∈ Cu(G) and let a ∈ (K(Hµ) ⊗ A)G be a positive element. Then

[(a− ε)+]G � [a]G for all ε > 0, and

[a]G = sup
ε>0

[(a− ε)+]G.

Proof. Choose an operator Vµ ∈ L(Hµ ⊗ A,HA)G satisfying V ∗µ Vµ = idHµ⊗A. Note that Ad(Vµ)

is a ∗-homomorphism, and hence it commutes with functional calculus. Use Proposition III.4.13 at
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the first and last step to get

[a]G = χ−1([VµaV
∗
µ ])

= sup
ε>0

χ−1([(VµaV
∗
µ − ε)+])

= sup
ε>0

χ−1([Vµ(a− ε)+V
∗
µ ])

= sup
ε>0

[(a− ε)+]G.

Analogously, we have

[(a− ε)+]G = χ−1([Vµ(a− ε)+V
∗
µ ])

= χ−1([(VµaV
∗
µ − ε)+])

� χ−1([VµaV
∗
µ ])

= [a]G,

as desired.

For a ∈ K(HA)G, we denote by HA,a the G-Hilbert A-module a(HA), and we let πA,a be

the compression of πA to a(HA).

Theorem III.4.15. Suppose that G is second countable. Then the map

τ : Cu(K(HA)G)→ CuGH(A,α),

defined by τ([a]) = [(HA,a, πA,a)] for a positive element a ∈ K ⊗ (K(HA)G), is a well defined

natural isomorphism in CuG.

Proof. We divide the proof into a number of claims.

Claim: τ is well defined and it preserves the partial order. To show this, it suffices to prove

that if a, b ∈ K(HA)G are positive elements with a -G b, then

(HA,a, πA,a) -G (HA,b, πA,b).

(See Definition III.4.2.)
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Let (E, (πA)|E) be a countably generated G-Hilbert A-module which is compactly

contained in (HA,a, πA,a). By Lemma III.4.9, there exists

c ∈ K (HA,a)
G ∼=

(
a(K(HC)⊗A)a

)G
such that c|E is strictly positive and c(HA,a) = E. Then K(E) ∼= c(K(HC)⊗A)c. Use

the definition of compact containment of G-Hilbert A-modules (Definition III.4.10; see also

Lemma III.4.12) to choose d ∈
(
a(K(HC)⊗A)a

)G
with ‖d‖ = 1 and dc = c. In particular,

we have (d + c − 1)+ = c. Apply Proposition III.2.2 with ε = 1 to the elements d + c -G b to

find f ∈ K (HA,b,HA,a)
G

such that (d + c − 1)+ = fbf∗. Set x = b
1
2 f∗, which is an element in

K (HA,a,HA,b)G. Then

x∗x = c and xx∗ ∈ b(K(HC)⊗A)b
G
.

Set F = x(E), and let y : E → F be the operator obtained from x by restricting its domain

to E and its codomain to F . Since x is invariant, we have y ∈ L(E,F )G. It is clear that y has

dense range. Moreover, y∗ = (x∗)|F ∈ L(F,E)G, and hence

y∗(F ) = y∗(x(E)) = y∗(x(E)) = x∗x(E) = c(E) = E.

It follows that both y and y∗ have dense range. By [162, Proposition 3.8], it follows that

E and F are unitarily equivalent. Moreover, it can be seen from the proof of that proposition

that the unitary can be chosen in LG(E,F ). This shows that (E, (πA)|E) is G-equivalent to a

submodule of (HA,b, πA,b), as desired. This proves the claim.

Claim: τ is an order embedding. Let a, b ∈ K(HA)G satisfy

(HA,a, πA,a) -G (HA,b, πA,b) .

Let ε > 0 and let f ∈ C0(0, ‖a‖] be a function that is linear on [0, ε] and constant equal to 1 on

[ε, ‖a‖]. Then f(a) belongs to
(
aK(HA)a

)G
and satisfies f(a)(a − ε)+ = (a − ε)+. It follows

that
(
HA,(a−ε)+

, πA,(a−ε)+

)
is compactly contained in (HA,a, πA,a), so there exists an equivariant

unitary

U :
(
HA,(a−ε)+

, πA,(a−ε)+

)
→ (HA,b, πA,b) .
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Set x = (a− ε)+U
∗, which is an element in K(HA,(a−ε)+

, b(HA)). Then

(a− ε)+ = xx∗ and x∗x = U(a− ε)+U
∗ ∈ K(bHA)G.

It follows that lim
n→∞

∥∥∥b 1
nx∗xb

1
n − x∗x

∥∥∥ = 0. Therefore x∗x -G b. Since we also have

(a− ε)+ = xx∗ ∼G x∗x, it follows that (a− ε)+ -G b. Since ε > 0 is arbitrary, we conclude that

[a] = sup
ε>0

[(a− ε)+] ≤ [b],

and the claim is proved.

Claim: τ is surjective. Let (E, (πA)|E) be a countably generated G-Hilbert A-module.

Since G is assumed to be second countable, (E, (πA)|E) is isomorphic to a G-Hilbert submodule of

(HA, πA), by [144, Theorem 2]. Use Lemma III.4.9 to find a ∈ K(HA)G such that (E, (πA)|E) ∼=

(HA,a, πA,a). It follows that

τ([a]) = [(HA,a, πA,a)] = [(E, (πA)|E)],

and the claim follows.

We deduce that τ is an isomorphism in Cu.

Claim: τ is a Cu(G)-semimodule morphism (and hence an isomorphism in CuG). We only

check that τ preserves the Cu(G)-action. Let (Hµ, µ) be a separable unitary representation of G,

and let sµ be a strictly positive element in K(Hµ)G. For a ∈ K(HA)G, we have

τ([µ] · [a]) = τ([sµ ⊗ a]) = [(sµ ⊗ a)(Hµ ⊗HA)] = [Hµ ⊗HA,a] = [µ] · [HA,a].

This concludes the proof of the claim and of the theorem.

The following is the main result of this section.

Corollary III.4.16. Suppose that G is second countable. Then there is a natural CuG-

isomorphism

δ : CuG(A,α) ∼= CuGH(A,α).
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Proof. By Theorem III.4.15 and Proposition III.4.13, the map δ = τ ◦ χ is the desired CuG-

isomorphism.

Julg’s Theorem and the Cu(G)-semimodule Structure on Cu(Aoα G)

The goal of this section is to prove that if α : G → Aut(A) is a continuous action of

a compact group G on a C∗-algebra A, then there is a natural Cu-isomorphism between its

equivariant Cuntz semigroup CuG(A,α) and Cu(A oα G); see Theorem III.5.3. This isomorphism

allows us to endow Cu(Aoα G) with a canonical Cu(G)-semimodule structure, and we compute it

explicitly in Theorem III.5.13.

When G is abelian, this semimodule structure is particularly easy to describe: it is given

by the dual action of α; see Proposition III.5.15. We will prove these results using the equivariant

Hilbert module picture of CuG(A,α) studied in the previous section.

Julg’s Theorem

For the rest of this section, we fix a compact group G, a C∗-algebra A, and a continuous

action α : G → Aut(A). The goal of this section is to prove the Cuntz analog of Julg’s theorem;

see Theorem III.5.3. Most of the work has already been done in the previous section, and the

only missing ingredients are Remark III.5.1, which is essentially the Peter-Weyl theorem, and

Proposition III.5.2, which is noncommutative duality.

Let L2(G) denote the Hilbert space of square integrable functions on G with respect to its

normalized Haar measure, and let λ : G→ U(L2(G)) denote the left regular representation.

Remark III.5.1. By the Peter-Weyl Theorem ([73, Theorem 5.12]), the G-Hilbert module

(HC, πC) is unitarily equivalent (see Definition III.4.2) to

(`2(N)⊗ L2(G), id`2(N) ⊗ λ).

Therefore there is an equivalence

(K(HA), πA) ∼G (K(`2(N)⊗ L2(G)⊗A),Ad(id`2(N) ⊗ λ⊗ α)).
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It follows that there is a natural ∗-isomorphism

θ : K(HA)G → K(`2(N)⊗ L2(G)⊗A)G.

The following result is standard, and it is a consequence of Landstad’s duality. See, for

example, Theorem 2.7 in [141], and specifically Example 2.9 in [141]. (The result can also be

derived from Katayama’s duality; see Theorem 8 in [146].)

Proposition III.5.2. Let G be a locally compact group, let B be a C∗-algebra, and let δ : B →

M(B⊗C∗(G)) be a normal coaction. Denote by Boδ G the corresponding cocrossed product, and

by δ̂ : G→ Aut(B oδ G) the dual action. Then there is a canonical ∗-isomorphism

ψ : (B oδ G)δ̂ → B,

which is moreover δjG − δ equivariant (see Definition 2.8 in [141]).

The following result is an analog of Julg’s Theorem ([139]; see also [199, Theorem 2.6.1]) for

the equivariant Cuntz semigroup.

Theorem III.5.3. Let G be a compact group, let A be a C∗-algebra, and let α : G → Aut(A) be

a continuous action. Then there is a natural Cu-isomorphism

σ : CuG(A,α)→ Cu(Aoα G).

Proof. Endow K(L2(G)) with the action of conjugation by the left regular representation of G,

endow K(`2(N)) with the trivial G-action, and endow K(L2(G))⊗A and K(`2(N))⊗K(L2(G))⊗A

with the corresponding tensor product actions. Then there is a natural identification

K(`2(N))⊗K(L2(G))⊗A)G = K(`2(N))⊗ (K(L2(G))⊗A)G).

Since Cu is a stable functor, there exists a natural Cu-isomorphism

κ : Cu(K(`2(N)⊗ L2(G)⊗A)G)→ Cu(K(L2(G)⊗A)G).
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By Remark III.5.1, there exists a natural ∗-isomorphism

θ : K(HA)G → K(`2(N)⊗ L2(G)⊗A)G.

Denote by ψ : (K(L2(G)) ⊗ A)G → A oα G the natural ∗-isomorphism obtained

from Proposition III.5.2 for B = A oα G and δ = α̂. (Recall that coactions of compact

groups are automatically normal; see, for example, the end of the proof of Lemma 4.8 in

[85].) With χ : CuG(A,α) → Cu(K(HA)G) denoting the natural Cu-isomorphism given by

Proposition III.4.13, define σ to be the following composition:

CuG(A,α)

σ
''

χ // Cu(K(HA)G)
Cu(θ) // Cu((K(`2(N))⊗K(L2(G))⊗A)G)

κ

��
Cu(Aoα G) Cu((K(L2(G))⊗A)G).

Cu(ψ)
oo

It is clear that σ is a natural isomorphism in the category Cu.

Semimodule structure on the crossed product

Theorem III.5.3 provides an isomorphism CuG(A,α) ∼= Cu(A oα G) as Cu-semigroups.

We can give Cu(A oα G) the unique Cu(G)-semimodule structure that makes this isomorphism

into a CuG-isomorphism. To make this result useful, we must describe this semimodule structure

internally. This takes some work, and we will need a series of intermediate results. This subsection

is based, to some extent, on [199].

The main technical difficulties are the absence of short exact sequences in the context

of semigroups, and the fact that in the construction of the equivariant Cuntz semigroup,

representations of the group G on infinite dimensional Hilbert spaces are allowed. Compactness

of G is crucial in overcoming the latter.

We need a standard definition. For a C∗-algebra A, we denote by M(A) its multiplier

algebra.

Definition III.5.4. Let α, β : G → Aut(A) be continuous actions of a locally compact group G

on a C∗-algebra A. We say that α and β are cocycle equivalent, if there exists a function ω : G →

U(M(A)) satisfying:
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1. ωgh = ωgαg(ωh) for all g, h ∈ G;

2. αg = Ad(ωg) ◦ βg for all g ∈ G;

3. For a ∈ A, the map G→ A given by g 7→ ωga is continuous.

Remark III.5.5. It is well known that cocycle equivalent actions have isomorphic associated

crossed products. Nevertheless, it does not follow from this that cocycle equivalent actions have

isomorphic equivariant Cuntz semigroups, because we do not know how to compute the Cu(G)-

semimodule structure of the crossed products. (That this is indeed the case is a consequence of

Theorem III.5.13.) In order to prove said result, however, we do need to know that some specific

cocycle conjugate actions yield isomorphic equivariant Cuntz semigroups; see Proposition III.5.6.

For the rest of the subsection, we fix a continuous action α : G → Aut(A) of a compact

group G on a C∗-algebra A.

Proposition III.5.6. Let β be an action of G on A which is cocycle equivalent to α. Suppose

that A has an increasing countable approximate identity consisting of projections which are

invariant for both α and β. Then there is a natural CuG-isomorphism CuG(A,α) ∼= CuG(A, β).

Proof. Suppose first that A is unital. Choose a cocycle ω : G → U(A) such that αg = Ad(ωg) ◦ βg

for all g ∈ G. Let (E, ρ) be a countably generated G-Hilbert (A,α)-module. Define a

representation ρω : G→ U(E) by ρωg (x) = ρg(x)ωg for all g ∈ G and all x in E.

We claim that (E, ρω) is a countably generated G-Hilbert (A, β)-module. Since E was

chosen to be countably generated to begin with, we shall only check that ρω is compatible with β

and with the Hilbert module structure. Given a ∈ A, given x ∈ E and given g ∈ G, we have

ρωg (xa) = ρg(xa)ωg = ρg(x)αg(a)ωg = ρg(x)ωgβg(a) = ρωg (x)βg(a),

as desired. Moreover, for g ∈ G and x, y ∈ E, we have

〈ρωg (x), ρωg (y)〉E = 〈ρg(x)ωg, ρg(y)ωg〉E

= ω∗g〈ρg(x), ρg(y)〉Eωg

= (Ad(ω∗g) ◦ αg)(〈x, y〉E)

= βg(〈x, y〉E),
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thus proving the claim.

The assignment (E, ρ) 7→ (E, ρω) is clearly surjective, and hence every G-Hilbert (A, β)-

module has the form (E, ρω) for some G-Hilbert (A,α)-module (E, ρ).

We claim that the assignment (E, ρ) 7→ (E, ρω) preserves G-Cuntz subequivalence. Let

(E, ρ) and (E′, ρ′) be countably generated G-Hilbert (A,α)-modules, and suppose that (E, ρ) -G

(E′, ρ′). If (F, ηω) is a G-Hilbert (A, β)-module that is compactly contained in (E, ρω), then it

is straightforward to check that (F, η) is compactly contained in (E, ρ). If (F ′, η′) is a G-Hilbert

(A,α)-module compactly contained in (E′, ρ′) such that (F ′, η′) ∼G (F, η), then one readily checks

that (F ′, (η′)ω) ∼G (F, ηω). This shows that (E, ρω) -G (E′, (ρ′)ω), and proves the claim.

Denote by ϕ : CuG(A,α) → CuG(A, β) the map given by [(E, ρ)] 7→ [(E, ρω)], where ρω is

given by ρωg (x) = ρg(x)ωg for all g ∈ G and all x in E. We claim that ϕ is a CuG-morphism.

We already showed that ϕ preserves the order. It is also easy to show that is preserves

compact containment and suprema of increasing sequences. The only non-trivial part is showing

that it is a morphism of Cu(G)-semimodules. Given a separable unitary representation (Hµ, µ) of

G, we must show that the diagram

CuG(A,α)
ϕ //

[µ]·
��

CuG(A, β)

[µ]·
��

CuG(A,α)
ϕ
// CuG(A, β)

commutes. Given a countably generated G-Hilbert (A,α)-module (E, ρ), we have

[(Hµ, µ)] · ϕ([(E, ρ)]) = [(E ⊗Hµ, ρω ⊗ µ)] .

On the other hand, the element ϕ ([(Hµ, µ)] · [(E, ρ)]) is represented by the G-Hilbert

(A, β)-module (E ⊗ Hµ, (ρ ⊗ µ)ω), so it is enough to check that both actions on Hµ ⊗ E agree.
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Let g ∈ G, let x ∈ E and let ξ ∈ Hµ. Then

((ρ⊗ µ)ω)g (x⊗ ξ) = (ρg(x)⊗ µg(ξ))ωg

= (ρg(x)ωg)⊗ µg(ξ)

= ρωg (x)⊗ µg(ξ)

= (ρω ⊗ µ)g(x⊗ ξ),

thus showing that ϕ is a CuG-morphism. Since ϕ is clearly bijective, it follows that it is an

isomorphism. Naturality is also clear. This proves the unital case.

For the general case, let (en)n∈N be an increasing approximate identity in A consisting of

projections that are invariant for both α and β. For n ∈ N, let α(n) : G → Aut(enAen) be the

action given by α
(n)
g (a) = αg(a) for all g ∈ G and a ∈ enAen, and similarly for β(n) : G →

Aut(enAen). We claim that α(n) and β(n) are exterior equivalent for all n ∈ N.

Choose a cocycle ω : G → U(M(A)) as in Definition III.5.4. For g ∈ G and n ∈ N, one

checks that

ωgenω
∗
g = (Ad(ωg) ◦ αg)(en) = βg(en) = en.

Define ω(n) : G→ U(enAen) by ω
(n)
g = enugen for g ∈ G. One readily checks that Ad(ω

(n)
g )◦

β
(n)
g = α

(n)
g for all n ∈ N and all g ∈ G. The cocycle condition is also easy to verify, so the claim is

proved.

Note that there are natural equivariant ∗-isomorphisms

(A,α) = lim−→(enAen, α
(n)) and (A, β) = lim−→(enAen, β

(n)).

By Proposition III.3.12, there are natural CuG-isomorphisms

CuG(A,α) ∼= lim−→CuG(enAen, α
(n)) and CuG(A, β) ∼= lim−→CuG(enAen, β

(n)).

For n ∈ N, denote by ϕ(n) : CuG(enAen, α
(n)) → CuG(enAen, β

(n)) the natural CuG-isomorphism

provided by the unital case of this proposition. Naturality implies that the following diagram in
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CuG is commutative:

CuG(e1Ae1, α
(1)) //

ϕ(1)

��

CuG(e2Ae2, α
(2)) //

ϕ(2)

��

· · · // CuG(A,α)

ϕ

��
CuG(e1Ae1, β

(1)) // CuG(e2Ae2, β
(2)) // · · · // CuG(A, β).

The universal property of the inductive limit in CuG shows that there exists a natural CuG-

morphism ϕ : CuG(A,α) → CuG(A, β). This map is easily seen to be an isomorphism in CuG, so

the proof is complete.

Corollary III.5.7. Suppose that A is unital and let (Hµ, µ) be a separable unitary representation

of G. Let q be any µ-invariant rank one projection on Hµ, and denote by ιq : A → A ⊗ K(Hµ)

the inclusion obtained by identifying A with q(A ⊗ K(Hµ))q. Then ιq induces a natural CuG-

isomorphism

CuG(ιq) : CuG(A,α)→ CuG(A⊗K(Hµ), α⊗Ad(µ)).

Proof. Since µ can be decomposed as a direct sum of finite dimensional representations by the

Peter-Weyl Theorem, it follows that A⊗K(Hµ) has a countable approximate identity consisting of

projections that are invariant under both α⊗Ad(µ) and α⊗ idK(Hµ). Using Proposition III.5.6 for

(A⊗K(Hµ), α⊗ Ad(λ)) and (A⊗K(Hµ), α⊗ idK(Hµ)), it follows that it is enough to assume that

the representation of G on H is trivial. The result now follows from Proposition III.3.11.

Lemma III.5.8. Suppose that A is unital and let (Hµ, µ) be a separable unitary representation

of G. Let p ∈ K(Hµ) be a µ-invariant projection and let q in K(Hµ) be any µ-invariant rank one

projection. Define equivariant homomorphisms

ϕ : (A,α)→ (A⊗K(Hµ), α⊗Ad(µ)) and ψ : (A,α)→ (A⊗K(Hµ), α⊗ idK(Hµ))

by ϕ(a) = a⊗p and ψ(a) = a⊗q for all a ∈ A. Then CuG(ψ) is an isomorphism via which CuG(ϕ)

is identified with multiplication by the class [(pHµ, µ|pHµ)] ∈ Cu(G). More explicitly, if we let

ε : CuG(A⊗K(Hµ), α⊗Ad(µ))→ CuG(A⊗K(Hµ), α⊗ idK(Hµ))

69



be the exterior equivalence isomorphism given by Proposition III.5.6, then the following CuG-

diagram commutes:

CuG(A,α)
[µ|pH]· //

CuG(ϕ)

��

CuG(A,α)

CuG(ψ)

��
CuG(A⊗K(Hµ), α⊗Ad(µ))

ε
// CuG(A⊗K(Hµ), α⊗ idK(Hµ)).

Proof. That ψ is a natural isomorphism in CuG follows from Proposition III.3.11. We only need

to check that

CuG(ψ)−1 ◦ ε ◦ CuG(ϕ) : CuG(A,α)→ CuG(A,α)

is multiplication by [µ|pHµ ].

Denote by (HA, πA) the canonical countably generated G-Hilbert (A,α)-module from

Definition III.4.3. Let (E, ρ) be a countably generated G-Hilbert (A,α)-module. Use Kasparov’s

absorption theorem (Theorem 2 in [144]) to choose a πA-invariant projection r in L(HA)G such

that (E, ρ) ∼= (rHA, πA|rHA). Then

CuG(ϕ)([(E, ρ)]) = [((r ⊗ p) (K(HA)⊗K(Hµ)) , λ⊗ µ)]

= [E ⊗ pK(Hµ), ρ⊗ µpHµ ].

Denote by µ̃ the unitary representation of G on pK(Hµ) given by µ̃g(x) = µgxµ
∗
gµg = µgx

for all g ∈ G and all x ∈ pK(Hµ). The computation above then shows that (ε◦CuG(ϕ))([E, ρ]) can

be identified with the class of the G-Hilbert (A ⊗ K(Hµ))-module (E ⊗ pK(Hµ), ρ ⊗ µ̃). We must

compare the class of (E ⊗ pK(Hµ), ρ ⊗ µ̃) with the class of CuG(ψ)([E ⊗ pK(H), ρ ⊗ Ad(µ)]), and

show that they agree.

One checks that CuG(ψ)
(
[(pHµ, µ|pHµ)] · [(E, ρ)]

)
is represented by

(
E ⊗ pHµ ⊗ qK(Hµ), ρ⊗Ad(µ)⊗ idK(Hµ)

)
.
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Evaluating the diagram in the statement at (E, ρ), we get

(E, ρ) � //
_

��

(E ⊗ pHµ, ρ⊗ µ)
_

��
(E ⊗ pHµ ⊗ qK(Hµ), ρ⊗Ad(µ)⊗ idK)

?∼=
��

(E ⊗ pK(Hµ), ρ⊗Ad(µ)) � // (E ⊗ pK(Hµ), ρ⊗ µ̃) .

It is therefore enough to check that

(
pHµ ⊗ qK(Hµ), µ|pHµ ⊗ idqK(Hµ)

) ∼= (pK(Hµ), µ̃)

as G-Hilbert K(Hµ)-modules. Fix a unit vector ξ(0) ∈ Hµ in the range of q and define

σ : pHµ ⊗ qK(Hµ)→ pK(Hµ)

by σ(ξ ⊗ b)(η) = 〈b∗(ξ(0), η)〉ξ for all ξ ∈ pHµ, for all b ∈ qK(Hµ) and for all η ∈ Hµ, and extended

linearly and continuously. Note that

(p ◦ (σ(ξ ⊗ b))) (η) = 〈b∗(ξ(0)), η〉p(ξ) = 〈b∗(ξ(0)), η〉ξ,

so the range of σ is really contained in pK(Hµ).

We claim that σ is injective. Assume that σ(ξ ⊗ b) = 0 and ξ 6= 0. It follows that

〈η, b∗(ξ(0))〉 = 0 for all η ∈ Hµ and hence b∗(ξ(0)) = 0. Thus b∗ vanishes on span{ξ(0)} = qHµ, and

in particular b = 0.

We claim that σ is surjective. Given a in K(Hµ), the map pa : Hµ → pHµ is a linear map

with finite rank. It follows from the Riesz Representation Theorem that there exist m ∈ N, rank

one projections r1, . . . , rm, unit vectors ξ
(0)
j in the range of qj for j = 1, . . . ,m, vectors ξ1, . . . , ξm

and linear maps cj ∈ qjK(Hµ) such that

pa(η) =

m∑
j=1

〈η, c∗j (ξ
(0)
j )〉ξj
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for all η ∈ Hµ. Since any two rank one projections are unitarily equivalent, it follows that there

are linear maps b1, . . . , bm ∈ qK(Hµ) such that

pa(η) =

m∑
j=1

〈b∗j (ξ(0)), η〉ξj

and thus pa = σ

(
m∑
j=1

ξj ⊗ bj

)
, showing that σ is surjective.

To show that σ is a G-Hilbert K(Hµ)-homomorphism, let ξ ∈ pHµ, let b ∈ qK(Hµ), let

c ∈ K(Hµ) and let η ∈ Hµ. Then

σ(ξ ⊗ b)(cη) = 〈cb∗(ξ(0)), η〉ξ

= 〈(bc)∗(ξ(0)), η〉ξ

= σ(ξ ⊗ bc)(η).

Finally, for g ∈ G, for b ∈ qK(Hµ), for c ∈ K(Hµ), for ξ ∈ pHµ and for η ∈ Hµ, one has

σ
(
(µ|pHµ ⊗ idqK(Hµ))g(ξ ⊗ b)

)
= σ (µgξ ⊗ b) (η)

= 〈, b∗(ξ(0)), η〉µgξ

= µg〈b∗(ξ(0)), η〉ξ

= µ̃g(σ(ξ ⊗ b))(η),

which shows that σ is equivariant. This finishes the proof.

The above result leads to a method for computing the Cu(G)-semimodule structure on

Cu(A oα G). This description makes essential use of the exterior equivalence isomorphism ε, and

similarly to what happens with equivariant K-theory, it is inconvenient when trying to use it.

To remedy this, we give an alternative description of the Cu(G)-action, which, even though it is

not as transparent as the one in Lemma III.5.8, has the advantage that all Cu-maps involved are

induced by ∗-homomorphisms.

Definition III.5.9. We define a Cu(G)-semimodule structure on Cu(A oα G) as follows. Let

(Hµ, µ) be a finite dimensional unitary representation of G, and denote by µ+ : G → U(Hµ ⊕ C)

its direct sum with the trivial representation on C. Let pHµ , pC ∈ K(Hµ ⊕ C) be the projections
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onto Hµ and C, respectively. Define equivariant ∗-homomorphism ϕHµ , ϕC : A → A ⊗ K(Hµ ⊕ C)

by

ϕHµ(a) = a⊗ pHµ and ϕC(a) = a⊗ pC

for a ∈ A. Denote by ϕHµ and ϕC the corresponding maps on the crossed products by G. The

Cu(ϕC) is invertible by Lemma III.5.8, since it corresponds to multiplication by the class of the

trivial representation. By considering these maps at the level of the Cuntz semigroups, we have

Cu(Aoα G)
Cu(ϕHµ )

// Cu
(
(A⊗K(Hµ ⊕ C))oα⊗Ad(µ+) G

) Cu(ϕC)−1

//
Cu(Aoα G).

Cu(ϕC)
oo

For s ∈ Cu(Aoα G), we set

[µ] · s =
(

Cu(ϕC)−1 ◦ Cu(ϕHµ)
)

(s).

For an arbitrary separable unitary representation (Hν , ν), use compactness of G to choose

finite dimensional unitary representations (Hµn , µn) of G such that ν ∼=
∞⊕
n=1

µn. For m ∈ N, set

νm =
m⊕
n=1

µn. For s ∈ Cu(Aoα G), we set

[ν] · s = sup
m∈N

([νm] · s) .

We must first check that in the above definition, sup
m∈N

([νm] · s) is independent of the

decomposition ν ∼=
∞⊕
n=1

µn.

Lemma III.5.10. Let (Hν , ν) be a separable unitary representation of G, and find finite

dimensional unitary representations (Hµn , µn) of G as in Definition III.5.9. For m ∈ N, set

νm =
m⊕
n=1

µn. Let s ∈ Cu(Aoα G).

1. The sequence ([νm] · s)n∈N is increasing in Cu(Aoα G).

2. The element [ν] · s = sup
m∈N

([νm] · s) is independent of the decomposition ν ∼=
⊕
n∈N

µn.

Proof. Both parts are immediate, using that Definition III.5.9 gives a Cu(G)-semimodule

structure when restricted to finite dimensional unitary representations. The proof is left to the

reader.
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Lemma III.5.11. The Cu(G)-semimodule structure on Cu(AoαG) described above is compatible

with taking suprema in Cu(G).

Proof. Let (Hµn , µn)n∈N be a sequence of separable unitary representations of G such that

([µn])n∈N is increasing in Cu(G). Set [µ] = sup
n∈N

[µn]. Without loss of generality, we can assume

that µn is a subrepresentation of µn+1 for all n ∈ N. In particular, we may assume that

Hµ =
⋃
n∈N
Hµn with Hµn ⊆ Hµn+1

for all n ∈ N. It follows that µ+ = sup
n∈N

(µ+
n ) as representations

of G on Hµ ⊕ C. Thus, for a ∈ A, we have

ϕHµ(a) = a⊗ pHµ = sup
n∈N

(a⊗ pHµn ) = sup
n∈N

(
ϕHµn (a)

)
.

Finally, since Cu(ϕC) is an isomorphism in Cu, we conclude that

sup
n∈N

([µn] · s) = sup
n∈N

(
Cu(ϕC)−1 ◦ Cu(ϕHµn )(s)

)
= Cu(ϕC)−1

(
sup
n∈N

(
Cu(ϕHµn )(s)

))
= Cu(ϕC)−1 ◦ Cu(ϕHµ)(s)

= [µ] · s,

for all s ∈ Cu(Aoα G), as desired.

Lemma III.5.12. Let S1 and S2 be semigroups in Cu, and let J1 and J2 be order ideals in

S1 and S2 respectively. For j = 1, 2, denote by ιj : Jj → Sj the canonical inclusion, and by

πj : Sj → Sj/Jj the quotient map. Assume that there is a commutative diagram in Cu

J1
ι1 //

θ

��

S1

ϕ

��

π1 // S1/J1

ψ

��
J2 ι2

// S2 π2

// S2/J2,

such that ϕ and ψ are isomorphisms. Then there exists a unique morphism θ : J1 → J2 in Cu

making the resulting diagram commute. Moreover, θ is an isomorphism.

Proof. Let x ∈ J1. Since (π2 ◦ ϕ ◦ ι1)(x) = (ψ ◦ π1 ◦ ι1)(x) = 0, it follows that (ϕ ◦ ι1)(x) belongs

to ι2(J2), that is, there exists y ∈ J2 such that (ϕ ◦ ι1)(x) = ι2(y). Define θ(x) = y. The map θ is
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well-defined because ι2(y) = ι2(y′) implies y = y′. The left square commutes by construction. We

claim that θ is an isomorphism in Cu.

Let us start by showing injectivity. Let x, x′ ∈ J1 satisfy θ(x) = θ(x′). Since ι2 ◦ θ = ϕ ◦ ι1,

we conclude that (ϕ ◦ ι1)(x) = (ϕ ◦ ι1)(x′). Now, ϕ and ι1 are injective, and thus x = x′. For

surjectivity, let y ∈ J2. Then

(π1 ◦ ϕ−1 ◦ ι2)(y) = (ψ−1 ◦ π2 ◦ ι2)(y) = 0,

so (ϕ−1 ◦ ι2)(y) ∈ ι1(J1). If x ∈ J1 satisfies ι1(x) = (ϕ−1 ◦ ι2)(y), then θ(x) = y. Hence θ is

surjective.

That θ is a semigroup homomorphism is clear. We claim that it is an order isomorphism.

Given x and x′ in J1 with x ≤ x′, it follows that (ϕ ◦ ι1)(x) ≤ (ϕ ◦ ι1)(x′). Set y = θ(x) and

y′ = θ(x′). Since ι2 is an order embedding and ι2(y) ≤ ι2(y′), this implies that y ≤ y′ as desired.

Conversely, given x and x′, suppose that θ(x) ≤ θ(x′). Then

(ϕ−1 ◦ ι2 ◦ θ)(x) = ι1(x) ≤ (ϕ−1 ◦ ι2 ◦ θ)(x′) = ι1(x′),

which implies that x ≤ x′ since ι1 is an order embedding. This finishes the proof.

We have now arrived at the main result of this section.

Theorem III.5.13. Let G be a compact group, let A be a C∗-algebra, and let α : G → Aut(A)

be a continuous action. Then there is a natural CuG-isomorphism

CuG(A,α) ∼= Cu(Aoα G),

where the Cu(G)-semimodule structure on Cu(Aoα G) is given by Definition III.5.9.

Proof. Assume first that A is unital. Let (Hµ, µ) be a finite dimensional unitary representation of

G, and let ϕHµ , ϕC, ϕHµ and ϕC be as in Definition III.5.9. By naturality of the isomorphism in
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Theorem III.5.3, there is a commutative diagram

CuG(A,α)

��

CuG(ϕHµ )
// CuG (A⊗K(Hµ ⊕ C), α⊗Ad(µ+))

��

CuG(A,α)
CuG(ϕC)oo

��
Cu(Aoα G)

Cu(ϕHµ )
// Cu

(
(A⊗K(Hµ ⊕ C))oα⊗Ad(µ+) G

)
Cu(Aoα G),

Cu(ϕC)
oo

where all vertical arrows are given by Theorem III.5.3. By Lemma III.5.8, CuG(ϕC)

corresponds to multiplication by the class of the trivial representation in the Cu(G)-semimodule

CuG (A⊗K(Hµ ⊕ C), α⊗Ad(µ+)). It follows that CuG(ϕC) is invertible. Thus Cu(ϕC) is

also invertible, since the vertical arrows are invertible. By definition, Cu(ϕC)−1 ◦ Cu(ϕHµ) is

multiplication by [µ] on Cu(A oα G). Commutativity of the diagram implies that the left vertical

arrow CuG(A,α)→ Cu(Aoα G) commutes with multiplication by [µ].

Assume now that (Hν , ν) is a separable unitary representation of G. Since G is compact,

it follows that K(Hν) has an increasing approximate identity (en)n∈N consisting of G-invariant

projections. For n ∈ N, denote by µn : G→ U(enHν) the restriction of ν. It follows that

[ν] = sup
n∈N

[µn]

in Cu(G). Since the Cu(G)-semimodule structure on Cu(A oα G) described above is compatible

with taking suprema in Cu(G) by Lemma III.5.11, it follows that the left-most vertical arrow

CuG(A,α) → Cu(A oα G) commutes with multiplication by [ν], since it commutes with

multiplication by [µn] for all n ∈ N by the above paragraph. This shows that this map is a Cu(G)-

semimodule homomorphism.

Now suppose that A is non-unital, and denote by Ã its unitization. Define an extension

α̃ : G → Aut(Ã) of α to Ã by setting α̃g(a + λ1) = αg(a) + λ1 for all a ∈ A and all λ ∈ C. The

short exact sequence of G-C∗-algebras

0→ A→ Ã→ C→ 0

induces the short exact sequence of crossed products

0→ Aoα G→ Ãoα̃ G→ C∗(G)→ 0.
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(Recall that C oid G ∼= C∗(G) for a locally compact group G.) It follows that Cu(A oα G) is an

order ideal in Cu(Ã oα̃ G), and the quotient is isomorphic to Cu(C∗(G)). The following diagram

in Cu is commutative:

Cu(Aoα G) //

ϕAC
��

Cu(Ãoα̃ G) //

ϕÃC
��

Cu(C∗(G))

ϕC
C
��

CuG(A,α) // CuG(Ã, α̃) // CuG(C, idC).

(Note that ϕAC exists even if A does not have a unit.) The vertical maps ϕÃC and ϕC
C are

isomorphisms by the unital case. By Lemma III.5.12, it follows that ϕAC is also invertible. Denote

by θ : CuG(A,α) → Cu(A oα G) the (unique) isomorphism given by Lemma III.5.12 making the

following diagram commute

CuG(A,α) //

θ

��

CuG(Ã, α̃)

��

// CuG(C, idC)

��
Cu(Aoα G) // Cu(Ãoα̃ G) // Cu(C∗(G)),

where the middle and right vertical arrows are the isomorphisms given by Theorem III.5.3.

Then θ commutes with multiplication by [µ], because the other vertical arrows commute with

multiplication by [µ] by the unital case, and the diagram is commutative. This finishes the

proof.

We illustrate these methods by computing an easy example announced in

Subsection III.3.2. Let G be a compact group, and regard Ĝ as a set (with no topology). If A

is a C∗-algebra, then we write Cu(G)⊗ Cu(A) for the Cu(G)-semimodule

Cu(G)⊗ Cu(A) = {f : Ĝ→ Cu(A) : f has countable support},

again with pointwise addition and partial order. The Cu(G)-action on Cu(G) ⊗ Cu(A) can be

described as follows. Given [µ] ∈ Cu(G) and [π] ∈ Ĝ, let mπ(µ) ∈ Z≥0 be the multiplicity of π in

µ. Then

[µ] =
∑

[π]∈Ĝ

mπ(µ) · [π].
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For f ∈ Cu(G)⊗ Cu(A), we set

([µ] · f)([π]) = mπ(µ)f([π])

for π ∈ Ĝ.

The tensor product notation is justified because of the following. One can check that

Cu(G) ∼= {f : Ĝ→ N : f has countable support},

with pointwise operations and partial order. Moreover, it is easy to check that Cu(G) ⊗ Cu(A)

really is the tensor product in the category Cu of the semiring Cu(G) and the semigroup Cu(A),

in the sense of Theorem 6.3.3 in [4].

Proposition III.5.14. Suppose that G acts trivially on A. Then CuG(A, idA) ∼= Cu(G)⊗ Cu(A).

Proof. Since G acts trivially on A, we have Aoα G ∼= A⊗ C∗(G) canonically. For [π] ∈ Ĝ, denote

by dπ the dimension of π. Then C∗(G) ∼=
⊕

[π]∈Ĝ
Mdπ , so

Aoα G ∼=
⊕

[π]∈Ĝ

Mdπ (A).

For [τ ] ∈ Ĝ, let

ρτ :
⊕

[π]∈Ĝ

Mdπ (A)→Mdτ (A)

be the corresponding surjective ∗-homomorphism.

We define a map ψ : K⊗ (AoαG)→ Cu(G)⊗Cu(A) as follows. Let a be a positive element

in

K ⊗ (Aoα G) ∼=
⊕

[π]∈Ĝ

K ⊗Mdπ (A).

Suppose first that there exists a finite subset X of Ĝ such that a belongs to
⊕

[π]∈X
(K ⊗Mdπ (A)).

Define ψ(a)([π]) = [ρπ(a)] for [π] ∈ Ĝ. Then ψ(a) has finite support, as a function Ĝ → Cu(A), so

it belongs to Cu(G)⊗ Cu(A).
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In the general case, for 0 < ε < ‖a‖, there exists a finite subset Xε of Ĝ such that the

element (a − ε)+ belongs to
⊕

[π]∈Xε
K ⊗Mdπ (A). Set ψ(a) = sup

n∈N
ψ

((
a− ‖a‖n

)
+

)
. Then ψ(a) is

a supremum of an increasing sequence of functions Ĝ → Cu(A) with finite support, so ψ(a) has

countable support.

Claim: ψ preserves Cuntz subequivalence. Let a and b be positive elements in⊕
[π]∈Ĝ

(K ⊗Mdπ (A)) satisfying a - b.

Without loss of generality, we may assume that ‖a‖ = ‖b‖ = 1. Given n ∈ N, there exists

m ∈ N such that
(
a− 1

m

)
+

-
(
b− 1

n

)
+

. Hence, ρπ

((
a− 1

m

)
+

)
- ρπ

((
b− 1

n

)
+

)
for all [π] ∈ Ĝ.

It follows that

ψ

((
a− 1

m

)
+

)
≤ ψ

((
b− 1

n

)
+

)
,

and thus ψ(a) ≤ ψ(b), and the claim is proved.

It follows that there is an order preserving semigroup morphism

ϕ : Cu(Aoα G)→ Cu(G)⊗ Cu(A)

given by ϕ([a]) = ψ(a) for all positive elements a ∈ K⊗ (Aoα G). It is clear that the restriction of

ϕ to the image in Cu(A oα G) of the positive elements in
⊕

[π]∈Ĝ
(K ⊗Mdπ (A)) with finitely many

nonzero coordinates preserves the compact containment relation and is an order embedding.

Claim: ϕ is an order embedding. Let a and b be positive elements in

⊕
[π]∈Ĝ

(K ⊗Mdπ (A)) ,

and assume that ϕ([a]) ≤ ϕ([b]) in Cu(G) ⊗ Cu(A). If there exists a finite subset X ⊆ Ĝ such

that a and b belong to
⊕

[π]∈X
(K ⊗Mdπ (A)), then it is clear that we must have [a] ≤ [b]. For

the general case, we can assume without loss of generality that ‖a‖ = ‖b‖ = 1. The sequence(
ϕ
([(

a− 1
n

)
+

]))
n∈N

is rapidly increasing by the comments before this claim. In particular, for

fixed n ∈ N, we have ϕ
([(

a− 1
n

)
+

])
� ϕ([a]). Since ϕ([b]) = sup

n∈N
ϕ
([(

b− 1
n

)
+

])
by definition of

ϕ, there exists n0 ∈ N such that

ϕ

([(
a− 1

n

)
+

])
� ϕ

([(
b− 1

m

)
+

])
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for all m ≥ n0. It follows that

[(
a− 1

n

)
+

]
≤

[(
b− 1

m

)
+

]
,

because
(
a− 1

n

)
+

and
(
b− 1

m

)
+

have only finitely many nonzero coordinates. By taking the

supremum over m first, and then over n, we deduce that [a] ≤ [b], as desired.

Claim: ϕ is surjective. Let f : Ĝ → Cu(A) be a function with countable support. Let

(πn)n∈N be an enumeration of the support of f . For n ∈ N, let an ∈ K ⊗ A be a positive element

with ‖a‖ = 1
n satisfying [an] = f(πn) in Cu(A). Let

a ∈ K ⊗ (Aoα G) ∼=
⊕

[π]∈Ĝ

(K ⊗Mdπ (A))

be the positive element determined by ρπn(a) = an for n ∈ N, and ρπ(a) = 0 for π /∈ supp(f). It is

then clear that ϕ([a]) = f .

It follows that ϕ is a Cu-isomorphism, and the proof will be complete once we prove the

following claim.

Claim: ϕ is a Cu(G)-morphism. This is immediate, because Aoα G ∼= A⊗ C∗(G), and the

module structure on the crossed product (Definition III.5.9) is easily seen to be trivial on A, and

the usual multiplication on C∗(G). We leave the details to the reader.

Similarly to what happens in equivariant K-theory, the Cu(G)-semimodule structure on

Cu(Aoα G) has a more concrete expression when G is abelian.

We saw that Cu(G) consists of the suprema of all finite linear combinations of elements

of Ĝ with coefficients in Z≥0, with coordinate-wise addition and multiplication. In particular,

it follows that a Cu(G)-semimodule structure on a partially ordered abelian semigroup that is

compatible with suprema is necessarily completely determined by multiplication by the elements

of Ĝ.

We denote by α̂ : Ĝ → Aut(A oα G) the dual action of α. In the following proposition, we

use the identification

HA =

⊕
n∈N

⊕
π∈Ĝ

Hπ

⊗A.
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Proposition III.5.15. Let G be a compact abelian group, let A be a C∗-algebra, and let α : G→

Aut(A) be a continuous action. Then for τ ∈ Ĝ and s ∈ Cu(A oα G), we have τ · s = Cu(α̂τ )(s).

More precisely, the following diagram commutes:

CuG(A,α)

σ

��

τ · // CuG(A,α)

σ

��
Cu(Aoα G)

Cu(α̂τ )
// Cu(Aoα G),

where σ : CuG(A,α)→ Cu(Aoα) is the natural Cu-isomorphism given by Theorem III.5.3.

Proof. Fix τ ∈ Ĝ. By the construction of the Cu-isomorphism CuG(A,α) ∼= Cu(A oα G) in

Theorem III.5.3, and adopting the notation in its proof, it is enough to show that the following

diagram commutes:

CuG(K(HA)G)

Cu(θ)

��

τ · // CuG(K(HA)G)

Cu(θ)

��
Cu(K(`2(N))⊗ (K(L2(G))⊗A)G)

κ

��

Cu(K(`2(N))⊗ (K(L2(G))⊗A)G)

κ

��
Cu((K(L2(G))⊗A)G)

Cu(ψ)

��

Cu((K(L2(G))⊗A)G)

Cu(ψ)

��
Cu(Aoα G)

Cu(α̂τ )
// Cu(Aoα G).

Fix a G-invariant positive element a ∈ K(HA)G, and write it as an infinite matrix a =(
an,mπ,γ

)
n,m∈N,π,γ∈Ĝ. It is easy to see that

τ · [a] =
[(
an,mπτ,γτ

)
n,m∈N,π,γ∈Ĝ

]
.

With these identifications, Cu(θ)(τ · [a]) is represented with the same matrix coefficients.

Recall that κ is induced by the inclusion

ι : (K(L2(G))⊗A)G → K(`2(N))⊗ (K(L2(G))⊗A)G
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as the upper left corner. It follows that

(κ ◦ Cu(θ))(τ · [a]) =

[(
a(1,1)
πτ,γτ

)
π,γ∈Ĝ

]
.

Finally, since the isomorphism ψ : (K(L2(G)) ⊗ A)G → A oα G provided by

Proposition III.5.2 for (B, δ) = (Aoα G, α̂) is equivariant, we conclude that

(Cu(ψ) ◦ κ ◦ Cu(θ))(τ · [a]) = [α̂τ ((Cu(ψ) ◦ κ ◦ Cu(θ))(a))] .

This concludes the proof.

We close this section with an application to invariant hereditary subalgebras. The result is

a Cuntz analog of Proposition 2.9.1 in [199].

Proposition III.5.16. Suppose that A is separable and G is second countable. Let B ⊆ A be an

α-invariant hereditary subalgebra of A, and denote by β : G → Aut(B) the compression of α. If B

is full, then the canonical inclusion induces a natural CuG-isomorphism CuG(B, β)→ CuG(A,α).

Proof. Under the canonical identification given by Theorem III.5.3, the map in the statement

becomes the map Cu(B oβ G) → Cu(A oα G) induced by the inclusion. Now, Proposition 2.9.1

in [199] shows that B oβ G is a full hereditary subalgebra of A oα G. Separability of the

objects implies, by Brown’s stability theorem, that they are stably isomorphic. It follows that

the canonical map Cu(B oβ G) → Cu(A oα G), which belongs to CuG by Theorem III.3.10, is an

isomorphism.

A Characterization of Freeness Using the Equivariant Cuntz Semigroup

In this section, we give an application of the equivariant Cuntz semigroup in the context of

free actions of locally compact spaces, which resembles Atiyah-Segal’s characterization of freeness

using equivariant K-theory; see [5]. Indeed, in Theorem III.6.6, we characterize freeness of a

compact Lie group action on a commutative C∗-algebra in terms of a certain canonical map to

the equivariant Cuntz semigroup. We define this map, for arbitrary C∗-algebras, below.

Definition III.6.1. Let α : G → Aut(A) be a continuous action of a compact group G on a C∗-

algebra A. We define a natural Cu-map φ : Cu(AG) → CuG(A,α) as follows. Given a positive
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element a ∈ K(`2(N))⊗AG, regard it as an element in (K(`2(N))⊗A)G by giving `2(N) the trivial

G-representation, and set φ([a]) = [a]G.

Remark III.6.2. Here is an alternative description of φ. Let ι : AG → A be the canonical

inclusion. Since ι is equivariant, it induces a CuG-morphism

Cu(ι) : CuG(AG)→ CuG(A,α)

between the equivariant Cuntz semigroups. Now, by Proposition III.5.14, there is a natural CuG-

isomorphism CuG(AG) ∼= Cu(G)⊗Cu(AG). Then φ is the restriction of Cu(ι) to the second tensor

factor.

We need a proposition first, which is interesting in its own right. Let α : G → Aut(A)

be a continuous action of a compact group G on a C∗-algebra A, and let a ∈ AG. We denote

by ca : G → A the continuous function with constant value equal to a. Note that ca belongs to

L1(G,A, α), and the assignment a 7→ ca defines a ∗-homomorphism c : AG → L1(G,A, α). (Recall

that the product in L1(G,A, α) is given by twisted convolution.)

Proposition III.6.3. Let α : G → Aut(A) be a continuous action of a compact group G on a

C∗-algebra A. Denote by σ : CuG(A,α)→ Cu(Aoα G) the canonical Cu-isomorphism constructed

in Theorem III.5.3. Then there is a commutative diagram

Cu(AG)

Cu(c)

��

φ // CuG(A,α)

σ
ww

Cu(Aoα G).

Proof. Abbreviate K(`2(N)) (with the trivial G-action) to K. By the construction of the map σ,

we need to show that the following diagram is commutative:

Cu(AG)

Cu(c)

��

φ // CuG(A,α)
χ // Cu(K(HA)G)

Cu(θ)

��
Cu(Aoα G) Cu((K(L2(G))⊗A)G)

Cu(ψ)
oo Cu((K ⊗K(L2(G))⊗A)G).

κ
oo
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For an irreducible representation (Hπ, π) of G, set dπ = dim(Hπ). Write

HC = `2(N)⊗

⊕
[π]∈Ĝ

 dπ⊕
j=1

Hπ

 .

Let 1G : G→ U(C) denote the trivial representation, and let

W : `2(N) ∼= `2(N)⊗H1G ↪→ HC

be the isometry corresponding to the canonical inclusion (H1G is just C). Write V : `2(N) ⊗ A →

HA for W ⊗ idA.

Let a positive element a ∈ K ⊗ AG be given. Then (χ ◦ φ)([a]) corresponds to the class of

[V aV ∗] in Cu(K(HA)G). Denote by e : L2(G)→ L2(G) the projection onto the constant functions.

With the presentation of HC used above, it is clear that Cu(θ) maps [V aV ∗] to the class of

a⊗ e ∈ (K ⊗A⊗K(L2(G)))G ∼= (K ⊗K(L2(G))⊗A)G.

Since κ is induced by the embedding (K(L2(G))⊗A)G → K⊗(K(L2(G))⊗A)G as the upper

left corner, and since ψ is equivariant (see Proposition III.5.2), it is now not difficult to check that

σ(φ([a])) agrees with [ca] in Cu(Aoα G).

We recall a version of the Atiyah-Segal completion theorem that is convenient for our

purposes. If a compact group G acts on a compact Hausdorff space X, then there is a canonical

map K∗(X/G) → K∗G(X) obtained by regarding a vector bundle on X/G as a G-vector bundle on

X (using the trivial action).

For a compact group G, we denote by IG the augmentation ideal in R(G). That is, IG is

the kernel of the dimension map R(G)→ Z.

Theorem III.6.4. (Atiyah-Segal). Let X be a compact Hausdorff space and let a compact Lie

group G act on X. The the following statements are equivalent:

1. The action of G on X is free.

2. The natural map K∗(X/G)→ K∗G(X) is an isomorphism.

3. The natural map K0(X/G)→ K0
G(X) is an isomorphism.
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Proof. That (1) implies (2) is proved in Proposition 2.1 in [249]. That (2) implies (3) is obvious.

Let us show that (3) implies (1), so assume that the natural map K0(X/G) → K0
G(X) is an

isomorphism.

An inspection of the proof of the implication (4) ⇒ (1) in Proposition 4.3 of [5] shows

that, in our context, there exists n ∈ N such that InG · KG
0 (X) = 0. Now, the R(G)-module

K∗G(X) = K0
G(X) ⊕ K1

G(X) is in fact an R(G)-algebra, where multiplication is given by tensor

product (with diagonal G-actions). In this algebra, the class of the trivial G-bundle over X is

the unit, so it belongs to K0
G(X). In particular, InG annihilates the unit of K∗G(X), and hence it

annihilates all of K∗G(X), that is, InG · KG
∗ (X) = 0. In other words, KG

∗ (X) is discrete in the IG-

adic topology. The implication (1) ⇒ (4) in Proposition 4.3 of [5] now shows that the G-action is

free.

We mention here that the implication (1) ⇒ (2) holds even if G is not a Lie group,

and even if X is merely locally compact (this is essentially due to Rieffel; see the proof of

Theorem III.6.6 below for a similar argument). However, the equivalence between (2) and (3)

may fail if X is not compact: the trivial action on R is a counterexample. This can happen even

for free actions.

Recall that a unital C∗-algebra A is said to be finite if u ∈ A and u∗u = 1 imply uu∗ = 1.

A nonunital C∗-algebra is finite if its unitization is. Finally, a C∗-algebra A is stably finite if

Mn(A) is finite for all n ∈ N. Commutative C∗-algebras and AF-algebras are stably finite, and

it is obvious that a subalgebra of a stably finite C∗-algebra is stably finite. It is an open problem

whether the tensor product of two stably finite C∗-algebras is stably finite.

Remark III.6.5. By Theorem 3.5 in [22], if A is a stably finite C∗-algebra, then the set of

compact elements in Cu(A) can be naturally identified with the Murray-von Neumann semigroup

V (A) of A.

In the next theorem, for an abelian semigroup V , we denote by G(V ) its Grothendieck

group.

Theorem III.6.6. Let X be a locally compact, metric space and let a compact group G act on

X. Consider the following statements:

1. The action of G on X is free.
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2. The canonical map φ : Cu(C0(X/G))→ CuG(C0(X)) is a Cu-isomorphism.

Then (1) implies (2). If G is a Lie group and X is compact, then the converse is also true.

Proof. Assume that the action of G on X is free, and denote by α : G → Aut(C0(X)) the induced

action. By Proposition III.6.3, under the identification CuG(C0(X), α) ∼= Cu(C0(X) oα G)

provided by Theorem III.5.3, the canonical map φ becomes the map at the level of the (ordinary)

Cuntz semigroup induced by c : C0(X)G = C0(X/G) → C0(X) oα G. Denote by e ∈ K(L2(G))

the projection onto the constant functions. By the Theorem in [238], we have c(C0(X)G) =

e(C0(X) oα G)e. Since Cu is a stable functor, it is enough to show that e is a full projection

in C0(X)oα G.

For a, b ∈ C0(X), denote by fa,b : G→ C0(X) the function given by

fa,b(g)(x) = a(x)b(g−1 · x)

for g ∈ G and x ∈ X. It is an easy consequence of the Stone-Weierstrass theorem that the set

{fa,b : a, b ∈ C0(X)}

has dense linear span in C0(X)oG. In the language of [199], this amounts to the well-known fact

that free actions of compact groups are saturated (Definition 7.1.4 in [199]).

Denote by I the ideal in C0(X)oG generated by e. Let (aλ)λ∈Λ be an approximate identity

for C0(X). Upon averaging over G, we may assume that aλ belongs to C0(X)G for all λ ∈ Λ. Let

a, b ∈ C0(X). Then fa,aλb = caλfa,b for λ ∈ Λ, and hence

fa,b = lim
λ∈Λ

fa,aλb = lim
λ∈Λ

(caλfa,b) ,

so fa,b belongs to I. We conclude that C0(X)oG = I, as desired.

Assume now that G is a compact Lie group, that X is compact, and that the canonical

map Cu(C(X/G)) → CuG(C(X)) is an isomorphism in Cu. We claim that the canonical map

K0(X/G)→ K0
G(X) is an isomorphism.

Under the natural identification given by Theorem III.5.3, the canonical inclusion

c : C(X/G) → C(X) o G induces an isomorphism Cu(c) at the level of the Cuntz semigroup
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(see also Proposition III.6.3). The algebra C(X/G) is clearly stably finite. On the other hand,

C(X) oα G is also stably finite because it is a subalgebra of the stable finite C∗-algebra

C(X) ⊗ K(L2(G)). By Remark III.6.5, the restriction of the isomorphism Cu(c) to the compact

elements of C(X/G) yields an isomorphism

ψ : V (C(X/G))→ V (C(X)oG)

between the respective Murray-von Neumann semigroups of projections. By taking the

Grothendieck construction, one gets an isomorphism

ϕ : G(V (C(X/G)))→ G(V (C(X)oG))

between the respective Grothendieck groups. We want to conclude from this that ϕ induces an

isomorphism between the K0-groups of these C∗-algebras.

Since C(X/G) is unital, we have G(V (C(X/G))) = K0(C(X/G)). However, C(X) o G

is not unital unless G is finite, and it is even not clear whether it (or its stabilization) has an

approximate identity consisting of projections. (This would also imply that its K0-group is

obtained as the Grothendieck group of its Murray-von Neummann semigroup.)

Instead, we appeal to Julg’s theorem for equivariant K-theory. Indeed, the proof given in

Theorem 2.6.1 in [199] shows that if A is a unital C∗-algebra, G is a compact group, and α : G →

Aut(A) is a continuous action, then there is a canonical isomorphism of semigroups

V G(A) ∼= V (AoG).

Since KG
0 (A) is the Grothendieck group of V G(A), it follows that the same is true for K0(AoαG).

In our context, this shows that ϕ induces an isomorphism

θ : K0(X/G)→ KG
0 (C(X)) ∼= K0

G(X).

Now, the implication (3) ⇒ (1) in Theorem III.6.4 shows that the action of G on X is

free.
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CHAPTER IV

ROKHLIN DIMENSION FOR COMPACT GROUP ACTIONS

We study the notion of Rokhlin dimension (with and without commuting towers) for

compact group actions on C∗-algebras. This notion generalizes the one introduced by Hirshberg,

Winter and Zacharias for finite groups, and contains the Rokhlin property as the zero dimensional

case. We show, by means of an example, that commuting towers cannot always be arranged,

even in the absence of K-theoretic obstructions. For a compact Lie group action on a compact

Hausdorff space, freeness is equivalent to finite Rokhlin dimension of the induced action. We

compare the notion of finite Rokhlin dimension to other existing definitions of noncommutative

freeness for compact group actions. We obtain further K-theoretic obstructions to having

an action of a non-finite compact Lie group with finite Rokhlin dimension with commuting

towers, and use them to confirm a conjecture of Phillips. Furthermore, we obtain a Rokhlin-

dimensional inequality that allows us to show that every pointwise outer action of a finite group

on a Kirchberg algebra has Rokhlin dimension at most one.

Introduction

Hirshberg, Winter and Zacharias introduced in [123] the notion of finite Rokhlin dimension

for finite group actions (as well as automorphisms), as a generalization of the Rokhlin property.

This more general notion has the Rokhlin property as its zero dimensional case, and moreover

has the advantage of not requiring the existence of projections in the underlying algebra. Finite

Rokhlin dimension is in particular much more common than the Rokhlin property.

The paper [120] consists of a further study of finite Rokhlin dimension, where the authors

extend the notion to the non-unital setting, and also derive some K-theoretical obstructions in

the commuting tower version. These obstructions are used to show that no non-trivial finite group

acts with finite Rokhlin dimension with commuting towers on either the Jiang-Su algebra Z, or

the Cuntz algebra O∞. There, Hirshberg and Phillips introduce the notion of X-Rokhlin property

for an action of a compact Lie group G and a compact free G-space X. They show that when G

is finite and X is finite dimensional, the X-Rokhlin property is equivalent to having finite Rokhlin

dimension with commuting towers in the sense of Hirshberg-Winter-Zacharias.
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This chapter, based on [83] develops the concept of Rokhlin dimension for compact group

actions on unital C∗-algebras. This notion generalizing the case of finite group actions of [123],

the Rokhlin property in the compact group case as in [122], and, most of the times, including the

X-Rokhlin property from [120], which is shown to be equivalent to finite Rokhlin dimension with

commuting towers in our sense, at least for Lie groups. The starting point of this project was the

simple observation that if α : T→ Aut(A) is an action of the circle with the Rokhlin property on a

unital C∗-algebra A, and if n is a positive integer, then the restriction of α to the finite subgroup

Zn ⊆ T has Rokhlin dimension at most one. Theorem IV.2.9 can be regarded as a significant

generalization of this fact.

This chapter is organized as follows. In Section IV.2, we introduce and systematically study

the notion of Rokhlin dimension for compact group actions on unital C∗-algebras. In particular,

we show that finite Rokhlin dimension is preserved under a number of constructions, namely

tensor products, direct limits, passage to quotients by invariant ideals, and restriction to closed

subgroups of finite codimension. In Section IV.3, we compare the notion of having finite Rokhlin

dimension (mostly in the commuting tower case) with other existing forms of freeness of group

actions on C∗-algebras. We show that in the commutative case, finite Rokhlin dimension is

equivalent to freeness of the action on the maximal ideal space; see Theorem IV.3.2. Moreover,

for a compact Lie group action, the formulation with commuting towers is equivalent to the X-

Rokhlin property introduced in [120]; see Theorem IV.3.5. We apply this to deduce that actions

with finite Rokhlin dimension with commuting towers have discrete K-theory and are totally

K-free. Theorem IV.3.22 establishes K-theoretic obstructions that are complementary to the

ones established in [120]. We use this result to confirm a Conjecture of Phillips from [199]; see

Remark IV.3.23. Our results in fact show that Phillips’ conjecture holds for a class of C∗-algebras

which is much larger than the class of AF-algebras, without assuming that the action is specified

by the way it is constructed.

We show in Example IV.3.10 that commuting towers cannot always be arranged,

even at the cost of considering additional towers, and even in the absence of K-theoretic

obstructions. Indeed, this example (originally constructed by Izumi in [132]) has Rokhlin

dimension 1 with noncommuting towers, and infinite Rokhlin dimension with commuting

towers. In Theorem IV.3.19, we obtain a Rokhlin-dimensional inequality relating the O∞ and
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O2 stabilizations of a given action. As a consequence of this, we deduce in Theorem IV.3.20 that

every pointwise outer action of a finite group on a Kirchberg algebra has Rokhlin dimension at

most one, generalizing Theorem 2.3 in [7], which is the case G = Z2.

Theorem IV.3.27 collects and summarizes the known implications between the notions

considered in Section IV.3, and it also references counterexamples that show that no other

implications hold in full generality. Finally, in Section IV.4, we give some indication of possible

directions for future work, and raise some natural questions related to our findings.

Some applications of the results in this chapter will be presented in Chapter V, and some

more will appear in [87].

Rokhlin Dimension For Compact Group Actions

We begin by recalling the definition of finite Rokhlin dimension for finite groups.

Definition IV.2.1. (See Definition 1.1 in [123].) Let G be a finite group, let A be a unital C∗-

algebra, and let α : G → Aut(A) be an action of G on A. Given a non-negative integer d, we say

that α has Rokhlin dimension d, and denote this by dimRok(α) = d, if d is the least integer with

the following property: for every ε > 0 and for every finite subset F of A, there exist positive

contractions f
(`)
g for g ∈ G and ` = 0, . . . , d, satisfying the following conditions for every ` =

0, . . . , d, for every g, h ∈ G, and for every a ∈ F :

1.
∥∥∥αh (f (`)

g

)
− f (`)

hg

∥∥∥ < ε;

2.
∥∥∥f (`)
g f

(`)
h

∥∥∥ < ε whenever g 6= h;

3.

∥∥∥∥∥ ∑g∈G ∑
`=0,...,d

f
(`)
g − 1

∥∥∥∥∥ < ε;

4.
∥∥∥[f (`)

g , a
]∥∥∥ < ε.

If one can always choose the positive contractions f
(`)
g above to moreover satisfy

∥∥∥[f (`)
g , f

(k)
h

]∥∥∥ < ε

for every g, h ∈ G and every k, ` = 0, . . . , d, then we say that α has Rohlin dimension d with

commuting towers, and denote this by dimc
Rok(α) = d.
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Given a compact group G, we denote by Lt : G → Homeo(G) the action of left translation.

With a slight abuse of notation, we will also denote by Lt the induced action of G on C(G).

Definition IV.2.1 can be generalized to the case of second countable compact groups as

follows.

Definition IV.2.2. Let G be a second countable, Hausdorff compact group, let A be a unital

C∗-algebra, and let α : G → Aut(A) be a continuous action. We say that α has Rokhlin dimension

d, if d is the least integer such that there exist equivariant completely positive contractive order

zero maps

ϕ0, . . . , ϕd : (C(G), Lt)→ (A∞,α ∩A′, α∞)

such that ϕ0(1) + . . .+ ϕd(1) = 1.

We denote the Rokhlin dimension of α by dimRok(α). If no integer d as above exists, we say

that α has infinite Rokhlin dimension, and denote it by dimRok(α) = ∞. If one can always choose

the maps ϕ0, . . . , ϕd to have commuting ranges, then we say that α has Rokhlin dimension d with

commuting towers, and write dimc
Rok(α) = d.

Remark IV.2.3. It is an easy exercise to check that if G is a finite group, then Definition IV.2.2

agrees with Definition 1.1 in [123].

It is clear that if A is commutative, then the notions of Rokhlin dimension with and

without commuting towers agree. Nevertheless, Example IV.3.10 below shows that commuting

towers cannot always be arranged, even for Z2-actions on O2 with Rokhlin dimension 1. In fact,

it seems that there really is a big difference between these two notions, although we do not know

how much they differ in general.

Remark IV.2.4. It follows from Theorem 2.3 in [271] that a unital completely positive

contractive order zero map is necessarily a homomorphism. In particular, Rokhlin dimension

zero is equivalent to the Rokhlin property as in Definition 2.3 of [122]. (We point out that the

requirement that ϕ be injective in Definition 2.3 of [122] is unnecessary: its kernel is a translation-

invariant ideal of C(G), so it must be either {0} or C(G). Since ϕ is assumed to be unital, it must

be ker(ϕ) = {0}.)

The following result is probably well-known to the experts. Since we have not been able to

find a reference, we present its proof here.
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Lemma IV.2.5. Let A and B be C∗-algebras, and let ϕ : A → B be a completely positive

contractive order zero map. Then

ker(ϕ) = {a ∈ A : ϕ(a) = 0}

is a closed two-sided ideal in A.

Proof. That ker(ϕ) is closed follows easily by continuity of ϕ. Let us now show that it is a two-

sided ideal.

Let π : C0((0, 1]) ⊗ A → B be the homomorphism determined by π(id(0,1] ⊗ a) = ϕ(a) for

all a ∈ A (see Theorem II.5.3 above). Then ker(π) is an ideal of C0((0, 1]) ⊗ A. Let a ∈ ker(ϕ)

and let x ∈ A, and assume that a is positive. Then ax belongs to ker(ϕ) if and only if id(0,1] ⊗ ax

belongs to ker(π). Denote by t1/2 the map (0, 1]→ (0, 1] given by x 7→
√
x. By functional calculus,

t1/2 ⊗ a1/2 belongs to ker(π). It follows that

id(0,1] ⊗ ax =
(
t1/2 ⊗ a1/2

)(
t1/2 ⊗ a1/2x

)
∈ ker(π)

since ker(π) is an ideal in C0((0, 1])⊗A, and hence ϕ(ax) = π(id(0,1]⊗ax) = 0. A similar argument

shows that ϕ(xa) = 0 as well, proving that ker(ϕ) is a two-sided ideal in A.

Corollary IV.2.6. Adopt the notation of Definition IV.2.2 above. Then the order zero maps

ϕ0, . . . , ϕd are either zero or injective.

Proof. For j = 0, . . . , d, the kernel Ij of ϕj is a translation invariant ideal in C(G), since ϕj is

equivariant. The result now follows from the fact that the only translation invariant ideals of

C(G) are {0} and C(G).

In particular, if dimRok(α) = d < ∞, then the maps ϕ0, . . . , ϕd from Definition IV.2.2 are

injective.

We start by presenting some permanence properties for actions of compact groups with

finite Rokhlin dimension. Not surprisingly, finite Rokhlin dimension is far more flexible than

the Rokhlin property, and it is preserved by several constructions. Most notably, finite Rokhlin

dimension for finite dimensional compact groups (in particular, for Lie groups) is inherited by the

restriction to any closed subgroup, except that the actual dimension may increase.
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We begin with a technical lemma which characterizes finite Rokhlin dimension in terms of

elements in the C∗-algebra itself, rather than its central sequence algebra.

Lemma IV.2.7. Let G be a compact group, let A be a separable unital C∗-algebra, and let

α : G→ Aut(A) be an action of G on A. Let d be a non-zero integer.

1. We have dimRok(α) ≤ d if and only if for every ε > 0, for every finite subset S of C(G),

and for every compact subset F of A, there exist completely positive contractive maps

ψ0, . . . , ψd : C(G)→ A satisfying the following conditions:

(a) ‖ψj(f)a− aψj(f)‖ < ε for all j = 0, . . . , d, for all f in S, and all a in F .

(b) ‖ψj(Ltg(f))− αg(ψj(f))‖ < ε for all j = 0, . . . , d, for all g in G, and for all f in S.

(c) ‖ψj(f1)ψj(f2)‖ < ε whenever f1 and f2 in S are orthogonal.

(d)

∥∥∥∥∥ d∑
j=0

ψj(1C(G))− 1A

∥∥∥∥∥ < ε.

2. We have dimc
Rok(α) ≤ d if and only if for every ε > 0, for every finite subset S of C(G),

and for every compact subset F of A, there exist completely positive contractive maps

ψ0, . . . , ψd : C(G)→ A satisfying the conditions listed above in addition to

‖ψj(f1)ψk(f2)− ψk(f2)ψj(f1)‖ < ε

for all j, k = 0, . . . , d and all f1 and f2 in S.

Proof. We prove (1) first. Assume that for every ε > 0, for every finite subset S of C(G), and

every finite subset F of A, there exist completely positive contractive maps ϕ0, . . . , ϕd : C(G)→ A

satisfying the conditions of the statement. Choose increasing sequences (Fn)n∈N and (Sn)n∈N

of finite subsets of A and C(G), whose union is dense in A and in C(G), respectively. Let

ψ
(n)
0 , . . . , ψ

(n)
d : C(G) → A be as in the statement for the choices Fn and 1

n . For j = 0, . . . , d,

denote by ϕj : C(G)→ A∞ the linear map given by

ϕj (κA((an)n∈N)) = κA

((
ψ

(n)
j (an)

)
n∈N

)
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for all (an)n∈N in `∞(N, A). Then ϕj is easily seen to be completely positive contractive and order

zero. It is also straightforward to check that its image is contained in A∞,α ∩ A′, and that it is

equivariant. Finally, it is immediate that
d∑
j=0

ϕj(1) = 1.

Conversely, suppose that α has Rokhlin dimension at most d. Choose completely positive

contractive order zero maps ϕ0, . . . , ϕd : C(G) → A∞,α ∩ A′ as in the definition if finite Rokhlin

dimension. Fix j in {0, . . . , d}. By Choi-Effros, there exist completely positive contractive maps

ψj = (ψ
(n)
j )n∈N : C(G) → `∞(N, A) for j = 0, . . . , d such that for all f, f1, f2 in C(G) with f1

orthogonal to f2, for all a in A, and for all g in G, we have

∥∥∥ψ(n)
j (f)a− aψ(n)

j (f)
∥∥∥→ 0∥∥∥ψ(n)

j (Ltg(f))− αg(ψ(n)
j (f))

∥∥∥→ 0∥∥∥ψ(n)
j (f1)ψ

(n)
j (f2)

∥∥∥→ 0∥∥∥∥∥∥
d∑
j=0

ψ
(n)
j (1C(G))− 1A

∥∥∥∥∥∥→ 0

Given ε > 0, given a finite subset S of C(G) and given a finite subset F of A, choose a

positive integer n such that the quantities above are all less than ε on the elements of S and F ,

respectively, and set ψj = ψ
(n)
j for j = 0, . . . , d. This finishes the proof of (1).

The proof of (2) is analogous. In particular, in the “only if” implication, one has to use

that the completely positive contractive maps ψj = (ψ
(n)
j )n∈N : C(G) → `∞(N, A) for j = 0, . . . , d

obtained from Choi-Effros, moreover satisfy

lim
n→∞

∥∥∥ψ(n)
j (f1)ψ

(n)
k (f2)− ψ(n)

k (f2)ψ
(n)
j (f1)

∥∥∥ = 0

for all f1 and f2 in C(G), and all j, k = 0, . . . , d. We omit the details.

Regarding finite Rokhlin dimension as a noncommutative analog of freeness of group

actions on topological spaces, we give the following interpretation of Theorem IV.2.8 below. Part

(1) is the analog of the fact that a diagonal action on a product space is free if only of the factors

is free; part (2) is the analog of the fact that the restriction of a free action to an invariant closed

subset is also free; and part (3) is the analog of the fact that an inverse limit of free actions is

again free.
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Theorem IV.2.8. Let A be a unital C∗-algebra let G be a compact group, and let α : G →

Aut(A) be a continuous action of G on A.

1. Let B be a unital C∗-algebra, and let β : G → Aut(B) be a continuous action of G on B.

Let A ⊗ B be any C∗-algebra completion of the algebraic tensor product of A and B for

which the tensor product action g 7→ (α⊗ β)g = αg ⊗ βg is defined. Then

dimRok(α⊗ β) ≤ min {dimRok(α),dimRok(β)}

and

dimc
Rok(α⊗ β) ≤ min {dimc

Rok(α),dimc
Rok(β)} .

2. Let I be an α-invariant ideal in A, and denote by α : G → Aut(A/I) the induced action on

the quotient. Then

dimRok(α) ≤ dimRok(α)

and

dimc
Rok(α) ≤ dimc

Rok(α).

Furthermore,

3. Let (An, ιn)n∈N be a direct system of unital C∗-algebras with unital connecting maps, and

for each n ∈ N, let α(n) : G→ Aut(An) be a continuous action such that ιn◦α(n)
g = α

(n+1)
g ◦ιn

for all n ∈ N and all g ∈ G. Suppose that A = lim−→An and α = lim−→α(n). Then

dimRok(α) ≤ lim inf
n→∞

dimRok(α(n))

and

dimc
Rok(α) ≤ lim inf

n→∞
dimc

Rok(α(n)).

Proof. We only prove the results for the noncommuting tower version; the proofs for the

commuting tower version are analogous and are left to the reader.

Part (1). The statement is immediate if both α and β have infinite Rokhlin dimension, so

assume that dimRok(α) = d <∞. Then there are equivariant completely positive contractive order
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zero maps

ϕ0, . . . , ϕd : C(G)→ A∞,α ∩A′,

such that ϕ0(1) + . . . + ϕd(1) = 1. Denote by ι : A → A ⊗ B the canonical embedding as the first

tensor factor. By Lemma II.4.4, this inclusion induces a unital homomorphism ι∞ : A∞ ∩ A′ →

(A ⊗ B)∞,α⊗β ∩ (A ⊗ B)′, and ι∞ is moreover equivariant with respect to α∞ and (α ⊗ β)∞. For

j = 0, . . . d, set

ψj = ι∞ ◦ ϕj : C(G)→ (A⊗B)∞,α⊗β ∩ (A⊗B)′.

Then ψ0, . . . , ψd are equivariant completely positive contractive order zero maps, and ψ0(1) + . . .+

ψd(1) = ϕ0(1) + . . .+ ϕd(1) = 1. Hence dimRok(α⊗ β) ≤ d and the result follows.

Part (2). The statement is immediate if α has infinite Rokhlin dimension, so suppose that

there exist a positive integer d in N and equivariant completely positive contractive order zero

maps

ϕ0, . . . , ϕd : C(G)→ A∞,α ∩A′

such that ϕ0(1) + . . .+ϕd(1) = 1. Denote by π : A→ A/I the quotient map. Lemma II.4.3 implies

that π induces a unital homomorphism

π∞ : A∞ ∩A′ → (A/I)∞,α ∩ (A/I)′.

Moreover, this homomorphism is easily seen to be equivariant. For j = 0, . . . , d, set ψj = π∞ ◦

ϕj : C(G) → (A/I)∞,α ∩ (A/I)′. Then ψj is an equivariant completely positive contractive order

zero map for all j = 0, . . . , d, and ψ0(1) + . . . + ψd(1) = ϕ0(1) + . . . + ϕd(1) = 1. It follows that

dimRok(α) ≤ d, as desired.

Part (3). The statement is immediate if lim inf
n→∞

dimRok(α(n)) = ∞. We shall therefore

assume that there exists d ∈ N such that for all m ∈ N, there is n ≥ m in N with dimRok(α(n)) ≤

d. By passing to a subsequence, we may also assume that dimRok(α(n)) ≤ d for all n ∈ N.

We use Lemma IV.2.7. Let ε > 0, let S be a finite subset of C(G), and let F be a finite

subset of A. With L = card(F ), write F = {a1, . . . , aL}, and find a positive integer n in N and
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elements b1, . . . , bL in An such that ‖aj − bj‖ < ε
2 for all j = 1, . . . , L. Choose completely positive

contractive maps ψ0, . . . , ψd : C(G) → An satisfying conditions (a) through (d) in part (1) of

Lemma IV.2.7 for ε
2 and the finite set F ′ = {b1, . . . , bL} ⊆ An. If ιn,∞ : An → A denotes the

canonical map, then it is easy to check that the completely positive contractive maps

ιn,∞ ◦ ψ0, . . . , ιn,∞ ◦ ψd : C(G)→ A

satisfy conditions (a) through (d) in part (1) of Lemma IV.2.7 for ε and the finite set F . This

shows the result in the case of non commuting towers.

The proof in the commuting towers case is analogous, using also the extra condition in part

(2) of Lemma IV.2.7. We omit the details.

In relation to part (1) of Theorem IV.2.8, we briefly describe what can go wrong

when defining the tensor product of two actions (or even just the tensor product of two

automorphisms). We are thankful to Chris Phillips for pointing this issue to us, and for providing

the following example.

Let A and B be C∗-algebras, let ϕ and ψ be automorphisms of A and B respectively,

and let ‖ · ‖q be a C∗-norm on the algebraic tensor product A ⊗alg B. There is in general no

reason why the tensor product automorphism ϕ ⊗ ψ of A ⊗alg B should extend to the completion

A⊗alg B
‖·‖q

= A ⊗q B. For example, choose A0 and B such that A0 ⊗max B and A0 ⊗min B are

not isomorphic. Set A = A0 ⊕ A0 and define the flip automorphism ϕ on A, sendining (a, b) to

(b, a) for (a, b) in A. Let ‖ · ‖q be the C∗-norm on A⊗alg B such that

A⊗q B ∼= (A0 ⊗max B)⊕ (A0 ⊗min B).

It is straightforward to check that the automorphism ϕ⊗ idB of the algebraic tensor product, does

not extend to its completion with respect to ‖ · ‖q. Note that the automorphism ϕ, when regarded

as an action of Z2 on A, has the Rokhlin property.

On the other hand, automorphisms, and more generally, actions of locally compact groups,

always extend to the maximal and minimal tensor products. In particular, if one of the factors is

nuclear, then no issues like the one exhibited above can possibly arise.
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Restrictions to closed subgroups

We now turn to restrictions of actions in relation to Rokhlin dimension. The following

result is the analog of the fact that the restriction of a free action to a (closed) subgroup is again

free.

Theorem IV.2.9. Let A be a unital C∗-algebra, let G be a finite dimensional compact group, let

H be a closed subgroup of G, and let α : G→ Aut(A) be a continuous action. Then

dimRok(α|H) ≤ (dim(G)− dim(H) + 1)(dimRok(α) + 1)− 1

and

dimc
Rok(α|H) ≤ (dim(G)− dim(H) + 1)(dimc

Rok(α) + 1)− 1

Proof. Without loss of generality, we may assume that dimRok(α) is finite.

Being a closed subspace of a finite dimensional subspace, H is finite dimensional. Let d =

dim(G/H) = dim(G) − dim(H). We will produce d + 1 completely positive contractive H-

equivariant order zero maps ϕ0, . . . , ϕd : C(H)→ C(G) with ϕ0(1) + · · ·+ϕd(1) = 1. Once we have

done this, and since these maps will obviously have commuting ranges, both claims will follow by

composing each of the maps ϕ0, . . . , ϕd with the dimRok(α) + 1 maps as in the definition of finite

Rokhlin dimension for α. The result will then be (d + 1)(dimRok(α) + 1) maps which will satisfy

the definition of finite Rokhlin dimension for α|H .

Denote by π : G → G/H the canonical surjection. By part (1) of Theorem 2 in [143], the

map π : G → G/H is a principal H-bundle. In particular, there exist local cross-sections from the

orbit space G/H to G. For every x ∈ G, let Vπ(x) be a neighborhood of π(x) in G/H where π

is trivial. Using compactness of G/H, let U be a finite subcover of G/H. Use Proposition 1.5 in

[153] to refine U to a d-decomposable covering V. In other words, V can be written as the disjoint

union of d + 1 families V0 ∪ · · · ∪ Vd of open sets, in such a way that for every k = 0, . . . , d, the

elements of Vk are pairwise disjoint.

For k = 0, . . . , d, let Vk denote the union of all the open sets in Vk, and note that there

is a cross-section defined on Vk. Let {f0, . . . , fd} be a partition of unity of G/H subordinate to

the cover {V0, . . . , Vd}. Upon replacing Vk with the open set f−1
k ((0, 1]) ⊆ Vk, we may assume

that Vk = f−1
k ((0, 1]) for all k = 0, . . . , d. For each k = 0, . . . , d, set Uk = π−1(Vk) ⊆ G,
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and observe that there is an equivariant homeomorphism Uk ∼= Vk × H, where the H-action

on Vk × H is diagonal with the trivial action on Vk and translation on H. Define a continuous

function φk : Vk ×H ∼= Uk → (0, 1]×H by

φk(x, h) = (fk(x), h)

for all (x, h) in Vk × H ∼= Uk. Then φk is continuous because the cross-section is continuous.

Moreover, φk is clearly equivariant.

Identify C0((0, 1])⊗ C(H) with C0((0, 1]×H), and for k = 0, . . . , d define

ψk : C0((0, 1])⊗ C(H)→ C(G)

by

ψk(f)(x) =

 (f ◦ φk)(x), if x ∈ Uk;

0, else.

Then ψk is a homomorphism, and it is equivariant since φk is. The map ϕk : C(H) → C(G) given

by ϕk(f) = ψk(id(0,1] ⊗ f) for f ∈ C(H) is an equivariant completely positive contractive order

zero map. Finally, using that (fk)dk=0 is a partition of unity of G/H at the last step, we have

d∑
k=0

ϕk(1) =

d∑
k=0

ψk(id(0,1] ⊗ 1) =

d∑
k=0

fk = 1.

It follows that the maps ϕ0, . . . , ϕd have the desired properties, and the proof is finished.

In some cases, restricting to a subgroup does not increase the Rokhlin dimension. In the

following proposition, the group is not assumed to be finite dimensional.

Proposition IV.2.10. Let A be a unital C∗-algebra, let G be a compact group, and let α : G →

Aut(A) be a continuous action. Let H be a closed subgroup of G, and assume that at least one of

the following holds:

1. the coset space G/H is zero dimensional (this is the case whenever H has finite index in G).

2. G =
∏
i∈I

Gi or G =
⊕
i∈I

Gi, and H = Gj for some j ∈ I.

3. H is the connected component of G containing its unit.
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Then

dimRok(α|H) ≤ dimRok(α) and dimc
Rok(α|H) ≤ dimc

Rok(α).

Proof. In all these cases, we will produce a unital H-equivariant homomorphism C(H) → C(G),

where the H action on both C(H) and C(G) is given by left translation. This is easily seen to be

equivalent to the existence of a continuous map φ : G → H such that φ(hg) = hφ(g) for all h ∈ H

and all g ∈ G.

Assuming the existence of such a homomorphism C(H) → C(G), the result will follow by

composing it with the completely positive contractive order zero maps associated with α, similarly

to what was done in parts (1) and (2) of Theorem IV.2.8.

(1). Assume that G/H is zero dimensional. By Theorem 8 in [185], there exists a

continuous section λ : G/H → G. Denote by π : G → G/H the quotient map, and define

φ : G→ H by

φ(g) = g(λ(π(g))−1

for all g ∈ G. We check that the range of φ, which a priori is contained in G, really lands in H:

π(φ(g)) = π(g)π
(
λ(π(g))−1

)
= π(g)π(g)−1 = 1

for all g ∈ G, so φ(G) ⊆ H. Continuity of φ follows from continuity of λ and from continuity of

the group operations on G. Finally, if h ∈ H and g ∈ G, then

φ(hg) = hgλ(π(hg))−1 = hgλ(π(g))−1 = hφ(g),

as desired.

(2). Both cases follow from the fact that there is a group homomorphism G → Gj

determined by (gi)i∈I 7→ gj .

(3). This follows from (1) and the fact that G/G0 is totally disconnected.

Rokhlin dimension can indeed increase when passing to a subgroup, even if the original

action has the Rokhlin property.

Example IV.2.11. Let α : T → Aut(C(T)) be given by αζ(f)(ω) = f(ζ−1ω) for ζ, ω ∈ T and

f ∈ C(T). Then α has Rokhlin dimension zero. Given n ∈ N with n > 1, identify Zn with the
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subgroup of T consisting of the n-th roots of unity. Then

dimc
Rok(α|Zn) = dimRok(α|Zn) = 1.

Indeed, dimRok(α|Zn) ≤ 1 by Theorem IV.2.9. If dimRok(α|Zn) = 0, then α|Zn would have the

Rokhlin property, which in particular would imply the existence of a non-trivial projection in

C(S1), which is a contradiction.

Even for circle actions with the Rokhlin property, there are less obvious K-theoretic

obstructions for the restriction of a circle action with the Rokhlin property to have the Rokhlin

property, besides merely the lack of projections. The reader is referred to Chapter XI for examples

and results regarding restrictions of circle actions with the Rokhlin property to finite cyclic

groups.

Comparison With Other Notions of Noncommutative Freeness

In this section, we compare the notion of finite Rokhlin dimension (with and without

commuting towers) with some of the other forms of freeness of group actions on C∗-algebras

that have been studied. The properties we discuss here include freeness of actions on compact

Hausdorff spaces in the commutative case, the Rokhlin property, discrete K-theory, local discrete

K-theory, total K-freenesss, and pointwise outerness.

We begin by comparing finite Rokhlin dimension on unital commutative C∗-algebras with

freeness of the induced action on the maximal ideal space. Notice that in the case of commutative

C∗-algebras, the distinction between commuting and non-commuting towers is irrelevant.

Lemma IV.3.1. Let G be a compact group acting on a compact Hausdorff space X. Denote by

α : G → Aut(C(X)) the induced action of G on X and let n be a non-negative integer. Then α

has Rokhlin dimension at most n if and only if there are an open cover {U0, . . . , Un} of (βN \ N)×

X consisting of G-invariant open sets, and continuous, proper, equivariant functions φj : Uj →

G× (0, 1], where the action of G on G× (0, 1] is translation on G and trivial on (0, 1].

Proof. Note that

C(X)∞,α ∩ C(X)′ = C(X)∞,α = C((βN \ N)×X),
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and that the induced action on (βN \ N) × X is trivial on βN \ N and the G-action on X. The

existence of a completely positive contractive order zero map ϕ : C(G)→ C((βN \N)×X) is easily

seen to be equivalent to the existence of an open set U in (βN \ N)×X and a continuous function

φ : U → G × (0, 1]. With this in mind, it is easy to see that ϕ is equivariant if and only if U is

G-invariant and φ is equivariant. The rest of the proof is straightforward, and is omitted.

Theorem IV.3.2. Let G be a compact Lie group and let X be a compact Hausdorff space. Let

G act on X and denote by α : G→ Aut(C(X)) the induced action of G on C(X).

1. If α has finite Rokhlin dimension, then the action of G on X is free.

2. If the action of G on X is free, then α has finite Rokhlin dimension. In fact, there are a

non-negative integer d and equivariant completely positive contractive order zero maps

ϕ0, . . . , ϕd : C(G)→ C(X)

such that
d∑
j=0

ϕj(1) = 1. Moreover, if dim(X) <∞, we have

dimRok(α) ≤ dim(X)− dim(G).

We point out that the conclusion in part (2) above really is stronger than α having finite

Rokhlin dimension, since one can choose the maps to land in C(X) rather than in its (central)

sequence algebra C(X)∞,α = C(X)∞,α ∩ C(X)′.

Proof. Part (1). Assume that there exist g ∈ G and x ∈ X with g · x = x. Choose an open

cover U0, . . . , Un of (βN \ N) × X consisting of G-invariant open sets, and continuous equivariant

functions φj : Uj → G × (0, 1] as in Lemma IV.3.1. Fix ω ∈ βN \ N and choose j ∈ {0, . . . , n}

such that (ω, x) ∈ Uj . Write φj : Uj → G × (0, 1] as φ =
(
φ(1), φ(2)

)
. Note that φ(1) : Uj → G

is equivariant, where the action of G on itself is given by left translation (and in particular, it is

free). We have

(
φ

(1)
j (ω, x), φ

(2)
j (ω, x)

)
= φj(ω, x) = φj(ω, g · x) =

(
gφ

(1)
j (ω, x), φ

(2)
j (ω, x)

)
,
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which implies that φ
(1)
j (ω, x) = gφ

(1)
j (ω, x) and hence g = 1. The action of G on X is therefore

free.

Part (2). The proof is almost identical to that of Theorem IV.2.9, using Theorem 1.1 in

[202] in place of part (1) of Theorem 2 in [143]. (Since G is a Lie group, we do not need X to

be finite dimensional for the quotient map X → X/G to be a principal G-bundle.) When X

is not necessarily finite dimensional, we simply take d to be the carinality of some open cover

U consisting of open subsets of X/G over which the fiber bundle X → X/G is trivial. When

dim(X) <∞, we have dim(X/G) = dim(X)−dim(G), so we can again use Proposition 1.5 in [153]

to refine U to a (dim(X)− dim(G))-decomposable open cover of X/G, and proceed as in the proof

of Theorem IV.2.9. We omit the details.

Remark IV.3.3. It follows from the dimension estimate in part (2) of the above theorem

that whenever a compact Lie group G acts freely on a compact Hausdorff space X of the same

dimension as G, then the induced action of G on C(X) has the Rokhlin property. In fact, in this

case it follows that X is equivariantly homeomorphic to G × (X/G), where the G-action on G is

left translation and the action on X/G is trivial. Indeed, dim(X/G) = dim(X) − dim(G), so X/G

is zero dimensional. If π : X → X/G denotes the canonical quotient map, then by Theorem 8 in

[185], there exists a continuous map λ : X/G→ X such that π ◦ λ = idX/G. One easily checks that

the map X → G× (X/G) given by x 7→ (λ(π(x)), π(x)) for x ∈ X, is a homeomorphism. It is also

readily verified that it is equivariant, thus proving the claim.

Theorem IV.3.5 below leads to a useful criterion to determine when a given action of a

compact group has finite Rokhlin dimension with commuting towers, although it is less useful if

one is interested in the actual value of the Rokhlin dimension. For most applications, however,

having the exact value is not as important as knowing that it is finite. In particular, it will follow

from said theorem that for a compact Lie group, the X-Rokhlin property for a finite dimensional

compact Hausdorff space X (as defined in Definition 1.5 in [120]), is equivalent to finite Rokhlin

dimension with commuting towers in our sense.

We first need a lemma about universal C∗-algebras generated by the images of completely

positive contractive order zero maps. We present the non-commuting tower version, as well as its

commutative counterpart, for use in a later result. In the case of a finite group action with finite
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Rokhlin dimension with commuting towers, the result below was first obtained by Ilan Hirshberg,

and its proof is contained in the proof of Lemma 1.6 in [120].

Lemma IV.3.4. Let G be a compact group and let d be a non-negative integer.

1. There exist a unital C∗-algebra C and an action γ : G → Aut(C) of G on C with the

following universal property. Let B be a unital C∗-algebra, let β : G → Aut(B) be an

action of G on B, and let ϕ0, . . . , ϕd : A → B be equivariant completely positive contractive

order zero maps such that ϕ0(1) + · · · + ϕd(1) = 1. Then there exists a unital equivariant

homomorphism ϕ : C → B.

2. There exists a compact metrizable free G-space X with the following universal property.

Let B be a unital C∗-algebra, let β : G → Aut(B) be an action of G on B, and let

ϕ0, . . . , ϕd : A → B be equivariant completely positive contractive order zero maps with

commuting ranges such that ϕ0(1) + · · · + ϕd(1) = 1. Then there exists a unital equivariant

homomorphism ϕ : C(X)→ B.

Moreover, the space X in part (2) satisfies

dim(X) ≤ (d+ 1)(dim(G) + 1)− 1.

Proof. Part (1). Set

D = ∗dj=0C0((0, 1]×G),

and let δ : G → Aut(D) be the action obtained by letting G act on each of the free factors

diagonally, with trivial action on (0, 1] and translation on G. Denote by I the ideal in D generated

by 
 d∑
j=0

id(0,1] ∗ 1C(G)

 c− c : c ∈ D

 .

Then I is δ-invariant, and hence there is an induced action γ of G on the unital quotient C =

D/I. It is clear that the C∗-algebra C and the action γ are as desired.

Part (2). Set

D =

d⊗
j=0

C0((0, 1]×G),
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and let δ : G → Aut(D) be the action obtained by letting G act on each of the tensor factors

diagonally. Then D is a commutative C∗-algebra and the action on its maximal ideal space

induced by δ is free. Denote by I the ideal in D generated by


 d∑
j=0

id(0,1] ⊗ 1C(G)

 c− c : c ∈ D

 .

Then I is δ-invariant, and hence there is an induced action γ of G on the unital quotient C =

D/I. Set X = Max(C), which is a compact metrizable space. The action on X induced by γ is

free, being the restriction of a free action to an invariant closed subset. It is clear that X is the

desired free G-space.

The dimension estimate for X follows from the fact that it is a closed subset of
d⊗
j=0

(0, 1] ×

G.

Theorem IV.3.5. Let G be a compact Lie group, let A be a unital C∗-algebra, and let α : G →

Aut(A) be a continuous action. Then α has finite Rokhlin dimension with commuting towers if

and only if there exist a finite dimensional compact free G-space X and an equivariant unital

embedding

ϕ : C(X)→ A∞,α ∩A′.

Moreover, we have the following relations between the dimension of X and the Rokhlin dimension

of α:

dim(X) ≤ (dimc
Rok(α) + 1)(dim(G) + 1)− 1

dimc
Rok(α) ≤ dim(X)− dim(G)

Proof. We begin by showing the “only if” implication. Let d = dimc
Rok(α), and denote by Y the

compact metrizable free G-space obtained as in the conclusion of part (2) in Lemma IV.3.4. By

universality of Y , there is a unital equivariant homomorphism

C(Y )→ A∞,α ∩A′.
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The kernel of this homomorphism is a G-invariant ideal of C(Y ) which has the form C0(U) for

some G-invariant open subset U of Y . Set X = Y \ U and denote by ϕ : C(X) → A∞,α ∩ A′ the

induced homomorphism. Then the G-action on X is free and ϕ is unital, equivariant and injective.

Finally, we have

dim(X) ≤ dim(Y ) ≤ (d+ 1)(dim(G) + 1)− 1,

and since G is a compact Lie group, it follows that X is finite dimensional.

We now show the “if” implication. Set d = dim(X) − dim(G) + 1 and choose completely

positive contractive order zero maps

ϕ0, . . . , ϕd : C(G)→ C(X)

as in the conclusion of part (2) of Theorem IV.3.2. It is immediate to show that the completely

positive contractive order zero maps

ϕ ◦ ϕ0, . . . , ϕ ◦ ϕd : C(G)→ A∞,α ∩A′

satisfy the conditions in the definition of finite Rokhlin dimension with commuting towers for α.

This finishes the proof.

In particular, it follows from Theorem IV.3.5 that for a compact Lie group, the X-Rokhlin

property for a compact Hausdorff space X (as defined in Definition 1.5 of [120]), is equivalent to

finite Rokhlin dimension with commuting towers.

Corollary IV.3.6. Let G be a compact Lie group, let A be a unital C∗-algebra, and let α : G →

Aut(A) be an action with dimc
Rok(α) < ∞. Then α has discrete K-theory, that is, there is n in N

such that InG ·KG
∗ (A) = 0.

Proof. Corollary 4.3 in [120] asserts that compact Lie group actions with the X-Rokhlin property

have discrete K-theory. The result follows from the fact that finite Rokhlin dimension with

commuting towers implies the X-Rokhlin property by Theorem IV.3.5.

As an application, we show that the gauge action of T on O2 does not have finite Rokhlin

dimension with commuting towers:
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Example IV.3.7. Denote by s1 and s2 the canonical generators of the Cuntz algebra O2. Let

γ : T → Aut(O2) be the gauge action, that is, the action determined by γζ(sj) = ζsj for all ζ ∈ T

and for j = 1, 2. We claim that dimc
Rok(γ) = ∞. For this, it is enough to show that no power

of the augmentation ideal IT annihilates KT
∗ (O2). Recall that the crossed product of O2 by the

gauge action is isomorphic to M2∞ ⊗ K. For n ∈ N, and under the canonical identifications given

by Julg’s Theorem (here reproduced as Theorem II.3.3), we have

InT ·KT
∗ (O2) ∼= Im

((
idK0(M2∞⊗K) −K∗(γ̂)

)n)
.

It is a well known fact that γ̂ is the unilateral shift on M2∞ ⊗ K, whose induced action on K0 is

multiplication by 2. Thus idK0(M2∞⊗K) −K0(γ̂) is multiplication by -1, which is an isomorphism

of Z
[

1
2

] ∼= KT
∗ (O2). In particular, any of its powers is also an isomorphism, and thus

InT ·KT
0 (O2) = KT

0 (O2) 6= {0}

for all n in N. This proves the claim.

We do not know whether the Rokhlin dimension (with noncommuting towers) of the gauge

action on O2 is finite, but we strongly suspect it is not.

Remark IV.3.8. Although we will not prove it here, it may be interesting to point out that if

γ : T → Aut(O2) is the gauge action from the example above, then γ ⊗ idO2 : T → Aut(O2 ⊗ O2)

has the Rokhlin property. Thus, the tensor product of two actions with infinite Rokhlin dimension

can have the Rokhlin property.

It is proved in Theorem VI.3.9 that if a compact Lie group G acts on a unital C∗-algebra A

with the Rokhlin property, then already IG annihilates KG
∗ (A). It may therefore be tempting to

conjecture that in the context of Corollary IV.3.6 above, one has

dimc
Rok(α) + 1 = min

{
n : InG ·KG

∗ (A) = 0
}
,

or at least that the right-hand side determines dimc
Rok(α). This is unfortunately not in general the

case, even for finite group actions on Kirchberg algebras that satisfy the UCT, as the following

example shows.
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Example IV.3.9. Let B and β : T → Aut(B) be the C∗-algebra and the circle action

from Example XI.3.7. As mentioned there, β has the Rokhlin property and for all m in N,

its restriction β|m to Zm ⊆ T does not have the Rokhlin property. Fix m in N. It follows

from Theorem IV.2.9 that dimc
Rok(β|m) = 1. Moreover, by Lemma XI.2.7 and part (1)

of Proposition XI.2.11, the dual action β̂|n : Zm → Aut(B o Zm) is approximately inner. In

particular 1 − K∗(β̂|n1) = 0 and thus IZm · KZm
∗ (B) = 0. If min

{
n : InZm ·K

Zm
∗ (B) = 0

}
determined the Rokhlin dimension of β|m, we should have dimc

Rok(β|m) = 0, and this would be

a contradiction.

The phenomenon exhibited above can also be encountered among free actions on spaces, as

the action of Z2 on S1 by rotation shows. Finally, we mention that it is nevertheless conceivable

that one has

min
{
n : InG ·KG

∗ (A) = 0
}
≤ dimc

Rok(α) + 1,

but we have not explored this direction any further.

Having discrete K-theory is special to actions with finite Rokhlin dimension with

commuting towers, as the following example, which was constructed by Izumi in a different

context, shows.

Let p be a projection in O∞ whose class in K0(O∞) ∼= Z is 0. We recall that the

standard Cuntz algebra Ost∞ is defined to be the corner pO∞p. It follows from Kirchberg-Phillips

classification of Kirchberg algebras in the UCT class (see [150] and [200]), that Ost∞ is the unique

unital Kirchberg algebra satisfying the UCT with K-theory given by

(K0(Ost∞),
[
1Ost∞

]
,K1(Ost∞)) ∼= (Z, 0, {0}).

Since the unit of Ost∞ is trivial in K0, there is a unital homomorphism O2 → Ost∞. Hence

there is an approximately central embedding of O2 into
⊗
n∈N
Ost∞, so it follows from Theorem 3.8 in

[151] that
⊗
n∈N
Ost∞ ∼= O2.

Example IV.3.10. (See the example on page 262 of [132].) Let p be a projection in O∞ whose

class in K0(O∞) is 0, and set u = 2p − 1. Then u is a unitary of O∞ which leaves the corner
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pO∞p ∼= Ost∞ invariant. Since
⊗
n∈N
Ost∞ is isomorphic to O2, if we let α be the infinite tensor

product automorphism α =
⊗
n∈N

Ad(u) of O2, then α determines a Z2 action on O2.

It is shown in Remark 2.5 in [7] that α has Rokhlin dimension 1 with non-commuting

towers. We claim that dimc
Rok(α) = ∞, that is, that α has infinite Rokhlin dimension with

commuting towers. We show that α does not have discrete K-theory, and the result will then

follow from Corollary IV.3.6.

It is shown in [132] that O2 oα Z2 is isomorphic to a direct limit of Bn = Ost∞ ⊕ Ost∞ with

connecting maps that on K0 are stationary and given by the matrix

 1 −1

−1 1

 .

Moreover, the dual action α̂ : Ẑ2
∼= Z2 → Aut(O2 oα Z2) is the direct limit of the actions

γn : Z2 → Aut(Bn) given by γn(a, b) = (b, a) for all (a, b) ∈ Bn = Ost∞ ⊕ Ost∞. It follows that

α̂ is multiplication by −1 on K0(O2 oα Z2) (it is given by exchanging the columns in the above

matrix). It is shown in Lemma 4.7 in [132] that K0(O2 oα Z2) ∼= Z
[

1
2

]
. Given n in N, we have

InZ2
·KZ2

0 (O2) ∼= Im
(
idK0(O2oαZ2) −K0(α̂)

)n
.

Now, idK0(O2oαZ2) −K0(α̂) is multiplication by 2 on Z
[

1
2

]
, so

(
idK0(O2oαZ2) −K0(α̂)

)n
is an isomorphism for all n in N, and in particular α does not have discrete K-theory. This proves

the claim.

It follows from the example above that the notions of Rokhlin dimension with and without

commuting towers do not in general agree. Even more, having finite Rokhlin dimension without

commuting towers is really weaker than having finite Rokhlin dimension with commuting towers.

Such phenomenon can happen even if the K-theoretic obstructions found in [120] vanish. This

answers a question that was implicitly left open in [123], at least in the finite (and compact) group

case. We do not know whether there are similar examples for automorphisms.

109



Finite Rokhlin dimension with commuting towers is not in general equivalent to having

discrete K-theory, since the trivial action on O2 clearly does not have finite Rokhlin dimension

but has discrete K-theory for trivial reasons. The following example, which was originally

constructed by Phillips with a different purpose, shows that absence of K-theory is not the only

thing that can go wrong.

Example IV.3.11. We recall the construction in Example 9.3.9 in [199] of an AF-action of

Z4 on the CAR algebra M2∞ whose restriction to Z2 is not K-free, and show that it has other

interesting properties.

For n in N, let An = M2n(C ⊕ C) and set un =
n⊗
k=1

diag(1,−1), which is a unitary in M2n

(not in An). Define connecting maps ιn : An → An+1 by

ιn(a, b) =


 a 0

0 b

 ,

 b 0

0 unau
∗
n




for (a, b) ∈ An. Define an automorphism α(n) of An by α(n)(a, b) = (unbu
∗
n, a) for (a, b) ∈ An.

Since un has order two, it is easy to see that α(n) has order four, so it defines an action of Z4 on

An. It is also readily checked that there is a direct limit action α = lim−→α(n) of Z4 on A = lim−→An.

Finally, the direct limit algebra A is easily seen to be isomorphic to the CAR algebra M2∞ by

classification.

As proved in [199], with p = (1, 0) ∈ C ⊕ C ⊆ A, it is easy to show that α2 is the action of

conjugation by the unitary 2p−1, so α|Z2 is in fact inner. In particular, α is not pointwise outer so

it does not have finite Rokhlin dimension, with or without commuting towers, by Theorem IV.3.16

below.

The crossed product Aoα Z4 is the direct limit of the inductive system

A1 ⊗ C∗(Z4)→ A2 ⊗ C∗(Z4)→ · · · → Aoα Z4.

The computation of the connecting maps is routine, and yields an isomorphism A oα Z4
∼= M2∞ ,

which is best seen using Bratteli diagrams. (Alternatively, one can compute the equivariant K-

theory of A, as is done in [199].) To show that α has discrete K-theory, it suffices to observe that
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the dual action acts via approximately inner automorphisms, since every automorphism of a UHF-

algebra is approximately inner. In particular,

IZ4
·KZ4
∗ (A) ∼= Im (1−K∗(α̂1)) = 0,

as desired.

We turn to the comparison with locally discrete K-theory and total K-freeness.

Definition IV.3.12. (See Definitions 4.1.1, 4.2.1 and 4.2.4 of [199].) Let G be a compact group,

let A be a unital C∗-algebra and let α : G→ Aut(A) be a continuous action.

1. We say that α has locally discrete K-theory if for every prime ideal P of R(G) not

containing the augmentation ideal IG, the localization KG
∗ (A)P is zero.

2. We say that α is K-free if for every invariant ideal I of A, the induced action α|I : G →

Aut(I) has locally discrete K-theory.

3. We say that α is totally K-free if for every closed subgroup H of G, the restriction α|H is

K-free.

Corollary IV.3.13. Let G be a compact Lie group, let A be a unital C∗-algebra and let α : G →

Aut(A) be an action with finite Rokhlin dimension with commuting towers. Then α has locally

discrete K-theory.

Proof. The action α has discrete K-theory by Corollary IV.3.6. It then follows from the

equivalence between (1) and (2) in Proposition 4.1.3 of [199] that α has locally discrete K-

theory.

Corollary IV.3.14. Let G be a compact Lie group, let A be a unital C∗-algebra and let α : G →

Aut(A) be an action with finite Rokhlin dimension with commuting towers. Then α is totally

K-free.

Proof. Let H be a closed subgroup of G and let I be an H-invariant ideal of A. Since the

restriction of α to H has finite Rokhlin dimension with commuting towers by Theorem IV.2.9,

we may assume that H = G, so that I is G-invariant. We have to show that the induced action of

G on I has locally discrete K-theory.
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Since the induced action of G on A/I has finite Rokhlin dimension with commuting towers

by part (2) of Theorem IV.2.8, it follows from the corollary above that it has locally discrete K-

theory. In particular, the extension

0→ I → A→ A/I → 0

is G-equivariant, and the actions on A and A/I have locally discrete K-theory. The result now

follows from Lemma 1.4 of [199].

Even total K-freeness is not equivalent to finite Rokhlin dimension.

Example IV.3.15. Let α be the trivial action of Z2 on O2. Then α is readily seen to be totally

K-free, but it clearly does not have finite Rokhlin dimension, with or without commuting towers,

by Theorem IV.3.16 below.

Recall that an action of a locally compact group G on a C∗-algebra A is said to be

pointwise outer (and sometimes just outer), if for every g ∈ G \ {1}, the automorphism αg of

A is not inner.

Theorem IV.3.16. Let A be a unital C∗-algebra, let G be a compact Lie group, and let α : G →

Aut(A) be a continuous action. If dimRok(α) <∞, then α is pointwise outer.

We point out that we do not assume that α has finite Rokhlin dimension with commuting

towers, unlike in most other results in this section.

Proof. Let g ∈ G \ {1} and assume that αg0
is inner, say αg0

= Ad(u) for some u ∈ U(A). Let C,

let γ : G→ Aut(C) and let

ϕ : C → A∞,α ∩A′

be the unital C∗-algebra, the action of G on C, and the unital equivariant homomorphism

obtained as in the conclusion of part (1) of Lemma IV.3.4.

We claim that there exists a positive element a in C with the following properties:

– The elements a and γg(a) are orthogonal.

– ‖ϕ(a)‖ = ‖ϕ(γg(a))‖ = ‖ϕ(a)− ϕ(γg(a))‖ = 1.
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Set d = dimRok(α). Recall from the proof of Lemma IV.3.4 that C is the quotient of the C∗-

algebra

D = ∗dj=0C0((0, 1]×G)

by the ideal I generated by


 d∑
j=0

id(0,1] ∗ 1C(G)

 c− c : c ∈ D

 .

Denote by π : D → C the quotient map. Choose a positive function f in C(G) such that the

supports of Ltg(f) and f are disjoint. Set b = id(0,1] ⊗ f ∈ C0((0, 1]) ⊗ C(G), and regard it as

an element in D via the embedding of C0((0, 1]) ⊗ C(G) as the first free factor. We claim that

π(b) 6= 0. Indeed, if π(b) = 0, then π(δh(b)) = 0 for all h in G. Since the action of translation

of G on itself is transitive, we conclude that the first free factor of D is contained in the kernel of

π. Now, this contradicts the fact that d = dimRok(α), since it shows that the definition of finite

Rokhlin dimension for α is satisfied with d− 1 order zero maps. This shows that π(b) 6= 0.

Upon renormalizing b, we may assume that a = π(b) is positive and has norm 1. It is clear

that a and γg(a) = π(δg(b)) are orthogonal, and that γg(a) is positive and has norm 1. Finally, it

follows from orthogonality of a and γg(a) that ‖ϕ(a)− ϕ(γg(a))‖ = 1. This proves the claim.

Let ε = 1
3 . Using Choi-Effros lifting theorem, find a completely positive contractive map

ψ : C → A satisfying the following conditions:

1. ‖[ψ(a), u]‖ < ε;

2. ‖ψ(γg(a))− αg(ψ(a))‖ < ε;

3. |‖ψ(a)− ψ(γg(a))‖ − 1| < ε.

We have

2

3
= 1− ε < ‖ψ(a)− ψ(γg(a))‖ ≤ ε+ ‖ψ(a)− αg(ψ(a))‖

= ε+ ‖ψ(a)− uψ(a)u∗‖ ≤ 2ε =
2

3
,
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which is a contradiction. This contradiction implies that αg is not inner, thus showing that α is

pointwise outer.

In the case of commuting towers, the converse to the theorem above fails quite drastically,

and there are many examples of compact group actions that are pointwise outer and have infinite

Rokhlin dimension with commuting towers. See Example IV.3.7, where it is shown that the gauge

action on O2 has infinite Rokhlin dimension with commuting towers, and see Example IV.3.10

for an example where the acting group is Z2. The second one has finite Rokhlin dimension with

non-commuting towers (in fact, Rokhlin dimension 1). We do not know whether the Rokhlin

dimension of the gauge action on O2 is finite. It is known, however, that all of its restrictions to

finite subgroups of T have Rokhlin dimension with non commuting towers equal to 1.

On the other hand, we do not know exactly how badly the converse to the theorem above

fails in the case of non-commuting towers, although we know it does not hold in full generality.

Example IV.3.17. The action α of Z2 on S1 given by conjugation has two fixed points, so it is

not free, and hence dimRok(α) = ∞. On the other hand, α is certainly pointwise outer since it is

not trivial.

We now proceed to obtain a dimensional inequality that will allow us to show that for

finite group actions on Kirchberg algebras, pointwise outerness is equivalent to having Rokhlin

dimension at most one; see Theorem IV.3.20.

We need the following lemma, whose proof is implicit in [7].

Lemma IV.3.18. Let ε > 0. Then there exist injective homomorphisms ι0, ι1 : O2 → O∞, and

positive contractions h0, h1 ∈ O2, satisfying ‖ι0(h0) + ι1(h1)− 1O∞‖ < ε.

Proof. See the first part of the proof of Theorem 3.3 in [7].

It is not clear whether we can choose ι0 and ι1 to have approximately commuting ranges. If

one were able to do this, in the following theorem one would be able to prove a similar inequality

with dimc
Rok.

The following is our main dynamical dimensional inequality. The technique boils down to a

“doubling color” argument, which is standard among the experts.
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Theorem IV.3.19. Let A be a separable unital C∗-algebra, let G be a compact group, and let

α : G→ Aut(A) be a continuous action. Then

dimRok(α⊗ idO∞) ≤ 2dimRok(α⊗ idO2
) + 1.

Proof. Since (O2 ⊗ O∞, idO2
⊗ idO∞) is equivariantly isomorphic to (O2, idO2

), and (O∞ ⊗

O∞, idO∞ ⊗ idO∞) is equivariantly isomorphic to (O∞, idO∞) by Kirchberg’s absorption theorems

([151]), we may assume that (A⊗O∞, α⊗ idO∞) is equivariantly isomorphic to (A,α).

Claim: there is a sequence θn : A⊗O∞ → A of equivariant homomorphisms satisfying

lim
n→∞

‖θn(a⊗ 1O∞)− a‖ = 0

for all a ∈ A. (This is an equivariant version of Remark 2.7 in [265], whose proof we adapt.)

Denote by ϕn : O∞⊗O∞ → O∞ the sequence of homomorphisms constructed in part (iii) of

Proposition 1.9 in [265]. Define homomorphisms θ̃n : A⊗O∞ ⊗O∞ → A⊗O∞ by θ̃n = idA ⊗ ϕn.

Then θ̃n is clearly equivariant with respect to the actions α ⊗ idO∞ ⊗ idO∞ and α ⊗ idO∞ , and

satisfies

lim
n→∞

‖θ̃n(a⊗ x⊗ 1O∞)− a⊗ x‖ = 0

for all a ∈ A and for all x ∈ O∞. The desired homomorphisms θn are obtained by appropriately

composing θ̃n with an equivariant isomorphism A⊗O∞ ∼= A.

Since the statement is trivial when dimRok(α ⊗ idO2) = ∞, we may assume that

d = dimRok(α ⊗ idO2) < ∞. We use Lemma IV.2.7. Let ε > 0, let F ⊆ A and S ⊆ C(G)

be finite subsets. Without loss of generality, the sets F and S contain only contractions. Use

Lemma IV.3.18 to choose homomorphisms ι0, ι1 : O2 → O∞, and positive contractions h0, h1 ∈ O2

satisfying ‖ι0(h0) + ι1(h1)− 1O∞‖ < ε
4 .

Choose completely positive contractive maps

ψ0, . . . , ψd : C(G)→ A⊗O2
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satisfying conditions (a) through (d) in Lemma IV.2.7 for the action α ⊗ idO2
, tolerance ε

4 , finite

set S ⊆ C(G), and finite set

{
a⊗ h

1
2

k : a ∈ F, k = 0, 1
}
∪
{

1A ⊗ h
1
2

k : k = 0, 1
}
.

For j = 0, . . . , d and k = 0, 1, define a linear map ϕ̃
(k)
j : C(G)→ A⊗O∞ by

ϕ̃
(k)
j (f) =

(
1A ⊗ ιk(hk)

1
2

)
(idA ⊗ ιk)(ψj(f))

(
1A ⊗ ιk(hk)

1
2

)
,

for f ∈ C(G). It is easy to check that ϕ̃
(k)
j is completely positive and contractive. Using the claim

above, choose an equivariant homomorphism θ : A⊗O∞ → A such that

‖θ(x⊗ 1O∞)− x‖ < ε

4

for all x ∈ F . For j = 0, . . . , d and k = 0, 1, define a completely positive contractive map

ϕ
(k)
j : C(G) → A by ϕ

(k)
j = θ ◦ ϕ̃(k)

j . We claim that the completely positive contractive maps

ϕ
(k)
j , for j = 0, . . . , d and k = 0, 1, satisfy conditions (a) through (d) in Lemma IV.2.7 for ε, F and

S.

Let j ∈ {0, . . . , d}, let k ∈ {0, 1}, let a ∈ F and let f ∈ S. Then

ϕ̃
(k)
j (f)(a⊗ 1O∞) =

(
1A ⊗ ιk(hk)

1
2

)
(idA ⊗ ιk)(ψj(f))

(
a⊗ ιk(hk)

1
2

)
=
(

1A ⊗ ιk(hk)
1
2

)
(idA ⊗ ιk)

(
ψj(f)

(
a⊗ h

1
2

k

))
≈ ε

4

(
1A ⊗ ιk(hk)

1
2

)
(idA ⊗ ιk)

((
a⊗ h

1
2

k

)
ψj(f)

)
= (a⊗ 1O∞) (1A ⊗ ιk(hk)) (idA ⊗ ιk)(ψj(f))

≈ ε
4

(a⊗ 1O∞)
(

1A ⊗ ιk(hk)
1
2

)
(idA ⊗ ιk)(ψj(f))

(
1A ⊗ ιk(hk)

1
2

)
= (a⊗ 1O∞)ϕ̃

(k)
j (f).

It follows that

∥∥∥ϕ(k)
j (f)a− aϕ(k)

j (f)
∥∥∥ ≤ 2

ε

4
+
∥∥∥ϕ̃(k)

j (f)(a⊗ 1O∞)− (a⊗ 1O∞)ϕ̃
(k)
j (f)

∥∥∥ < ε,
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so condition (a) is satisfied.

We proceed to check condition (b), so let j ∈ {0, . . . , d}, let k ∈ {0, 1}, let g ∈ G and let

f ∈ S. Then

ϕ̃
(k)
j (Ltg(f)) ≈ ε

4

(
1A ⊗ ιk(hk)

1
2

)
(idA ⊗ ιk) (ψj(Ltg(f)))

(
1A ⊗ ιk(hk)

1
2

)
≈ ε

4

(
1A ⊗ ιk(hk)

1
2

)
(idA ⊗ ιk) ((αg ⊗ idO2

)(ψj(f)))
(

1A ⊗ ιk(hk)
1
2

)
= (αg ⊗ idO∞)

((
1A ⊗ ιk(hk)

1
2

)
(idA ⊗ ιk)(ψj(f))

(
1A ⊗ ιk(hk)

1
2

))
= (αg ⊗ idO∞)

(
ϕ̃

(k)
j (f)

)
.

Since θ : A⊗O∞ → A is equivariant, we conclude that

∥∥∥ϕ(k)
j (Ltg(f))− αg

(
ϕ

(k)
j (f)

)∥∥∥ ≤ ∥∥∥ϕ̃(k)
j (Ltg(f))− (αg ⊗ idO∞)

(
ϕ̃

(k)
j (f)

)∥∥∥ < ε

2
,

as desired.

To check condition (c), let j ∈ {0, . . . , d}, let k ∈ {0, 1}, and let f1, f2 ∈ S be orthogonal.

Then

ϕ̃
(k)
j (f1)ϕ̃

(k)
j (f2)

≈2 ε4

(
1A ⊗ ιk(hk)

1
2

)
(idA ⊗ ιk)(ψj(f1))(idA ⊗ ιk)(ψj(f2))

(
1A ⊗ ιk(hk)

3
2

)
≈ ε

4
0.

Thus, ∥∥∥ϕ(k)
j (f1)ϕ

(k)
j (f2)

∥∥∥ ≤ ∥∥∥ϕ̃(k)
j (f1)ϕ̃

(k)
j (f2)

∥∥∥ < ε,

as desired.

Finally,

1∑
k=0

d∑
j=0

ϕ̃
(k)
j (1C(G)) =

1∑
k=0

(
1A ⊗ ιk(hk)

1
2

)
(idA ⊗ ιk)

 d∑
j=0

ψj(1C(G))

(1A ⊗ ιk(hk)
1
2

)

≈ ε
2

1∑
k=0

(
1A ⊗ ιk(hk)

1
2

)
(idA ⊗ ιk)(1)

(
1A ⊗ ιk(hk)

1
2

)
=

1∑
k=0

(1A ⊗ hk) ≈ ε
4

1A ⊗ 1O∞ ,
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so the proof is complete.

The following result generalizes one of the main results in [7], namely Theorem 2.3, which

is the case G = Z2. Our argument is different: instead of proving that a faithful quasifree action

of a finite group on O∞ has Rokhlin dimension at most one, and invoking results of Goldstein-

Izumi, we prove apply Theorem IV.3.19, together with a result of Izumi from [132] concerning the

Rokhlin property.

Notice that we do not assume that A satisfies the UCT.

Theorem IV.3.20. Let G be a finite group, let A be a unital Kirchberg algebra, and let α : G →

Aut(A) be an action. Then α is pointwise outer if and only if

dimRok(α) ≤ 1.

Proof. The “if” implication follows from Theorem IV.3.16. Assume now that α is pointwise outer.

By Corollary 2.11 in [132], there is an equivariant isomorphism (A⊗O∞, α⊗ idO∞). It thus follows

from Theorem IV.3.19 that dimRok(α) ≤ 2dimRok(α ⊗ idO2
) + 1. Since α is outer, Corollary 4.3 in

[132] implies that α ⊗ idO2 has the Rokhlin property, so dimRok(α ⊗ idO2) = 0. We deduce that

dimRok(α) ≤ 1, as desired.

We point out that the statement of Theorem IV.3.20 fails for compact group actions. First,

pointwise outer actions of compact groups on Kirchberg algebras do not in general absorb idO∞ .

Even worse, a pointwise outer action of T on O2, which moreover absorbs idO2 , need not even

have finite Rokhlin dimension.

For the sake of comparison, we present here the following result. The proof, which also

relies on a “doubling color” argument, was first observed by Barlak and Szabo in the context of

finite groups (and the proof appeared in the original preprint version of [8]). A variant of their

argument is included here for the sake of completeness, and we thank Barlak and Szabo for their

permission to do so.

We denote by Z the Jiang-Su algebra ([136]).
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Proposition IV.3.21. Let A be a separable unital C∗-algebra, let G be a compact group, and let

α : G→ Aut(A) be a continuous action. Let U be a UHF-algebra of infinite type. Then

dimRok(α⊗ idZ) ≤ 2dimRok(α⊗ idU ) + 1.

Proof. Again, we can assume that (A ⊗ Z, α ⊗ idZ) is equivariantly isomorphic to (A,α). Since

the case dimRok(α ⊗ idZ)∞ is trivial, we may assume that d = dimRok(α ⊗ idZ) < ∞. Let ε > 0,

let F ⊆ A and S ⊆ C(G) be finite subsets consisting of contractions. Use Lemma 6.2 of [247] with

e = 0 to choose completely positive contractive order zero maps ρ0, ρ1 : U → Z satisfying

‖ρ0(1) + ρ1(1)− 1‖ < ε

4
.

Choose completely positive contractive maps

ψ0, . . . , ψd : C(G)→ A⊗ U

satisfying conditions (a) through (d) in Lemma IV.2.7 for the action α⊗ idU , tolerance ε
4 , finite set

S ⊆ C(G), and finite set

{a⊗ ρk(1) : a ∈ F, k = 0, 1} ∪ {1A ⊗ ρk(1) : k = 0, 1} .

For j = 0, . . . , d and k = 0, 1, define a completely positive contractive map ϕ̃
(k)
j : C(G) →

A⊗Z by

ϕ̃
(k)
j (f) = (idA ⊗ ρk)(ψj(f)),

for f ∈ C(G). Using an argument similar to the one used in Theorem IV.3.19, choose an

equivariant homomorphism θ : A⊗Z → A such that

‖θ(x⊗ 1Z)− x‖ < ε

4

for all x ∈ F . For j = 0, . . . , d and k = 0, 1, define a completely positive contractive map

ϕ
(k)
j : C(G) → A by ϕ

(k)
j = θ ◦ ϕ̃(k)

j . It is then easy to check that these maps satisfy conditions (a)

through (d) in Lemma IV.2.7 for ε, F and S.
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It should be pointed out that the conclusion of Lemma 6.2 in [247] for e = 0 can also be

deduced from the computations performed in Section 5 of [183].

A rigidity result

Using the fact that compact group actions with finite Rokhlin dimension with commuting

towers are totally K-free by Corollary IV.3.14, we are able to obtain a certain K-theoretical

obstruction for a unital C∗-algebra to admit such an action. As a consequence of this K-

theoretical obstruction, we confirm a conjecture of Phillips.

Theorem IV.3.22. Let G be a compact Lie group, let A be a C∗-algebra, and let α : G →

Aut(A) be a continuous action. Assume that one and only one of either K0(A) or K1(A) vanishes.

If α is totally K-free, then G is finite.

Proof. We will show the result assuming that K1(A) = 0; the corresponding proof for the case

K0(A) = 0 is analogous.

By restricting to the connected component of the identity in G, and recalling that K-

freeness passes to subgroups, we can assume that G is connected. Assume that G is not the trivial

group. By further restricting to any copy of the circle inside a maximal torus, we may assume

that G = T. Having discrete K-theory, there exists n ∈ N such that InT ·KT
∗ (A) = 0. Equivalently,

ker((idK∗(AoαT) − α̂∗)n) = K∗(Aoα T).

Using that K1(A) = 0, it follows from the Pimsner-Voiculescu exact sequence associated to α (see

Subsection 10.6 in [13]),

K0(Aoα T)
1−K0(α̂) // K0(Aoα T) // K0(A)

��
K1(A)

OO

K1(Aoα T)oo K1(Aoα T),
1−K1(α̂)

oo

that the map idK0(AoαT) − α̂0 is injective. This implies that K0(A oα T) = 0 and the remaining

potentially non-zero terms in the Pimsner-Voiculescu exact sequence yield the short exact

sequence

0→ K0(A)→ K1(Aoα T)→ K1(Aoα T)→ 0,
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where the last map is idK1(AoαT) − α̂1. Being surjective, every power of it is surjective, and hence

the identity

ker((idK1(AoαT) − α̂1)n) = K1(Aoα T)

forces K1(Aoα T) = 0. In this case, it must be K0(A) = 0 as well, which contradicts the fact that

K0(A) is not zero.

Recall that an AF-action is an action on an AF-algebra obtained as a direct limit of actions

on finite dimensional C∗-algebras. It was shown in [12] that not every action on an AF-algebra is

an AF-action, even when the group is Z2.

Remark IV.3.23. Conjecture 9.4.9 in [199] says that there does not exist a totally K-free AF-

action of a non-trivial connected compact Lie group on an AF-algebra. Theorem IV.3.22 above

confirms this conjecture of Phillips, for a much larger class of C∗-algebras, and without assuming

that the action is specified by the way it is constructed.

Corollary IV.3.24. No non-finite compact Lie group admits an action with finite Rokhlin

dimension with commuting towers on a C∗-algebra with exactly one vanishing K-group. In

particular, there are no such actions on AF-algebras, AI-algebras, the Cuntz algebras On for

n ∈ {3, . . . ,∞}, or the Jiang-Su algebra Z.

We make some comments about what happens for finite groups. Many AF-algebras

(although not all of them) as well as all Cuntz algebras On with n < ∞, admit finite group

actions with finite Rokhlin dimension. In fact, they even admit actions of some finite groups with

the Rokhlin property (although there are severe restrictions on the cardinality of the group in

each case). On the other hand, Theorem 4.7 in [120] asserts that O∞ and Z do not admit any

finite group action with finite Rokhlin dimension.

We specialize to AF-algebras now, since a little more can be said in this case. Recall that

an action α of a locally compact group G on a unital C∗-algebra is said to be inner if there exists

a continuous group homomorphism u : G→ U(A) such that αg = Ad(u(g)) for all g ∈ G.

Definition IV.3.25. An AF-action α of a locally compact group G on a unital C∗-algebra A

is said to be locally representable if there exists a sequence (An)n∈N of unital finite dimensional

subalgebras of A such that
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–
⋃
n∈N

An is dense in A

– αg(An) ⊆ An for all g ∈ G and all n in N.

– α|An is inner for all n in N.

Product type actions on UHF-algebras are examples of locally representable actions. Such

actions have been classified in terms of their equivariant K-theory by Handelman and Rossmann

in [109].

Using Theorem IV.3.22 and a result from [199], we are able to describe all locally

representable actions α of a compact Lie group G on an AF-algebra with dimc
Rok(α) < ∞:

the group G must be finite, and all such actions are conjugate to a specific model action µG, so

in particular they all have the Rokhlin property. The model action µG : G → Aut(M|G|∞) is

the infinite tensor product of copies of the left regular representation. (We identify M|G| with

K(`2(G)) in the usual way.) It is well known that µG (and any tensor product of it with any other

action) has the Rokhlin property; see [132].

Corollary IV.3.26. Let G be a compact Lie group, let A be a unital AF-algebra, and let

α : G→ Aut(A) be a locally representable AF-action. Then the following are equivalent:

1. α has the Rokhlin property;

2. α has finite Rokhlin dimension with commuting towers;

3. α is totally K-free;

4. α has discrete K-theory.

Moreover, if any of the above holds, then G must be finite and there is an equivariant

isomorphism

(A,α) ∼= (A⊗M|G|∞ , idA ⊗ µG).

In particular, α absorbs µG tensorially.

Proof. The implications (1) ⇒ (2) ⇒ (3) are true in general. The equivalence between (3) and (4)

follows from Theorem 9.2.4 of [199]. In particular, any of the conditions (1) through (4) implies

that α is totally K-free, so G must be finite by Theorem IV.3.22. Now, the fact that the second
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condition implies the fifth in Theorem 9.2.4 of [199], which in turn follows from the classification

results in [109], shows that (3) implies the existence of an equivariant isomorphism

(A,α) ∼= (A⊗M|G|∞ , idA ⊗ µG).

We conclude that α has the Rokhlin property, so (3) implies (1).

The final claim follows from the fact that µG absorbs itself tensorially.

We close this section by summarizing the known implications between the notions we have

studied in this section.

Theorem IV.3.27. Let G be a compact Lie group, let A be a unital C∗-algebra and let α : G →

Aut(A) be a continuous action. Consider the following conditions for the action α:

(a) Rokhlin property.

(b) Finite Rokhlin dimension with commuting towers, dimc
Rok(α) <∞.

(c) X-Rokhlin property for some free G-space X.

(d) Finite Rokhlin dimension, dimRok(α) <∞.

(e) Pointwise outerness.

(f) Discrete K-theory.

(g) Total K-freeness.

We have the following implications, where a theorem or corollary is referenced when it

proves the implication in question:
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(c) (d)
Theorem IV.3.16 +3 (e)

(a)
Remark IV.2.4 +3 (b)

��

Theorem IV.3.5

KS 6>

Corollary IV.3.6 +3

Corollary IV.3.14

 (

(f)

(g).

None the above arrows can be reversed in full generality, and presumably there are no other

implications between the stated conditions. In the diagram below, a dotted arrow means that the

implication does not hold in general, and in each case a counterexample is referenced:

(d)

Example IV.3.10

��

Example IV.3.10

zz

(e)
Example IV.3.17oo

(a) (b)
Example IV.2.11oo (f)

Example IV.3.11oo

(g).

Example IV.3.15

dd

Example 4.1.7 in [199]

::

Finally, some of the arrows in the first diagram can be reversed in special situations:

1. If A is commutative, then conditions (b), (c), (d), (f) and (g) are all equivalent to each other,

and equivalent to freeness of the action on the maximal ideal space, by Theorem IV.3.5 and

Atiyah-Segal completion theorem (see, for example, Theorem 1.1.1 in [199]). Condition

(e) is not equivalent to the others by Example IV.3.17, and neither is condition (a) by

Example IV.2.11.
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2. If A is an AF-algebra and α is a locally representable AF-action (see Definition IV.3.25),

then conditions (a), (b), (c), (f) and (g) are equivalent by Corollary IV.3.26.

3. If A is a Kirchberg algebra and G = Z2 (and possibly also if G is any finite group), then (e)

and (f) are equivalent by Theorem 2.3 in [7].

Outlook and Open Problems

In this last section, we give some indication of possible directions for future work, and raise

some natural questions related to our findings.

Although some of our results, particularly in Section 4, assume that the acting group is a

Lie group, this is probably not needed everywhere. Our first suggested problem is then:

Problem IV.4.1. Extend some of the results in this chapter to actions of not necessarily finite

dimensional compact groups.

We point out that the assumption that G be a Lie group in Corollary 4.3 in [120] is

necessary, since it relies on Atiyah-Segal completion Theorem (see [5], and see Theorem 1.1.1 in

[199]), for which one needs the representation ring R(G) to be finitely generated. We suspect that

Corollary IV.3.6 is not true in general for arbitrary compact groups (it probably already fails for

actions on compact spaces), but it may be the case that all compact group actions with finite

Rokhlin dimension with commuting towers have locally discrete K-theory.

Somewhat related, we ask:

Question IV.4.2. Is finite Rokhlin dimension with commuting towers equivalent to the X-

Rokhlin property for arbitrary compact groups?

Maybe one should start with the commutative case:

Question IV.4.3. Is finite Rokhlin dimension for actions on commutative C∗-algebras, equivalent

to freeness of the induced action on the maximal ideal space for arbitrary compact groups?

For compact Lie groups, the answer is yes in both cases; see Theorem IV.3.5 and

Theorem IV.3.2. It was crucial in the proofs of said theorems that free actions of compact

Lie groups have local cross-sections. We suspect that the answer to Question IV.4.2 and

Question IV.4.3 is ‘no’, and it is possible that the action of G =
∏
n∈N

Zn on X =
∏
n∈N

S1 by
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coordinate-wise rotation is a counterexample (to both questions). Such action has the X-Rokhlin

property and is free, but the quotient map X → X/G is known not to have local cross-sections,

since X is not locally homeomorphic to X/G × G. We have not checked, however, whether this

action has finite Rokhlin dimension.

The results in [7] show that for Z2-actions on Kirchberg algebras, pointwise outerness

implies Rokhlin dimension at most 1 with noncommuting towers. It is conceivable that a similar

result holds for a larger class of finite groups, and presumably all of them.

Question IV.4.4. Is pointwise outerness equivalent to finite Rokhlin dimension (with

noncommuting towers) for finite group actions on Kirchberg algebras?

If the question above has an affirmative answer, as the results in [7] suggest, one may try

to prove the corresponding result for simple unital separable nuclear C∗-algebras with tracial rank

zero, where presumably some additional assumptions will be needed.

Alternatively,

Problem IV.4.5. Find obstructions (not necessarily K-theoretical) for having an action of a

finite (or compact) group with finite Rokhlin dimension with noncommuting towers.

The results in Section XI.2 suggest the following:

Conjecture IV.4.6. Let G be a compact Lie group and let α : G → Aut(O2) be an action with

finite Rokhlin dimension with commuting towers. Then α has the Rokhlin property.

Example IV.3.10 shows that the corresponding statement for noncommuting towers is in

general false.

Based on Corollary IV.3.6 and the comments and examples after it, we ask:

Question IV.4.7. If α : G → Aut(A) is an action of a compact Lie group on a unital C∗-algebra

A and dimc
Rok(α) <∞, does one have

min
{
n : InG ·KG

∗ (A) = 0
}
≤ dimc

Rok(α) + 1,

or any other relationship between these quantities?
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Example IV.3.9 shows that one cannot in general expect equality to hold.

Finally, the following problem is likely to be challenging:

Problem IV.4.8. Can actions with finite Rokhlin dimension with commuting towers on unital

Kirchberg algebras satisfying the UCT be classified, in a way similar to what was done in [133]

for finite group actions with the Rokhlin property, or in Chapter IX for circle actions with the

Rokhlin property?

Some of these questions will be addressed in [87].
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CHAPTER V

REGULARITY PROPERTIES AND ROKHLIN DIMENSION

We show that formation of crossed products and passage to fixed point algebras by compact

group actions with finite Rokhlin dimension preserve the following regularity properties: finite

decomposition rank, finite nuclear dimension, and tensorial absorption of the Jiang-Su algebra, the

latter in the formulation with commuting towers.

Introduction

The Elliott conjecture predicts that simple, separable, nuclear C∗-algebras may be classified

by their so-called Elliott invariant, which is essentially K-theoretical in nature. Despite the

great success that the classification program enjoyed in its beginnings (see Section 4 of [62] for

a detailed account), the first counterexamples appeared in the mid to late 1990’s, due to Rørdam

([236]) and Toms ([263]). These examples suggest two alternatives: either the invariant should

be enlarged (to include, for example, the Cuntz semigroup), or the class of C∗-algebras should

be restricted, assuming further regularity properties (stronger than nuclearity). Significant effort

has been put into both directions, and the present chapter is a contribution to the second one of

these (in particular, to the verification of certain regularity properties for specific crossed product

C∗-algebras).

The regularity properties that have been studied are of very different nature: topological,

analytical and algebraic. These are: finite nuclear dimension (or finite decomposition rank, in the

stably finite case); tensorial absorption of the Jiang-Su algebra; and strict comparison of positive

elements. These notions are surveyed in [62], and we briefly recall what we will use in Section V.2.

Despite their seemingly different flavors, Toms and Winter conjectured these notions

to be equivalent for all unital, nuclear, separable, non-elementary, simple C∗-algebras. Some

implications hold in full generality, as was shown by Rørdam ([237]) and Winter ([269] and [270])),

and several partial results are available for the remaining implications ([182], [152], [246], and

[264]). More recently, Sato, White and Winter showed that the Toms-Winter conjecture is true

if one moreover assumes that the C∗-algebra in question has at most one trace (Corollary C in
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[247]). It should also be pointed out that all three regularity properties are satisfied by every

C∗-algebra in any of the classes considered by the existing classification theorems.

In view of their importance in the classification program, it is useful to know what

constructions preserve these regularity properties. In this chapter, which is based on [86], we

show that formation of crossed products and passage to fixed point algebras preserve finiteness

of nuclear dimension (Theorem V.3.4), finiteness of decomposition rank (Theorem V.3.3), and

tensorial absorption of the Jiang-Su algebra (Theorem V.4.4), provided that the action has

finite Rokhlin dimension in the sense of Definition IV.2.2 (for Jiang-Su absorption, one needs to

assume the formulation with commuting towers). Our work generalizes results for finite groups of

Hirshberg, Winter and Zacharias from [123], where they also studied similar questions for crossed

products by automorphisms.

The last two sections contain, respectively, examples where our methods can be applied

to obtain information that does not follow from known methods, and a couple of suggestions for

future work.

Preliminaries on Regularity Properties

This section contains some background notions on regularity properties for C∗-algebras.

We limit ourselves to collecting the definitions and results that will be needed in the rest of the

chapter, but we refer the reader to [62] for a more detailed account of these and other regularity

properties that are relevant to the classification programm.

Covering dimension for C∗-algebras

In this subsection, we describe two related noncommutative versions of covering dimension

for C∗-algebras: decomposition rank (due to Kirchberg and Winter; see [153]), and nuclear

dimension (due to Winter and Zacharias; see [? ]). Both notions enjoy good permanence

properties with respect to quotients, inductive limits, hereditary subalgebras, tensor products,

and, as we shall see, crossed products by compact group actions with finite Rokhlin dimension.

Here are the definitions:

Definition V.2.1. Let A be a C∗-algebra, and let n ∈ Z≥0. We say that A has decomposition

rank at most n, written dr(A) ≤ n, if for every finite subset F ⊆ A and for every ε > 0, there exist
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finite dimensional C∗-algebras B0, . . . , Bn, and completely positive order zero maps ψ : A → B =
n⊕
j=0

Bj and ϕj : Bj → A, satisfying the following:

1. ϕ =
n∑
j=0

ϕj : B → A is contractive,

2. ‖(ϕ ◦ ψ)(a)− a‖ < ε for all a ∈ F .

In other words, the following diagram commutes up to ε on F :

A
idA //

ψ
))

A

B0 ⊕ · · · ⊕Bn
ϕ=

n∑
j=0

ϕj

55

.

We say that A has nuclear dimension at most n, written dimnuc(A) ≤ n, if in the

definition of decomposition rank, we drop condition (1) (that is, we do not insist that the map

ϕ be contractive).

Clearly one has dimnuc(A) ≤ dr(A) for every C∗-algebra A. For a locally compact metric

space X, we have dr(C0(X)) = dimnuc(C0(X)) = dim(X), so decomposition rank and nuclear

dimension can be regarded as noncommutative analogs of covering dimension. (In fact, the

definitions themselves are modeled after the notion of covering dimension.)

The distinction between decomposition rank and nuclear dimension may seem like a

minor one that could in general be arranged upon rescaling. However, the two notions are quite

different: while Kirchberg algebras have finite nuclear dimension, only strongly quasidiagonal

C∗-algebras (in particular, stably finite) can have finite decomposition rank.

Absorption of the Jiang-Su algebra.

The Jiang-Su algebra Z is a simple, separable, unital, nuclear, infinite dimensional C∗-

algebra with the same K-theory as the complex numbers. It was introduced by Jiang and Su in

[136], and was subsequently studied by a number of authors. One of the main reasons why this

algebra is relevant in the context of the classification program is the following theorem of Gong,

Jiang and Su. Recall that an ordered group G is said to be weakly unperforated if whenever x is

an element in G for which nx ∈ G+ for some n ∈ N, then x ∈ G+.
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Theorem V.2.2. ([104].) Let A be a simple, unital C∗-algebra, such that K0(A) is weakly

unperforated. Then the Elliott invariants of A and A⊗Z are canonically isomorphic.

The definition of the Jiang-Su algebra is a bit technical. Since we will only need to use and

prove absorption of it, we give a convenient characterization in Lemma V.4.1.

We close this section by recalling that the Toms-Winter regularity conjecture asserts that

for infinite dimensional, nuclear, simple, separable, (stably finite) unital C∗-algebras, finiteness of

the nuclear dimension (decomposition rank) is equivalent to absorption of the Jiang-Su algebra.

That Z-stability follows from finiteness of the nuclear dimension (and hence, from finiteness of

the decomposition rank), has been known for some time, while the converse implication seems to

be more elusive. For C∗-algebras with at most one tracial state, this has been confirmed in recent

work of Sato, White and Winter ([247]).

Preservation of Finite Nuclear Dimension and Decomposition Rank

In this section, we explore the structure of the crossed product and fixed point algebra

of an action of a compact group with finite Rokhlin dimension in relation to their nuclear

dimension and decomposition rank. Specifically, we show that finite nuclear dimension and finite

decomposition rank are inherited by the crossed product and fixed point algebra by any such

action.

We introduce some notation that will be used in this subsection.

Let A be a C∗-algebra, let G be a compact group, and let α : G → Aut(A) be a continuous

action. Give C(G)⊗A the diagonal action Lt⊗α of G. Then the canonical inclusion A→ C(G)⊗A

is equivariant. Identify C(G)⊗A with C(G,A) in the usual way, and let

θ : (C(G,A), Lt⊗ α)→ (C(G,A), Lt⊗ idA)
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be given by θ(ξ)(g) = αg−1(ξ(g)) for all ξ in C(G,A) and all g in G. Then θ is clearly an

isomorphism, and it is moreover equivariant, since

θ ((Ltg ⊗ αg)(ξ)) (h) = αh−1 ((Ltg ⊗ αg)(ξ)(h))

= αh−1

(
αg(ξ(g

−1h))
)

= θ(ξ)(g−1h)

= (Ltg ⊗ idA)(ξ)(h)

for all g and h in G, and all ξ in C(G,A). It follows that there are isomorphisms

(C(G)⊗A)oLt⊗α G ∼= (C(G)oLt G)⊗A ∼= K(L2(G))⊗A.

We conclude that the canonical inclusion A→ C(G)⊗A induces an injective homomorphism

ι : Aoα G→ K(L2(G))⊗A,

which we will refer to as the canonical embedding of Aoα G into A⊗K(L2(G)). This terminology

is justified by the following observation.

Remark V.3.1. Adopt the notation from the discussion above, and denote by λ : G → U(L2(G))

the left regular representation, and identify Aoα G with its image under ι. Then

Aoα G =
(
A⊗K(L2(G))

)α⊗Ad(λ)
.

The following lemma will be the main technical device we will use to prove Theorem V.3.3.

When the group G is finite (as is considered in [123]), the desired “almost” order zero maps are

constructed using the elements of appropriately chosen towers in the definition of finite Rokhlin

dimension. In the case of an arbitrary compact group, some work is needed to get such maps.

Lemma V.3.2 can be thought of as an analog of Osaka-Phillips’ approximation of crossed

products of actions with the Rokhlin property by matrices over corners of the underlying algebra,

which was used in [191]. This approximation technique is implicit in the paper [122], and further
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applications of it will appear in [87]. We would like to thank Luis Santiago for suggesting such an

approach.

Lemma V.3.2. Let A be a unital C∗-algebra, let G be a compact group, let d be a nonnegative

integer, and let α : G → Aut(A) be an action with dimRok(α) ≤ d. Denote by ι : A oα G →

A⊗K(L2(G)) the canonical embedding.

Given compact sets F ⊆ A oα G and S ⊆ A ⊗ K(L2(G)), and given ε > 0, there are

completely positive maps

ρ0, . . . , ρd : A⊗K(L2(G))→ Aoα G

such that

1. ‖ρj(a)ρj(b)‖ < ε whenever a and b are positive elements in S with ab = 0;

2.

∥∥∥∥∥ d∑
j=0

(ρj ◦ ι)(x)− x

∥∥∥∥∥ < ε for all x in F ;

3. The map
d∑
j=0

ρj :

d⊕
j=0

A⊗K(L2(G))→ Aoα G

is completely positive and contractive.

In other words, the maps ι and ρ0, . . . , ρd induce a diagram

Aoα G

ι
''

idAoαG // Aoα G

A⊗K(L2(G))

d∑
j=0

ρj

77

that approximately commutes on F up to ε, and such that the completely positive contractive

maps ρj are “almost” order zero on S.

Proof. Let ϕ0, . . . , ϕd : C(G)→ A∞,α ∩ A′ be the equivariant completely positive contractive order

zero maps as in the definition of Rokhlin dimension at most d for α. Upon tensoring with idA, we

obtain equivariant completely positive contractive order zero maps

ψ0, . . . , ψd : A⊗ C(G)→ A∞,α,
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which satisfy
d∑
j=0

ψj(a ⊗ 1) = a for all a in A. (The action on A ⊗ C(G) is the diagonal, using

translation on C(G).) With e ∈ K(L2(G)) denoting the projection onto the constant functions

on G, use Proposition II.5.5 and Proposition II.4.5 to obtain completely positive contractive order

zero maps

σ0, . . . , σd : A⊗K(L2(G))→ (Aoα G)∞

which satisfy
d∑
j=0

σj(x⊗ e) = x for all x in Aoα G, and such that
d∑
j=0

σj is contractive.

For j = 0, . . . , d, use nuclearity of A, together with Choi-Effros lifting theorem, to lift σj to

a completely positive contractive map

ρj : A⊗K(L2(G))→ Aoα G,

which satisfies conditions (1) and (2) of the statement with ε
2 in place of ε, and such that

∥∥∥∥∥∥
d∑
j=0

ρj

∥∥∥∥∥∥ < 1 +
ε

2
.

Dividing each of the maps ρj by the above norm introduces an additional error of ε
2 , and the

resulting rescaled maps are the desired order zero maps.

With the aid of Lemma V.3.2, the proof of the following theorem can be proved using ideas

similar to the ones used to prove Theorem 1.3 in [123].

Theorem V.3.3. Let A be a unital C∗-algebra, let G be a compact, and let α : G→ Aut(A) be a

continuous action with finite Rokhlin dimension. Then

dr(Aα) ≤ dr(Aoα G) ≤ (dimRok(α) + 1)(dr(A) + 1)− 1.

Proof. The first inequality is a consequence of the fact that Aα is isomorphic to a corner of AoαG

by compactness of G (see the Theorem in [238]), together with Proposition 3.8 in [153].

In order to show the second inequality, it is enough to do it when dr(A) < ∞ and

dimRok(α) <∞. Set N = dr(A) and set d = dimRok(α).
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Let ε > 0 and let F be a compact subset of A oα G. Choose finite dimensional C∗-algebras

F0, . . . ,FN , a completely positive contractive map

ψ : A→ F = F0 ⊕ · · · ⊕ FN ,

and completely positive contractive order zero maps φ` : F` → A for ` = 0, . . . , N , such that

φ = φ0 + . . .+ φN : F → A is completely positive and contractive, and satisfies

‖(φ ◦ ψ)(a)− a‖ < ε

2

for all a in F . Denote by ι : A oα G → A ⊗ K(L2(G)) the canonical inclusion. We will construct

completely positive approximations for Aoα G of the form

Aoα G
idAoαG //

ι

%%

Aoα G,

A⊗K(L2(G))

d⊕
j=0

ψ ##

d⊕
j=0

A⊗K(L2(G))

ρ

88

d⊕
j=0

F

d⊕
j=0

φ

::

where the map ρ :
d⊕
j=0

A⊗K(L2(G))→ AoαG will be constructed later using that dimRok(α) ≤ d,

in such a way that ρ ◦ φ : F → A oα G is the sum of “almost” order zero maps. We will then use

projectivity of the cone over finite dimensional C∗-algebras to replace the map ρ ◦ φ with maps

that are decomposable into completely positive contractive order zero maps.

Set

ε1 =
ε

8(d+ 1)(N + 1)
.

Using stability of order zero maps from finite dimensional C∗-algebras, choose δ > 0 such that

whenever σ : F → Aoα G is a completely positive contractive map satisfying

‖σ(x)σ(y)‖ < δ
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for all positive orthogonal contractions x and y in F , there exists a completely positive contractive

order zero map σ′ : F → Aoα G with ‖σ′ − σ‖ < ε1.

Let BF denote the unit ball of F , and set

S =
⋃
g∈G

N⋃
`=0

(
αg ⊗ idK(L2(G))

)
(φ`(BF )),

which is a compact subset of A⊗K(L2(G)).

Set ε2 = min
{
δ, ε4
}

. Use Lemma V.3.2 to find completely positive contractive maps

ρ0, . . . , ρd : A⊗K(L2(G))→ Aoα G

such that

1. ‖ρj(a)ρj(b)‖ < ε2 whenever a and b are positive elements in S with ab = 0;

2.

∥∥∥∥∥ d∑
j=0

(ρj ◦ ι)(x)− x

∥∥∥∥∥ < ε2 for all x in F ;

3. The map
d∑
j=0

ρj :

d⊕
j=0

A⊗K(L2(G))→ Aoα G

is completely positive and contractive.

Fix indices ` in {0, . . . , N} and j in {0, . . . , d}, and fix positive orthogonal elements x and y

in S. Set a = φ`(x) and b = φ`(y). Since φ` is order zero, we have ab = 0. Then

‖(ρj ◦ φ`)(x)(ρj ◦ φ`)(y)‖ = ‖ρj(a)ρj(b)‖ < ε2.

By the choice of δ, there are completely positive contractive order zero maps σj,` : F → A oα G

satisfying

‖σj,` − ρj ◦ φ`‖ < ε1

for j = 0, . . . , d and ` = 0, . . . , N . For j = 0, . . . , d, define a linear map σj : F → Aoα G by

σj =

N∑
`=0

σj,`,
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and let σ :
d⊕
j=0

F → Aoα G be given by σ =
d∑
j=0

σj . Then σ is completely positive, and moreover

‖σ‖ < 1 + (d+ 1)(N + 1)ε1.

Set τ = σ
‖σ‖ , which is completely positive contractive and order zero, and satisfies

∥∥∥∥∥∥τ − ρ ◦
 d∑
j=0

φ

∥∥∥∥∥∥ ≤ ‖τ − σ‖+

∥∥∥∥∥∥σ − ρ ◦
 d∑
j=0

φ

∥∥∥∥∥∥ < 2(d+ 1)(N + 1)ε1.

Finally, we claim that

Aoα G

d⊕
j=0

ψ◦ι %%

id // Aoα G

⊕d
`=0 F

τ

99

approximately commutes on the set F within ε, and that τ can be decomposed into (d + 1)(N +

1)−1 order zero summands. The only thing that remains to be checked is that ‖(τ ◦ψ)(a)−a‖ < ε

for all a in F . Given a in F , we estimate as follows:

τ ◦
 d⊕
j=0

ψ ◦ ι

 (a) ≈2(d+1)(N+1)ε1

ρ ◦
 d∑
j=0

φ

 ◦
 d⊕
j=0

ψ ◦ ι

 (a)

≈ ε
2

(ρ ◦ ι)(a)

≈ε2 a.

Hence ∥∥∥∥∥∥
τ ◦

 d⊕
j=0

ψ ◦ ι

 (a)− a

∥∥∥∥∥∥ < 2(d+ 1)(N + 1)ε1 +
ε

2
+ ε2

<
ε

4
+
ε

2
+
ε

4
= ε,

and the claim is proved. This finishes the proof.
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The corresponding statement for nuclear dimension is true. Its proof is analogous to that of

Theorem V.3.3 and is therefore omitted. The difference is that one does not need to take care of

the norms of the components of the approximations.

Theorem V.3.4. Let A be a unital C∗-algebra, let G be a compact group, and let α : G →

Aut(A) be a continuous action with finite Rokhlin dimension. Then

dimnuc(Aα) ≤ dimnuc(Aoα G) ≤ (dimRok(α) + 1)(dimnuc(A) + 1)− 1.

Remark V.3.5. It should be pointed out that the inequalities dr(Aα) ≤ dr(A oα G) and

dimnuc(Aα) ≤ dimnuc(Aoα G) are likely to be equalities whenever α has finite Rokhlin dimension.

Indeed, it is probably the case, although we have not checked, that finite Rokhlin dimension

implies saturation (see Definition 5.2 in [202]), from which it would follow that Aα and A oα G

are Morita equivalent, and hence they have the same nuclear dimension and decomposition rank.

We remark that saturation is automatic whenever the crossed product is simple, so the equalities

dr(Aα) = dr(A oα G) and dimnuc(Aα) = dimnuc(A oα G) hold in many cases of interest. In

particular, this is the case whenever G is finite and A is simple by Theorem IV.3.16.

An example in which one can apply these results to deduce finite nuclear dimension

and decomposition rank of the crossed product is that of free actions of compact Lie groups

on compact metric spaces with finite covering dimension. Indeed, such actions have finite

Rokhlin dimension by Theorem IV.3.5, and since A = C(X) has finite nuclear dimension and

decomposition rank, we deduce that A o G does as well. (Note that since the action is free,

Situation 2 in [228] implies that AG and AoG are Morita equivalent.)

Nevertheless, there is a much simpler proof of this fact, which even yields a better estimate

of the nuclear dimension and decomposition rank. Indeed, if X is a compact free G-space,

then the fixed point algebra of C(X) is C(X/G). Moreover, the orbit space X/G has covering

dimension at most dim(X) − dim(G), and hence C(X/G) has finite nuclear dimension and

decomposition rank (and equal to each other). We conclude that

dimnuc(C(X)oG) = dr(C(X)oG) ≤ dim(X)− dim(G).

More interesting applications of our results will be presented in Section V.5.
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Preservation of Z-absorption

We now turn to preservation of Z-absorption, under the (stronger) assumption that the

action have finite Rokhlin dimension with commuting towers. In this section, compact groups will

be second countable. By a theorem of Birkoff-Kakutani (Theorem 1.22 in [184]), a topological

group is metrizable if and only if it is first countable. In particular, all our groups will be

metrizable. It is well-known that a compact metrizable group admits a left translation-invariant

metric. We will implicitly choose such a metric on all our groups, which will be denoted by d.

We will need a technical lemma characterizing Z-absoprtion in a form that is useful in our

context.

Lemma V.4.1. Let A be a unital separable C∗-algebra, let G be a compact group, and let

α : G → Aut(A) be a continuous action. Let d be a non-negative integer, and suppose that for

any r in N, for any compact subset F ⊆ A, and for any ε > 0, there exist completely positive

contractive maps

θ0, . . . , θd : Mr → A∞,α and η0, . . . , ηd : Mr+1 → A∞,α

such that the following properties hold for all x, x′ in Mr and for all y, y′ in Mr+1 with

‖x‖, ‖x′‖, ‖y‖, ‖y′‖ ≤ 1, for all g in G, for all a in F and for all j, k = 0, . . . , d:

‖[θj(x), ηk(y)]‖ < ε; (V.1)

if x, x′, y, y′ ≥ 0 and x ⊥ x′ , y ⊥ y′, then (V.2)

‖θj(x)θj(x
′)‖ < ε and ‖ηk(y)ηk(y′)‖ < ε;

‖(α∞)g(θk(x))− θk(x)‖ < ε and ‖(α∞)g(ηk(y))− ηk(y)‖ < ε; (V.3)

‖aθk(x)− θk(x)a‖ < ε and ‖aηk(y)− ηk(y)a‖ < ε; (V.4)
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∥∥∥∥∥
d∑
k=0

θk(1) + ηk(1)− 1

∥∥∥∥∥ < ε. (V.5)

Then Aoα G is Z-stable.

Proof. Using stability of completely positive order zero maps from matrix algebras, we may

assume that the maps θ0, . . . , θd and η0, . . . , ηd can always be chosen to satisfy condition (2)

exactly.

Let r in N. We claim that there are order zero maps maps

θ0, . . . , θd : Mr → (A∞ ∩A′)α∞ and η0, . . . , ηd : Mr+1 → (A∞ ∩A′)α∞

with
d∑
k=0

θk(1) + ηk(1) = 1. Once we prove the claim, the rest of the proof goes exactly as in

Lemma 5.7 in [123]. (There, the authors assumed the group G to be discrete, but since the order

zero maps we will produce land in the fixed point algebra of A∞ ∩A′, and in particular, in A∞,α ∩

A′, the fact that G is not discrete in this lemma is not an issue.)

Choose an increasing sequence (Fn)n∈N of compact subsets of A such that A0 =
⋃
n∈N

Fn

is dense in A. Without loss of generality, we may assume that A0 is closed under multiplication,

addition and involution. For each n in N, let

θ
(n)
0 , . . . , θ

(n)
d : Mr → A∞,α and η

(n)
0 , . . . , η

(n)
d : Mr+1 → A∞,α

be completely positive contractive order zero maps satisfying conditions (1) and (3)-(5) in the

statement for Fn and ε = 1
n . For each n in N and each j = 0, . . . , d, let

θ̃
(n)
j : Mr → `∞α (N, A) and η̃

(n)
j : Mr+1 → `∞α (N, A)

be completely positive contractive lifts of θ
(n)
j and η

(n)
j respectively. As in the proof of Lemma 2.4

in [122], we can find a strictly increasing sequence nk of natural numbers such that the following

hold for all k in N, for all j = 0, . . . , d and for all g in G:

–
∥∥∥αg ((θ̃

(k)
j (nk))(x)

)
−
(
θ̃

(k)
j (nk)

)
(x)
∥∥∥ < 1

k for all x in Mr with ‖x‖ ≤ 1.

–
∥∥∥αg ((η̃

(k)
j (nk))(y)

)
−
(
η̃

(k)
j (nk)

)
(y)
∥∥∥ < 1

k for all y in Mr+1 with ‖y‖ ≤ 1.
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–

∥∥∥∥∥ d∑
j=0

(
θ̃

(k)
j (nk)

)
(1) +

(
η̃

(k)
j (nk)

)
(1)− 1

∥∥∥∥∥ < 1
k

With κA : `∞α (N, A)→ A∞,α denoting the quotient map, it follows that for j = 0, . . . , d, the maps

θj = κA ◦
(
θ̃

(1)
j (n1), θ̃

(2)
j (n2), . . .

)
: Mr → (A∞ ∩A′)α∞

and

ηj = κA ◦
(
η̃

(1)
j (n1), η̃

(2)
j (n2), . . .

)
: Mr+1 → (A∞ ∩A′)α∞

are completely positive contractive order zero, and satisfy
d∑
j=0

θj(1) + ηj(1) = 1. This proves the

claim, and finishes the proof of the lemma.

We now need to introduce a certain averaging technique that will allow us to take averages

over the group in such a way that ∗-algebraic relations are approximately preserved.

Let G be a compact group, let A be a unital C∗-algebra, and let α : G → Aut(A) be a

continuous action. Identify C(G) ⊗ A with C(G,A), and denote by γ : G → Aut(C(G,A)) the

diagonal action, this is, γg(a)(h) = αg(a(g−1h)) for all g, h ∈ G and all a ∈ C(G,A). Define an

averaging process φ : C(G,A)→ C(G,A) by

φ(a)(g) = αg(a(1))

for all a in C(G,A) and all g in G.

For use in the proof of the following lemma, we recall the following standard fact about

self-adjoint elements: if A is a unital C∗-algebra and a, b ∈ A with b∗ = b, then −‖b‖a∗a ≤ a∗ba ≤

‖b‖a∗a.

Lemma V.4.2. Let A be a unital C∗-algebra, let G be a compact group and let α : G → Aut(A)

be a continuous action. Denote by φ : C(G,A) → C(G,A) the averaging process defined above,

and by γ : G → Aut(C(G,A)) the diagonal action. Given ε > 0 and given a compact set F ⊆

C(G,A), there exist a positive number δ > 0, a finite subset K ⊆ G and continuous functions fk

in C(G) for k in K such that

1. If g and h in G satisfy d(g, h) < δ, then ‖γg(a)− γh(a)‖ < ε for all a in
⋃
g∈G

γg(F )
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2. We have 0 ≤ fk ≤ 1 for all k in K.

3. The family (fk)k∈K is a partition of unity for G.

4. For k1 and k2 in K, whenever fk1fk2 6= 0, then d(k1, k2) < δ.

5. For every g ∈ G and every a in
⋃
g∈G

γg(F ), we have

∥∥∥∥∥φ(a)(g)−
∑
k∈K

fk(g)αk(a(1))

∥∥∥∥∥ < ε.

Proof. We observe that the averaging process φ : C(G,A) → C(G,A) is a homomorphism, since it

is the composition of the homomorphism C(G,A) → A obtained as the evaluation at the unit of

G, with the homomorphism ρ : A→ C(G,A) given by

ρ(a)(g) = αg(a)

for all a ∈ A and all g ∈ G.

We claim that γg(φ(a)) = φ(a) for all g in G and all a in C(G,A). Indeed, for h in G, we

have

γg(φ(a))(h) = αg(φ(a)(g−1h)) = αg(αg−1h(a(1)))

= αh(a(1)) = φ(a)(h),

which proves the claim.

Set F ′ =
⋃
g∈G

γg(F ), which is a compact subset of C(G,A). Since every element in a C∗-

algebra is the linear combination of two self-adjoint elements, we may assume without loss of

generality that every element of F ′ is self-adjoint. Set

F ′′ = {a(g) : a ∈ F ′, g ∈ G} ,

which is a compact subset of A. Using continuity of α, choose δ > 0 such that whenever g and h

in G satisfy d(g, h) < δ, then ‖αg(a) − αh(a)‖ < ε for all a in F ′′. Given g in G, denote by Ug

the open ball centered at g with radius δ
2 . Let K ⊆ G be a finite subset such

⋃
k∈K

Uk = G, and let

142



(fk)k∈K be a partition of unity subordinate to {Uk}k∈K . Given g in G and a in F ′, we have

φ(a)(g)−
∑
k∈K

fk(g)αk(a(1)) =
∑
k∈K

fk(g)1/2(αk(a(1))− αg(a(1)))fk(g)1/2

≤
n∑
j=1

‖αk(a(1))− αg(a(1))‖fk(g).

Now, for k ∈ K, if fk(g) 6= 0, then d(g, k) < δ, and hence ‖αk(a(1))− αg(a(1))‖ < ε. In particular,

we conclude that

−ε < φ(a)(g)−
∑
k∈K

fk(g)αk(a(1)) < ε.

This shows that condition (5) in the statement is satisfied, and finishes the proof.

Let A be a C∗-algebra, let G be a compact group, and let α : G → Aut(A) be a continuous

action. We denote by E : A → Aα the standard conditional expectation. If µ denotes the

normalized Haar measure on G, then E is given by

E(a) =

∫
G

αg(a) dµ(g)

for all a in A.

Proposition V.4.3. Let A be a unital C∗-algebra, let G be a compact group, let d be a non-

negative integer, and let α : G → Aut(A) be an action with dimRok(α) ≤ d. For every ε > 0 and

every be a compact subset F of A, there exist δ > 0, a finite subset K ⊆ G, continuous functions

fk in C(G) for k in K, and completely positive contractive linear maps ψ0, . . . , ψd : C(G) → A

such that

1. If g and g′ in G satisfy d(g, g′) < δ, then ‖αg(a)− αg′(a)‖ < ε for all a in F .

2. We have 0 ≤ fk ≤ 1 for all k in K.

3. Whenever k and k′ in K satisfy fkfk′ 6= 0, then d(k, k′) < δ.

4. For every g ∈ G, for every j = 0, . . . , d, and for every a ∈ F , we have

∥∥∥∥∥ αg
(∑
k∈K

ψj(fk)1/2αk(a)ψj(fk)1/2

)
−
∑
k∈K

ψj(fk)1/2αk(a)ψj(fk)1/2

∥∥∥∥∥ < ε.
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5. For every a ∈ F , for all k ∈ K, and for every j = 0, . . . , d, we have

‖aψj(fk)− ψj(fk)a‖ < ε

|K|
and

∥∥∥aψj(fk)1/2 − ψj(fk)1/2a
∥∥∥ < ε

|K|
.

6. Whenever k and k′ in K satisfy fkfk′ = 0, then for all j = 0, . . . , d we have

∥∥∥ψj(fk)1/2ψj(fk′)
1/2
∥∥∥ < ε

|K|
.

7. The family (fk)k∈K is a partition of unity for G, and moreover,

∥∥∥∥∥∥
d∑
j=0

∑
k∈K

ψj(fk)− 1

∥∥∥∥∥∥ < ε

|K|
.

Moreover, if dimc
Rok(α) ≤ d, then the choices above can be made so that in addition to conditions

(1) through (7) above, we have:

8. For all j, ` = 0, . . . , d and for all k, k′ in K,

‖[ψj(fk), ψ`(fk′)]‖ < ε and
∥∥∥[ψj(fk)1/2, ψ`(fk′)

1/2
]∥∥∥ < ε

|K|
.

Proof. Without loss of generality, we may assume that F is α-invariant. Using Lemma V.4.2,

choose a positive number δ > 0, a finite subset K ⊆ G, and continuous functions fk in C(G)

for k in K, such that conditions (1) through (5) in Lemma V.4.2 are satisfied for F and ε
2 . Set

S =
{
fk, f

1/2
k : k ∈ K

}
⊆ C(G), and for every m in N, choose completely positive contractive

maps

ψ
(m)
0 , . . . , ψ

(m)
d : C(G)→ A

as in the conclusion of part (1) of Lemma IV.2.7 for the choices of finite set S ⊆ C(G), compact

subset F ⊆ A, and tolerance 1
m . Identify C(G,A) with C(G) ⊗ A, and for j = 0, . . . , d, define a

completely positive contractive order zero map φj : C(G,A)→ A∞,α by

φj(f ⊗ a) = ψj(f)a
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for f ∈ C(G) and a ∈ A. (Note that the range of ψ commutes with the copy of A in A∞,α.) It

is clear that φ(m) is equivariant, where we take C(G,A) to have the diagonal action γ of G. For

m ∈ N, choose a completely positive contractive map φ
(m)
j : C(G,A)→ A satisfying

κA

((
φ

(m)
j (ξ)

)
m∈N

)
= φj(ξ)

for all ξ ∈ C(G,A). Then lim sup
m→∞

∥∥∥φ(m)
j (f ⊗ a)− ψ(m)

j (f)a
∥∥∥ = 0 for all f ∈ C(G) and for all

a ∈ A, and

lim sup
m→∞

∥∥∥αg (φ(m)
j (ξ)

)
− φ(m)

j (γg(ξ))
∥∥∥ = 0

for all g ∈ G and all ξ ∈ C(G,A).

Given a in F , given j = 0, . . . , d, and given g in G, we have the following, where use

condition (5) in the conclusion of Lemma V.4.2 at the last step:

lim sup
m→∞

∥∥∥∥∥αg
(∑
k∈K

ψ
(m)
j (fk)1/2αk(a)ψ

(m)
j (fk)1/2

)

−
∑
k∈K

ψ
(m)
j (fk)1/2αk(a)ψ

(m)
j (fk)1/2

∥∥∥∥∥
= lim sup

m→∞

∥∥∥∥∥αg
(
φ

(m)
j

(∑
k∈K

fk ⊗ αk(a)

))
− φ(m)

j

(∑
k∈K

fk ⊗ αk(a)

)∥∥∥∥∥
= lim sup

m→∞

∥∥∥∥∥φ(m)
j

(
γg

(∑
k∈K

fk ⊗ αk(a)

)
−
∑
k∈K

fk ⊗ αk(a)

)∥∥∥∥∥
≤ lim sup

m→∞

∥∥∥∥∥γg
(∑
k∈K

fk ⊗ αk(a)

)
−
∑
k∈K

fk ⊗ αk(a)

∥∥∥∥∥ ≤ ε

2

The result in the case that dimRok(α) ≤ d follows by choosing m > |K|
ε large enough so that

∥∥∥∥∥αg
(∑
k∈K

ψ
(m)
j (fk)1/2αk(a)ψ

(m)
j (fk)1/2

)
−
∑
k∈K

ψ
(m)
j (fk)1/2αk(a)ψ

(m)
j (fk)1/2

∥∥∥∥∥ < ε.

If one moreover has dimc
Rok(α) ≤ d, one uses part (2) of Lemma IV.2.7, and the same

argument shows that the choices can be made so that condition (8) in this proposition is also

satisfied. We omit the details.
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We are now ready to prove that absorption of the Jiang-Su algebra Z passes to crossed

products and fixed point algebras by compact group actions with finite Rokhlin dimension with

commuting towers. This generalizes Theorem 5.9 in [123], and it partially generalizes part (1) of

Corollary 3.2 in [122].

We do not know whether commuting towers are really necessary in the theorem below. In

view of the Toms-Winter conjecture and Theorem V.3.4, this condition should not be necessary if

both A and Aoα G are simple and A is nuclear.

It should also be mentioned here that the commuting towers assumption imposes

restrictions on the equivariant K-theory. See the comments after Definition IV.2.2.

Theorem V.4.4. Let A be a separable unital C∗-algebra, let G be a compact group, and let

α : G → Aut(A) be a continuous action with finite Rokhlin dimension with commuting towers.

Suppose that A is Z-absorbing. Then the crossed product A oα G and the fixed point algebra Aα

are also Z-absorbing.

Proof. We show first that the crossed product A oα G is Z-absorbing. Our proof combines the

methods of Theorem 5.9 in [123] and, to a lesser extent, Theorem 3.3 in [122]. We will produce

maps as in the statement of Lemma V.4.1.

Let d = dimc
Rok(α). Fix a positive integer r in N and a compact subset F ⊆ A, which,

without loss of generality, we assume to be α-invariant. We may also assume that F contains only

self-adjoint elements of norm at most 1. Choose order zero maps θ : Mr → Z and η : Mr+1 → Z

with commuting ranges satisfying θ(1) + η(1) = 1. Define unital homomorphisms

ι0, . . . , ιd : Z → A ↪→ A∞,α

as follows. Start with any unital homomorphism ι0 : Z → A satisfying

‖ι0(z)a− aι0(z)‖ < ε

for all z in Z and all a in F , which exists because A is Z-absorbing. Once we have constructed ιj

for j = 0, . . . , k − 1, we choose ιk : Z → A such that

‖ιk(z)b− bιk(z)‖ < ε
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for all z in Z and for all b in the compact α-invariant set

F ∪
k−1⋃
j=0

⋃
g∈G

αg ({(ιj ◦ θ)(x), (ιj ◦ η)(y) : x ∈Mr, y ∈Mr+1, ‖x‖, ‖y‖ ≤ 1}) .

Set

F ′ = F ∪
d⋃
j=0

⋃
g∈G

αg ({(ιj ◦ θ)(x), (ιj ◦ η)(y) : x ∈Mr, y ∈Mr+1, ‖x‖, ‖y‖ ≤ 1}) ,

which we regard as a subset of A∞,α via the inclusion A ↪→ A∞,α. Choose a finite subset K ⊆ G,

continuous functions fk in C(G) for k in K, and unital completely positive contractive maps

ϕ0, . . . , ϕd : C(G) → A ↪→ A∞,α ∩ A′ as in the conclusion of Proposition V.4.3 for the choices of

compact set F ′ ⊆ A∞,α and tolerance ε. Then the ranges of ϕ0, . . . , ϕd commute with the ranges

of the homomorphisms ι0, . . . , ιd.

For j = 0, . . . , d, define

θj : Mr → A∞ ∩A′ and ηj : Mr+1 → A∞ ∩A′

by

θj(x) =
∑
k∈K

ϕj(fk)αk((ιj ◦ θ)(x)) and ηj(y) =
∑
k∈K

ϕj(fk)αk((ιj ◦ η)(y))

for all x in Mr and all y in Mr+1. We claim that these maps satisfy the conditions in the

statement of Lemma V.4.1.

Condition (1). Let j, ` ∈ {0, . . . , d}, let x in Mr and let y ∈ Mr+1 satisfy ‖x‖, ‖y‖ ≤ 1.

Without loss of generality, we may assume that x∗ = x and y∗ = −y. Then [θj(x), η`(y)] is
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self-adjoint and

[θj(x), η`(y)] =
∑

k,k′∈K

[ϕj(fk)αk((ιj ◦ θ)(x)), ϕ`(fk′)αk′((ι` ◦ η)(y))]

=
∑

k,k′∈K

ϕj(fk)ϕ`(fk′)αk ([(ιj ◦ θ)(x), αk−1k′((ι` ◦ η)(y))])

≤
∑

k,k′∈K

ϕj(fk)ϕ`(fk′) ‖[(ιj ◦ θ)(x), αk−1k′((ι` ◦ η)(y))]‖

<

 ∑
k,k′∈K

ϕj(fk)ϕk(fk′)

 ε = ε.

Likewise, [θj(x), η`(y)] > −ε, so ‖ [θj(x), η`(y)] ‖ < ε, as desired.

Condition (2). Given j = 0, . . . , d and given positive orthogonal elements x, x′ ∈ Mr with

‖x‖, ‖x′‖ ≤ 1, set a = (ιj ◦ θ)(x) and b = (ιj ◦ θ)(x′). Then ab = 0 because θ is an order zero map

and ιj is a homomorphism. Using that fkfk′ 6= 0 implies d(k, k′) < δ for k, k′ ∈ K at the fourth

step, we have

‖θj(x)θj(x
′)‖ =

∥∥∥∥∥∥
∑

k,k′∈K

ϕj(fk)αh(a)ϕj(fk′)αk′(b)

∥∥∥∥∥∥
=

∥∥∥∥∥∥
∑

fkfk′ 6=0,h6=h′
ϕj(fk)ϕj(fk′)αk(a)αk′(b)

∥∥∥∥∥∥
< |K| ε

|K|
+

∥∥∥∥∥∥
∑

fkfk′ 6=0,k 6=k′
ϕj(fk)ϕj(fk′)αk(ab)

∥∥∥∥∥∥ = ε,

as desired. A similar computation shows that ‖ηj(y)ηj(y
′)‖ < ε whenever y and y′ are as in

Condition (2) of Lemma V.4.1.

Condition (3). Given x in Mr with ‖x‖ ≤ 1, given g in G, and given j = 0, . . . , d, the

same computation carried out in the verification of condition (4) in Proposition V.4.3 shows that

‖(α∞)g(θj(a))−θj(a)‖ < ε, as desired. A similar computation shows that ‖(α∞)g(ηj(y))−ηj(y)‖ <

ε whenever y is as in Condition (3) of Lemma V.4.1.
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Condition (4). Let a in F , let j = 0, . . . , d and let x in Mr satisfy ‖x‖ ≤ 1 and x∗ = −x.

Then [a, θj(x)] is self-adjoint because a∗ = a, and moreover we have

[a, θj(x)] =
∑
k∈K

ϕj(fk)[a, αk((ιj ◦ θ)(x))]

≤
∑
k∈K

ϕj(fk) ‖[a, αk((ιj ◦ θ)(x))]‖

< ε

(∑
k∈K

ϕj(fk)

)
= ε.

Likewise, [a, θj(x)] > −ε, so ‖ [a, θj(x)] ‖ < ε, as desired. A similar computation shows that

‖[a, ηj(y)]‖ < ε whenever y is as in Condition (4) of Lemma V.4.1.

Condition (5). We use that the family (fk)k∈K is a partition of unity of G in the third step

to conclude that

d∑
j=0

θj(1) + ηj(1) =

d∑
j=0

∑
k∈K

ϕj(fk)αk(ιj(θ(1) + η(1)))

=

d∑
j=0

∑
k∈K

ϕj(fk)

=

d∑
j=0

ϕj(1)

= 1.

The result for Aoα G now follows from Lemma V.4.1.

Since the fixed point algebra Aα is a corner in A oα G by the Theorem in [238], it follows

from Corollary 3.1 in [265] that Aα is also Z-absorbing.

Examples

In this section, we proceed to give a few applications of the results in this chapter that yield

new information in some cases of interest.

In preparation, we present an intermediate result.

Proposition V.5.1. Let A be a unital C∗-algebra, let G be a compact group, let α : G→ Aut(A)

be a continuous action, and let p ∈ A be a G-invariant projection. Set B = pAp, which is a
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G-invariant corner in A, and denote by β : G→ Aut(B) the compressed action. Then

dimRok(β) ≤ dimRok(α) and dimc
Rok(β) ≤ dimc

Rok(α).

Proof. We prove the proposition for dimRok; the proof for dimc
Rok is analogous and is left to the

reader.

We check the conditions in part (1) of Lemma IV.2.7. Let ε > 0, let S ⊆ C(G) be a finite

subset, let F ⊆ B be a compact subset, and set d = dimRok(α). Regard F as a compact subset of

A and choose completely positive contractive maps

ϕ0, . . . , ϕd : C(G)→ A

satisfying conditions (a) through (d) in part (1) of Lemma IV.2.7 for α with S ∪ {p} in place of S,

and ε/3 in place of ε. Define completely positive contractive maps

ψ0, . . . , ψd : C(G)→ B = pAp

by ψj(f) = pϕj(f)p for f ∈ C(G) and j = 0, . . . , d. One readily checks that these maps satisfy the

desired conditions for β, S, F and ε. We omit the details.

Recall that a C∗-algebra A is said to be homogeneous if there are positive integers

m, k1, . . . , km, compact Hausdorff spaces X1, . . . , Xnm , and projections pj ∈ Mkj (C(Xj)) such

that

A ∼= p1Mk1
(C(X1))p1 ⊕ · · · ⊕ pmMkm(C(Xm))pm.

A C∗-algebra is said to be an approximately homogeneous algebra, or AH-algebra for short,

if it is isomorphic to a direct limit of homogeneous algebras.

An AH-algebra A is said to have no dimension growth if there exists an AH-decomposition

of it for which the compact Hausdorff spaces appearing in the building blocks have uniformly

bounded (covering) dimension. (AH-algebras of no dimension growth may have AH-

decompositions that do not witness the fact that it has no dimension growth.)
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We will consider a special kind of compact group actions on AH-algebras of no dimension

growth:

Definition V.5.2. Let A be a unital AH-algebra and let

(
An = p

(n)
1 M

k
(n)
1

(
C(X

(n)
1 )

)
p

(n)
1 ⊕ · · · ⊕ p(n)

m(n)Mk
(n)

m(n)

(
C(X

(n)

m(n))
)
p

(n)

m(n) , φn

)
n∈N

be an AH-decomposition of A, with unital connecting maps φn : An → An+1. Given a compact

group G, we construct a direct limit action of G on A as follows. For n ∈ N, consider actions

γ
(n)
kj

: G→ Aut
(
M
k

(n)
j

)
and δ

(n)
kj

: G→ Homeo
(
X

(n)
j

)

for j = 1, . . . ,m(n). Give M
k

(n)
j

(
C
(
X

(n)
j

))
the diagonal G-action. Let α(n) be the G-action on

An obtained as the direct sum of such actions. Assume that

α(n+1) ◦ φn = φn ◦ α(n)

for all n ∈ N, and set α = lim−→α(n) : G→ Aut(A).

Actions on AH-algebras constructed in this way will be called AH-actions. An AH-action

α : G → Aut(A) is said to have no dimension growth, if A has no dimension growth and there is

an AH-decomposition of (A,α) which witnesses the fact that A has no dimension growth. Finally,

α is said to be a free AH-action with no dimension growth, if A has no dimension growth and

there is an AH-decomposition of (A,α) which witnesses the fact that A has no dimension growth,

and where the resulting G-actions on the compact Hausdorff spaces are free.

We now give some applications of our main results. In our examples, particularly the

first two, it is usually easier to obtain information about the fixed point algebras. One has to

nevertheless prove some form of saturation of the actions involved, to deduce that the crossed

product and the fixed point algebra are Morita equivalent, in order to obtain useful information

about the crossed product. Although one may be able to prove this in concrete examples, our

argument is applicable in situations where one cannot even say much about the algebra of fixed

points, such as Example V.5.5 and Example V.5.6.

Throughout, we fix a compact Lie group G.
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Example V.5.3. Let X be a compact Hausdorff space and let k ∈ N. Let G act freely on X via

δ : G→ Aut(C(X)), and let γ : G→ Aut(Mk) be an arbitrary action. Let β : G→ Aut(Mk(C(X))

denote the diagonal action. Let p ∈ Mk(C(X)) be an invariant projection, and denote by α : G →

Aut(pMk(C(X))p) the compression of β. Using Proposition V.5.1 at the first step, part (1) of

Theorem IV.2.8 at the second step, and part (2) of Theorem IV.3.5 at the third step, we get

dimc
Rok(α) ≤ dimc

Rok(β) ≤ dimc
Rok(δ) <∞.

(Even if X is infinite dimensional.)

When dim(X) <∞, it follows from Theorem V.3.3 and Theorem V.3.4 that

dr (pMk(C(X))poα G) ≤ (dim(X) + 1)(dim(X)− dim(G) + 1)− 1

and

dimnuc (pMk(C(X))poα G) ≤ (dim(X) + 1)(dim(X)− dim(G) + 1)− 1.

Example V.5.4. Let A be a unital AH-algebra with no dimension growth, and let α : G →

Aut(A) be a free AH-action with no dimension growth. Denote by X
(n)
j , with 1 ≤ j ≤ m(n) and

n ∈ N, the compact Hausdorff spaces arising in some AH-decomposition of α witnessing the fact

that it is free with no dimension growth. Set

M = sup
n∈N

sup
1≤j≤m(n)

dim
(
X

(n)
j

)
<∞.

Using Example V.5.3 and part (3) of Theorem IV.2.8, we deduce that

dimc
Rok(α) ≤M − dim(G).

We conclude from Theorem V.3.3 and Theorem V.3.4 that

dr (Aoα G) ≤ (M + 1)(M − dim(G) + 1)− 1, and

dimnuc (Aoα G) ≤ (M + 1)(M − dim(G) + 1)− 1.
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In addition, if A is Z-stable (for example, if it is simple; see Theorem 6.1 in [45]), then

Aoα G is also Z-stable, by Theorem V.4.4.

We remark that in the following example, finite dimensionality of X is not needed to

deduce Z-stability of the crossed product C(X,B) oα G as long as B is Z-stable. In particular,

and even if C(X,B) oα G can be shown to be a locally trivial bundle over X/G with fiber

B ⊗ K(L2(G)), absorption of the Jiang-Su algebra cannot be concluded from the results in [121]

since the base space is allowed to be infinite dimensional.

Example V.5.5. Let X be a compact Hausdorff space, and let B be a separable, unital

C∗-algebra. (We do not assume B to be simple or even nuclear.) Let δ : G → Aut(C(X))

be induced by a free action of G on X, and let β : G → Aut(B) be an arbitrary action. If

α : G→ Aut(C(X,B)) denotes the diagonal action, then

dimc
Rok(α) ≤ dimc

Rok(δ) <∞

by Theorem IV.3.5.

In particular, if dim(X) < ∞ and B has finite decomposition rank or nuclear dimension,

then so does C(X,B) oα G. On the other hand, if B is Z-stable, and regardless of whether X is

finite dimensional, then C(X,B)oα G is Z-stable.

In the following example, one could replace the free AH-action action of no dimension

growth with any other action with finite Rokhlin dimension (with commuting towers for the

conclusion involving Z-stability).

Example V.5.6. Let A be a unital AH-algebra with no dimension growth, let α : G → Aut(A)

be a free AH-action with no dimension growth, and let B be a separable, unital C∗-algebra. (We

do not assume B to be simple or even nuclear.) Let β : G → Aut(B) be an arbitrary action, and

denote by γ : G → Aut(A ⊗ B) be the diagonal G-action. By part (1) of Theorem IV.2.8 and

Example V.5.4, γ has finite Rokhlin dimension with commuting towers.

It follows that (A ⊗ B) oγ G has finite nuclear dimension or decomposition rank whenever

B does, independently of β. Additionally, (A ⊗ B) oγ G is Z-stable whenever A is Z-stable (for

example, when A is simple), and independently of B and β.
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Open Problems

In this last section, we give some indication of possible directions for future work, and raise

some natural questions related to our findings. Some of these questions will be addressed in [87].

Theorem V.4.4 and Corollary 3.4 in [122] suggest that the following conjecture may be true.

Conjecture V.6.1. Let G be a second countable compact group, let A be a separable unital

C∗-algebra, and let α : G → Aut(A) be an action of G on A with finite Rokhlin dimension

with commuting towers. Let D be a strongly self-absorbing C∗-algebra and suppose that A is

D-absorbing. Then Aoα G is D-absorbing.

We point out that the corresponding result for noncommuting towers is not in general

true. Indeed, Example IV.3.10 shows that O2-absorption is not preserved. It moreover shows that

absorption of UHF-algebras other than M2∞ is also not preserved. For M2∞-absorption, one may

adapt the construction of Izumi to produce a Z3-action β on O2 with dimRok(β) = 1, such that

K∗(O2 oβ Z3) is not uniquely 2-divisible. (See, for example, Section XII.6.)

One should also explore preservation of other structural properties besides D-absorption.

Problem V.6.2. Can one generalize some of the parts of Theorem 2.6 in [202] to compact (or

finite) group actions with finite Rokhlin dimension with commuting towers?

As pointed out before, one should not expect much if only noncommuting towers are

assumed (except for (1) and (8) – without UCT, which are true for arbitrary pointwise outer

actions of discrete amenable groups). Also, it is probably easy to construct counterexamples to

several parts of Theorem 2.6 in [202] even in the case of finite Rokhlin dimension with commuting

towers.

We provide one such counterexample here.

Proposition V.6.3. There exist a unital C∗-algebra A and an action α : Z2 → Aut(A) with

dimc
Rok(α) = 1, such that the map K∗(A

α) → K∗(A) induced by the canonical inclusion Aα →

A, is not injective. In particular, Theorem 3.13 of [132] (where simplicity of A is not needed –

see Theorem VI.3.3) does not hold for finite group actions with finite Rokhlin dimension with

commuting towers.

Proof. Denote by RP2 the real projective plane, and set X = T×RP2. Define an action α of Z2 on

X via (ζ, r) 7→ (−ζ, r) for all (ζ, r) ∈ X. Then α is the restriction of the product action LtT×idRP2
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of T on X. Since this product action has the Rokhlin property, it follows from Theorem 3.10 in

[83] that dimc
Rok(α) ≤ 1. Since X has no non-trivial projections, it must be dimc

Rok(α) = 1.

One has X/Z2
∼= (T/Z2) × RP2, and the canonical quotient map π : X → X/Z2 is given by

π(ζ, r) = (ζ2, r) for (ζ, r) ∈ X. The induced map

K1(π) : K0(RP2)⊕K1(RP2)→ K0(RP2)⊕K1(RP2)

is easily seen to be given by K1(π)(a, b) = (2a, b) for (a, b) ∈ K0(RP2) ⊕ K1(RP2). Since

K0(RP2) ∼= Z⊕ Z2, we conclude that K1(π) is not injective, and hence neither is K1(ι).
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CHAPTER VI

THE ROKHLIN PROPERTY FOR COMPACT GROUP ACTIONS

We study compact group actions with the Rokhlin property. This is a strong form of

noncommutative freeness, since already the augmentation ideal in the group ring annihilates

the equivariant K-theory of such actions. Additionally, our characterization of commutative

dynamical systems with the Rokhlin property illustrates how rigid this notion is. Despite its

restrictive nature, we show that the Rokhlin property is in some cases generic, and provide a

family of examples on simple AH-algebras with no dimension growth.

We study the canonical inclusion of the fixed point algebra at the level of K-theory:

the induced map is an order embedding, and it has a splitting whenever it is restricted to

finitely generated subgroups. We establish similar properties for the induced map on the Cuntz

semigroup. Dual actions of actions with the Rokhlin property can be completely characterized,

extending results of Izumi in the finite group case. Finally, we establish some connections between

the Rokhlin property and (equivariant) semiprojectivity. As an application, it is shown that every

Rokhlin action of a compact Lie group of dimension at most one, is a dual action.

A number of our results, particularly those in the last two sections, are new even in the

much better understood case of finite groups.

Introduction

The purpose of this chapter, which is based on [85], is to provide a systematic study of

compact group actions with the Rokhlin property, with a spirit similar to the one in Chapter IV,

where we explored compact group actions with finite Rokhlin dimension. To a certain extent,

what we do here is also motivated by the book [199], in that the Rokhlin property is a strong form

of noncommutative freeness. The results contained in this chapter, we hope, provide the necessary

technical tools to attack problems in which the Rokhlin property of a compact group action can

be proved to have a relevant role. For example, the Rokhlin property for a particular action of Z3

was used in [214] to compute, among other things, the Elliott invariant and the Cuntz semigroup

of a certain simple separable exact C∗-algebra not anti-isomorphic to itself. Similarly, the tracial
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Rokhlin property played a crucial role in Phillips’ proof [201] that all simple, higher dimensional

noncommutative tori are AT-algebras.

The approach used in this work yields new information even for actions of finite groups.

Indeed, a number of our results, particularly those in Sections 6.3 and 6.4, had not been noticed

even in the well-studied case of finite groups.

This chapter is structured as follows. In Section VI.2, we recall the definition of the Rokhlin

property for a compact group action, and establish some permanence properties (Theorem VI.2.3

and Proposition VI.2.4), which are consequences of more general results in Chapter IV. These

results are complemented by Theorem VI.2.6, which shows that for actions on the Cuntz algebra

O2, the Rokhlin property passes to (finite) subgroups. We also construct examples of compact

group actions with the Rokhlin property on several simple C∗-algebras. One of the main results of

this section, Corollary VI.2.21, asserts that for compact group actions on a unital, separable O2-

absorbing C∗-algebra, the Rokhlin property is generic. A similar results holds when one replaces

O2 with any other strongly self-absorbing C∗-algebra D, provided that there exists at least one

action of G on D with the Rokhlin property (which is not always the case for D � O2).

In Section VI.3, we study the K-theory and Cuntz semigroup of fixed point algebras

and crossed products, as well as the equivariant K-theory. In Theorem VI.3.3, we show that

K0(A oα G) can be naturally identified with a subgroup of K0(A), and that this subgroup is

a direct summand if K0(A) is finitely generated. These results, as well as the main technical

device used to prove them (Theorem VI.3.1), seem not to have been noticed even in the context

of finite group actions (with the exception of part (1) in Theorem VI.3.3, which was proved in

the simple case by Izumi; see Theorem 3.13 in [132]). Actions with the Rokhlin property are

shown in Theorem VI.3.9 to have a strong form of discrete K-theory (which again suggests

that the Rokhlin property is a rather strong form of freeness). In Theorem VI.3.10, we show

that the Cuntz semigroup of A oα G is naturally order isomorphic to a subsemigroup of the

Cuntz semigroup of A. Simplicity of the crossed product and fixed point algebra is established in

Proposition VI.3.14.

In Section VI.4, we explore duality and other applications involving equivariant

semiprojectivity. In Theorem VI.4.2, we characterize the dual or predual actions of actions with

the Rokhlin property, as those actions that are approximately representable (Definition VI.4.1).
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In Corollary VI.4.7, we use equivariant semiprojectivity to show that if G is a compact, abelian

Lie group with dim(G) ≤ 1, then every action of G with the Rokhlin property is a dual action.

To our surprise, this result is new even in the case of finite groups. The techniques in this section

are used in Theorem VI.4.9 to characterize those topological dynamical systems with the Rokhlin

property.

Groups will be assumed to be second countable, and in particular metrizable. It is a

standard fact that compact metrizable groups admit a (left) translation invariant metric.

Permanence Properties, Examples and Genericity

If G is a locally compact group, we denote by Lt : G → Aut(C0(G)) the action induced

by left translation of G on itself. In some situations (particularly in Theorem VI.4.9), we make a

slight abuse of notation and also denote by Lt the action of G on itself by left translation.

The following is essentially Definition 3.2 of [122].

Definition VI.2.1. Let A be a unital C∗-algebra, let G be a second countable compact group,

and let α : G→ Aut(A) be a continuous action. We say that α has the Rokhlin property if there is

an equivariant unital homomorphism

ϕ : (C(G), Lt)→ (A∞,α ∩A′, α∞).

Remark VI.2.2. Definition VI.2.1 is formally weaker than Definition 3.2 in [122], since we do

not require the map ϕ to be injective. However, this condition is automatic: the kernel of ϕ is a

translation invariant ideal in C(G), so it must be either {0} or all of C(G). It follows that the two

notions are in fact equivalent.

Since unital completely positive maps of order zero are necessarily homomorphisms,

it is easy to see that the Rokhlin property for a compact group action agrees with Rokhlin

dimension zero in the sense of Definition IV.2.2. In particular, the following is a consequence of

Theorem IV.2.8 and Proposition V.5.1.

Theorem VI.2.3. Let A be a unital C∗-algebra let G be a second countable compact group, and

let α : G→ Aut(A) be a continuous action of G on A.
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1. Let B be a unital C∗-algebra, and let β : G → Aut(B) be a continuous action of G on B.

Let A ⊗ B be any C∗-algebra completion of the algebraic tensor product of A and B for

which the tensor product action g 7→ (α ⊗ β)g = αg ⊗ βg is defined. If α has the Rokhlin

property, then so does α⊗ β.

2. Let I be an α-invariant ideal in A, and denote by α : G → Aut(A/I) the induced action on

A/I. If α has the Rokhlin property, then so does α.

3. Suppose that α has the Rokhlin property and let p be an α-invariant projection in A. Set

B = pAp and denote by β : G → Aut(B) the compressed action of G. Then β has the

Rokhlin property.

Furthermore,

4. Let (An, ιn)n∈N be a direct system of unital C∗-algebras with unital connecting maps, and

for each n ∈ N, let α(n) : G→ Aut(An) be a continuous action such that ιn◦α(n)
g = α

(n+1)
g ◦ιn

for all n ∈ N and all g ∈ G. Suppose that A = lim−→An and that α = lim−→α(n). If α(n) has the

Rokhlin property for infinitely many values of n, then α has the Rokhlin property as well.

It is not in general the case that the Rokhlin property for compact group actions is

preserved by restricting to a closed subgroup. The reader is referred to Section IV.2 for a

discussion about the interaction between Rokhlin dimension and restriction to closed subgroups.

The Rokhlin property is nevertheless preserved by passing to a subgroup in some special

cases.

Proposition VI.2.4. Let A be a unital C∗-algebra, let G be a second countable compact group,

and let α : G→ Aut(A) be an action with the Rokhlin property. Let H be a closed subgroup of G,

and assume that at least one of the following holds:

1. The coset space G/H is zero dimensional (for example, if [G : H] <∞).

2. We have G =
∏
i∈I

Gi or G =
⊕
i∈I

Gi, and H = Gj for some j ∈ I.

3. The subgroup H is the connected component of G containing its unit.

Then α|H : H → Aut(A) has the Rokhlin property.

Proof. This follows immediately from Proposition IV.2.10.

159



Note that in the proposition above, we did not make any assumptions on the C∗-algebra in

question, but rather on the subgroup. In the following theorem, we assume that the C∗-algebra is

the Cuntz algebra O2, but the subgroups we consider are arbitrary finite subgroups. We need an

easy lemma first. Its proof is standard, and we include it here for the sake of completeness.

Lemma VI.2.5. Let A be a C∗-algebra, let G be a compact group, and let α : G → Aut(A) be a

continuous action. Then there is a canonical identification

(Aα)∞ ∩A′ = (A∞,α ∩A′)α∞ .

Proof. It is clear that (Aα)∞ ∩ A′ ⊆ (A∞,α ∩ A′)α∞ . Conversely, let x ∈ (A∞,α ∩ A′)α∞ be given.

Choose a bounded sequence (an)n∈N ∈ `∞α (N, A) such that κA((an)n∈N) = x. Then

lim
n→∞

max
g∈G
‖αg(an)− an‖ = 0 and lim

n→∞
‖ana− aan‖ = 0

for all a ∈ A.

Denote by µ the normalized Haar measure on G, and for n ∈ N, set

bn =

∫
G

αg(an) dµ(g).

Then bn ∈ Aα and lim
n→∞

‖an− bn‖ = 0. In particular, (bn)n∈N is in `∞α (N, A)α
∞

, and it is clear that

κ((bn)n∈N) = x. The result follows.

Theorem VI.2.6. Let G be a second countable compact group, and let α : G → Aut(O2) be an

action with the Rokhlin property. Let H be a finite subgroup of G. Then α|H : H → Aut(O2) has

the Rokhlin property.

Proof. Set β = α|H : H → Aut(O2). Since α is pointwise outer by Theorem IV.3.16, so is β.

The crossed product O2 oβ H is therefore (separable, unital, nuclear) purely infinite and simple

by Corollary 4.6 in [135] (here reproduced as part (2) of Theorem II.2.8), and it absorbs O2 by

Theorem XI.2.16. Thus, we must have O2 oβ H ∼= O2.
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We wish to apply Theorem 4.2 in [132] (specifically the direction (3) implies (1)), and for

this it will suffice to prove that there exists a unital embedding

O2 → (O2
β)∞ ∩ O2

′.

By Lemma VI.2.5, we have (O2
β)∞ ∩ O2

′ = (O2∞ ∩ O2
′)β , and hence the existence of such

an embedding is guaranteed by Lemma XI.2.15. It follows that β has the Rokhlin property, as

desired.

Examples, non-existence, and genericity

Compact group actions with the Rokhlin property are rare (and they seem to be even

less common if the group is connected). In a forthcoming paper ([84]), we will show that there

are many C∗-algebras of interest that do not admit any non-trivial compact group action with

the Rokhlin property (such as the Cuntz algebra O∞ and the Jiang-Su algebra Z; see [120] for

a stronger statement valid for compact Lie groups), while there are many C∗-algebras that only

admit actions with the Rokhlin property of totally disconnected compact groups, such as the

Cuntz algebras On for n ≥ 3, UHF-algebras, AF-algebras, AI-algebras, etc. See Chapters X and

XI for some non-existence results of circle actions with the Rokhlin property.

In this section, we shall construct a family of examples of compact group actions with the

Rokhlin property on certain simple AH-algebras of no dimension growth, and on certain Kirchberg

algebras, including O2. We also show that compact group actions on O2-absorbing C∗-algebras

are generic, in a suitable sense; see Theorem VI.2.20.

Example VI.2.7. Given a second countable compact group G, the action Lt : G → Aut(C(G))

has the Rokhlin property, essentially by definition.

From the example above, we can construct more interesting ones using Theorem VI.2.3.

Example VI.2.8. Let G be a second countable compact group. For n ∈ N, set An = C(G)⊗M2n .

Set α(n) = Lt ⊗ idM2n
: G → Aut(An). Then α(n) has the Rokhlin property by part (1) of

Theorem VI.2.3 and Example VI.2.7. Fix a countable subset X = {x1, x2, x3, . . .} of G such that
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{xm, xm+1, . . .} is dense in G for all m ∈ N. Given n ∈ N, define a map ιn : An → An+1 by

ιn(f) =

 f 0

0 Ltxn(f)


for every f in An. Then ιn is unital and injective. The direct limit A = lim−→(An, ιn) is clearly a

unital AH-algebra of no dimension growth, and it is simple by Proposition 2.1 in [44].

It is easy to check that

ιn ◦ α(n)
g = α(n+1)

g ◦ ιn

for all n ∈ N and all g ∈ G, and hence
(
α(n)

)
n∈N induces a direct limit action α = lim−→α(n) of G on

A. Then α has the Rokhlin property by part (3) of Theorem VI.2.3.

The (graded) K-theory of A is easily seen to be K∗(A) ∼= K∗(C(G)) ⊗ Z
[

1
2

]
. Additionally,

Aα is isomorphic to the CAR algebra, and the inclusion Aα → A, at the level of K0, induces the

canonical embedding Z
[

1
2

]
→ K0(C(G))⊗ Z

[
1
2

]
as the second tensor factor.

In the example above, the 2∞ UHF pattern can be replaced by any other UHF or (simple)

AF pattern, and the resulting C∗-algebra is also a (simple) AH-algebra with no dimension growth.

If the group is totally disconnected, the direct limit algebra will be an AF-algebra. For non-

trivial groups, these AF-algebras will nevertheless not be UHF-algebras, even if a UHF pattern

is followed.

Example VI.2.9. Given a second countable compact group G, let A and α be as in

Example VI.2.8. Then

α⊗ idO∞ : G→ Aut(A⊗O∞)

has the Rokhlin property by part (1) of Theorem VI.2.3, and A⊗O∞ is a Kirchberg algebra. One

can obtain actions of G on other Kirchberg algebras by following a different UHF or AF pattern

in Example VI.2.8.

Using the absorption properties of O2, we can construct an action of the circle on O2 with

the Rokhlin property.

Example VI.2.10. Let G be a second countable compact group, and let A and α be as in

Example VI.2.8. Use Theorem 3.8 in [151] to choose an isomorphism ϕ : A ⊗ O2 → O2, and
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define an action β : G→ Aut(O2) by βg = ϕ ◦ (αg ⊗ idO2
) ◦ϕ−1 for g ∈ G. Then β has the Rokhlin

property by part (1) of Theorem VI.2.3.

More generally, the action constructed in Example VI.2.8 can be used to construct an

action of G on any O2-absorbing C∗-algebra.

In contrast, it follows from the following proposition that only finite groups act with the

Rokhlin property on finite dimensional C∗-algebras (and, in this case, the action must be a

permutation of the simple summands). The result is not surprising, but our proof allows us to

show that the result is true even under the much weaker assumption that the action be pointwise

outer. In particular, by Theorem IV.3.16, this applies to compact group actions with finite

Rokhlin dimension (not necessarily with commuting towers).

Proposition VI.2.11. Let G be a compact group, let A be a finite dimensional C∗-algebra, and

let α : G→ Aut(A) be a continuous action. If αg is outer for all g ∈ G\{1}, then G must be finite.

Proof. Choose positive integers m,n1, . . . , nm such that A ∼=
m⊕
j=1

Mnj . Denote by G0 the

connected component of the identity of G. By Proposition XI.3.6, the restriction α|G0
acts

trivially on K-theory. This is easily seen to be equivalent to αg(Mnj ) = Mnj for all g ∈ G0 and all

j = 1, . . . ,m. Given g ∈ G0, and since every automorphism of a matrix algebra is inner, it follows

that αg|Mnj
is inner for all j = 1, . . . ,m. Hence αg is inner, and we conclude that G0 = {1}. In

other words, G is totally disconnected.

If G is infinite, then there is a strictly decreasing sequence

G ⊇ H1 ⊆ H2 ⊇ · · · ⊇ {1}

of infinite closed subgroups of G. Therefore there is an increasing sequence of inclusions

AG ⊆ AH1 ⊆ · · · ⊆ A{1} = A.

Since A is finite dimensional, this sequence must stabilize, and hence there exists an infinite

subgroup H of G such that AH = A. We conclude that αg = idA for all g ∈ H. This is a

contradiction, and hence G is finite.

The following technical definition will be needed in the next subsection.
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Definition VI.2.12. Let A be a unital C∗-algebra, let G be a second countable compact group,

and let α : G → Aut(A) be a continuous action. We say that α has the strong Rokhlin property if

there exists a unital equivariant homomorphism

ϕ : (C(G), Lt)→ (A∞,α ∩A′, α∞)

whose image lands in the canonical copy of A inside of A∞,α.

Remark VI.2.13. It is easy to check that an action α : G → Aut(A) has the strong Rokhlin

property if and only if for every finite subset F ⊆ A, for every finite subset S ⊆ C(G), and for

every ε > 0, there exists a unital equivariant homomorphism

ϕ : C(G)→ A

such that

‖ϕ(f)a− aϕ(f)‖ < ε

for all f ∈ S and for all a ∈ F .

It follows from Proposition 5.26 in [205], that any action of a finite group with the Rokhlin

property has the strong Rokhlin property. By Proposition 3.3 in [80], the same is true for circle

actions. More generally, it will follow from Theorem VI.4.6 that the Rokhlin property is equivalent

to the strong Rokhlin property for (abelian) compact Lie groups with dim(G) ≤ 1. We do not

have an example of an action with the Rokhlin property that does not have the strong Rokhlin

property, although we suspect it exists. On the other hand, for our purposes, all we need to know

is that every group admits an action on O2 with the strong Rokhlin property.

Lemma VI.2.14. Let G be a second countable compact group. Then there exists a continuous

action α : G→ Aut(A) with the strong Rokhlin property.

Proof. By Theorem 3.8 in [151], it is enough to construct an action of G on a simple, unital,

separable, nuclear C∗-algebra, with the strong Rokhlin property. It is a straightforward exercise to

check that the action constructed in Example VI.2.8 satisfies the desired condition. We omit the

details.
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The Rokhlin property is generic.

In this subsection, we specialize to O2-absorbing C∗-algebras. We show that if A is a

separable, unital C∗-algebra absorbing O2 and if G is a second countable compact group, then

G-actions on A with the Rokhlin property are generic, in a suitable sense; see Corollary VI.2.21.

Specifically for totally disconnected groups, one can obtain a similar conclusion for C∗-algebras

that absorb a UHF-algebra of a certain infinite type naturally associated to the group; see [84].

Throughout, A will be a separable, unital C∗-algebra, and G will be a second countable

compact group.

Definition VI.2.15. Given an enumeration X = {a1, a2, . . .} of a countable dense subset of the

unit ball of A, define metrics on Aut(A) by

ρ
(0)
X (α, β) =

∞∑
k=1

‖α(ak)− β(ak)‖
2k

and

ρX(α, β) = ρ
(0)
X (α, β) + ρ

(0)
X (α−1, β−1)

for α, β ∈ Aut(A).

Denote by ActG(A) the set of all continuous actions of G on A. Define a metric on

ActG(A) by

ρG,S(α, β) = max
g∈G

ρX(αg, βg),

for α, β ∈ ActG(A).

Lemma VI.2.16. For any enumeration X as above, the function ρG,X is a complete metric on

ActG(A).

Proof. Let
(
α(n)

)
n∈N be a Cauchy sequence in ActG(A), so that for every ε > 0 there is n0 ∈ N

such that, for every n,m ≥ n0, we have ρG,X
(
α(n), α(m)

)
< ε. We want to show that there is

α ∈ ActG(A) such that lim
n→∞

ρG,X
(
α, α(n)

)
= 0.

Given g ∈ G, we have ρX

(
α

(n)
g , α

(m)
g

)
≤ ρG,X

(
α(n), α(m)

)
, and hence

(
α

(n)
g

)
n∈N

is Cauchy in Aut(A). By Lemma 3.2 in [206], the pointwise norm limit of the sequence(
α

(n)
g

)
n∈N

exists, and we denote it by αg. It also follows from Lemma 3.2 in [206] that αg is an
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automorphism of A, with inverse αg−1 . Moreover, the map α : G → Aut(A) given by g 7→ αg,

is a group homomorphism, since it is the pointwise norm limit of group homomorphisms. It

remains to check that it is continuous, and this follows using an ε
3 argument from the equation

lim
n→∞

∥∥∥α(n)
g (ak)− αg(ak)

∥∥∥ = 0 for all k in N, and the fact that α(n) : G → Aut(A) is continuous for

all n ∈ N. We omit the details.

Notation VI.2.17. Given a finite subset F ⊆ A, given a finite subset S ⊆ C(G), and given

ε > 0, we let WG(F, S, ε) denote the set of all actions α ∈ ActG(A) such that there exists a unital

completely positive linear map ϕ : C(G)→ A satisfying

1. ‖ϕ(f)a− aϕ(f)‖ < ε for all a ∈ F and for all f ∈ S;

2. ‖ϕ(f1f2)− ϕ(f1)(ϕ(f2)‖ < ε for all f1, f2 ∈ S; and

3. ‖αg(ϕ(f))− ϕ(Ltg(f))‖ < ε for all g ∈ G and for all f ∈ S.

It is easy to check that an action α ∈ ActG(A) has the Rokhlin property if and only if it

belongs to WG(F, S, ε) for all finite subsets F ⊆ A and S ⊆ C(G), and for all positive numbers

ε > 0.

If Z is a set, we denote by Pf (Z) the set of all finite subsets of Z. Note that |Pf (Z)| = |Z|

if Z is infinite.

Lemma VI.2.18. Let X be a countable dense subset of the unit ball of A, and let Y be a

countable dense subset of the unit ball of C(G). Then α ∈ ActG(A) has the Rokhlin property

if and only if it belongs to the countable intersection

⋂
F∈Pf (X)

⋂
S∈Pf (Y )

∞⋂
n=1

WG

(
F, S,

1

n

)
.

Proof. One just needs to approximate any finite subset of A by scalar multiples of elements in a

finite subset of X, and likewise for finite subsets of C(G). (We are implicitly using that both A

and C(G) are separable.) We omit the details.

For use in the following proposition, we denote by d : G×G→ R a (left) invariant metric on

G.
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Proposition VI.2.19. Let A and D be unital, separable C∗-algebras, such that there is an action

γ : G → Aut(D) with the strong Rokhlin property. Suppose that there exists an isomorphism

θ : A ⊗ D → A such that a 7→ θ(a ⊗ 1D) is approximately unitarily equivalent to idA. Then for

every finite subset F ⊆ A and every ε > 0, the set WG(F, S, ε) is open and dense in ActG(A).

Proof. We first check that WG(F, S, ε) is open. Choose an enumeration X = {a1, a2, . . .} of a

countable dense subset of the unit ball of A, and an enumeration Y = {f1, f2, . . .} of a dense

subset of the unit ball of C(G). Let α in WG(F, S, ε), and choose a unital completely positive

linear map ϕ : C(G)→ A satisfying

1. ‖ϕ(f)a− aϕ(f)‖ < ε for all a ∈ F and for all f ∈ S;

2. ‖ϕ(fh)− ϕ(f)(ϕ(h)‖ < ε for all f, h ∈ S; and

3. ‖αg(ϕ(f))− ϕ(Ltg(f))‖ < ε for all g ∈ G and for all f ∈ S.

Set

ε0 = max
g∈G

max
f∈S
‖αg(ϕ(f))− ϕ(Ltg(f))‖ ,

so that ε1 = ε− ε0 is positive. For f ∈ S, let kf ∈ N satisfy ‖akf − ϕ(f)‖ < ε1
3 . Set M = max

f∈S
kf .

We claim that if α′ ∈ ActG(A) satisfies ρG,X(α′, α) < ε1
2M3

, then α′ belongs to WG(F, S, ε).

Let α′ ∈ ActG(A) satisfy ρG,X(α′, α) < ε1
2M3

, and let f ∈ S. Then

‖α′g(ϕ(f))− ϕ(Ltg(f))‖ ≤ ‖α′g(ϕ(f))− αg(ϕ(f))‖+ ‖αg(ϕ(f))− ϕ(Ltg(f))‖

≤ 2ε1

3
+ ‖α′g(akf )− αg(akf )‖+ ε0

≤ 2ε1

3
+ 2MρG,X(α, α′) + ε0

= ε1 + ε0 = ε.

The claim is proved. It follows that WG(F, S, ε) is open.

We will now show that WG(F, S, ε) is dense in ActG(A). Let α be an arbitrary action in

ActG(A), let E ⊆ A be a finite subset, and let δ > 0. We want to find β ∈ ActG(A) such that β

belongs to WG(F, S, ε) and ‖αg(a)− βg(a)‖ < δ for all g ∈ G and all a ∈ E.

Fix 0 < δ′ < min{δ, ε}. Since G is compact and second countable, it admits a left-invariant

metric, which we denote by d : G × G → R. Since α is continuous, there is δ0 > 0 such that
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whenever g, g′ ∈ G satisfy d(g, g′) < δ0, then

‖αg(a)− αg′(a)‖ < δ′

4

for all a ∈ E. Choose m ∈ N and g1, . . . , gm ∈ G, such that for every g ∈ G, there is j ∈ N, with

1 ≤ j ≤ m, satisfying d(g, gj) < δ0. Choose w ∈ U(A) with

‖wθ(1A ⊗ a)w∗ − a‖ < δ′

2

for all a ∈ E ∪
m⋃
j=1

αgj (E). Set ρ = Ad(w) ◦ θ and define an action β ∈ ActG(A) by

βg = ρ ◦ (γg ⊗ αg) ◦ ρ−1

for g ∈ G.

We claim that β belongs to WG(F, S, ε). Choose r ∈ N, d1, . . . , dr ∈ D, and x1, . . . , xr ∈ A,

such that w′ =
r∑̀
=1

x` ⊗ d` satisfies ‖w − w′‖ < δ
3 . Use the strong Rokhlin property of γ to find a

unital equivariant homomorphism ϕ : C(G)→ D such that

‖ϕ(f)d` − d`ϕ(f)‖ < ε

4

for all f ∈ S and for all ` = 1, . . . , r. Then

‖(1A ⊗ ϕ(f))w′ − w′(1A ⊗ ϕ(f))‖ < δ

3

for all f ∈ S, and hence ‖(1A ⊗ ϕ(f))w − w(1A ⊗ ϕ(f))‖ < δ. Define a unital homomorphism

ψ : C(G)→ A by

ψ(f) = θ(1A ⊗ ϕ(f))
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for f ∈ C(G). Given g ∈ G and f ∈ S, we have

‖βg(ψ(f))− ψ(Ltg(f))‖

=
∥∥wθ ((αg ⊗ γg)(θ−1(w∗θ(1A ⊗ ϕ(f))w))

)
w∗ − θ(1A ⊗ ϕ(Ltg(f)))

∥∥
≤
∥∥wθ ((αg ⊗ γg)(θ−1(w∗θ(1A ⊗ ϕ(f))w))

)
w∗ − wθ ((αg ⊗ γg)(1A ⊗ ϕ(f)))w∗

∥∥
+ ‖wθ ((αg ⊗ γg)(1A ⊗ ϕ(f)))w∗ − θ(1A ⊗ ϕ(Ltg(f)))‖

<
δ′

2
+ ‖wθ (g1A ⊗ ϕ(f))w∗ − gθ(1A ⊗ ϕ(f))‖

<
δ′

2
+
δ′

2
= δ′ < ε,

and thus ‖βg(ψ(f)) − ψ(Ltg(f))‖ < ε for all g ∈ G and for all f ∈ S. On the other hand, given

a ∈ F and f ∈ S, we use the identity

(a⊗ 1D)(1A ⊗ ϕ(f)) = (1A ⊗ ϕ(f))(a⊗ 1D)

at the third step, to obtain

‖ψ(f)a− aψ(f)‖ = ‖θ(1A ⊗ ϕ(f))a− aθ(1A ⊗ ϕ(f))‖

≤ ‖θ(1A ⊗ ϕ(f))a− θ(1A ⊗ ϕ(f))wθ(a⊗ 1D)w∗‖

+ ‖θ(1A ⊗ ϕ(f))wθ(a⊗ 1D)w∗ − wθ(a⊗ 1D)w∗θ(1A ⊗ ϕ(f))‖

+ ‖wθ(a⊗ 1D)w∗θ(1A ⊗ ϕ(f))− aθ(1A ⊗ ϕ(f))‖

<
δ′

2
+ 0 +

δ′

2
= δ′ < ε.

This proves the claim.
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It remains to prove that ‖βg(a) − αg(a)‖ < δ for all a in E and all g in G. For fixed g ∈ G,

choose j ∈ {1, . . . ,m} such that d(g, gj) < δ0. Then, for a ∈ E, we have

‖βg(a)− αg(a)‖ = ‖wθ
(
(αg ⊗ γg)(θ−1(w∗aw))

)
− αg(a)‖

≤ ‖wθ
(
(αg ⊗ γg)(θ−1(w∗aw))

)
− wθ ((αg ⊗ γg)(a⊗ 1D)) ‖

+ ‖wθ ((αg ⊗ γg)(a⊗ 1D))− αg(a)‖

<
δ′

2
+ ‖wθ(αg(a)⊗ 1D)w∗ − αg(a)‖

≤ δ′

2
+ ‖wθ(αg(a)⊗ 1D)w∗ − wθ(αgj (a)⊗ 1D)w∗‖

+ ‖wθ(αgj (a)⊗ 1D)w∗ − αgj (a)‖+ ‖αgj (a)− αg(a)‖

<
δ′

2
+
δ′

4
+
δ′

4
= δ′ < δ.

This finishes the proof.

Theorem VI.2.20. Let A and D be unital, separable C∗-algebras, such that there is an action

γ : G → Aut(D) with the strong Rokhlin property. Suppose that there exists an isomorphism

θ : A⊗D → A such that a 7→ θ(a⊗ 1D) is approximately unitarily equivalent to idA. Then the set

of actions of G on A with the Rokhlin property is a dense Gδ-set in ActG(A).

Proof. By Lemma VI.2.18, the set of all circle actions on A that have the Rokhlin property is

precisely the countable intersection

⋂
F∈Pf (X)

⋂
S∈Pf (Y )

⋂
n∈N

WG

(
F, S,

1

n

)
.

By Proposition VI.2.19, each WG

(
F, S, 1

n

)
is open and dense in ActG(A), which is a complete

metric space by Lemma VI.2.16. The result then follows from the Baire Category Theorem.

Recall that a unital, separable C∗-algebra D is said to be strongly self-absorbing, if it is

infinite dimensional and the map D → D ⊗ D given by d 7→ d ⊗ 1, is approximately unitarily

equivalent to an isomorphism. The only known examples are the Jiang-Su algebra Z, the Cuntz

algebras O2 and O∞, UHF-algebras of infinite type, and tensor products of O∞ by such UHF-

algebras. (The reader is referred to [265] for more on strongly self-absorbing C∗-algebras.)
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Out of the known examples of strongly self-absorbing C∗-algebras, O∞ and Z do not admit

any actions of any compact group with the Rokhlin property (see part (1) of Theorem 4.6 in [120]

for a more general statement in the case of a Lie group; and see [84] for a proof specifically for

the Rokhlin property, valid for all compact groups). On the other hand, only totally disconnected

groups can act with the Rokhlin property on UHF-algebras, or their tensor products with O∞; see

[84]. Hence, only on O2 can we construct actions of an arbitrary compact group with the Rokhlin

property, and, as it turns out, the Rokhlin property is generic in this case.

Corollary VI.2.21. Let A be a separable unital C∗-algebra such that A⊗O2
∼= A. Then the set

of all circle actions on A with the Rokhlin property is a dense Gδ-set in ActG(A).

Proof. By Lemma VI.2.14, there is an action γ : G → Aut(O2) with the strong Rokhlin property.

Since A absorbs O2 tensorially, the hypotheses of Theorem VI.2.20 are met by Theorem 7.2.2 in

[235], and the result follows.

K-theory and Cuntz Semigroups of Crossed Products

We begin this section by proving the main technical theorem that will be used in the proofs

of essentially every other result in this section. Roughly speaking, Theorem VI.3.1 will allow us

to take averages over the group G, in such a way that elements of the fixed point algebra are left

fixed, and also such that ∗-polynomial relations in the algebra are approximately preserved.

Theorem VI.3.1. Let A be a unital C∗-algebra, let G be a second countable compact group, and

let α : G → Aut(A) be an action with the Rokhlin property. Given a compact subset F ⊆ A and

ε > 0, there exists a unital, continuous linear map ψ : A→ Aα satisfying

1. ‖ψ(ab)− ψ(a)ψ(b)‖ < ε for all a, b ∈ F ;

2. ‖ψ(a∗)− ψ(a)∗‖ < ε for all a ∈ F ;

3. ‖ψ(a)‖ ≤ 2‖a‖ for all a ∈ F ; and

4. ψ(a) = a for all a ∈ Aα.

If A is separable, it follows that there exists an approximate homomorphism (ψn)n∈N

consisting of bounded, unital linear maps ψn : A→ Aα satisfying ψn(a) = a for all a ∈ Aα.
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Proof. Without loss of generality, we may assume that ‖a‖ ≤ 1 for all a ∈ F . For the compact set

F and the tolerance ε0 = ε
6 , use Proposition V.4.3 to find a positive number δ > 0, a finite subset

K ⊆ G, a partition of unity (fk)k∈K in C(G), and a unital completely positive map ϕ : C(G)→ A,

such that the following conditions hold:

(a) If g and g′ in G satisfy d(g, g′) < δ, then ‖αg(a)− αg′(a)‖ < ε0 for all a ∈ F .

(b) Whenever k and k′ in K satisfy fkfk′ 6= 0, then d(k, k′) < δ.

(c) For every g ∈ G and for every a ∈ F ∪ F ∗, we have

∥∥∥∥∥ αg
(∑
k∈K

ϕ(fk)αk(a)

)
−
∑
k∈K

ϕ(fk)αk(a)

∥∥∥∥∥ < ε0.

(d) For every a ∈ F ∪ F ∗ and for every k ∈ K, we have

‖aϕ(fk)− ϕ(fk)a‖ < ε0

|K|
and

∥∥∥aϕ(fk)
1
2 − ϕ(fk)

1
2 a
∥∥∥ < ε0

|K|
.

(e) Whenever k and k′ in K satisfy fkfk′ = 0, then

‖ϕ(fk)ϕ(fk′)‖ <
ε0

|K|
.

Define a unital linear map ψ : A→ Aα by

ψ(a) = E

(∑
k∈K

ϕ(fk)αk(a)

)

for all a ∈ A. We claim that ψ has the desired properties. It is immediate that ψ(a) = a for all

a ∈ Aα, using the properties of the conditional expectation E, so condition (4) is guaranteed.

We proceed to check condition (1) in the statement. Given a, b ∈ F , we use condition (c) at

the second and fifth step, conditions (a), (b), (d) and (e) at the third step, and the fact that ϕ is
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unital and (fk)k∈K is a partition of unity of C(G) at the fourth step, to get

ψ(a)ψ(b) = E

(∑
k∈K

ϕ(fk)αk(a)

)
E

(∑
k′∈K

ϕ(fk′)αk′(b)

)

≈2ε0

∑
k∈K

∑
k′∈K

ϕ(fk)αk(a)ϕ(fk′)αk′(b)

≈3ε0

∑
k∈K

∑
k′∈K

ϕ(fk)αk(ab)ϕ(fk′)

=
∑
k∈K

ϕ(fk)αk(ab)

≈ε0 E

(∑
k∈K

ϕ(fk)αk(ab)

)

= ψ(ab).

Hence ‖ψ(ab)− ψ(a)ψ(b)‖ < 6ε0 = ε, and condition (1) is proved.

To prove condition (2), let a ∈ F . In the following computation, we use condition (d) at the

second step, and the fact that ϕ and E are positive at the third step:

ψ(a∗) = E

(∑
k∈K

ϕ(fk)αk(a)∗

)

≈ε0 E

(∑
k∈K

αk(a)∗ϕ(fk)

)

= E

(∑
k∈K

(ϕ(fk)αk(a))∗

)∗
= ψ(a)∗.

Thus, condition (2) is verified.

To check condition (3), let a ∈ F . Then

ψ(a) = E

(∑
k∈K

ϕ(fk)αk(a)

)

≈ε0 E

(∑
k∈K

ϕ(fk)
1
2αk(a)ϕ(fk)

1
2

)
.
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Since the assignment a 7→ E

( ∑
k∈K

ϕ(fk)
1
2αk(a)ϕ(fk)

1
2

)
defines a unital (completely) positive map

ψ̃ : A→ Aα, we conclude that

‖ψ(a)‖ ≤ ‖ψ̃(a)‖+ ε0 ≤ ‖a‖+ ε0 ≤ 2‖a‖,

as desired. This finishes the proof.

K-theory and fixed point algebras.

Our first applications of Theorem VI.3.1 are, first, to the maps induced by the canonical

inclusion Aα ↪→ A at the level of K-theory (Theorem VI.3.3), and, second, to the equivariant

K-theory KG
∗ (A) (Theorem VI.3.9).

We start off with an intermediate result. Recall that for two projections p and q in a C∗-

algebra B, we say that p is Murray-von Neumann subequivalent (in B) to q, written p -M−vN q,

if there exists a third projection q0 ∈ B such that p ∼M−vN q0 and q0 ≤ q. Murray-von Neumann

subequivalence is easily seen to be transitive. (We warn the reader that p -M−vN q and q -M−vN

p do not in general imply p -M−vN q.)

Proposition VI.3.2. Let A be a unital C∗-algebra, let G be a second countable compact group,

and let α : G→ Aut(A) be an action with the Rokhlin property. Let p, q ∈ Aα be two projections.

1. Suppose that p -M−vN q in A. Then p -M−vN q in Aα.

2. Suppose that p ∼M−vN q in A. Then p ∼M−vN q in Aα.

Proof. (1). Find a projection q0 ∈ A such that p ∼M−vN q0 and q0 ≤ q. Find a partial isometry

s ∈ A such that s∗s = p and ss∗ = q0. For ε = 1
21 , find δ0 > 0 such that whenever x ∈ Aα satisfies

‖x∗x− x‖ < δ0, then there exists a projection r ∈ Aα such that ‖r − x‖ < ε. Set δ = min
{
δ0
3 , ε

}
.

Find a unital, continuous linear map ψ : A→ Aα as in the conclusion of Theorem VI.3.1 for

δ and F = {p, q, q0, s, s
∗}. Then

‖ψ(q0)∗ψ(q0)− ψ(q0)‖ ≤ ‖ψ(q0)∗ψ(q0)− ψ(q∗0)ψ(q0)‖+ ‖ψ(q0)ψ(q0)− ψ(q2
0)‖

< 2δ + δ < δ0.
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By the choice of δ0, there exists a projection q̃0 in Aα such that ‖ψ(q0) − q̃0‖ < ε. We claim that

q̃0 -M−vN q in Aα

We use the identity q0 = q0q at the second step to show that

‖q̃0 − q̃0q‖ ≤ 2‖q̃0 − ψ(q0)‖+ ‖ψ(q0)− ψ(q0)q‖ < 2ε+ δ ≤ 1.

It follows from Lemma 2.5.2 in [166] that q̃0 -M−vN q in Aα.

Now we claim that p ∼M−vN q̃0 in Aα. We use the identity ps∗q0sp = p at the last step to

show

‖(q̃0ψ(s)p)∗(q̃0ψ(s)p)− p‖ ≤ ‖pψ(s)∗q̃2
0ψ(s)p− pψ(s∗)q̃2

0ψ(s)p‖+ 4‖q̃0 − ψ(q0)‖

+ ‖ψ(p)ψ(s∗)ψ(q0)ψ(s)ψ(p)− ψ(s∗s)‖

< 2δ + 4ε+ 15δ + ‖ψ(ps∗q0sp)− ψ(s∗s)‖ < 21ε = 1.

Likewise, ‖(q̃0ψ(s)p)(q̃0ψ(s)p)∗ − q‖ < 1. By Lemma 2.5.3 in [166] applied to q̃0ψ(s)p, there exists

a partial isometry t in Aα such that t∗t = p and tt∗ = q̃0.

We conclude that

p ∼M−vN q̃0 -M−vN q

in Aα, so the proof is complete.

(2). The proof of this part is analogous, but simpler. We therefore omit the details.

Part (1) of the following theorem generalizes Theorem 3.13 in [132] in two ways: we do not

assume our algebras to be simple, and we consider compact groups. The remaining parts are new

even when G is finite.

Theorem VI.3.3. Let A be a unital, separable C∗-algebra, let G be a second countable compact

group, and let α : G → Aut(A) be an action with the Rokhlin property. Then the following

assertions hold:

1. The canonical inclusion ι : Aα → A induces an injective map

K∗(ι) : K∗(A
α)→ K∗(A).
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2. The map K0(ι) : K0(Aα) → K0(A) is an order embedding; that is, whenever x, y ∈ K0(Aα)

satisfy K0(ι)(x) ≤ K0(ι)(y) in K0(A), then x ≤ y in K0(Aα).

3. Let j ∈ {0, 1}, and let H be a finitely generated subgroup of Kj(A). Then there exists a

group homomorphism π : H → K0(Aα) such that

π ◦ ι|K0(ι)−1(H) = idK0(ι)−1(H).

Proof. (1). The result for K1 follows from the result for K0, by tensoring with any unital C∗-

algebra B satisfying the UCT with K-theory (0,Z), and using the Künneth formula. We will

therefore only prove the theorem for K0.

Let x ∈ K0(Aα) satisfy K0(ι)(x) = 0. Choose n ∈ N and projections p, q ∈ Mn(Aα) such

that x = [p] − [q]. Then [p] = [q] in K0(A). Without loss of generality, we may assume that p and

q are Murray-von Neumann equivalent in Mn(A). Since the action α ⊗ idMn of G on Mn(A) has

the Rokhlin property by part (1) of Theorem VI.2.3, it follows from part (2) of Proposition VI.3.2

that p and q are Murray-von Neumann equivalent in Mn(Aα). Hence x = 0 and K0(ι) is injective.

(2). Let x, y ∈ K0(Aα) and suppose that K0(ι)(x) ≤ K0(ι)(y). Choose n ∈ N and

projections p, q, e, and f in Mn(Aα), such that x = [p]−[q] and y = [e]−[f ]. Then [p]+[f ] ≤ [e]+[q]

in K0(A). Without loss of generality, we can assume that p ⊕ f -M−vN e ⊕ q in M2n(A). Since

the action induced by α on M2n(A) has the Rokhlin property by part (1) of Theorem VI.2.3,

it follows from part (2) of Proposition VI.3.2 that p ⊕ f -M−vN e ⊕ q in M2n(Aα). Hence

[p] + [f ] ≤ [e] + [q] in K0(Aα) and thus x ≤ y in K0(Aα), as desired.

(3). We prove the statement only for K0, which without loss of generality we assume is

not the trivial group. So let H be a finitely generated subgroup of K0(A), and choose an integer

m ≥ 0, and k0, . . . , km ∈ N such that H is isomorphic to Zk0 ⊕ Zk1 ⊕ · · · ⊕ Zkm as abelian groups.

For 1 ≤ i ≤ k0 and 1 ≤ j ≤ m, choose projections

p0,i, q0,i, pj , qj ∈M∞(A),

such that [p0,i] − [q0,i] is a (free) generator of the i-th copy of Z; and [pj ] − [qj ] is a generator (of

order kj) of Zkj . Without loss of generality, we may assume that there are unitaries uj ∈ M∞(A),
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for j = 1, . . . ,m, such that

ujdiag(pj , . . . , pj)u
∗
j = diag(qj , . . . , qj).

(In the equation above, there are kj repetitions of pj and qj .)

For i = 1, . . . , k0, let Z(i) denote the i-th copy of Z in H. Then the intersection Z(i) ∩

K0(ι)(K0(Aα)) is a subgroup of Z(i), so there exists ni,0 ≥ 0 such that

Z(i) ∩K0(ι)(K0(Aα)) = niZ(i).

Find projections ri,0, si,0 ∈M∞(Aα) such that

[ri,0]− [si,0] = ni([p0,i]− [q0,i]) ∈ K0(A).

Without loss of generality, we may assume that there exists a unitary vi,0 ∈M∞(A) such that

vi,0diag(ri,0, qi,0, . . . , qi,0)v∗i,0 = diag(si,0, pi,0, . . . , pi,0).

(In the equation above, there are ni repetitions of pi,0 and qi,0.)

Likewise, for j = 1, . . . ,m, there exists `j dividing kj , such that

Zkj ∩K0(ι)(K0(Aα)) = `jZkj .

Find projections rj , sj ∈M∞(Aα) such that

[rj ]− [sj ] = `j([pj ]− [qj ]) ∈ K0(A).

Without loss of generality, we may assume that there exists a unitary vj ∈M∞(A) such that

vjdiag(rj , qj , . . . , qj)v
∗
j = diag(sj , pj , . . . , pj).

(In the equation above, there are `j repetitions of pj and qj .)
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Claim 1: the set

{[ri,0]− [si,0] : i = 1, . . . , k, ni 6= 0} ∪ {[rj ]− [sj ] : j = 1, . . . ,m, `j 6= 0} ⊆ K0(Aα)

generates K0(Aα) ∩ K0(ι)−1(H). By construction, the above set, when regarded as a subset of

K0(A) under K0(ι), generates K0(ι)(K0(Aα)) ∩ H. Moreover, since K0(ι) is injective by part (1)

of this theorem, the claim follows.

An analogous argument shows that [ri,0] − [si,0], for i = 1, . . . , k0, has infinite order, and

that [rj ]− [sj ], for j = 1, . . . ,m, has order `j .

Find n large enough such that the set

F = {p0,i, q0,i, r0,i, s0,i, v0,i : i = 1, . . . , k0} ∪ {pj , qj , uj , rj , sj , vj : j = 1, . . . ,m}

is contained in Mn(A). Since the amplification of α to Mn(A) has the Rokhlin property by part

(1) of Theorem VI.2.3, we can replace Mn(A) with A.

Set ε = 1
10 . Find δ1 > 0 such that whenever x ∈ A satisfies ‖x∗x−x‖ < δ1, then there exists

a projection p ∈ A with ‖p−x‖ < ε. Find δ2 > 0 such that whenever y ∈ A satisfies ‖y∗y−1‖ < δ2

and ‖yy∗ − 1‖ < δ2, then there exists a unitary u ∈ A with ‖u − y‖ < ε. Set δ = min
{
ε
3 ,

δ1
3 ,

δ2
3

}
.

Use Theorem VI.3.1 to find a unital, linear map ψ : A→ Aα satisfying

(a) ‖ψ(a)ψ(b)− ψ(ab)‖ < δ for all a, b ∈ F ∪ F 2;

(b) ‖ψ(a)∗ − ψ(a∗)‖ < δ for all a ∈ F ∪ F 2;

(c) ‖ψ(a)‖ ≤ 2‖a‖ for all a ∈ F ∪ F 2; and

(d) ψ(a) = a for all a ∈ Aα.

Let x ∈ {pi,0, qi,0, pj , qj : i = 1, . . . , k0, j = 1, . . . ,m}. Then

‖ψ(x)∗ψ(x)− ψ(x)‖ ≤ ‖ψ(x)∗ψ(x)− ψ(x)ψ(x)‖+
∥∥ψ(x)ψ(x)− ψ(x2)

∥∥
≤ 2δ + δ < δ1.

Using the choice of δ1, find (and fix) a projection x̃ ∈ Aα such that ‖x̃− ψ(x)‖ < ε.
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For y ∈ {uj , vj : j = 1, . . . ,m}, we have

‖ψ(y)∗ψ(y)− 1‖ ≤ ‖ψ(y)∗ψ(y)− ψ(y∗)ψ(y)‖+ ‖ψ(y∗)ψ(y)− 1‖

≤ 2δ + δ < δ2.

Likewise, ‖ψ(y)ψ(y)∗ − 1‖. Using the choice of δ2, find (and fix) a unitary ỹ ∈ Aα such that

‖ỹ − ψ(y)‖ < ε.

Claim 2: Let j = 1, . . . ,m. Then kj ([p̃j ]− [q̃j ]) = 0 in K0(Aα). In the estimates below,

there are kj repetitions on each diagonal matrix:

∥∥ũjdiag(p̃j , . . . , p̃j)ũ
∗
j − diag(q̃j , . . . , q̃j)

∥∥
≤
∥∥ũjdiag(p̃j , . . . , p̃j)ũ

∗
j − ψ(uj)diag(ψ(pj), . . . , ψ(pj))ψ(uj)

∗∥∥
+ ‖ψ(uj)diag(ψ(pj), . . . , ψ(pj))ψ(uj)

∗ − diag(ψ(qj), . . . , ψ(qj))‖

+ ‖diag(ψ(qj), . . . , ψ(qj))− diag(q̃j , . . . , q̃j)‖

≤ 7ε+ 3δ + ε ≤ 9ε < 1.

It follows from Lemma 2.5.3 in [166] that ũjdiag(p̃j , . . . , p̃j)ũ
∗
j is Murray-von Neumann equivalent

to diag(q̃j , . . . , q̃j) in Aα, and the claim is proved.

Define a group homomorphism π : H → K0(Aα) by

π([pi,0]− [qi,0]) = [p̃i,0]− [q̃i,0],

for i = 1, . . . , k0, and

π([pj ]− [qj ]) = [p̃j ]− [q̃j ],

for j = 1, . . . ,m. (This is a well-defined group homomorphism by the previous claim.)

Claim 3: We have π ◦K0(ι)|K0(ι)−1(H) = idK0(ι)−1(H). For this, it is enough to check that

π (K0(ι)([ri,0]− [si,0])) = [ri,0]− [si,0]

for all i = 1, . . . , k0, and

π (K0(ι)([rj ]− [sj ])) = [rj ]− [sj ]
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for all j = 1, . . . ,m.

Fix i ∈ {1, . . . , k0}. Then K0(ι)([ri,0]− [si,0]) = ni([pi,0]− [qi,0]) in K0(A), so we shall prove

that

ni([p̃i,0]− [q̃i,0]) = [ri,0]− [si,0]

in K0(Aα). The following estimate can be shown in a way similar to what was done in the proof

of Claim 2 (there are ni + 1 entries on each diagonal matrix):

∥∥ṽjdiag(si,0, p̃i,0, . . . , p̃i,0)ṽ∗j − diag(r̃i,0, qi,0, . . . , q̃i,0)
∥∥ < 1.

Again, it follows from Lemma 2.5.3 in [166] that ṽjdiag(si,0, p̃i,0, . . . , p̃i,0)ṽ∗j is Murray-von

Neumann equivalent to diag(r̃i,0, qi,0, . . . , q̃i,0) in Aα, and the claim is proved. The argument

for [rj ]− [sj ], for j = 1, . . . ,m, is analogous, and we omit it.

It follows that certain features of the K-groups of A are inherited by the K-groups of Aα

and Aoα G:

Corollary VI.3.4. Let A be a unital C∗-algebra, let G be a second countable compact group,

and let α : G → Aut(A) be an action with the Rokhlin property. Let j ∈ {0, 1} and suppose that

Kj(A) is either:

1. Free;

2. Torsion;

3. Torsion-free;

4. Finitely generated;

5. Zero.

Then the same holds for Kj(A
α) and Kj(Aoα G).

Proof. This follows immediately from part (1) of Theorem VI.3.3.

Corollary VI.3.5. Let A be a unital, separable C∗-algebra, let G be a second countable compact

group, and let α : G → Aut(A) be an action with the Rokhlin property. Suppose that Kj(A) is

finitely generated for some j ∈ {0, 1}. Then Kj(A
α) is isomorphic to a direct summand in Kj(A).
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Proof. This is consequence of part (3) of Theorem VI.3.3, together with the fact that a short

exact sequence 0→ G1 → G2 → G3 → 0 of abelian groups with a section G2 → G1 must split.

The splitting constructed in part (3) of Theorem VI.3.3 is not natural with respect to

equivariant homomorphisms between G-algebras with the Rokhlin property. On the other hand,

the splitting can be shown to be natural with respect to certain maps. We state it below, but

omit its proof because it is straightforward (although a bit messy).

Proposition VI.3.6. Let B be unital C∗-algebra, let A be a unital subalgebra of B (with the

same unit), and denote by µ : A → B the canonical inclusion. Let G be a second countable group,

and let α : G→ Aut(A) and β : G→ Aut(B) be actions with the Rokhlin property. Let τ : G→ G

be a surjective group homomorphism satisfying

βg(µ(a)) = µ(ατ(g)(a))

for all g ∈ G and all a ∈ A. (Note, in particular, that µ restricts to the inclusion Aα ⊆ Bβ .) Write

ιA : Aα → A and ιB : Bβ → B for the canonical inclusions.

Suppose that there are unital, equivariant homomorphisms

ϕA : C(G)→ A∞,α ∩B′ ⊆ A∞,α ∩A′ and ϕB : C(G)→ B∞,β ∩B′

making the following diagram commute:

C(G)
τ∗ //

ϕA

��

C(G)

ϕA

��
A∞,α ∩B′ �

� // B∞,β ∩B′.

Let j ∈ {0, 1} and let H be a finitely generated subgroup of Kj(A). Set H̃ = Kj(µ)(H),

which is a finitely generated subgroup of Kj(B). Then there exist group homomorphisms

πA : H → K0(Aα) and πB : H̃ → K0(Bβ), satisfying

πA ◦Kj(ιA)|Kj(ιA)−1(H) = idKj(ιA)−1(H)
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and

πB ◦Kj(ιB)|Kj(ιB)−1(H̃) = idKj(ιB)−1(H̃),

which moreover make the following diagram commute:

Kj(A
α)

Kj(ιA)

$$

Kj(µ)

��

H

Kj(µ)

��

πAoo � � // Kj(A)

Kj(µ)

��
Kj(B

β)

Kj(ιB)

99
H̃

πB
oo � � // Kj(B).

Though we do not have an immediate application for the following observation, we record

it here for use in the future. The first cohomology group H1
α(G,U(A)) of a compact group

action α : G → Aut(A) is defined as the quotient of the set of α-cocycles on A, by the set of

α-coboundaries. (See, for example, Subsection 2.1 in [132] for the precise definitions.)

Corollary VI.3.7. Let A be a separable, simple, purely infinite unital C∗-algebra, let G be a

second countable compact group, and let α : G → Aut(A) be an action with the Rokhlin property.

Then its first cohomology group H1
α(G,U(A)) is trivial.

Proof. We proceed to check the hypotheses of Proposition 2.5 in [132].

By Theorem IV.3.16, the action αg is outer for all g ∈ G \ {1}, so in particular α is

faithful. By Proposition VII.4.10, the crossed product AoαG is purely infinite, and it is simple by

Proposition VI.3.14. Finally, K0(ι) is injective by part (1) of Theorem VI.3.3, so the result follows

from Proposition 2.5 in [132].

We recall here a result of Izumi (Theorem 3.13 in [132]). Let α : G → Aut(A) be an action

of a finite group G on a unital, simple C∗-algebra A with the Rokhlin property, and denote by

ι : Aα → A the canonical inclusion. Then

K∗(ι)(K∗(A
α)) = {x ∈ K∗(A) : K∗(αg)(x) = x for all g ∈ G}.

The analogous statement for compact group actions fails quite drastically:
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Example VI.3.8. Let A be a unital Kirchberg algebra satisfying the UCT, with K-theory given

by K0(A) ∼= K1(A) ∼= Z6, with the class of the unit in K0(A) corresponding to 3 ∈ Z6. By

Theorem IX.9.3, there exists a circle action α : T → Aut(A) with the Rokhlin property, such that

K0(Aα) ∼= Z2, with the class of the unit of Aα corresponding to 1 ∈ Z2, and K1(Aα) ∼= Z3.

By Proposition XI.3.6, if ζ ∈ T and j ∈ {0, 1}, then Kj(αζ) = idKj(A). In particular,

Kj(ι)(Kj(A
α)) ∼= Zj+2 � Z6

∼= {x ∈ Kj(A) : Kj(αζ)(x) = x for all ζ ∈ T}.

What goes wrong in the example above (whose notation we keep), is that if p is a

projection in A such that αζ(p) is unitarily equivalent to p for all ζ ∈ T, then the unitaries

uζ , for ζ ∈ T, which implement the unitary equivalence, cannot in general be chosen to depend

continuously on ζ.

Next, we show that the Rokhlin property implies discrete K-theory (Definition 4.1.2 in

[199]) in a very strong way. (The reader who is not familiar with equivariant K-theory is referred

to Section 2.3.)

In the following theorem, I(G) denotes the augmentation ideal in R(G), that is, the kernel

of the ring homomorphism dim: R(G)→ Z given by

dim([(V, v)]− [(W,w)]) = dim(V )− dim(W )

for [(V, v)]− [(W,w)] ∈ R(G).

Theorem VI.3.9. Let G be a compact group, let A be a unital C∗-algebra, and let α : G →

Aut(A) be an action with the Rokhlin property. Then I(G) ·KG
∗ (A) = 0.

Proof. We show the result for KG
0 ; the result for KG

1 is analogous. (It also follows by replacing

A with A ⊗ B, where B is any unital C∗-algebra satisfying the UCT with K0(B) = {0} and

K1(B) = Z, and endowing it with the G-action α⊗ idB .)

We show first that I(G) · VG(A) = 0. Let v : G → U(V ) be a finite dimensional

representation, and let p be a G-invariant projection in B(V )⊗A. Since the action g 7→ Ad(w)⊗αg

of G on B(V ) ⊗ A has the Rokhlin property by part (1) of Theorem VI.2.3, we may assume that

V = C, so that p is a G-invariant projection in A.
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Let x = [(W1, w1)]− [(W2, w2)] ∈ I(G) be given. Since W1
∼= W2 as vector spaces, it is clear

that

x = ([(W1, w1)]− [(W1, idW1
)])− ([(W2, w2)]− [(W2, idW2

)]) .

In particular, it is enough to show that if w : G → U(W ) is a finite dimensional representation,

then ([(W1, w1)]− [(W1, idW1
)]) [p] = 0 in KG

0 (A). We identify M2(B(W )) ⊗ A with M2(B(W,A))

in the usual way. We will show that the elements

 idW 0

0 0

⊗ p =

 p 0

0 0

 ∈M2(B(W,A))

and  0 0

0 idW

⊗ p =

 0 0

0 p

 ∈M2(B(W,A))

are Murray-von Neumann equivalent in the fixed point algebra of M2(B(W,A)). The action

β : G→ Aut(M2(B(W ))⊗A) is given by

βg = Ad

 wg 0

0 1

⊗ αg,
which again has the Rokhlin property.

Let 0 < ε < 1
3 , and find δ0 > 0 such that whenever B is a C∗-algebra and s ∈ B satisfies

‖s∗s − 1‖ < δ0 and ‖ss∗ − 1‖ < δ, then there exists a unitary u in B such that ‖u − s‖ < ε. Set

δ = min{δ0, 1
5}.

Set r =

 0 1

1 0

⊗ 1A, and observe that

βg(r) =

 0 w∗g

wg 0

⊗ 1A
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for all g ∈ G. Set F =

r, r∗,
 p 0

0 0

 ,

 0 0

0 p


. Use Theorem VI.3.1 to find a continuous,

unital linear map

ψ : M2(B(W ))⊗A→ (M2(B(W ))⊗A)
β

which is the identity on (M2(B(W ))⊗A)
β
, and moreover satisfies

‖ψ(ab)− ψ(a)ψ(b)‖ < δ

3
and ‖ψ(a∗)− ψ(a)∗‖ < δ

2

for all a, b ∈ F .

We have

‖ψ(r)∗ψ(r)− 1‖ ≤ ‖ψ(r)∗ψ(r)− ψ(r∗)ψ(r)‖+ ‖ψ(r∗)ψ(r)− ψ(r∗r)‖

≤ 2‖ψ(r)∗ − ψ(r∗)‖+
δ

3
< δ ≤ δ0.

Likewise, ‖ψ(r)ψ(r)∗ − 1‖ < δ0. By the choice of δ0, there exists a unitary u ∈M2(B(W,A))β such

that ‖u− ψ(r)‖ < ε.

Recall that ψ


 p 0

0 0


 =

 p 0

0 0

 and similarly for

 0 0

0 p

. Using this at the

third step, we compute

∥∥∥∥∥∥∥u
 p 0

0 0

u∗ −

 0 0

0 p


∥∥∥∥∥∥∥ ≤ 2‖u− ψ(r)‖+

∥∥∥∥∥∥∥ψ(r)

 p 0

0 0

u∗ −

 0 0

0 p


∥∥∥∥∥∥∥

≤ 2ε+

∥∥∥∥∥∥∥ψ(r)

 p 0

0 0

u∗ −

 0 0

0 p


∥∥∥∥∥∥∥

≤ 2ε+ 5
δ

3
< 1.

By Lemma 2.5.3 in [166], the projections

 p 0

0 0

 and

 0 0

0 p

 are Murray-von

Neumann equivalent in M2(B(W,A))β .

Since KG
0 (A) is generated, as a group, by (the image of) VG(A), the result follows.
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Suppose that G is abelian, and set Γ = Ĝ. It follows from Theorem VI.3.9 and the

canonical R(G)-module identification KG
∗ (A) ∼= K∗(A oα G) given by Julg’s Theorem, that

K∗(α̂γ) = idK∗(AoαG) for all γ ∈ Γ.

Cuntz semigroup and fixed point algebras.

In this section, we study the map induced by the inclusion Aα → A at the level of the

Cuntz semigroup (Theorem VI.3.10). In Corollary VI.3.12, we relate the K-theory and Cuntz

semigroup of the crossed product to those of the original algebra. (The reader who is not familiar

with equivariant K-theory is referred to Section 2.6.)

Theorem VI.3.10. Let A be a unital, separable C∗-algebra, let G be a second countable

compact group, and let α : G → Aut(A) be an action with the Rokhlin property. Then the

canonical inclusion ι : Aα → A induces an order embedding Cu(ι) : Cu(Aα)→ Cu(A).

Proof. Let x and y be positive elements in Aα⊗K such that x - y in A⊗K. By Rørdam’s Lemma

(here reproduced as Proposition II.6.5), given ε > 0 there exist k in N, a positive number δ > 0

and s in A⊗Mk such that (x− ε)+ = s∗s and ss∗ belongs to the hereditary subalgebra of A⊗Mk

generated by (y − δ)+. Note that the action α ⊗ idMk
of G on A ⊗Mk has the Rokhlin property

by part (1) of Theorem VI.2.3, and that Mk(A)α⊗idMk can be canonically identified with Mk(Aα).

Let (ψn)n∈N be a sequence of unital completely positive maps A → Aα as in the conclusion of

Theorem VI.3.1. For n ∈ N, we denote by ψ
(k)
n : Mk(A) → Mk(Aα) the tensor product of ψn with

idMk
. Since s∗s = (x− ε)+, we have

lim
n→∞

∥∥∥ψ(k)
n (s)∗ψ(k)

n (s)− (x− ε)+

∥∥∥ = 0.

We can therefore find a sequence (tm)m∈N in Mk(Aα) such that

‖t∗mtm − (x− ε)+‖ <
1

m
and ‖tmt∗m − ss∗‖ <

1

m

for all m ∈ N. We deduce that

[(
x− ε− 1

m

)
+

]
≤ [t∗mtm] = [tmt

∗
m]
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in Cu(Aα). Taking limits as m → ∞, and using Rørdam’s Lemma (here reproduced as

Proposition II.6.5) again, we conclude that

[(x− ε)+] ≤ [ss∗] ≤ [y]

in Cu(Aα). Since ε > 0 is arbitrary, this implies that [x] ≤ [y] in Cu(Aα), as desired. This finishes

the proof.

Remark VI.3.11. In the context of the theorem above, one can show that if Cu(A) is finitely

generated as a Cuntz semigroup, then Cu(ι)(Cu(Aα)) is a direct summand of Cu(A) (although the

splitting is not natural). However, very few C∗-algebras have finitely generated Cuntz semigroups

(this, in particular, implies that Cu(A) is countable), and hence we do not prove this assertion

here.

Corollary VI.3.12. Let A be a unital, separable C∗-algebra, let G be a second countable

compact group, and let α : G→ Aut(A) be an action with the Rokhlin property.

1. There is a canonical identification of K∗(Aoα G) with an order subgroup of K∗(A);

2. There is a canonical identification of Cu(Aoα G) with a sub-semigroup of Cu(A).

Proof. Recall that two Morita equivalent separable C∗-algebras have canonically isomorphic K-

groups and Cuntz semigroup. The result then follows from Proposition VII.2.2 together with

Theorem VI.3.3 or Theorem VI.3.10.

Recall that an ordered semigroup S is said to be almost unperforated if for every x, y ∈ S,

if there exists n ∈ N such that (n + 1)x ≤ ny, then x ≤ y. Since almost unperforation passes to

sub-semigroups (with the induced order), the following is immediate.

Corollary VI.3.13. Let A be a unital, separable C∗-algebra, let G be a second countable

compact group, and let α : G → Aut(A) be an action with the Rokhlin property. If Cu(A) is

almost unperforated, then so are Cu(Aα) and Cu(Aoα G).

It is a standard fact (see Theorem 3.1 in [156]) that formation of (reduced) crossed

products by pointwise outer actions of discrete groups preserves simplicity. However, the

corresponding statement for not necessarily discrete groups is false, even in the compact case.
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For example, consider the gauge action γ of T on O∞, which is given by γζ(sj) = ζsj for all ζ in

T and all j ∈ N. Then γ is pointwise outer by the Theorem in [181], but the crossed product is

well-known to be non-simple.

Intuitively speaking, sufficiently outer actions of, say, compact groups, ought to preserve

simplicty. (And this should be a test for what “sufficiently outer” means for a compact group

action.) Since the Rokhlin property is a rather strong form of outerness, the next result should

come as no surprise.

Proposition VI.3.14. Let A be a unital, separable C∗-algebra, let G be a second countable

compact group, and let α : G → Aut(A) be an action with the Rokhlin property. If A is simple,

then so are Aα and Aoα G.

Proof. We show the statement only for Aα, since the result for A oα G follows from the fact that

it is Morita equivalent to Aα; see Proposition VII.2.2.

Let a ∈ Aα with a 6= 0. We will show that the ideal generated by a in Aα, which by

definition is AαaAα, equals Aα. Since A is simple, we have AaA = A. Find a positive integer

m ∈ N, and elements x1, . . . , xm, y1, . . . , ym ∈ A such that

∥∥∥∥∥∥
m∑
j=1

xjayj − 1

∥∥∥∥∥∥ < 1

2
.

Set

F = {xj , yj : j = 1, . . . ,m} ∪ {a} ∪


m∑
j=1

xjayj − 1

 ,

and let ε = 1
6m . Find a unital linear map ψ : A → Aα as in the conclusion of Theorem VI.3.1.

Then ∥∥∥∥∥∥
m∑
j=1

ψ(xj)aψ(yj)− 1

∥∥∥∥∥∥ =

∥∥∥∥∥∥
m∑
j=1

ψ(xj)ψ(a)ψ(yj)−
m∑
j=1

ψ(xjayj)

∥∥∥∥∥∥
+

∥∥∥∥∥∥ψ
 m∑
j=1

xjayj − 1

∥∥∥∥∥∥
≤

m∑
j=1

‖ψ(xj)ψ(a)ψ(yj)− ψ(xjayj)‖+
1

2

< 3εm+
1

2
= 1.
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It follows that b =
m∑
j=1

ψ(xj)aψ(yj) is invertible. Since b clearly belongs to AαaAα, the

result follows.

In particular, we deduce that strict comparison of positive elements is preserved under

formation of crossed products and passage to fixed point algebras by the actions here considered.

Corollary VI.3.15. Let A be a simple, unital, separable C∗-algebra, let G be a second countable

compact group, and let α : G → Aut(A) be an action with the Rokhlin property. If A has strict

comparison of positive elements, then so do Aα and Aoα G.

Proof. By Lemma 6.1 in [262], strict comparison of positive elements for a simple C∗-algebra is

equivalent to almost unperforation of its Cuntz semigroup. Since Aα and A oα G are simple by

Proposition VI.3.14, the result follows from Corollary VI.3.13.

Duality and (Equivariant) Semiprojectivity

We now turn to dual actions. Recall that the Pontryagin dual of a compact abelian group is

a discrete (abelian) group. For a C∗-algebra B, we denote by M(B) its multiplier algebra.

Definition VI.4.1. Let Γ be a discrete abelian group, let B be a C∗-algebra, and let β : Γ →

Aut(B) be an action. We say that β is approximately representable, if there exists a unitary

representation u : Γ→ U
(
(M(B)β)∞

)
such that

βγ(b) = u∗γbuγ

for every γ ∈ Γ and every b ∈ B.

The following theorem is a generalization of Lemma 3.8 in [132] to compact groups.

Theorem VI.4.2. Let A and B be separable unital C∗-algebras, let G be a second countable

compact abelian group, and set Γ = Ĝ.

1. Let α : G → Aut(A) be a strongly continuous action. Then α has the Rokhlin property if

and only if its dual action α̂ : Γ→ Aut(Aoα G) is approximately representable.

2. Let β : Γ → Aut(B) be an action. Then β is approximately representable if and only if its

dual action β̂ : G→ Aut(B oβ Γ) has the Rokhlin property.
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Note that the crossed product B oβ Γ is unital because B is and Γ is discrete.

Proof. (1). Throughout the proof of this part, for g ∈ G we denote by vg the canonical unitary in

M(Aoα G) implementing the automorphism αg in Aoα G.

Suppose that α has the Rokhlin property, and let

ϕ : C(G)→ A∞,α ∩A′

be a unital, equivariant homomorphism. Since C(G) can be canonically identified with C∗(Γ), the

map ϕ induces a unitary representation u of Γ on A∞,α ∩ A′, and the fact that ϕ is equivariant

implies that

(α∞)g(u(γ)) = γ(g)u(γ)

for all g ∈ G and for all γ ∈ Γ. Given g ∈ G and γ ∈ Γ, we have

vgu(γ)v∗g = γ(g)u(γ).

We deduce that

u(γ)∗vgu(γ) = γ(g)vg = α̂γ(vg).

On the other hand, given a ∈ A, and regarded as an element in M(AoG), it is clear that

u∗γauγ = a = α̂γ(a).

Note that M(AoαG)α̂ coincides with the canonical copy of A in M(AoαG). It follows that

the unitary representation u∗ : Γ → U(M(A oα G)α̂∞) implements α̂, and thus α̂ is approximately

representable.

Conversely, assume that α̂ is approximately representable, and let u : Γ→ U(M(Aoα G)α̂∞)

be a unitary representation as in Definition VI.4.1. For γ ∈ Γ, the unitary uγ satisfies

uγau
∗
γ = a
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in A∞,α, so uγ ∈ A∞,α ∩ A′. Thus, the unitary representation u induces a unital homomorphism

ϕ : C∗(Γ) ∼= C(G)→ A∞,α ∩A′.

On the other hand, since

uγvguγ = α̂γ(vg) = γ(g)vg

for all γ ∈ Γ and all g ∈ G, we deduce that ϕ is equivariant, and hence α has the Rokhlin

property.

(2). Throughout the proof of this part, for γ ∈ Γ we denote by wγ the canonical unitary in

B oβ Γ implementing the automorphism βγ in B oβ Γ.

Suppose that β is approximately representable, and let

u : Γ→ U((Bβ)∞)

be a unitary representation implementing β in B∞. Given γ, σ ∈ Γ, we have

wσuγw
∗
σ = uγ

in (B oβ Γ)∞,β̂ , so uγ asymptotically commutes with the canonical unitaries in the crossed

product. Given b ∈ B and γ ∈ Γ, we have

(wγu
∗
γ)b(wγu

∗
γ)∗ = wγβγ−1(b)w∗γ = βγ(βγ−1(b)) = b.

For γ ∈ Γ, set

vγ = wγu
∗
γ ∈ (B oβ Γ)∞,β̂ .

Then vγ asymptotically commutes with the copy of B in the crossed product. In addition, since Γ

is abelian and uγ asymptotically commutes with wσ for σ ∈ Γ, the same is true for vγ . It follows

that vg belongs to (B oβ Γ)∞,β̂ ∩ (B oβ Γ)′, so it defines a unital homomorphism

ϕ : C∗(Γ) ∼= C(G)→ (B oβ Γ)∞,β̂ ∩ (B oβ Γ)′,

which is easily seen to be equivariant.

The converse is proved in a similar way, using that (Boβ Γ)β̂ = B. We omit the details.
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In particular, it follows from Theorem VI.4.2 that dual actions of actions with the Rokhlin

property are approximately inner.

We now turn to equivariant semiprojectivity in connection with duality for actions with the

Rokhlin property. The following is essentially Definition 1.1 in [205]; see also [213]

Definition VI.4.3. Let G be a locally compact group, let A be a C∗-algebra, and let α : G →

Aut(A) be a continuous action. Let B be a class of C∗-algebras. We say that the triple (G,A, α)

is equivariantly semiprojective with respect to B, if the following holds: given an action β : G →

Aut(B) of G on a C∗-algebra B in B, given an increasing sequence J1 ⊆ J2 ⊆ · · · ⊆ B of G-

invariant ideals such that B/Jn is in B for all n ∈ N, and, with J =
⋃
n∈N

Jn, an equivariant

homomorphism φ : A → B/J , there exist n ∈ N and an equivariant homomorphism ψ : A → B/Jn

such that, with πn : B/Jn → B/J denoting the canonical quotient map, we have φ = πn ◦ ψ. In

other words, the following lifting problem can be solved:

B

��
B/Jn

πn

��
A

φ
//

ψ
==

B/J.

In the diagram above, full arrows are given, and n ∈ N and the dotted arrow are supposed to exist

and make the lower triangle commute.

We will mostly use the above definition in the case where B is the class of all C∗-algebras

(in which case we speak about equivariantly semiprojective actions). However, in the proof of

Theorem VI.4.9, it will be convenient to take B to be the class of all commutative C∗-algebras.

Remark VI.4.4. Let G be a compact group, let A and B be C∗-algebras, and let α : G →

Aut(A) and β : G → Aut(B) be continuous actions. If ϕ : A → B is a surjective, equivariant

homomorphism, then ϕ(Aα) = Bβ . Indeed, it is clear that ϕ(Aα) ⊆ Bβ . For the reverse inclusion,

given b ∈ Bβ , let x ∈ A satisfy φ(x) = b. Then a =
∫
G

αg(x) dg (using normalized Haar measure on

G) is fixed by α and satisfies φ(a) = b.
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Lemma VI.4.5. Let G be a locally compact group, let A be a C∗-algebra, and let α : G →

Aut(A) be a contiuous action. Let H be compact group, and denote by γ : G × H → Aut(A)

the action given by γ(g,h)(a) = αg(a) for all (g, h) ∈ G × H and for all a ∈ A. If (G,A, α) is

equivariantly semiprojective, then so is (G×H,A, γ).

Proof. Let (G×H,B, β) be a G×H-algebra, let (Jn)n∈N be an increasing sequence of β-invariant

ideals in B, and set J =
⋃
n∈N

Jn. For n ∈ N, denote by πn : B/Jn → B/J the canonical quotient

map. Let ϕ : A → B/J be an equivariant homomorphism. For ease of notation, we identify H

with {1G} × H. Since H acts trivially on A, we must have ϕ(A) ⊆ (B/J)H . By Remark VI.4.4,

and since H is compact, we have

πn

(
(B/Jn)

H
)

= (B/J)
H
.

By averaging over H, similarly to what was done in the comments before this lemma, it is

easy to show that
⋃
n∈N

JHn = JH . Also, for n ∈ N, it is clear that JHn is an ideal in BH , and that

there is a canonical identification

(B/Jn)H ∼= BH/JHn ,

under which πn : B/Jn → B/J restricts to the quotient map

πHn : BH/JHn → BH/JH .

Denote by ιn : BH/JHn → B/J the canonical inclusion as the H-fixed point algebra, and likewise

for ι : BH/JH → B/J . We thus have an associated diagram

B

��

BHoo

��
B/Jn

πn

��

BH/JHn
ιnoo

πHn
��

A

ϕ0

77

ψ0

&&

ϕ // B/J BH/JH .
ιoo
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Regard A and B as G-algebras. Since the range of ϕ really is contained in (B/J)H ∼=

BH/JH , there is a G-equivariant homomorphism ϕ0 : A → BH/JH such that ϕ = ι ◦ ϕ0.

Use equivariant semiprojectivity of (G,A, α) to find n ∈ N and a G-equivariant homomorphism

ψ0 : A→ BH/JHn such that ϕ0 = πHn ◦ ψ0.

Set ψ = ιn ◦ ψ0 : A → B/Jn. Then ψ is G × H-equivariant, and satisfies ϕ = πn ◦ ψ. We

conclude that (G×H,A, γ) is equivariantly semiprojective.

Next, we characterize those compact groups G for which (G,C(G), Lt) is equivariantly

semiprojective. The application we have in mind is to pre-dual actions (Corollary VI.4.7), so we

only deal with abelian groups, although this restriction is almost certainly unnecessary.

Some parts of the proof of the following result could be simplified by using Theorem 2.6 in

[205]. However, since this preprint remains unpublished and the proof of the referred theorem is

rather long, we give here elementary (and short) proofs in the cases where it is needed.

Theorem VI.4.6. Let G be a second countable compact abelian group. Then the dynamical

system (G,C(G), Lt) is equivariantly semiprojective if and only if G is a Lie group with dim(G) ≤

1.

Proof. Suppose that (G,C(G), Lt) is equivariantly semiprojective. Then C(G) is semiprojectivey

by Corollary 3.12 in [213]. Now, by Theorem 1.2 in [253], G must be an ANR with dim(G) ≤

1. Now, ANR’s are locally contractible by Theorem 2 in [76]. Since the action of G on itself by

translation is faithful and transitive, it follows from Corollary 3.7 in [128] that G is a Lie group.

Conversely, let G be an abelian compact Lie group with dim(G) ≤ 1. By Theorem 5.2 (a)

in [250], G is isomorphic to a product of copies of finite cyclic groups and, in the one-dimensional

case, also with the circle T.

Claim: it is enough to prove the result for G = Zm and G = T. Suppose we have proved

it for all finite cyclic groups and for T. Let m1,m2 ∈ N, and let us show that the result holds for

G = Zm1
× Zm2

. There is an equivariant isomorphism between (G,C(G), Lt) and

(
Zm1

× Zm2
, C(Zm1

), Lt⊗ idC(Zm2
)

)
⊗
(
Zm1

× Zm2
, C(Zm2

), idC(Zm1
) ⊗ Lt

)
.

Note that Zmj acts trivially on C(Zm3−j ) for j = 1, 2. Thus, each of the tensor factors

is equivariantly semiprojective by Lemma VI.4.5. Now, since C(Zm1
) is finite dimensional, the
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result follows from Theorem 2.8 in [205]. (Note that, when applying Theorem 2.8 in [205], we

do not really need to use Theorem 2.6, just Lemma 1.4 in [205], since we already know that

C(Zm1) is equivariantly semiprojective.) An easy argument by induction shows that the result

holds whenever G is a finite abelian group.

Now let F be a finite abelian group, and let G = F × T. A similar argument as in the

case G = Zm1 × Zm2 shows that C(G) is equivariantly isomorphic to the tensor product of

two equivariantly semiprojective G-algebras (again, using Lemma VI.4.5), one of which is finite

dimensional. The result then follows from Theorem 2.8 in [205] (where, once again, we do not

need to use Theorem 2.6 in [205], since C(F ) is already known to be equivariantly semiprojective).

The claim is proveed.

Let (G,B, β) be a G-algebra, let (Jn)n∈N be an increasing sequence of β-invariant ideals

in B, and set J =
⋃
n∈N

Jn. For n ∈ N, let πn : B/Jn → B/J denote the canonical quotient map,

and write β(n) : G → Aut(B/Jn) for the induced action on B/Jn. Let ϕ : C(G) → B/J be an

equivariant homomorphism. By Lemma 1.5 in [213], we may assume that B and ϕ are unital.

The proofs of the two cases G = Zm and G = T, depend crucially on the fact that (non-

equivariant) semiprojectivity of C(Zm) and C(T) can be proved using functional calculus, which

commutes with automorphisms (and hence actions).

Case 1: G = Zm for some m ∈ N. For j ∈ Zm, let pj ∈ C(Zm) denote the j-th vector

of the standard basis. We will use the following descriptions of C(Zm): it is the universal unital

C∗-algebra generated by m projections adding up to 1; and it is the universal unital C∗-algebra

generated by a unitary of order m. (The unitary is z =
∑
j∈Zm

e
2πij
m pj .) With this in mind, an

equivariant unital homomorphism φ from C(Zm) is determined by a unitary w = φ(z) of order m,

such that the automorphism corresponding to j ∈ Zm sends w to e−
2πij
m w.
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Use semiprojectivity of the C∗-algebra C(Zm) (in the unital category) to find n ∈ N and a

unital homomorphism ψ0 : C(Zm)→ B/Jn such that πn ◦ ψ0 = ϕ:

B

��
B/Jn

πn

��
C(Zm)

ϕ
//

ψ0

::

B/J.

Fix ε > 0 such that

2mm

(
4ε+ 6ε2

1 + 3ε

)
< 1.

(In particular, ε < 1.) For j ∈ Zm, set qj = ϕ(pj). By increasing n, we may assume that

max
j,k∈Zm

∥∥∥β(n)
j (qk)− qj+k

∥∥∥ < ε

m
.

Set u =
∑
j∈Zm

e
2πij
m qj , which is a unitary in B/Jn. For j ∈ Zm, we have

∥∥∥β(n)
j (u)− e

−2πij
m u

∥∥∥ ≤ ∑
k∈Zm

∥∥∥β(n)
j (qk)− qj+k

∥∥∥ < ε.

Set

x =
1

m

∑
j∈Zm

e
2πij
m β

(n)
j (u).

Then

‖x− u‖ ≤ 1

m

∑
j∈Zm

∥∥∥e 2πij
m β

(n)
j (u)− u

∥∥∥ < ε.
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Since u is a unitary, x is invertible and ‖x‖ ≤ (1 + ε). Hence v = x(x∗x)−
1
2 is a unitary in B/Jn.

Since ‖x∗x− 1‖ < 3ε, we have

‖v − x‖ =
∥∥∥x(x∗x)−

1
2 − x

∥∥∥
≤ (1 + ε)

∥∥∥(x∗x)−
1
2 − 1

∥∥∥
≤ (1 + ε)

∥∥(x∗x)−1 − 1
∥∥

= (1 + ε)
∥∥(x∗x)−1(x∗x− 1)

∥∥
≤ (1 + ε)

1

1 + 3ε
3ε.

Moreover, given j ∈ Zm, it is clear that β
(n)
j (v) = v, since β

(n)
j (x) = x. On the other hand,

πn(x) =
1

m

∑
j∈Zm

e
2πij
m πn(β

(n)
j (u))

=
1

m

∑
j∈Zm

e
2πij
m e−

2πij
m πn(u)

= πn(u) = ϕ(z),

and thus

πn(v) = πn(x) = πn(u) = ϕ(z).

We use the identity am − bm = (a − b)(am−1 + am−2b + · · · + abm−2 + bm−1) at the second

step, to estimate as follows:

‖vm − 1‖ ≤ ‖vm − xm‖+ ‖xm − um‖+ ‖um − 1‖

≤ 2mm‖v − x‖+ 2mm‖x− u‖

< 2mm

(
3ε+ 3ε2

1 + 3ε
+ ε

)
< 1.

Find a continuous function f on the spectrum of v such that f(v) is a unitary of order m. Since

continuous functional calculus commutes with homomorphisms, we have

πn(f(v)) = f(πn(v)) = f(z) = z,
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and

β
(n)
j (f(v)) = f(β

(n)
j (v)) = e−

2πij
m f(v)

for all j ∈ Zm. Hence f(v) determines a unital homomorphism ψ : C(Zm) → B/Jn by

ψ(z) = f(v), which is moreover equivariant and satisfies πn ◦ ψ = ϕ. Hence (Zm, C(Zm), Lt)

is equivariantly semiprojective, as desired.

Case 2: G = T. The argument is similar to the case G = Zm, but somewhat simpler.

Denote by z the canonical unitary generating C(T). Use semiprojectivity of the C∗-algebra C(T)

(in the unital category) to find n ∈ N and a unitary u ∈ B/Jn such that πn(u) = ϕ(z). (This

is equivalent to having a unital homomorphism ψ0 : C(T) → B/Jn satisfying πn ◦ ψ0 = ϕ.) By

increasing n, we may assume that

max
ζ∈T

∥∥∥β(n)
ζ (u)− ζ−1u

∥∥∥ < 1.

Let µ denote the normalized Haar measure on T, and set x =
∫
T ζβ

(n)
ζ (u) dµ(ζ). Then

‖x − u‖ < 1 and thus x is invertible. Set v = x(x∗x)−
1
2 , which is a unitary in B/Jn satisfying

β
(n)
ζ (v) = ζv for all ζ ∈ T. Finally, since πn(u) = ϕ(z), we have

πn(x) =

∫
T
ζπn(β

(n)
ζ (u)) dµ(ζ) =

∫
T
ζζ−1ϕ(z) dµ(ζ) = ϕ(z),

and thus πn(v) = πn(x) = ϕ(z). It follows that the unitary v determines a unital homomorphism

ψ : C(T)→ B/Jn satisfying πn ◦ ψ = ϕ, which is moreover equivariant. This finishes the proof.

In particular, it follows that if G is a compact Lie group with dim(G) ≤ 1, then

any action of G with the Rokhlin property, automatically has the strong Rokhlin property

(Definition VI.2.12).

We apply Theorem VI.4.6 to deduce that certain Rokhlin actions are always dual actions.

Our result is new even in the well-studied case of finite groups.

Corollary VI.4.7. Let A be a unital C∗-algebra, let G be an abelian compact Lie group with

dim(G) ≤ 1, and let α : G → Aut(A) be an action with the Rokhlin property. Then there exist an
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action α̌ of G on Aα, and an isomorphism

ϕ : Aα oα̌ G→ A

such that

ϕ ◦ ̂̌αg = αg ◦ ϕ

for all g ∈ G. In other words, α is a dual action.

Proof. We claim that there is a unital, equivariant homomorphism C(G)→ A. Once we show this,

the result will be an immediate consequence of Theorem 4 in [163]. (One should check that the

algebra provided by Landstad’s theorem is really Aα, but this is a straighforward verification.)

Let ϕ : C(G) → A∞,α ∩ A′ be an equivariant unital homomorphism as in Definition VI.2.1.

Note that c0(N, A) ∼=
⊕
m∈N

A. Now, (G,C(G), Lt) is equivariantly semiprojective by

Theorem VI.4.6, so there exist n ∈ N and a unital equivariant homomorphism ψ : C(G) →

`∞α (N, A)/
n⊕

m=1
A making the following diagram commute:

`∞α (N, A)

��
`∞α (N, A)/

⊕n
m=1A

��
C(G)

ϕ
//

ψ
77

A∞,α.

Since `∞α (N, A)/
n⊕

m=1
A is again isomorphic to `∞α (N, A), it follows that there is a unital

equivariant homomorphism C(G)→ A, as desired.

Even though we did not define approximate representability for coactions of compact

groups, a reasonable definition should include the predual coactions obtained in Corollary VI.4.7

whenever G is not abelian.

We need an easy lemma first. (We are thankful to Tron Omland for providing its proof.)

We refer the reader to Appendix A in [53] for the definitions of coactions and their crossed

products, as well as for some of their basic features.
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Lemma VI.4.8. Let G be a compact group, let A be a commutative C∗-algebra, and let

δ : C(Y )→M(A⊗ C∗(G))

be a coaction of G on A. If A oδ G is commutative, then δ is trivial, that is, δ(a) = a ⊗ 1 for all

a ∈ A. In this case, there is a canonical isomorphism

Aoδ G ∼= A⊗ C(G).

Proof. Denote by jA : A → M(A oδ G) and jG : C(G) → M(A oδ G) the universal maps (see, for

example, Definition A.39 in [53]), which satisfy the covariance condition

((jA ⊗ idG) ◦ δ) (a) = [(jG ⊗ idG)(wG)] (jA(a)⊗ 1) [(jG ⊗ idG)(wG)∗]

for all a ∈ A; see Definition A.32 in [53]. Since jA(a) ⊗ 1 is in the center of A ⊗M(C∗(G)), which

is dense in M(A⊗ C∗(G)), the above identity becomes

((jA ⊗ idG) ◦ δ) (a) = jA(a)⊗ 1

for all a ∈ A. This is equivalent to (jA ⊗ idG)(δ(a)− a⊗ 1) = 0 for all a ∈ A.

We claim that δ is normal (that is, that jA is injective; see Definition 2.1 in [221]). Once we

prove the claim, it will follow that δ(a) = a⊗ 1 for all a ∈ A, so δ is the trivial coaction.

We prove the claim. Since G is amenable, δ is both a full and reduced coaction. Now,

δ admits a faithful covariant representation by Proposition 3.2 in [221], so it is normal by

Lemma 2.2 in [221].

The last part of the statement follows immediately from the definition of the cocrossed

product.

As an application of the techniques used in this section, we are able to describe all

topological dynamical systems with the Rokhlin property. We are thankful to Hannes Thiel for

providing the reference [186].
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Theorem VI.4.9. Let X be a compact Hausdorff space, and let G be a compact Lie group acting

on X. Denote by α : G → Aut(C(X)) the associated action. Then α has the Rokhlin property if

and only if there is a homeomorphism

σ : X/G×G→ X

such that

g · σ(Gx, h) = σ(Gx, gh)

for all g, h ∈ G and for all x ∈ X.

Proof. The “if” implication follows from part (1) of Theorem VI.2.3, since the assumptions imply

that there is an equivariant isomorphism

(G,C(X), α) ∼= (G,C(X/G)⊗ C(G), idC(X/G) ⊗ Lt).

Let us show the “only if” implication. By Theorem 8.8 in [186], G is an equivariant

ANR (see the definition right before Proposition 4.1 in [186]) when equipped with the G-action

Lt. Denote by B the class of all commutative C∗-algebras. It is an easy exercise to check that

(G,C(G), Lt) is equivariantly semiprojective with respect to B.

Let ϕ : C(G) → C(X)∞,α ∩ C(X)′ = C(X)∞,α be an equivariant unital homomorphism as

in Definition VI.2.1. Since

C(X)∞,α = `∞α (N, C(X))/
⊕
m∈N

C(X),

by equivariant semiprojectivity there exist n ∈ N and a unital equivariant homomorphism

ψ : C(G)→ `∞α (N, C(X))/

n⊕
m=1

C(X)

that lifts ϕ via the canonical quotient map `∞α (N, C(X))/
n⊕

m=1
C(X) → C(X)∞,α. In particular,

there is a unital equivariant homomorphism C(G) → C(X). Dually, there is an equivariant,

continuous map ρ : X → G, which is necessarily surjective.

We show two ways of finishing the proof.
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(First argument.) Denote by π : X → X/G the canonical quotient map onto the

orbit space. (This map is a fiber bundle, but we do not need this here.) Define an equivariant

continuous map κ : X → X/G×G by

κ(x) = (π(x), ρ(x))

for all x ∈ X. We claim that κ is a homeomorphism.

To check surjectivity, let (y, g) ∈ X/G × G be given. Choose x ∈ X such that π(x) = y,

and find h ∈ G such that ρ(h · x) = g. (Such element h exists because the action of G on itself is

transitive.) It is then clear that κ(h · x) = (y, g), so κ is surjective.

We now check injectivity. Let x1, x2 ∈ X satisfy κ(x1) = κ(x2). Since π(x1) = π(x2), it

follows that there exists g ∈ G such that g · x1 = x2. Now, since ρ(x1) = ρ(x2), we must have

g = 1G and hence x1 = x2.

It follows that κ is a continuous bijection. Since X and X/G×G are compact metric spaces,

it follows that κ−1 is continuous, and the claim is proved. This finishes the proof.

(Second argument). Since there is a unital equivariant homomorphism C(G) → C(X),

it follows from Theorem 3 in [163], that there are a coaction β of G on C(X/G), and an

isomorphism

C(X/G)oβ G ∼= C(X)

that intertwines the dual G-action of β and α. (The verification of the hypotheses of

Theorem 3 in [163] takes slightly more work than for Theorem 4 in [163], which was needed

in Corollary VI.4.7, but it is nevertheless not difficult. With the notation of Theorem 4

in [163], observe that δ is will be nondegenerate because A is unital.) Since the crossed product

C(X/G) oβ G is commutative, Lemma VI.4.8 implies that the coaction β must be trivial. In this

case, there is a canonical identification C(X/G) oβ G ∼= C(X/G) ⊗ C(G), which is moreover

equivariant, with β̂ on the left-hand side, and the action idC(X/G)⊗Lt on the right-hand side. The

result follows.

Remark VI.4.10. We note that in the proof of Theorem VI.4.9, we did not use the full strength

of equivariant semiprojectivity (which can only happen for Lie groups); in fact, all we used is that

(G,C(G), Lt) is equivariantly weakly semiprojective (in the commutative category). There are
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many more compact groups that act equivariantly weakly semiprojectively on themselves. For

example, totally disconnected groups of the form
∏
n∈N

Zmn can be shown to have this property, and

the conclusion of Theorem VI.4.9 applies to these, with exactly the same proof.

It follows that if G acts on C(X) with the Rokhlin property, then the induced action of G

on X is free. The converse is not in general true: consider, for example the circle on the Möbius

cylinder M which is given by rotating each copy of the circle, and acting trivially on the non-

orientable direction. This action is free, and the orbit space is homeomorphic to T. However, M is

not homeomorphic to T× T, and thus this action does not have the Rokhlin property.

On the other hand, we have the following partial converse:

Proposition VI.4.11. Let a Lie group G act freely on a compact Hausdorff space X. If

dim(G) = dim(X), then the induced action of G on C(X) has the Rokhlin property.

Proof. Since G is a Lie group, we have dim(X/G) = dim(X) − dim(G) = 0. Denote by π : X →

X/G the canonical quotient map. By Theorem 8 in [185], there exists a continuous cross-section

s : X/G → X. Given x ∈ X, there exists gx ∈ G such that gx · x = (s ◦ π)(x). Moreover, since the

action is free, gx is uniquely determined by x and s, and it is easy to verify that the assignment

x 7→ gx is continuous, using continuity of s and of the group operations.

One readily checks that the map κ : X → X/G × G, given by κ(x) = (Gx, gx) for all

x ∈ X, is an equivariant homeomorphism. We conclude that G → Aut(C(X)) has the Rokhlin

property.

203



CHAPTER VII

CROSSED PRODUCTS BY COMPACT GROUP ACTIONS WITH

THE ROKHLIN PROPERTY

We present a systematic study of the structure of crossed products and fixed point algebras

by compact group actions with the Rokhlin property. Our main technical result is the existence

of an approximate homomorphism from the algebra to its subalgebra of fixed points, which is a

left inverse for the canonical inclusion. Upon combining this with known results regarding local

approximations, we show that a number of classes characterized by inductive limit decompositions

with weakly semiprojective building blocks, are closed under formation of crossed products

by such actions. Similarly, in the presence of the Rokhlin property, if the algebra has any of

the following properties, then so do the crossed product and the fixed point algebra: being a

Kirchberg algebra, being simple and having tracial rank zero or one, having real rank zero, having

stable rank one, absorbing a strongly self-absorbing C∗-algebra, and being weakly semiprojective.

The ideal structure of crossed products and fixed point algebras by Rokhlin actions is also studied.

Our methods unify, under a single conceptual approach, the work of a number of authors,

who used rather different techniques. Our methods yield new results even in the case of finite

group actions with the Rokhlin property.

Introduction

Izumi [132], Hirshberg and Winter [122], Phillips [203], Osaka and Phillips [191], and

Pasnicu and Phillips [194], explored the structure of crossed products by finite group actions

with the Rokhlin property on unital C∗-algebras, while Santiago [243] addressed similar questions

in the non-unital case. The questions and problems addressed in each of these works are different,

and consequently the approaches used by the above mentioned authors are substantially distinct

in some cases.

In [122], Hirshberg and Winter also introduced the Rokhlin property for a compact

group action on a unital C∗-algebra, and their definition coincides with Izumi’s in the case of

finite groups. They showed that approximate divisibility and D-stability, for a strongly self-

absorbing C∗-algebra D, are preserved under formation of crossed product by compact group
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actions with the Rokhlin property. Extending the results of [203], [191], and [194] to the case of

arbitrary compact groups requires new insights, since the main technical tool in all of these works

(Theorem 3.2 in [191]) seems not to have a satisfactory analog in the compact group case.

In this chapter, which is based on [82], we generalize and extend the results on finite group

actions with the Rokhlin property of the above mentioned papers, to the case of compact group

actions. Our contribution is two-fold. First, most of the results we prove here were known only

in some special cases (mostly for finite or circle group actions; see [80] and [81] for the circle

case), and some of them had not been noticed even in the context of finite groups. Second, our

methods represent a uniform treatment of the study of crossed products by actions with the

Rokhlin property, where the attention is shifted from the crossed product itself, to the algebra

of fixed points.

Our results can be summarized as follows (the list is not exhaustive). We point out that

(14) below was first obtained, with different techniques, by Hirshberg and Winter as part (1) of

Corollary 3.4 in [122]. Also, (10) and (15) were already obtained in Chapter VII.

Theorem. The following classes of separable C∗-algebras are closed under formation of crossed

products and passage to fixed point algebras by actions of second countable compact groups with

the Rokhlin property:

1. Simple C∗-algebras (Corollary VII.2.9). More generally, the ideal structure can be

completely determined (Theorem VII.2.7);

2. C∗-algebras that are direct limits of certain weakly semiprojective C∗-algebras

(Theorem VII.3.10). This includes UHF-algebras (or matroid algebras), AF-algebras, AI-

algebras, AT-algebras, countable inductive limits of one-dimensional NCCW-complexes, and

several other classes (Corollary VII.3.11);

3. Kirchberg algebras (Corollary VII.4.11);

4. Simple C∗-algebras with tracial rank at most one (Theorem VII.4.5);

5. Simple, separable, nuclear C∗-algebras satisfying the Universal Coefficient Theorem

(Theorem VII.3.13);

6. C∗-algebras with nuclear dimension at most n, for n ∈ N (Theorem VII.2.3);
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7. C∗-algebras with decomposition rank at most n, for n ∈ N (Theorem VII.2.3);

8. C∗-algebras with real rank zero (Proposition VII.4.12);

9. C∗-algebras with stable rank one (Proposition VII.4.12);

10. C∗-algebras with strict comparison of positive elements (Corollary VI.3.15);

11. C∗-algebras whose order on projections is determined by traces (Proposition VII.4.14);

12. (Not necessarily simple) purely infinite C∗-algebras (Proposition VII.4.10);

13. Stably finite C∗-algebras (Corollary VII.2.5);

14. D-absorbing C∗-algebras, for a strongly self-absorbing C∗-algebra D (Theorem VII.4.3);

15. C∗-algebras whose K-groups are either: trivial, free, torsion-free, torsion, or finitely

generated (Corollary VI.3.4);

16. Weakly semiprojective C∗-algebras (Proposition VII.4.17).

Our work yields new results even in the case of finite groups. For example, in (15) above,

we do not require the algebra A to be simple, unlike in Theorem 3.13 of [132]. In addition,

the classes of C∗-algebras considered in Theorem VII.3.10 may consist of simple C∗-algebras,

unlike in Theorem 3.5 in [191] (we also do not impose any conditions regarding corners of our

algebras). Additionally, in Proposition VII.4.17, we show that the inclusion Aα → A is sequence

algebra extendible (Definition VII.4.15) whenever α has the Rokhlin property, and hence weak

semiprojectivity passes from A to Aα. Our conclusion seem not to be obtainable with the

methods developed in [191] and related works, since it is not in general true that a corner of a

weakly semiprojective C∗-algebra is weakly semiprojective.

Given that our results all follow as easy consequences of our main technical observation,

Theorem VII.2.6, we believe that the methods in this chapter unify the work of a number of

authors, who used rather different methods, under a single systematic and conceptual approach.

First Results on Crossed Products and the Averaging Process

It is well known (see the Theorem in [238]) that if a compact group G acts on a C∗-algebra

A, then AG is a corner in A o G. Using this, one can many times obtain information about the
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fixed point algebra through the crossed product. However, since this corner is not in general full,

Rosenberg’s theorem is not always useful if one is interested in transferring structure from AG to

A o G. Saturation for compact group actions is the basic notion that allows one to do this, up to

Morita equivalence. The definition, which is essentially due to Rieffel, is as in Definition 7.1.4 in

[199]. What we reproduce below is the equivalent formulation given in Lemma 7.1.9 in [199]. We

point out that saturation is equivalent to the corner AG ⊆ AoG being full.

Definition VII.2.1. (Definition 7.1.4 in [199].) Let G be a compact group, let A be a C∗-

algebra, and let α : G→ Aut(A) be an action. We say that α is saturated, if the set

{fa,b : G→ A; fa,b(g) = aαg(b) for all g ∈ G, with a, b ∈ A} ⊆ L1(G,A, α)

spans a dense subspace of Aoα G.

It is an easy exercise to check that if a compact group G acts freely on a compact Hausdorff

space X, then the induced action on C(X) is saturated. For this, it suffices to prove that the set

fa,b ∈ C(G×X) :
fa,b(g, x) = a(x)b(g · x) for all

(g, x) ∈ G×X, with a, b ∈ C(X)


spans a dense subset of C(G × X). This linear span is closed under multiplication and contains

the constant functions regardless of whether the action of G is free or not, and it is easy to see

that it separates the points of G × X if and only if it is free. The claim then follows from the

Stone-Weierstrass theorem. See Theorem 7.2.6 in [199] for a more general result involving C(X)-

algebras.

The following result will be used repeatedly throughout.

Proposition VII.2.2. Let G be a second countable compact group, let A be a unital C∗-algebra,

and let α : G→ Aut(A) be an action with the Rokhlin property. Then α is saturated.

In particular, the fixed point algebra and the crossed product by a compact group action

with the Rokhlin property are Morita equivalent, and thus stably isomorphic whenever the

original algebra is separable.
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Proof. We begin by proving the statement for finite G, because we believe the reader will gain

better intuition from this particular case. Indeed, finiteness of G allows one to construct the

approximations explicitly.

Suppose that G is finite. Fix g ∈ G, and denote by ug the canonical unitary in the crossed

product A oα G implementing αg. We claim that it is enough to show that ug is in the closed

linear span of the functions fa,b from Definition VII.2.1. Indeed, if this is the case, and if x ∈ A,

then xug also belongs to the closed linear span, and elements of this form span Aoα G.

For n ∈ N, find projections e
(n)
g ∈ A, for g ∈ G, such that

1.
∥∥∥αg(e(n)

h )− e(n)
gh

∥∥∥ < 1
n for all g, h ∈ G; and

2.
∑
g∈G

e
(n)
g = 1.

For a, b ∈ A, the function fa,b corresponds to the sum a

( ∑
h∈G

αh(b)uh

)
. Thus, for n ∈ N

and k ∈ G, we have

f
e
(n)
gk ,e

(n)
k

= e
(n)
gk

(∑
h∈G

αh(e
(n)
k )uh

)
.

We use pairwise orthogonality of the projections e
(n)
g , for g ∈ G, at the third step, to get

∥∥∥fe(n)
gk ,e

(n)
k

− e(n)
gk ug

∥∥∥ =

∥∥∥∥∥e(n)
gk

(∑
h∈G

e
(n)
gk αh(e

(n)
k )uh

)
− e(n)

gk ug

∥∥∥∥∥
≤
∥∥∥e(n)
gk αg(e

(n)
k )uh − e(n)

gk uh

∥∥∥+
∑

h∈G,h 6=g

∥∥∥e(n)
gk αh(e

(n)
k )uh

∥∥∥
<
∥∥∥αg(e(n)

k )− e(n)
gk

∥∥∥+
∑

h∈G,h 6=g

∥∥∥αh(e
(n)
k )− e(n)

hk

∥∥∥
<

1

n
+ (|G| − 1)

1

n
=
|G|
n
.

It follows from condition (2) above that

lim sup
n→∞

∥∥∥∥∥∑
k∈G

f
e
(n)
gk ,e

(n)
k

− ug

∥∥∥∥∥ ≤ lim sup
n→∞

|G|2

n
= 0.

Hence ug belongs to the closed linear span of the fa,b, and α is saturated.

For G compact and second countable, we are not able to describe so explicitly the

approximating functions fa,b. (In fact, their existence is a consequence of the Stone-Weierstrass
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theorem.) Our proof consists in showing that one can build approximating functions in A oα G

using approximating functions in C(G)oLt G.

So suppose that G is compact. Since ‖ · ‖L1(G,A,α) dominates ‖ · ‖AoαG, it is enough to

show that the span of the functions fa,b, with a, b ∈ A, is dense in L1(G,A, α). Denote by χE the

characteristic function of a Borel set E ⊆ G. It is a standard fact that the linear span of

{xχE : x ∈ A,E ⊆ G Borel}

is dense in L1(G,A, α). Since fx,1fa,b = fxa,b for x, a, b ∈ A, it is enough to show that for a Borel

set E ⊆ G, the function χE belongs to the linear span of the functions fa,b.

Fix ε > 0. Since Lt : G → Aut(C(G)) is saturated (see the comments before this

proposition), there exist m ∈ N and a1, . . . , am, b1, . . . , bm ∈ C(G) such that

∥∥∥∥∥∥
m∑
j=1

faj ,bj − χE

∥∥∥∥∥∥
C(G)oLtG

< ε.

Let ϕ : C(G) → A∞,α ∩ A′ ⊆ A∞,α be a unital equivariant homomorphism as in the

definition of the Rokhlin property for α. Then ϕ induces a homomorphism

ψ : C(G)oLt G→ A∞,α oα∞ G,

which, under the canonical embedding

A∞,α oα∞ G ↪→ (Aoα G)∞

provided by Proposition II.4.5, we will regard as a homomorphism

ψ : C(G)oLt G→ (Aoα G)∞.
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It is clear that ψ(faj ,bj ) = fϕ(aj),ϕ(bj) for all j = 1, . . . ,m, and that ψ(χE) = χE . Hence

∥∥∥∥∥∥
m∑
j=1

fϕ(aj),ϕ(bj) − χE

∥∥∥∥∥∥
(AoαG)∞

=

∥∥∥∥∥∥ψ
 m∑
j=1

faj ,bj − χE

∥∥∥∥∥∥
(AoαG)∞

≤

∥∥∥∥∥∥
m∑
j=1

faj ,bj − χE

∥∥∥∥∥∥
C(G)oLtG

< ε.

To finish the proof, for j = 1, . . . ,m, choose bounded sequences (ϕ(aj)n)n∈N and

(ϕ(bj)n)n∈N in A, which represent ϕ(a) and ϕ(b), respectively. Then

κAoαG

((
fϕ(aj)n,ϕ(bj)n

)
n∈N

)
= fϕ(aj),ϕ(bj).

It follows that for n large enough, we have

∥∥∥∥∥∥
m∑
j=1

fϕ(aj)n,ϕ(bj)n − χE

∥∥∥∥∥∥
AoαG

< ε,

showing that α is saturated.

The last part of the statement follows from Rieffel’s original definition of saturation

(Definition 7.1.4 in [199]; see also Proposition 7.1.3 in [199]).

Since unital completely positive maps of order zero are necessarily homomorphisms, it is

easy to see that the Rokhlin property for a compact group action agrees with Rokhlin dimension

zero in the sense of Definition IV.2.2. In particular, combining Proposition VII.2.2 with results

from Chapter V, we obtain estimates of the nuclear dimension and decomposition rank of crossed

products by Rokhlin actions.

Theorem VII.2.3. Let A be a unital, separable C∗-algebra, let G be a second countable compact

group, and let α : G→ Aut(A) be an action with the Rokhlin property. Then

dimnuc(Aα) = dimnuc(Aoα G) ≤ dimnuc(A), and

dr(Aα) = dr(Aoα G) ≤ dr(A).
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Proof. That dimnuc(Aα) = dimnuc(A oα G) and dr(Aα) = dr(A oα G) follows from

Proposition VII.2.2. The rest is an immediate consequence of Theorem V.3.4 and Theorem V.3.3,

since dimRok(α) = 0.

Corollary VII.2.4. Let A be a unital AF-algebra, let G be a second countable compact group,

and let α : G → Aut(A) be an action with the Rokhlin property. Then Aα and A oα G are AF-

algebras.

Proof. Since a separable C∗-algebra has decomposition rank zero if and only if it is an AF-algebra

(Example 4.1 in [153]), the result follows from Theorem VII.2.3.

Here is another consequence of the fact that Aα and AoαG are Morita equivalent whenever

α has the Rokhlin property.

Corollary VII.2.5. Let A be a unital, separable, stably finite C∗-algebra, let G be a second

countable compact group, and let α : G → Aut(A) be an action with the Rokhlin property. Then

Aα and Aoα G are stably finite.

Proof. Unital subalgebras of stably finite C∗-algebras are stably finite in full generality, so Aα is

stably finite even if α does not have the Rokhlin property. Stable finiteness of the crossed product

then follows from Proposition VII.2.2.

The following result will be crucial in obtaining further structure properties for crossed

products by actions with the Rokhlin property.

Theorem VII.2.6. Let A be a unital, separable C∗-algebra, let G be a second countable compact

group, and let α : G → Aut(A) be an action with the Rokhlin property. Given a compact subset

F1 ⊆ A, a compact subset F2 ⊆ Aα and ε > 0, there exists a unital completely positive map

ψ : A→ Aα such that

1. For all a, b ∈ F1, we have

‖ψ(ab)− ψ(a)ψ(b)‖ < ε;

2. For all a ∈ F2, we have ‖ψ(a)− a‖ < ε.

In other words, there exists an approximate homomorphism (ψn)n∈N consisting of unital,

completely positive linear maps ψn : A → Aα for n ∈ N, such that lim
n→∞

‖ψn(a) − a‖ = 0 for all

a ∈ Aα.
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Proof. Without loss of generality, we may assume that ‖a‖ ≤ 1 for all a ∈ F1 ∪ F2. For the

compact set F = F 2
1 ∪ F2, and the tolerance ε0 = ε

6 , use Proposition V.4.3 to find a positive

number δ > 0, a finite subset K ⊆ G, a partition of unity (fk)k∈K of C(G), and a unital

completely positive map ϕ : C(G)→ A, such that

(a) If g and g′ in G satisfy d(g, g′) < δ, then ‖αg(a)− αg′(a)‖ < ε0 for all a ∈ F .

(b) Whenever k and k′ in K satisfy fkfk′ 6= 0, then d(k, k′) < δ.

(c) For every g ∈ G and for every a ∈ F , we have

∥∥∥∥∥ αg
(∑
k∈K

ϕ(fk)1/2αk(a)ϕ(fk)1/2

)
−
∑
k∈K

ϕ(fk)1/2αk(a)ϕ(fk)1/2

∥∥∥∥∥ < ε0.

(d) For every a ∈ F and for every k ∈ K, we have

‖aϕ(fk)− ϕ(fk)a‖ < ε0

|K|
and

∥∥∥aϕ(fk)1/2 − ϕ(fk)1/2a
∥∥∥ < ε0

|K|
.

(e) Whenever k and k′ in K satisfy fkfk′ = 0, then

∥∥∥ϕ(fk)1/2ϕ(fk′)
1/2
∥∥∥ < ε0

|K|
.

Define a linear map ψ : A→ Aα by

ψ(a) = E

(∑
k∈K

ϕ(fk)
1
2αk(a)ϕ(fk)

1
2

)

for all a ∈ A. We claim that ψ has the desired properties.

It is clear that ψ is unital and completely positive. It follows from condition (c) above that

∥∥∥∥∥ψ(a)−
∑
k∈K

ϕ(fk)1/2αk(a)ϕ(fk)1/2

∥∥∥∥∥ < ε

for all a ∈ F . We proceed to check that conditions (1) and (2) in the statement are satisfied.

Given a, b ∈ F1, we use condition (c) at the second and fifth step (in the form of the

observation above), conditions (a), (b), (d) and (e) at the third step, and the fact that ϕ is unital
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and (fk)k∈K is a partition of unity of C(G) at the fourth step, to get

ψ(a)ψ(b) = E

(∑
k∈K

ϕ(fk)
1
2αk(a)ϕ(fk)

1
2

)
E

(∑
k′∈K

ϕ(fk′)
1
2αk′(b)ϕ(fk′)

1
2

)

≈2ε0

∑
k∈K

∑
k′∈K

ϕ(fk)
1
2αk(a)ϕ(fk)

1
2ϕ(fk′)

1
2αk′(b)ϕ(fk′)

1
2

≈3ε0

∑
k∈K

∑
k′∈K

ϕ(fk)
1
2αk(ab)ϕ(fk)

1
2ϕ(fk′)

=
∑
k∈K

ϕ(fk)
1
2αk(ab)ϕ(fk)

1
2

≈ε0 E

(∑
k∈K

ϕ(fk)
1
2αk(ab)ϕ(fk)

1
2

)

= ψ(ab).

Hence ‖ψ(ab) − ψ(a)ψ(b)‖ < 6ε0 = ε, and condition (1) is proved. For the second condition, let

a ∈ F2 ⊆ Aα. Then

ψ(a) = E

(∑
k∈K

ϕ(fk)
1
2 aϕ(fk)

1
2

)

≈ε0 E

(∑
k∈K

ϕ(fk)a

)

= E

(∑
k∈K

ϕ(fk)

)
a = a.

Thus ‖ψ(a)− a‖ < ε for all a ∈ F2, and the proof is complete.

Our first application of Theorem VII.2.6 is to the ideal structure of crossed products and

fixed point algebras. In the presence of the Rokhlin property, we can describe all ideals: they are

naturally induced by invariant ideals in the original algebra.

Theorem VII.2.7. Let A be a unital, separable C∗-algebra, let G be a second countable compact

group, and let α : G→ Aut(A) be an action with the Rokhlin property.

1. If I is an ideal in Aα, then there exists an α-invariant ideal J in A such that I = J ∩Aα.

2. If I is an ideal in AoαG, then there exists an α-invariant ideal J in A such that I = JoαG.
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Proof. (1). Let I be an ideal in Aα. Then J = AIA is an α-invariant ideal in A. We claim that

J ∩ Aα = I. It is clear that I ⊆ J ∩ Aα. For the reverse inclusion, let x ∈ J ∩ Aα, that is, an

α-invariant element in AIA. For n ∈ N, choose mn ∈ N, elements a
(n)
1 , . . . , a

(n)
mn , b

(n)
1 , . . . , b

(n)
mn in A,

and elements x
(n)
1 , . . . , x

(n)
mn in I, such that

∥∥∥∥∥∥x−
mn∑
j=1

a
(n)
j x

(n)
j b

(n)
j

∥∥∥∥∥∥ < 1

n
.

Set Mn = max
j=1,...,mn

{‖a(n)
j ‖, ‖b

(n)
j ‖, 1}. Let (ψn)n∈N be a sequence of unital completely

positive maps ψn : A → Aα as in the conclusion of Theorem VII.2.6 for the choices εn = 1
nmnM2

n

and

F
(n)
1 = {a(n)

j , x
(n)
j , b

(n)
j : j = 1, . . . ,mn} ∪ {x}

and F
(n)
2 = {x(n)

j : j = 1, . . . ,mn} ∪ {x}. Then

∥∥∥∥∥∥ψn
mn∑
j=1

a
(n)
j x

(n)
j b

(n)
j

− x
∥∥∥∥∥∥ < 1

n
+

1

nmnM2
n

≤ 2

n

and ∥∥∥∥∥∥ψn
mn∑
j=1

a
(n)
j x

(n)
j b

(n)
j

− mn∑
j=1

ψn(a
(n)
j )x

(n)
j ψn(b

(n)
j )

∥∥∥∥∥∥
≤ 1

n
+

∥∥∥∥∥∥ψn
mn∑
j=1

a
(n)
j x

(n)
j b

(n)
j

− mn∑
j=1

ψn(a
(n)
j )ψn(x

(n)
j )ψn(b

(n)
j )

∥∥∥∥∥∥
≤ 1

n
+

1

nMn
+

∥∥∥∥∥∥ψn
mn∑
j=1

a
(n)
j x

(n)
j b

(n)
j

− mn∑
j=1

ψn(a
(n)
j x

(n)
j )ψn(b

(n)
j )

∥∥∥∥∥∥
≤ 1

n
+

2

nMn
≤ 3

n
.

We conclude that ∥∥∥∥∥∥x−
mn∑
j=1

ψn(a
(n)
j )x

(n)
j ψn(b

(n)
j )

∥∥∥∥∥∥ < 5

n
.

Since
mn∑
j=1

ψn(a
(n)
j )x

(n)
j ψn(b

(n)
j ) belongs to I, it follows that x is a limit of elements in I, and

hence it belongs to I itself.
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(2). This follows from (1) together with the fact that α is saturated (see

Proposition VII.2.2). We omit the details.

In the following corollary, hereditary saturation is as in Definition 7.2.2 in [199], while the

strong Connes spectrum for an action of a non-abelian compact group (which is a subset of the set

Ĝ of irreducible representations of the group) is as in Definition 1.2 of [105]. (For abelian groups,

the notion of strong Connes spectrum was introduced earlier by Kishimoto in [155].)

Corollary VII.2.8. Let A be a unital, separable C∗-algebra, let G be a second countable

compact group, and let α : G → Aut(A) be an action with the Rokhlin property. Then α has

full strong Connes spectrum: Γ̃(α) = Ĝ, and it is hereditarily saturated.

Proof. That Γ̃(α) = Ĝ follows from Theorem 3.3 in [105]. Hereditary saturation of actions with

full strong Connes spectrum is established in the comments after Lemma 3.1 in [105].

Corollary VII.2.9. Let A be a unital, separable C∗-algebra, let G be a second countable

compact group, and let α : G → Aut(A) be an action with the Rokhlin property. If A is simple,

then so are Aα and Aoα G.

Generalized Local Approximations

We now turn to the study of preservation of certain structural properties that have

been studied in the context of Elliott’s classification program. In order to provide a conceptual

approach, it will be necessary to introduce some convenient terminology.

Definition VII.3.1. Let C be a class of separable C∗-algebras and let A be a C∗-algebra.

1. We say that A is an (unital) approximate C-algebra, if A is isomorphic to a direct limit of

C∗-algebras in C (with unital connecting maps).

2. We say that A is a (unital) local C-algebra, if for every finite subset F ⊆ A and for every ε >

0, there exist a C∗-algebra B in C and a not necessarily injective (unital) homomorphism

ϕ : B → A such that dist(a, ϕ(B)) < ε for all a ∈ F .

3. We say that A is a generalized (unital) local C-algebra, if for every finite subset F ⊆ A and

for every ε > 0, there exist a C∗-algebra B in C and sequence (ϕn)n∈N of (unital) completely
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positive contractive maps ϕn : B → A that dist(a, ϕn(B)) < ε for all a ∈ F and for all n

sufficiently large.

Remark VII.3.2. The term ‘local C-algebra’ is sometimes used to mean that the local

approximations are realized by injective homomorphisms. For example, in [259] Thiel says that

a C∗-algebra A is ‘C-like’, if for every finite subset F ⊆ A and for every ε > 0, there exist a C∗-

algebra B in C and an injective homomorphism ϕ : B → A such that dist(a, ϕ(B)) < ε for all

a ∈ F . Finally, we point out that what we call here ‘approximate C’ is called ‘AC’ in [259].

The Rokhlin property is related to the above definition in the following way. Note that the

approximating maps for Aα that we obtain in the proof are not necessarily injective, even if we

assume that the approximating maps for A are.

Proposition VII.3.3. Let C be a class of C∗-algebras, let A be a C∗-algebra, let G be a second

countable group, and let α : G → Aut(A) be an action with the Rokhlin property. If A is a

(unital) local C-algebra, then Aα is a generalized (unital) local C-algebra.

Proof. Let F ⊆ Aα be a finite subset, and let ε > 0. Find a C∗-algebra B in C and a (unital)

homomorphism ϕ : B → A such that dist(a, ϕ(B)) < ε
2 for all a ∈ F . Let (ψn)n∈N be a sequence

of unital completely positive maps ψn : A → Aα as in the conclusion of Theorem VII.2.6. Then

(ψn ◦ ϕ)n∈N is a sequence of (unital) completely positive contractive maps B → Aα as in the

definition of generalized local C-algebra.

Let C be a class of C∗-algebras. It is clear that any (unital) approximate C-algebra is a

(unital) local C-algebra, and that any (unital) local C-algebra is a generalized (unital) local C-

algebra.

While the converses to these implications are known to fail in general, the notions in

Definition VII.3.1 agree under fairly mild conditions on C; see Proposition VII.3.9.

Definition VII.3.4. Let C be a class of C∗-algebras. We say that C has (unital) approximate

quotients if whenever A ∈ C and I is an ideal in A, the quotient A/I is a (unital) approximate

C-algebra, in the sense of Definition VII.3.1.

The term ‘approximate quotients’ has been used in [191] with a considerably stronger

meaning. Our weaker assumptions still yield an analog of Proposition 1.7 in [191]; see

Proposition VII.3.9.
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We need to recall a definition due to Loring. The original definition appears in [173], while

in Theorem 3.1 in [55] it is proved that weak semiprojectivity is equivalent to a condition that is

more resemblant of semiprojectivity. For the purposes of this chapter, the original definition is

better suited.

Definition VII.3.5. A C∗-algebra A is said to be weakly semiprojective (in the unital category)

if given a C∗-algebra B and given a (unital) homomorphism ψ : A → B∞, there exists a (unital)

homomorphism ϕ : A → `∞(N, B) such that κB ◦ ϕ = ψ. In other words, the following lifting

problem can always be solved:

`∞(N, B)

κB

��
A

ψ
//

ϕ

;;

B∞.

The proof of the following observation is left to the reader. It states explicitly

the formulation of weak semiprojectivity that will be used in our work, specifically in

Proposition VII.3.9.

Remark VII.3.6. Using the definition of the sequence algebra B∞, it is easy to show that if A is

a weakly semiprojective C∗-algebra, and (ψn)n∈N is an asymptotically ∗-multiplicative sequence of

linear maps ψn : A → B from A to another C∗-algebra B, then there exists a sequence (ϕn)n∈N of

homomorphisms ϕn : A→ B such that

lim
n→∞

‖ϕn(a)− ψn(a)‖ = 0

for all a ∈ A. If each ψn is unital and A is weakly semiprojective in the unital category, then ϕn

can also be chosen to be unital.

We proceed to give some examples of classes of C∗-algebras that will be used in

Theorem VII.3.10. We need a definition first, which appears as Definition 11.2 in [56].

Definition VII.3.7. A C∗-algebra A is said to be a one-dimensional noncommutative cellular

complex, or one-dimensional NCCW-complex for short, if there exist finite dimensional C∗-

algebras E and F , and unital homomorphisms ϕ,ψ : E → F , such that A is isomorphic to the
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pull back C∗-algebra

{(a, b) ∈ E ⊕ C([0, 1], F ) : b(0) = ϕ(a) and b(1) = ψ(a)}.

It was shown in Theorem 6.2.2 of [56] that one-dimensional NCCW-complexes are

semiprojective (in the unital category).

Examples VII.3.8. The following are examples of classes of weakly semiprojective C∗-algebras

(in the unital category) which have approximate quotients.

1. The class C of matrix algebras. The (unital) approximate C-algebras are precisely the

matroid algebras (UHF-algebras).

2. The class C of finite dimensional C∗-algebras. The (unital) approximate C-algebras are

precisely the (unital) AF-algebras.

3. The class C of interval algebras, that is, algebras of the form C([0, 1]) ⊗ F , where F is a

finite dimensional C∗-algebra. The (unital) approximate C-algebras are precisely the (unital)

AI-algebras.

4. The class C of circle algebras, that is, algebras of the form C(T) ⊗ F , where F is a finite

dimensional C∗-algebra. The (unital) approximate C-algebras are precisely the (unital) AT-

algebras.

5. The class C of one-dimensional NCCW-complexes. We point out that certain approximate

C-algebras have been classified, in terms of a variant of their Cuntz semigroup, by Robert in

[230].

The following result is well-known for several particular classes.

Proposition VII.3.9. Let C be a class of separable C∗-algebras which has (unital) approximate

quotients (see Definition VII.3.4). Assume that the C∗-algebras in C are weakly semiprojective (in

the unital category). For a separable (unital) C∗-algebra A, the following are equivalent:

1. A is an (unital) approximate C-algebra;

2. A is a (unital) local C-algebra;
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3. A is a generalized (unital) local C-algebra.

Proof. The implications (1) ⇒ (2) ⇒ (3) are true in full generality. Weak semiprojectivity of

the algebras in C implies that any generalized local approximation by C∗-algebras in C can be

perturbed to a genuine local approximation by C∗-algebras in C (see Remark VII.3.6), showing (3)

⇒ (2).

For the implication (2) ⇒ (1), note that since C has approximate quotients, every a local

C-algebra is AC-like, in the sense of Definition 3.2 in [259] (see also Paragraph 3.6 there). It then

follows from Theorem 3.9 in [259] that A is an approximate C-algebra.

For the unital case, one uses Remark VII.3.6 to show that (3) ⇒ (2) when units are

considered. Moreover, for (2) ⇒ (1), one checks that in the proof of Theorem 3.9 in [259], if

one assumes that the building blocks are weakly semiprojective in the unital category, then

the conclusion is that a unital AC-like algebra is a unital AC-algebra. With the notation and

terminology of the proof of Theorem 3.9 in [259], suppose that A is a unital AC-like algebra, and

suppose that ϕ : C → A is a unital homomorphism, with C ∈ C. Since C is assumed to be weakly

semiprojective in the unital category, the morphism α : C → B can be chosen to be unital. For

the same reason, one can arrange that the morphism α̃ : C → Ck1
be unital (possible by changing

the choice of k1). Now, since the connecting maps γk are also assumed to be unital, it is easily

seen that the one-sided approximate intertwining constructed has unital connecting maps. Finally,

when applying Proposition 3.5 in [259], if the algebras Ai, with i ∈ I, are weakly semiprojective in

the unital category, then the morphisms ψk : Ai(k) → Ai(k+1) can be chosen to be unital as well.

We leave the details to the reader.

The following is the main application of our approximations results.

Theorem VII.3.10. Let C be a class of separable weakly semiprojective C∗-algebras (in the

unital category), and assume that C has (unital) approximate quotients. Let A be a (unital) local

C-algebra, let G be a second countable group, and let α : G → Aut(A) be an action with the

Rokhlin property. Then Aα is a (unital) approximate C-algebra.

Proof. This is an immediate consequence of Proposition VII.3.3 and Proposition VII.3.9.

An alternative proof of part (2) of the corollary below is given in Corollary VII.2.4.
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Corollary VII.3.11. Let A be a unital, separable C∗-algebra, let G be a second countable

compact group, and let α : G→ Aut(A) be an action with the Rokhlin property.

1. If A is a UHF-algebra, then Aα is a UHF-algebra and A oα G is a matroid algebra. If G is

finite, then Aoα G is also a UHF-algebra.

2. If A is an AF-algebra, then so are Aα and Aoα G.

3. If A is an AI-algebra, then so are Aα and Aoα G.

4. If A is an AT-algebra, then so are Aα and Aoα G.

5. If A is a direct limit of one-dimensional NCCW-complexes, then so are Aα and Aoα G.

Proof. Since the classes in Examples VII.3.8 have approximate quotients and contain only weakly

semiprojective C∗-algebras, the claims follow from Theorem VII.3.10.

Theorem VII.3.10 allows for far more flexibility than Theorem 3.5 in [191], since we do not

assume our classes of C∗-algebras to be closed under direct sums or by taking corners, nor do we

assume that our algebras are semiprojective. In particular, the class C of weakly semiprojective

purely infinite, simple algebras satisfies the assumptions of Theorem VII.3.10, but appears not to

fit into the framework of flexible classes discussed in [191].

Recall that a C∗-algebra is said to be a Kirchberg algebra if it is purely infinite, simple,

separable and nuclear.

The following lemma is probably standard, but we include its proof here for the sake of

completeness.

Lemma VII.3.12. Let A be a Kirchberg algebra satisfying the Universal Coefficient Theorem.

Then A is isomorphic to a direct limit of weakly semiprojective Kirchberg algebras satisfying the

Universal Coefficient Theorem.

Proof. Since every non-unital Kirchberg algebra is the stabilization of a unital Kirchberg algebra,

by Proposition 3.11 in [42], it is enough to prove the statement when A is non-unital. For j = 0, 1,

set Gj = Kj(A). Write Gj as a direct limit Gj ∼= lim−→(G
(n)
j , γ

(n)
j ) of finitely generated abelian

groups G
(n)
j , with connecting maps

γ
(n)
j : G

(n)
j → G

(n+1)
j .
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For j = 0, 1, sse Theorem 4.2.5 in [200] to find, for n ∈ N, Kirchberg algebras An satisfying the

Universal Coefficient Theorem with Kj(An) ∼= G
(n)
j , and homomorphisms

ϕn : An → An+1

such that Kj(ϕn) is identified with γ
(n)
j under the isomorphism Kj(An) ∼= G

(n)
j .

The direct limit lim−→(An, ϕn) is isomorphic to A by Theorem 4.2.4 in [200]. On the

other hand, each of the algebras An is weakly semiprojective by Theorem 2.2 in [254] (see also

Corollary 7.7 in [170]), so the proof is complete.

Theorem VII.3.13. Let A be a separable, nuclear, unital C∗-algebra, let G be a second

countable compact group, and let α : G → Aut(A) be an action with the Rokhlin property. If

A satisfies the Universal Coefficient Theorem, then so do Aα and Aoα G.

Proof. We claim that it is enough to prove the statement when A is a Kirchberg algebra. Indeed,

a C∗-algebra B satisfies the Universal Coefficient Theorem if and only if B ⊗ O∞ does, since O∞

is KK-equivalent to C. On the other hand, α⊗ idO∞ has the Rokhlin property, and

(A⊗O∞)α⊗idO∞ = Aα ⊗O∞.

Suppose then that A is a Kirchberg algebra. Denote by C the class of all unital weakly

semiprojective Kirchberg algebras satisfying the Universal Coefficient Theorem. Note that

C has approximate quotients. By Lemma VII.3.12, A is a unital approximate C-algebra. By

Theorem VII.3.10, Aα is also a unital approximate C-algebra. Since the Universal Coefficient

Theorem passes to direct limits, we conclude that Aα satisfies it. Since A oα G is Morita

equivalent to Aα, the same holds for the crossed product.

Further Structure Results

We now turn to preservation of classes of C∗-algebras that are not necessarily defined in

terms of an approximation by weakly semiprojective C∗-algebras. The classes we study can all be

dealt with using Theorem VII.2.6.

The following is Definition 1.3 in [265].
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Definition VII.4.1. A unital, separable C∗-algebra D is said to be strongly self-absorbing, if it is

infinite dimensional and the map D → D ⊗min D, given by d 7→ d ⊗ 1 for d ∈ D, is approximately

unitarily equivalent to an isomorphism.

It is a consequence of a result of Effros and Rosenberg that strongly self-absorbing C∗-

algebras are nuclear, so that the choice of the tensor product in the definition above is irrelevant.

The only known examples of strongly self-absorbing C∗-algebras are the Jiang-Su algebra Z, the

Cuntz algebras O2 and O∞, UHF-algebras of infinite type, and tensor products of O∞ by such

UHF-algebras. It has been conjectured that these are the only examples of strongly self-absorbing

C∗-algebras. See [265] for the proofs of these and other results concerning strongly self-absorbing

C∗-algebras.

The following is a useful criterion to determine when a unital, separable C∗-algebra absorbs

a strongly self-absorbing C∗-algebra tensorially. The proof is a straightforward combination of

Theorem 2.2 in [265] and Choi-Effros lifting theorem, and we shall omit it.

Theorem VII.4.2. Let A be a separable, unital C∗-algebra, and let D be a strongly self-

absorbing C∗-algebra. Then A is D-stable if and only if for every ε > 0, for every finite subset

F ⊆ A, and every finite subset E ⊆ D, there exists a unital completely positive map ϕ : D → A

such that

1. ‖aϕ(d)− ϕ(d)a‖ < ε for all a ∈ F and for all d ∈ E;

2. ‖ϕ(de)− ϕ(d)ϕ(e)‖ < ε for every d, e ∈ E.

The following result was obtained as part (1) of Corollary 3.4 in [122], using completely

different methods. We include a proof here to illustrate the generality of our approach.

Theorem VII.4.3. Let A be a unital, separable C∗-algebra, let G be a second countable compact

group, and let α : G → Aut(A) be an action with the Rokhlin property. Let D be a strongly self-

absorbing C∗-algebra and assume that A is D-stable. Then Aα and Aoα G are D-stable as well.

Proof. Since D-stability is preserved under Morita equivalence by Corollary 3.2 in [265], it is

enough to prove the result for Aα.

Let ε > 0, and let F ⊆ Aα and E ⊆ D be finite subsets of A and D, respectively. Use

Theorem VII.4.2 to choose a unital, completely positive map ϕ : D → A such that
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1. ‖aϕ(d)− ϕ(d)a‖ < ε for all a ∈ F and for all d ∈ E;

2. ‖ϕ(de)− ϕ(d)ϕ(e)‖ < ε for every d, e ∈ E.

Let (ψn)n∈N be a sequence of unital completely positive maps ψn : A → Aα as in the

conclusion of Theorem VII.2.6. Since lim
n→∞

ψn(a) = a for all a ∈ F , we deduce that

lim sup
n→∞

‖aψn(ϕ(d))− ψn(ϕ(d))a‖ ≤ ‖aϕ(d)− ϕ(d)a‖ < ε

for all a ∈ F and all d ∈ E. Likewise,

lim sup
n→∞

‖ψn(ϕ(de))− ψn(ϕ(d))ψn(ϕ(e))‖ ≤ ‖ϕ(de)− ϕ(d)ϕ(e)‖ < ε

for all d, e ∈ E. We conclude that for n large enough, the unital completely positive map

ψn ◦ ϕ : D → Aα

satisfies the conclusion of Theorem VII.4.3, showing that Aα is D-stable.

Similar methods allow one to prove that the property of being approximately divisible is

inherited by the crossed product and the fixed point algebra of a compact group action with the

Rokhlin property. (This was first obtained by Hirshberg and Winter as part (2) of Corollary 3.4 in

[122].) Our proof is completely analogous to that of Theorem VII.4.3 (using a suitable version of

Theorem VII.4.2), so for the sake of brevity, we shall not present it here.

Our next goal is to show that Rokhlin actions preserve the property of having tracial rank

at most one in the simple, unital case.

We will need a definition of tracial rank zero and one. What we reproduce below are

not Lin’s original definitions (Definition 2.1 in [169] and Definition 2.1 in [167]). Nevertheless,

the notions we define are equivalent in the simple case: for tracial rank zero, this follows from

Proposition 3.8 in [167], while the argument in the proof of said proposition can be adapted to

show the corresponding result for tracial rank one.

Definition VII.4.4. Let A be a simple, unital C∗-algebra. We say that A has tracial rank at

most one, and write TR(A) ≤ 1, if for every finite subset F ⊆ A, for every ε > 0, and for every
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non-zero positive element x ∈ A, there exist a projection p ∈ A, an AI-algebra B, and a unital

homomorphism ϕ : B → A, such that

1. ‖ap− pa‖ < ε for all a ∈ F ;

2. dist(pap, ϕ(B)) < ε for all a ∈ F ;

3. 1− p is Murray-von Neumann equivalent to a projection in xAx.

Additionally, we say that A has tracial rank zero, and write TR(A) = 0, if the C∗-algebra B

as above can be chosen to be finite dimensional.

We will need the following notation. For t ∈
(
0, 1

2

)
, we denote by ft : [0, 1] → [0, 1] the

continuous function that takes the value 0 on [0, t], the value 1 on [2t, 1], and is linear on [t, 2t].

Theorem VII.4.5. Let A be a unital, separable, simple C∗-algebra, let G be a second countable

compact group, and let α : G → Aut(A) be an action with the Rokhlin property. Then Aα is a

unital, separable, simple C∗-algebra with TR(Aα) ≤ TR(A). If G is finite, then the same holds for

the crossed product Aoα G.

When G is not finite (but compact), then A oα G is never unital, and the definition of

tracial rank zero only applies to unital C∗-algebras.

Proof. Let F ⊆ Aα be a finite subset, let ε > 0 and let x ∈ Aα be a non-zero positive element.

Without loss of generality, we may assume that ‖a‖ ≤ 1 for all a ∈ F , and that ε < 1. Find

t ∈
(
0, 1

2

)
such that (x − t)+ is not zero. Set y = (x − t)+. Then y belongs to Aα and moreover

ft(x)y = yft(x) = y.

Using that A has tracial rank zero, find a unital AI-algebra B, a unital homomorphism

ϕ : B → A, a projection q ∈ yAy and a partial isometry s ∈ A such that

– ‖ap− pa‖ < ε
9 for all a ∈ F ;

– dist(pap, ϕ(B)) < ε
9 for all a ∈ F ;

– 1− p = s∗s and q = ss∗.

Let F̃ ⊆ B be a finite subset such that for all a ∈ F , there exists b ∈ F̃ with ‖pap− ϕ(b)‖ <
ε
9 .
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Since ft(x) is a unit for yAy, it follows that q = ft(x)qft(x). Let (ψn)n∈N be a sequence of

unital completely positive maps ψn : A→ Aα as in the conclusion of Theorem VII.2.6. We have

(a) lim sup
n→∞

‖ψn(p)a− aψn(p)‖ < ε
9 for all a ∈ F ;

(b) lim sup
n→∞

dist (ψn(p)aψn(a), (ψn ◦ ϕ)(B)) < ε
9 for all a ∈ F ;

(c) lim
n→∞

‖ψn(p)aψn(p)− ψn(pap)‖ = 0;

(d) lim
n→∞

‖ψn(p)∗ψn(p)− ψn(p)‖ = 0;

(e) lim
n→∞

‖1− ψn(p)− ψn(s)∗ψn(s)‖ = 0;

(f) lim
n→∞

‖ψn(q)ψn(s)ψn(1− p)− ψn(s)‖ = 0;

(g) lim
n→∞

‖ψn(q)∗ψn(q)− ψn(q)‖ = 0;

(h) lim
n→∞

‖ψn(q)− ψn(s)ψn(s)∗‖ = 0;

(i) lim
n→∞

‖ψn(q)− ft(x)ψn(q)ft(x)‖ = 0.

With rn = ft(x)ψn(q)ft(x) for n ∈ N, it follows from conditions (g) and (i) that

(j) lim
n→∞

‖r∗nrn − rn‖ = 0.

Find δ1 > 0 such that whenever e is an element in a C∗-algebra C such that ‖e∗e− e‖ < δ1,

then there exists a projection f in C such that ‖e − f‖ < ε
9 . Fix a finite set G ⊆ B of generators

for B. Find δ2 > 0 such that whenever ρ : B → Aα is a unital positive linear map which is δ2-

multiplicative on G, there exists a homomorphism π : B → Aα such that ‖ρ(b) − π(b)‖ < ε
9 for all

b ∈ F̃ . Set δ = min{δ1, δ2}.

Choose n ∈ N large enough so that the quantities in conditions (a), (b), (c), (e) and (i) are

less than ε
9 , the quantities in (d) and (j) are less than δ, the quantities in (e) and (g) are less than

1 − ε, and so that ψn ◦ ϕ is δ-multiplicative on G. Since rn belongs to xAαx for all n ∈ N, by the

choice of δ there exist a projection e in xAαx such that ‖e − rn‖ < ε
9 , and a projection f ∈ Aα

such that ‖f − ψn(p)‖ < ε
9 . Let π : B → Aα be a homomorphism satisfying

‖π(b)− (ψn ◦ ϕ)(b)‖ < ε

9

for all b ∈ G ∪ F̃ .
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We claim that the projection f and the homomorphism π : B → Aα satisfy the conditions

in Definition VII.4.4.

Given a ∈ F , the estimate

‖af − fa‖ ≤ ‖aψn(p)− ψn(p)a‖+ 2‖ψn(p)− f‖ < 3ε

9
< ε

shows that condition (1) is satisfied. In order to check condition (2), given a ∈ F , choose b ∈ F̃

such that

‖pap− ϕ(b)‖ < ε

9
.

Then

‖faf − π(b)‖ ≤ ‖faf − ψn(p)aψn(p)‖+ ‖ψn(p)aψn(p)− ψn(ϕ(b))‖

+ ‖ψn(ϕ(b))− π(b)‖

< 2‖f − ψn(p)‖+
ε

9
+
ε

9
< ε,

so condition (2) is also satisfied. To check condition (3), it is enough to show that 1− f is Murray-

von Neumann equivalent (in Aα) to e. We have

‖(1− f)− ψn(s)∗ψn(s)‖ ≤ ‖f − ψn(p)‖+ ‖1− ψn(p)− ψn(s)∗ψn(s)‖

<
ε

9
+ 1− ε = 1− 8ε

9
,

and likewise, ‖e− ψn(s)ψn(s)∗‖ < ε
9 + 1− ε. On the other hand, we use the approximate versions

of equation (i) at the second step, and that of equation (f) at the third step, to get

‖ψn(s)− eψn(s)(1− f)‖ < 2ε

9
+ ‖ψn(s)− ft(x)ψn(q)ft(x)ψn(s)ψn(1− p)‖

<
3ε

9
+ ‖ψn(s)− ψn(q)ψn(s)ψn(1− p)‖

<
4ε

9
.
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Now, it is immediate that

‖(1− f)− (eψn(s)(1− f))∗(eψn(s)(1− f))‖ < 2‖ψn(s)− eψn(s)(1− f)‖

+ ‖(1− f)− ψn(s)∗ψn(s)‖

<
8ε

9
+ 1− 8ε

9
= 1.

Likewise,

‖e− (eψn(s)(1− f))(eψn(s)(1− f))∗‖ < 1.

By Lemma 2.5.3 in [166] applied to eψn(s)(1−f), we conclude that 1−f and e are Murray-

von Neumann equivalent in Aα, and the proof of the first part of the statement is complete.

It is clear that if A has tracial rank zero and we choose B to be finite dimensional, then the

above proof shows that Aα has tracial rank zero as well.

Finally, if G is finite, then the last claim of the statement follows from the fact that Aα and

Aoα G are Morita equivalent.

We believe that a condition weaker than the Rokhlin property ought to suffice for the

conclusion of Theorem VII.4.5 to hold. In view of Theorem 2.8 in [203], we presume that fixed

point algebras by a suitable version of the tracial Rokhlin property for compact group actions

would preserve the class of simple C∗-algebras with tracial rank zero.

We present two consequences of Theorem VII.4.5. The first one is to simple AH-algebras of

slow dimension growth and real rank zero, which do not a priori fit into the general framework of

Theorem VII.3.10, since the building blocks are not necessarily weakly semiprojective.

Corollary VII.4.6. Let A be a simple, unital AH-algebra with slow dimension growth and real

rank zero. Let G be a second countable compact group, and let α : G→ Aut(A) be an action with

the Rokhlin property. Then Aα is a simple, unital AH-algebra with slow dimension growth and

real rank zero.

Proof. By Proposition 2.6 in [167], A has tracial rank zero. Thus Aα is a simple C∗-algebra with

tracial rank zero by Theorem VII.4.5. It is clearly separable, unital, and nuclear. Moreover, it

satisfies the Universal Coefficient Theorem by Theorem VII.3.13. Since AH-algebras of slow

dimension growth and real rank zero exhaust the Elliott invariant of C∗-algebras with tracial
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rank zero, Theorem 5.2 in [168] implies that Aα is an AH-algebra with slow dimension growth and

real rank zero.

Denote by Q the universal UHF-algebra. Recall that a simple, separable, unital C∗-algebra

A is said to be have rational tracial rank at most one, if TR(A⊗Q) ≤ 1.

Corollary VII.4.7. Let A be a simple, separable, unital C∗-algebra, let G be a second countable

compact group, and let α : G → Aut(A) be an action with the Rokhlin property. If A has rational

tracial rank at most one, then so does Aα (and also Aoα G if G is finite).

Proof. The result is an immediate consequence of Theorem VII.4.5 applied to the action α ⊗

idQ : G→ Aut(A⊗Q).

We now turn to pure infiniteness in the non-simple case. The following is Definition 4.1 in

[152]

Definition VII.4.8. A C∗-algebra A is said to be purely infinite if the following conditions are

satisfied:

1. There are no non-zero characters (that is, homomorphisms onto the complex numbers) on A,

and

2. For every pair a, b of positive elements in A, with b in the ideal generated by a, there exists

a sequence (xn)n∈N in A such that lim
n→∞

‖x∗nbxn − a‖ = 0.

The following is Theorem 4.16 in [152] (see also Definition 3.2 in [152]).

Theorem VII.4.9. Let A be a C∗-algebra. Then A is purely infinite if and only if for every

nonzero positive element a ∈ A, we have a⊕ a � a.

We use the above result to show that, in the presence of the Rokhlin property, pure

infiniteness is inherited by the fixed point algebra and the crossed product.

Proposition VII.4.10. Let A be a unital, separable C∗-algebra, let G be a second countable

compact group, and let α : G → Aut(A) be an action with the Rokhlin property. If A is purely

infinite, then so are Aα and Aoα G.
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Proof. By Proposition VII.2.2 and Theorem 4.23 in [152], it is enough to prove the result for Aα.

Let a be a nonzero positive element in Aα. Since A is purely infinite, by Theorem 4.16 in [152]

(here reproduced as Theorem VII.4.9), there exist sequences (xn)n∈N and (yn)n∈N in A such that

(a) lim
n→∞

‖x∗naxn − a‖ = 0;

(b) lim
n→∞

‖x∗nayn‖ = 0;

(c) lim
n→∞

‖y∗naxn‖ = 0;

(d) lim
n→∞

‖y∗nayn − a‖ = 0.

Let (ψn)n∈N be a sequence of unital completely positive maps ψn : A → Aα as in the

conclusion of Theorem VII.2.6. Easy applications of the triangle inequality yield

(a’) lim
n→∞

‖ψn(xn)∗aψn(xn)− a‖ = 0;

(b’) lim
n→∞

‖ψn(xn)∗aψn(yn)‖ = 0;

(c’) lim
n→∞

‖ψn(yn)∗aψn(xn)‖ = 0;

(d’) lim
n→∞

‖ψn(yn)∗aψn(yn)− a‖ = 0.

Since ψn(xn) and ψn(yn) belong to Aα for all n ∈ N, we conclude that a ⊕ a � a in Aα. It

now follows from Theorem 4.16 in [152] (here reproduced as Theorem VII.4.9) that Aα is purely

infinite, as desired.

It is well known (see Corollary 4.6 in [135], here reproduced as part (2) of Theorem II.2.8)

that reduced crossed products by pointwise outer actions of discrete groups of purely infinite

simple C∗-algebras are again purely infinite and simple. In particular, pointwise outer actions

of countable amenable discrete groups preserve the class of Kirchberg algebras. The analogous

statement for locally compact groups, or even compact groups, is, however, not true. For example,

the gauge action γ of T on the Cuntz algebra O∞, given by γζ(sj) = ζsj for all ζ in T and all j in

N, is pointwise outer by the Theorem in [181], and its crossed product O∞ oγ T is a non-simple

AF-algebra, so it is far from being (simple and) purely infinite.

Hence, even though actions with the Rokhlin property are easily seen to be pointwise outer,

this does not imply the following result.
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Corollary VII.4.11. Let A be a unital Kirchberg algebra, let G be a second countable compact

group, and let α : G → Aut(A) be an action with the Rokhlin property. Then Aα and A oα G are

Kirchberg algebras.

Proof. It is well-known that Aα and A oα G are nuclear and separable. Simplicity follows from

Corollary VII.2.9, and pure infiniteness follows from Proposition VII.4.10.

In the following proposition, the Rokhlin property is surely stronger than necessary for the

conclusion to hold, although some condition on the action must be imposed. We do not know, for

instance, whether finite Rokhlin dimension with commuting towers preserves real rank zero and

stable rank one.

Proposition VII.4.12. Let A be a unital, separable C∗-algebra, let G be a second countable

compact group, and let α : G→ Aut(A) be an action with the Rokhlin property.

1. If A has real rank zero, then so do Aα and Aoα G.

2. If A has stable rank one, then so do Aα and Aoα G.

Proof. By Proposition VII.2.2, Theorem 3.3 in [229], and Theorem 2.5 in [21], it is enough to

prove the proposition for Aα. Since the proofs of both parts are similar, we only prove the first

one.

Let a be a self-adjoint element in Aα and let ε > 0. Since A has real rank zero, there exists

an invertible self-adjoint element b in A such that ‖b − a‖ < ε
2 . Let (ψn)n∈N be a sequence of

unital completely positive maps A → Aα as in the conclusion of Theorem VII.2.6. Then ψn(b) is

self-adjoint for all n ∈ N. Moreover,

lim
n→∞

∥∥ψn(b)ψn(b−1)− 1
∥∥ = lim

n→∞

∥∥ψn(b−1)ψn(b)− 1
∥∥ = 0 and

lim
n→∞

‖ψn(a)− a‖ = 0.

Choose n large enough so that

∥∥ψn(b)ψn(b−1)− 1
∥∥ < 1 and

∥∥ψn(b−1)ψn(b)− 1
∥∥ < 1,

230



and also so that ‖ψn(a)− a‖ < ε
2 . Then ψn(b)ψn(b−1) and ψn(b−1)ψn(b) are invertible, and hence

so is ψn(b). Finally,

‖a− ψn(b)‖ ≤ ‖a− ψn(a)‖+ ‖ψn(a)− ψn(b)‖ < ε

2
+
ε

2
= ε,

which shows that Aα has real rank zero.

We now turn to traces. For a trace τ on a C∗-algebra A, we also denote by τ its

amplification to any matrix algebra Mn(A). We denote by T (A) the set of all tracial states on

A.

The following is one of Blackadar’s fundamental comparability questions:

Definition VII.4.13. Let A be a simple unital C∗-algebra. We say the the order on projections

(in A) is determined by traces, if whenever p and q are projections in M∞(A) satisfying τ(p) ≤

τ(q) for all τ ∈ T (A), then p -M−vN q.

The following extends, with a simpler proof, Proposition 4.8 in [191].

Proposition VII.4.14. Let A be a simple unital C∗-algebra, and suppose that the order on

its projections is determined by traces. Let G be a second countable compact group, and let

α : G → Aut(A) be an action with the Rokhlin property. Then the order on projections in Aα

is determined by traces.

Proof. Since α ⊗ idMn
: G → Aut(A ⊗Mn) has the Rokhlin property and (A ⊗Mn)α⊗idMn =

Aα ⊗Mn, in Definition VII.4.13 it is enough to consider projections in the algebra.

So let p and q be projections in Aα, and suppose that it is not the case that p -M−vN q in

Aα. We want to show that there exists a tracial state τ on Aα such that τ(p) ≥ τ(q). By part (1)

in Proposition VI.3.2, it is not the case that p -M−vN q in A, so there exists a tracial state ω on

A such that ω(p) ≥ ω(q). Now take τ = ω|Aα .

Finally, we close this section by exploring the extent to which semiprojectivity passes

from A to the fixed point algebra and the crossed product by a compact group with the Rokhlin

property. Even though we have not been able to answer this question for semiprojectivity, we can

provide a satisfying answer for weak semiprojectivity.
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In order to show this, we introduce the following technical definition, which is inspired in

the notion of “corona extendibility” (Definition 1.1 in [174]; we are thankful to Hannes Thiel for

providing this reference).

Definition VII.4.15. Let θ : A → B be a homomorphism between C∗-algebras A and B. We

say that θ is sequence algebra extendible, if whenever E is a C∗-algebra and ϕ : A → E∞ is a

homomorphism, there exists a homomorphism ρ : B → E∞ such that ϕ = ψ ◦ θ.

In analogy with Lemma 1.4 in [174], we have the following:

Lemma VII.4.16. Let θ : A → B be a sequence algebra extendible homomorphism between

C∗-algebras A and B. If B is weakly semiprojective, then so is A.

Proof. This is straightforward.

In the next proposition, we show that weak semiprojectivity passes to fixed point algebras

of actions with the Rokhlin property (and to crossed products, whenever the group is finite).

Our conclusions seem not to be obtainable with the methods developed in [191], since it is not in

general true that a corner of a weakly semiprojective C∗-algebra is weakly semiprojective.

Proposition VII.4.17. Let G be a second countable compact group, let A be a unital C∗-

algebra, and let α : G → Aut(A) be an action with the Rokhlin property. Then the canonical

inclusion ι : Aα → A is sequence algebra extendible (Definition VII.4.15).

In particular, if A is weakly semiprojective, then so is Aα. If in addition G is finite, then

Aoα G is also weakly semiprojective.

If G is not finite, and even if A is semiprojective, AoαG need not be weakly semiprojective.

Indeed, C(T)oLt T ∼= K(L2(T)) is not weakly semiprojective.

Proof. Use Theorem VII.2.6 to choose a sequence (ψn)n∈N of asymptotically ∗-multiplicative

linear maps ψn : A → Aα such that lim
n→∞

‖ψn(a) − a‖ = 0 for all a ∈ Aα. Regard (ψn)n∈N as a

homomorphism ψ : A → (Aα)∞ such that the restriction ψ|Aα agrees with the canonical inclusion

Aα ↪→ (Aα)∞.

Let E be a C∗-algebra and let ϕ : Aα → E∞ be a homomorphism. Denote by

ϕ∞ : (Aα)∞ → (E∞)∞ ∼= E∞
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the homomorphism induced by ϕ. (The isomorphism (E∞)∞ ∼= E∞ above is specifically the one

obtained by taking diagonal sequences.) There is a commutative diagram

A
ψ // (Aα)∞

ϕ∞

��
Aα

ι

OO

ϕ
// B∞.

Then the map ρ = ϕ∞ ◦ ψ : A→ B∞ satisfies the conditions in Definition VII.4.15.

The second claim follows form Lemma VII.4.16. Finally, if G is finite, then A oα G can be

canonically identified with M|G| ⊗Aα, and hence it is also weakly semiprojective.

The non-unital case

In view of the results in [243], one may wish to generalize the results in this chapter to

actions of compact groups on not necessarily unital C∗-algebras. The definition of the Rokhlin

property for a compact group action on an arbitrary C∗-algebra should be along the lines of

Definition 3.1 in [188]. Using the right definition, one should be able to prove a theorem analogous

to Theorem VII.2.6, using the techniques from Chapter V and [243]. Once this is achieved, most

of the results in this chapter would then carry over to the (separable) non-unital setting as well.

We intend to explore this direction in a future project.
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CHAPTER VIII

EQUIVARIANT HOMOMORPHISMS, ROKHLIN CONSTRAINTS

AND EQUIVARIANT UHF-ABSORPTION

This Chapter is based on joint work with Luis Santiago ([91]).

We classify equivariant homomorphisms between C*-dynamical systems associated to

actions of finite groups with the Rokhlin property. In addition, the given actions are classified.

An obstruction is obtained for the Cuntz semigroup of a C∗-algebra allowing such an action. We

also obtain an equivariant UHF-absorption result.

Introduction

In this chapter, which is based on [91], we extend the classification results of Izumi and

Nawata of finite group actions on C∗-algebrasi with the Rokhlin property to actions of finite

groups with the Rokhlin property on arbitrary separable C∗-algebras. This is done by first

obtaining a classification result for equivariant homomorphism between C*-dynamical systems

associated to actions of finite groups with the Rokhlin property, and then applying Elliott’s

intertwining argument. In this chapter we also obtain obstructions on the Cuntz semigroup, the

Murray-von Neumann semigroup, and the K-groups of a C∗-algebra allowing an action of a finite

group with the Rokhlin property. These results are used together with the classification result of

actions to obtain an equivariant UHF-absorption result.

This chapter is organized as follows. In Section VIII.2, we collect a number of definitions

and results that will be used throughout the chapter. In Section VIII.3, we give an abstract

classification for equivariant homomorphism between C*-dynamical systems associated to actions

of finite groups with the Rokhlin property, as well as, a classification for the given actions. These

abstract classification results are used together with known classification results of C∗-algebras

to obtain specific classification of equivariant homomorphisms and actions of finite groups on C∗-

algebras that can be written as inductive limits of 1-dimensional NCCW-complexes with trivial

K1-groups and for unital simple AH-algebras of no dimension growth.
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In Section VIII.4, we obtain obstructions on the Cuntz semigroup, the Murray-von

Neumann semigroup, and the K∗-groups of a C∗-algebra allowing an action of a finite group

with the Rokhlin property. Then using the Cuntz semigroup obstruction we show that the Cuntz

semigroup of a C∗-algebra that admits an action of finite group with the Rokhlin property has

certain divisibility property. In this section we also compute the Cuntz semigroup, the Murray-

von Neumann semigroup, and the K∗-groups of the fixed-point and crossed product C∗-algebras

associated to an action of a finite group with the Rokhlin property.

In Section VIII.5, we obtain divisibility results for the Cuntz semigroup of certain classes

of C∗-algebras and use this together with the classification results for actions obtained in

Section VIII.3 to prove an equivariant UHF-absorbing result.

Classification of Actions and Equivariant ∗-homomorphisms

In this section we classify equivariant homomorphisms whose codomain C*-dynamical

system have the Rokhlin property. We use this results to classify actions of finite groups on

separable C∗-algebras with the Rokhlin property. Our results complement and extend those

obtained by Izumi in [132] and [133] in the unital setting, and by Nawata in [188] for C∗-algebras

A that satisfy A ⊆ GL(Ã).

Equivariant homomorphisms

Let us briefly recall the definition of the Rokhlin property, in the sense of [243, Definition

2], for actions of finite groups on (not necessarily unital) C∗-algebras. Actions with the Rokhlin

property are the main object of study of this work.

Definition VIII.2.1. Let A be a C∗-algebra and let α : G → Aut(A) be an action of a finite

group G on A. We say that α has the Rokhlin property if for any ε > 0 and any finite subset

F ⊆ A there exist mutually orthogonal positive contractions rg in A, for g ∈ G, such that

(1) ‖αg(rh)− rgh‖ < ε for all g, h ∈ G;

(2) ‖rga− arg‖ < ε for all a ∈ F and all g ∈ G;

(3)

∥∥∥∥∥
( ∑
g∈G

rg

)
a− a

∥∥∥∥∥ < ε for all a ∈ F .

The elements rg, for g ∈ G, will be called Rokhlin elements for α for the choices of ε and F .
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It was shown in [243, Corollary 1] that Definition VIII.2.1 agrees with [132, Definition 3.1]

whenever the C∗-algebra A is unital. It is also shown in [243, Corollary 2] that Definition VIII.2.1

agrees with [188, Definition 3.1] whenever the C∗-algebra A is separable.

The following is a characterization of the Rokhlin property in terms of elements of the

sequence algebra A∞ ([243, Proposition 1]):

Lemma VIII.2.2. Let A be a C∗-algebra and let α : G → Aut(A) be an action of a finite group

G on A. Then the following are equivalent:

(1) α has the Rokhlin property.

(2) For any finite subset F ⊆ A there exist mutually orthogonal positive contractions rg in

A∞ ∩ F ′, for g ∈ G, such that

(a) αg(rh) = rgh for all g, h ∈ G;

(b)

(∑
g∈G

rg

)
b = b for all b ∈ F .

(3) For any separable C*-subalgebra B ⊆ A there are orthogonal positive contractions rg in

A∞ ∩B′ for g ∈ G such that

(a) αg(rh) = rgh for all g, h ∈ G;

(b)

(∑
g∈G

rg

)
b = b for all b ∈ B.

The first part of the following proposition is [243, Theorem 2 (i)]. The second part follows

trivially from the definition of the Rokhlin property.

Proposition VIII.2.3. Let G be a finite group, let A be a C∗-algebra, and let α : G → Aut(A)

be an action with the Rokhlin property.

1. If B is any C∗-algebra and β : G→ Aut(B) is any action of G on B, then the action

α⊗ β : G→ Aut(A⊗min B)

defined by (α⊗ β)g = αg ⊗ βg for all g ∈ G, has the Rokhlin property.

2. If B is a C∗-algebra and ϕ : A→ B is an isomorphism, then the action g 7→ ϕ ◦αg ◦ϕ−1 of G

on B has the Rokhlin property.
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The following example may be regarded as the “generating” Rokhlin action for a given

finite group G. For some classes of C∗-algebras, it can be shown that every action of G with the

Rokhlin property tensorially absorbs the action we construct below. See [133, Theorems 3.4 and

3.5] and Theorem VIII.4.10 below.

Example VIII.2.4. Let G be a finite group. Let λ : G → U(`2(G)) be the left regular

representation, and identify `2(G) with C|G|. Define an action µG : G→ Aut(M|G|∞) by

µGg =

∞⊗
n=1

Ad(λg)

for all g ∈ G. It is easy to check that α has the Rokhlin property. Note that µGg is approximately

inner for all g ∈ G.

It follows from part (1) of Proposition VIII.2.3 that any action of the form α ⊗ µG has the

Rokhlin property. One of our main results, Theorem VIII.4.10, states that in some circumstances,

every action with the Rokhlin property has this form.

Let A and B be C∗-algebras and let G be a finite group. Let α : G → Aut(A) and β : G →

Aut(B) be actions. Recall that a homomorphism φ : A → B is said to be equivariant if φ ◦ αg =

βg ◦ φ for all g ∈ G.

Definition VIII.2.5. Let A and B be C∗-algebras and let α : G → Aut(A) and β : G → Aut(B)

be actions of a finite group G. Let φ, ψ : A → B be equivariant homomorphisms. We say that φ

and ψ are equivariantly approximately unitarily equivalent, and denote this by φ ∼G−au ψ, if for

any finite subset F ⊆ A and for any ε > 0 there exists a unitary u ∈ B̃β such that

‖φ(a)− u∗ψ(a)u‖ < ε,

for all a ∈ F .

Note that when G is the trivial group, this definition agrees with the standard definition of

approximate unitary equivalence of homomorphisms. In this case we will omit the group G in the

notation ∼G−au, and write simply ∼au.

The following lemma can be proved using a standard semiprojectivity argument. Its proof

is left to the reader.
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Lemma VIII.2.6. Let A be a unital C∗-algebra and let u be a unitary in A∞. Given ε > 0 and

given a finite subset F ⊆ A, there exists a unitary v ∈ A such that ‖va − av‖ < ε for all a ∈ F . If

moreover A is separable, then there exists a sequence (un)n∈N of unitaries in A with

lim
n→∞

‖una− aun‖ = 0

for all a ∈ A, such that πA((un)n∈N) = u in A∞.

Proposition VIII.2.7. Let A and B be C∗-algebras and let α : G→ Aut(A) and β : G→ Aut(B)

be actions of a finite group G such that β has the Rokhlin property. Let φ, ψ : (A,α) → (B, β) be

equivariant homomorphisms such that φ ∼au ψ. Then φ ∼G−au ψ.

Proof. Let F be a finite subset of A and let ε > 0. We have to show that there exists a unitary

w ∈ B̃β such that

‖φ(a)− w∗ψ(a)w‖ < ε,

for all a ∈ F . Set F ′ =
⋃
g∈G

αg(F ), which is again a finite subset of A. Since φ ∼au ψ, there exists

a unitary u ∈ B̃ such that

‖φ(b)− u∗ψ(b)u‖ < ε (VIII.1)

for all b ∈ F ′. Choose x ∈ B and λ ∈ C of modulus 1 such that u = x + λ1B̃ . Then equation

(VIII.1) above is satisfied if one replaces u with λu. Thus, we may assume that the unitary u has

the form u = x+ 1B̃ for some x ∈ B.

Fix g ∈ G and a ∈ F . Then b = αg−1(a) belongs to F ′. Using equation (VIII.1) and the fact

that φ and ψ are equivariant, we get

‖βg−1(φ(a))− u∗βg−1(ψ(a))u‖ < ε.

By applying βg to the inequality above, we conclude that

‖φ(a)− βg(u)∗ψ(a)βg(u)‖ < ε

for all a ∈ F and g ∈ G
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Choose positive orthogonal contractions (rg)g∈G ⊆ B∞ as in the definition of the Rokhlin

property for β, and set v =
∑
g∈G

βg(x)rg + 1B̃ . Using that xg + 1B̃ is a unitary in B̃, one checks

that

v∗v =
∑
g∈G

(
βg(x

∗x)r2
g + βg(x)rg + βg(x)rg

)
+ 1B̃ = 1B̃ .

Analogously, we have vv∗ = 1B̃ , and hence v is a unitary in B̃. For every b ∈ B, we have

v∗bv =
∑
g∈G

rgβg(u)∗bβg(u).

Therefore,

‖φ(a)− v∗ψ(a)v‖ =

∥∥∥∥∥∥
∑
g∈G

rgφ(a)−
∑
g∈G

rgβg(u)∗ψ(a)βg(u)

∥∥∥∥∥∥ < ε,

for all a ∈ F (here we are considering φ and ψ as maps from A to (B̃)∞, by composing them with

the natural inclusion of B in (B̃)∞). Since v =
∑
g∈G

βg(xre) + 1B̃ , we have v ∈ (B̃β)∞ ⊆ (B̃)∞. By

Lemma VIII.2.6, we can choose a unitary w ∈ B̃β such that

‖φ(a)− w∗ψ(a)w‖ < ε,

for all a ∈ F , and the proof is finished.

Lemma VIII.2.8. Let A and B be C∗-algebras and let ψ : A→ B be a homomorphism. Suppose

there exists a sequence (vn)n∈N of unitaries in B̃ such that the sequence (vnφ(x)v∗n)n∈N converges

in B for all x in a dense subset of A. Then there exists a homomorphism ψ : A→ B such that

lim
n→∞

vnφ(x)v∗n = ψ(x)

for all x ∈ A.

Proof. Let

S = {x ∈ A : (vnφ(x)v∗n)n∈N converges in B} ⊆ A.
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Then S is a dense *-subalgebra of A. For each x ∈ S, denote by ψ0(x) the limit of the sequence

(vnφ(x)v∗n)n∈N. The map ψ0 : S → B is linear, multiplicative, preserves the adjoint operation, and

is bounded by ‖φ‖, so it extends by continuity to a homomorphism ψ : A → B. Given a ∈ A and

given ε > 0, use density of S in A to choose x ∈ S such that ‖a−x‖ < ε
3 . Choose N ∈ N such that

‖vNφ(x)v∗N − ψ(x)‖ < ε
3 . Then

‖ψ(a)− vNφ(a)v∗N‖ ≤ ‖ψ(a− x)‖+ ‖ψ(x)− vNφ(x)v∗N‖

+ ‖vNφ(x)v∗N − vNφ(a)v∗N‖

<
ε

3
+
ε

3
+
ε

3
= ε,

It follows that ψ(a) = lim
n→∞

vnφ(a)v∗n for all a ∈ A, as desired.

The unital case of the following proposition is [132, Lemma 5.1]. Our proof for arbitrary

C*-dynamical systems follows similar ideas.

Proposition VIII.2.9. Let A and B be C∗-algebras and let α : G→ Aut(A) and β : G→ Aut(B)

be actions of a finite group G. Suppose that A is separable and that β has the Rokhlin property.

Let φ : A→ B be a homomorphism such that βg ◦ φ ∼au φ ◦ αg for all g ∈ G. Then:

(1) For any ε > 0 and for any finite set F ⊆ A there exists a unitary u ∈ B̃ such that

‖(βg ◦Ad(w) ◦ φ)(x)− (Ad(w) ◦ φ ◦ αg)(x)‖ < ε, ∀g ∈ G, ∀x ∈ F,

‖(Ad(w) ◦ φ)(x)− φ(x)‖ < ε+ sup
g∈G
‖(βg ◦ φ ◦ αg−1)(x)− φ(x)‖, ∀x ∈ F.

(VIII.2)

(2) There exists an equivariant homomorphism ψ : A → B that is approximately unitarily

equivalent to φ.

Proof. (1) Let F be a finite subset of A and let ε > 0. Set F ′ =
⋃
g∈G

αg(F ), which is a finite subset

of A. Since βg ◦ φ ∼au φ ◦ αg for all g ∈ G, there exist unitaries (ug)g∈G ⊆ B̃ such that

‖(βg ◦ φ)(a)− (Ad(ug) ◦ φ ◦ αg)(a)‖ < ε

2
,
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for all a ∈ F ′ and g ∈ G. Upon replacing ug with a scalar multiple of it, one can assume that

there are (xg)g∈G ⊆ B such that ug = xg + 1B̃ for all g ∈ G. For a ∈ F and g, h ∈ G, we have

‖(Ad(ug) ◦ φ ◦ αh)(a)− (βh ◦Ad(uh−1g) ◦ φ)(a)‖

=
∥∥(Ad(ug) ◦ φ ◦ αg)(αg−1h(a))

−(βh ◦Ad(uh−1g) ◦ φ ◦ αh−1g)(αg−1h(a))
∥∥

≤
∥∥(Ad(ug) ◦ φ ◦ αg)(αg−1h(a))− (βg ◦ φ)(αg−1h(a))

∥∥
+
∥∥(βg ◦ φ)(αg−1h(x))− (βh ◦Ad(uh−1g) ◦ φ ◦ αh−1g)(αg−1h(x))

∥∥
≤ ε

2
+
ε

2
= ε.

Choose positive orthogonal contractions (rg)g∈G ⊆ B∞ as in the definition of the Rokhlin

property for β, and set

u =
∑
g∈G

rgxg + 1B̃ ∈ (B̃)∞.

Using that xg + 1B̃ is a unitary in B̃, one checks that

u∗u = 1B̃ +
∑
g∈G

(r2
gx
∗
gxg + rgxg + rgx

∗
g) = 1B̃ .

Analogously, one also checks that uu∗ = 1B̃ , thus showing that u is a unitary in (B̃)∞. The map

Ad(u) can be written in terms of the maps Ad(ug) and the contractions (rg)g∈G, as follows:

(Ad(u))(x) = uxu∗ =
∑
g∈G

(ugxu
∗
g)rg =

∑
g∈G

(Ad(ug))(x)rg,

for all x ∈ A. Now for a ∈ F and considering φ as a map from A to (B̃)∞ by composing it with

the natural inclusion of B in (B̃)∞, we have the following identities

(βh ◦Ad(u) ◦ φ)(a) =
∑
g∈G

rhg(βh ◦Ad(ug) ◦ φ)(a) =
∑
g∈G

rg(βh ◦Ad(uh−1g) ◦ φ)(a),

(Ad(u) ◦ φ ◦ αh)(a) =
∑
g∈G

rg(Ad(ug) ◦ φ ◦ αh)(a).
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Therefore,

‖(βh ◦Ad(u) ◦ φ)(a)− (Ad(u) ◦ φ ◦ αh)(a)‖

≤ sup
g∈G

∥∥(Ad(ug) ◦ φ ◦ αh)(a)− (βh ◦Ad(uh−1g) ◦ φ)(a)
∥∥ < ε.

This in turn implies that

‖(Ad(u) ◦ φ)(a)− φ(a)‖ =

∥∥∥∥∥∥
∑
g∈G

rg((Ad(ug) ◦ φ)(a)− φ(a))

∥∥∥∥∥∥
≤ sup
g∈G
‖(Ad(ug) ◦ φ)(a)− φ(a)‖

≤ sup
g∈G

(∥∥(Ad(ug) ◦ φ ◦ αg)(αg−1(a))− (βg ◦ φ)(αg−1(a))
∥∥

+
∥∥(βg ◦ φ ◦ αg−1)(a)− φ(a)

∥∥)
≤ ε+ sup

g∈G

∥∥(βg ◦ φ ◦ αg−1)(a)− φ(a)
∥∥ .

We have shown that the inequalities in (VIII.2) hold for a unitary u ∈ (B̃)∞. By Lemma VIII.2.6,

we can replace u with a unitary in w ∈ B̃ in such a way that both inequalities still hold for w in

place of u.

(2) Let (Fn)n∈N be an increasing sequence of finite subsets of A whose union is dense in A.

Upon replacing each Fn with
⋃
g∈G

αg(Fn), we may assume that αg(Fn) = Fn for all g ∈ G and

n ∈ N. Set φ1 = φ and find a unitary u1 ∈ B̃ such that the conclusion of the first part of the

proposition is satisfied with φ1 and ε = 1. Set φ2 = Ad(u1) ◦ φ1, and find a unitary u2 ∈ B̃ such

that the conclusion of the first part of the proposition is satisfied with φ2 and ε = 1
2 . Iterating this

process, there exist homomorphisms φn : A→ B with φ1 = φ and unitaries (un)n∈N in B̃ such that

φn+1 = Ad(un) ◦ φn, for all n ∈ N, which moreover for all n ∈ N satisfy

‖(βg ◦ φn)(x)− (φn ◦ αg)(x)‖ < 1

2n

for all g ∈ G and for all x ∈ Fn, and

‖φn+1(x)− φn(x)‖ < 3

2n
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for all x ∈ Fn. For each n ∈ N set vn = un · · ·u1. Then the sequence of unitaries (vn)n∈N in B̃

and the homomorphism φ : A→ B satisfy the hypotheses of Lemma VIII.2.8, so it follows that the

sequence (φn)n∈N converges to a homomorphism ψ : A → B that satisfies βg ◦ ψ = ψ ◦ αg for all

g ∈ G; that is, ψ is equivariant. Since each φn is unitarily equivalent to φ, we conclude that φ and

ψ are approximately unitarily equivalent.

Categories of C*-dynamical systems and abstract classification

Let G be a second countable compact group and let A denote the category of separable C∗-

algebras. Let us denote by AG the category whose objects are G-C*-dynamical systems (A,α),

that is, A is a C∗-algebra and α : G → Aut(A) is a strongly continuous action, and whose

morphisms are equivariant homomorphisms. We use the notation φ : (A,α) → (B, β) to denote

equivariant homomorphisms φ : A→ B. Approximate unitary equivalence of maps in this category

is given in Definition VIII.2.5.

If B is a subcategory of A, we denote by BG the full subcategory of AG whose objects are

C*-dynamical systems (A,α) with A in B, and whose morphisms are given by

HomBG((A,α), (B, β)) = HomAG
((A,α), (B, β)).

Definition VIII.2.10. Let B be a subcategory of A. Let F: BG → C be a functor from the

category BG to a category C. We say that the functor F classifies homomorphisms if:

(a) For every pair of objects (A,α) and (B, β) in BG and for every morphism

λ : F(A,α)→ F(B, β)

in C, there exists a homomorphism φ : (A,α)→ (B, β) in BG such that F(φ) = λ.

(b) For every pair of objects (A,α) and (B, β) in BG and every pair of homomorphisms

φ, ψ : (A,α)→ (B, β),

one has F(φ) = F(ψ) if and only if φ ∼G−au ψ.
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We say that the functor F classifies isomorphisms if it satisfies (a) and (b) above for ismorphisms

instead of homomorphisms (such a functor is a strong classifying functor in the sense of Elliott

(see [59])).

Let C1 and C2 be two categories. Recall that a functor F: C1 → C2 is said to be

sequentially continuous if whenever C = lim−→(Cn, θn) in C1 for some sequential direct system

(Cn, θn)n∈N in C1, then the inductive limit lim−→(F(Cn),F(θn)) exists in C2, and one has

F(lim−→(Cn, θn)) = lim−→(F(Cn),F(θn)).

The following theorem is a consequence of [59, Theorem 3].

Theorem VIII.2.11. Let G be a second countable compact group, let B be a subcategory of

A, let BG be the associated category of C*-dynamical systems, and let C be a category in which

inductive limits of sequences exist. Let F: BG → C be a sequentially continuous functor that

classifies homomorphisms. Then F classifies isomorphisms.

Proof. Let us briefly see that the conditions of [59, Theorem 3] are satisfied for the category BG.

First, using that the algebras in BG are separable and that the group is second countable we can

see that the set of equivariant homomorphisms between two C∗-algebras in BG is metrizable.

Also, by taking the inner automorphisms of a C*-dynamical systems in BG to be conjugation

by unitaries in the unitization of the fixed point algebra of the given dynamical system, one can

easily see that these automorphisms satisfy the conditions of [59, Theorem 3]. Finally note that

the category D whose objects are objects of C of the form F(A,α) for some C*-dynamical system

(A,α) in BG, and whose morphisms between two objects F(A,α) and F(B,α) are all the maps

of the form F(φ) for some equivariant homomorphism φ : (A,α) → (B, β), is just the classifying

category of BG (in the sense of [59]), since F classifies homomorphisms by assumption. Therefore,

by [59, Theorem 3] the functor F is a strong classifying functor; in other words, it classifies *-

isomorphisms.

Definition VIII.2.12. Let G be a compact group. Let C be a category and let CG denote the

category whose objects are pairs (C, γ), where C is an object in C and γ : G → Aut(C) is a

group homomorphism, also called an action of G on C. (We do not require any kind of continuity
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for this action since C does not a priori have a topology.) The morphisms of CG consist of the

morphisms of C that are equivariant.

Let B be a subcategory of A and let BG be the associated category of C*-dynamical

systems. Let F: B→ C be a functor. Then F induces a functor FG : BG → CG as follows:

(1) For an object (A,α) in BG, define an action F(α) : G → Aut(F(A)) by (F(α))g = F(αg) for

all g ∈ G. We then set FG(A,α) = (F(A),F(α));

(2) For a morphism φ ∈ HomBG((A,α), (B, β)), we set FG(φ) = F(φ).

If G is a finite group, we let RBG denote the subcategory of BG consisting of those C*-dynamical

systems (A,α) in BG with the Rokhlin property.

The next theorem is a restatement, in the categorical setting, of Proposition VIII.2.7 and

Proposition VIII.2.9 (2).

Theorem VIII.2.13. Let G be a finite group. Let B, BG, RBG, C, and CG be as in

Definition VIII.2.12. Let F: B→ C be a functor that classifies homomorphisms.

(1) Let (A,α) be an object in BG and let (B, β) be an object in RBG.

(a) For every morphism γ : (F(A),F(α)) → (F(B),F(β)) in CG, there exists a morphism

φ : (A,α)→ (B, β) in BG such that FG(φ) = γ.

(b) If φ, ψ : (A,α) → (B, β) are morphisms in BG such that FG(φ) = FG(ψ), then φ ∼G−au

ψ.

(2) The restriction of the functor FG to RBG classifies homomorphisms.

Proof. (1) Let (A,α) be an object in BG and let (B, β) be an object in RBG.

(a) Let γ : (F(A),F(α)) → (F(B),F(β)) be a morphism in CG. Using that F: B → C

classifies homomorphisms, choose a homomorphism ψ : A→ B such that F(ψ) = γ. Note that

F(ψ ◦ αg) = F(ψ) ◦ F(αg) = F(βg) ◦ F(ψ) = F(βg ◦ ψ),

for all g ∈ G. Using again that F classifies homomorphisms, we conclude that ψ ◦ αg and

βg ◦ ψ are approximately unitarily equivalent for all g ∈ G. Therefore, by part (2) of
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Proposition VIII.2.9 there exists an equivariant homomorphism φ : (A,α) → (B, β) such that φ

and ψ are approximately unitarily equivalent. Thus φ is a morphism in BG and

FG(φ) = F(φ) = F(ψ) = γ,

as desired.

(b) Let φ, ψ : (A,α) → (B, β) be morphisms in BG such that FG(φ) = FG(ψ). Then

φ ∼au ψ because F classifies homomorphisms and F agrees with FG on morphisms. It then follows

from Proposition VIII.2.7 that φ ∼G−au ψ.

Part (2) clearly follows from (1).

Lemma VIII.2.14. Let G be a compact group, let Λ be a directed set and let C be a category

where inductive limits over Λ exist. Let CG be the associated category as in Definition VIII.2.12.

Then:

(1) Inductive limits over Λ exist in CG.

(2) If D is a category where inductive limits over Λ exist and F: C → D is a functor that

preserves direct limits over Λ, then the associated functor FG : CG → DG also preserves

direct limits over Λ.

Proof. (1) Let ((Cλ, αλ)λ∈Λ, (γλ,µ)λ,µ∈Λ,λ<µ) be a direct system in CG over Λ, where

γλ,µ : (Cλ, αλ) → (Cµ, αµ, ), for λ < µ, is a morphism in CG. Let (C, (γλ,∞)λ∈Λ), with

γλ,∞ : Cλ → C, be its direct limit in the category C. Then

(γµ,∞ ◦ αµ(g)) ◦ γλ,µ = γλ,∞ ◦ αλ(g)

for all µ ∈ Λ with λ < µ. Hence, by the universal property of the inductive limit (C, (γλ,∞)λ∈Λ),

there exists a unique C-morphism α(g) : C → C that satisfies α(g) ◦ γλ,∞ = γλ,∞ ◦ αλ(g) for all

λ ∈ Λ. Note that for g, h ∈ G, one has

(α(g) ◦ α(h)) ◦ γλ,∞ = γλ,∞ ◦ αλ(g) ◦ α(h) = γλ,∞ ◦ αλ(gh)
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for all λ ∈ Λ. By uniqueness of the morphism α(gh), it follows that α(g) ◦ α(h) = α(gh) for all

g, h ∈ G. This implies that α(g) is an automorphism of C and that α : G → Aut(C) is an action.

Thus (C,α) is an object in CG.

We claim that (C,α) is the inductive limit of ((Cλ, αλ)λ∈Λ, (γλ,µ)λ,µ∈Λ,λ<µ) in the category

CG. For λ ∈ Λ, The map γλ,∞ is equivariant since γλ,∞ ◦ αλ(g) = α(g) ◦ γλ,∞ for all g ∈ G and

λ ∈ Λ. Let (D,β) be an object in CG and for λ ∈ Λ, let ρλ : (Cλ, αλ) → (D,β) be an equivariant

morphism. By the universal property of the inductive limit C, there exists a unique morphism

ρ : C → D satisfying ρλ = ρ ◦ γλ,∞ for all λ ∈ Λ. We therefore have

(β(g)−1 ◦ ρ ◦ α(g)) ◦ γλ,∞ = β−1(g) ◦ ρ ◦ γλ,∞ ◦ αλ(g)

= β−1(g) ◦ ρλ,∞ ◦ αλ(g)

= ρλ,∞,

for all g ∈ G and λ ∈ Λ. Hence by uniqueness of ρ, we conclude that

β−1(g) ◦ ρ ◦ α(g) = ρ

for all g ∈ G. In other words, ρ is equivariant. We have shown that (C,α) has the universal

property of the inductive limit in CG, thus proving the claim and part (1).

(2) Let ((Cλ, αλ)λ∈Λ, (γλ,µ)λ,µ∈Λ,λ<µ) be a direct system in CG and let (C,α) be its

inductive limit in CG, which exists by the first part of this lemma. We claim that (F(C),F(α))

is the inductive limit of

((F(Cλ),F(αλ))λ∈Λ, (F(γλ,µ))λ,µ∈Λ,λ<µ)

in the category DG. Let (D, δ) be an object in DG and for λ ∈ Λ, let

ρλ : (F(Cλ),F(αλ))→ (D, δ)

be an equivariant morphism satisfying ρµ = F(γλ,µ) ◦ ρλ for all µ ∈ Λ with λ < µ. Since F is

continuous by assumption, we have

F(C) = lim−→ ((F(Cλ))λ∈Λ, (F(γλ,µ))λ,µ∈Λ,λ<µ)
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in D. By the universal property of the inductive limit F(C) in D, there exits a unique morphism

ρ : F(C)→ D in the category D satisfying ρ ◦ F(γλ,∞) = ρλ. It follows that

(δ(g)−1 ◦ ρ ◦ F(α(g))) ◦ F(γλ,∞) = δ(g)−1 ◦ ρλ ◦ F(αλ(g)) = ρλ,

for all g ∈ G and λ ∈ Λ. By the uniqueness of the morphism ρ, we conclude that δ(g)−1 ◦ ρ ◦

F(α)(g) = ρ for all g ∈ G. That is, ρ : (F(C),F(α)) → (D, δ) is equivariant. This shows that

(F(C),F(α)) has the universal property of inductive limits in DG.

Theorem VIII.2.15. Let G be a finite group, let B be a subcategory of A, and let C

be a category where inductive limits of sequences exist. Let BG, RBG, and CG be as in

Definition VIII.2.12. Let F: B → C be a sequentially continuous functor that classifies

homomorphisms and let FG : BG → CG be the associated functor as in Definition VIII.2.12. Then

the restriction of FG to RBG classifies isomorphisms. In particular, if (A,α) and (B, β) are C*-

dynamical systems in RBG, then α and β are conjugate if and only if there exists an isomorphism

ρ : FG(A,α)→ FG(B, β) in CG.

Proof. Since by Theorem VIII.2.13 the restriction of the functor FG to RBG classifies

homomorphisms, it is sufficient to show that the conditions of Theorem VIII.2.11 are satisfied.

First note that sequential inductive limits exists in BG since G is finite and they exists in B

by assumption. Now by [243, Theorem 2 (v)] the same is true for RBG. Given that sequential

inductive limits exist in the category C and F: B → C is sequentially continuous, it follows

from Lemma VIII.2.14 applied to Λ = N that sequential inductive limits exist in CG and the

functor FG : BG → CG is sequentially continuous. In particular, it follows that the restriction

of FG to RBG is sequentially continuous. This shows that the conditions of Theorem VIII.2.11

are met. The last statement of the theorem follows from the definition of a functor that classifies

isomorphisms.

The following result was proved by Izumi in [132, Theorem 3.5] for unital C∗-algebras, and

more recently by Nawata in [188, Theorem 3.5] for C∗-algebras with almost stable rank one (that

is, C∗-algebras A such that A ⊆ GL(Ã)).
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Theorem VIII.2.16. Let G be a finite group, let A be separable C∗-algebra and let α and β be

actions of G on A with the Rokhlin property. Assume that αg ∼au βg for all g ∈ G. Then there

exists an approximately inner automorphism ψ of A such that ψ ◦ αg = βg ◦ ψ for all g ∈ G.

Proof. Let C be the category whose objects are separable C∗-algebras and whose morphisms are

given by

Hom(A,B) = {[φ]au : φ : A→ B is a homomorphism},

where [φ]au denotes the approximate unitary equivalence class of φ. (It is easy to check that

composition of maps is well defined in C, and thus C is indeed a category.) Let F: A → C be the

functor given by F(A) = A for any C∗-algebra A in A, and F(φ) = [φ]au for any homomorphism

φ in A. It is straightforward to check that sequential inductive limits exist in C and that F is

sequentially continuous. Moreover, by the construction of C and F it is clear that F classifies

homomorphisms. Therefore, by Theorem VIII.2.15 the restriction of the associated functor FG to

RAG classifies isomorphisms.

Let A be a separable C∗-algebra (that is, a C∗-algebra in A), and let α and β be as in the

statement of the theorem. Since αg ∼au βg for all g ∈ G, we have

F(idA) ◦ F(αg) = F(idA ◦ αg) = F(βg ◦ idA) = F(βg) ◦ F(idA),

for all g ∈ G. In other words, the map [idA]au is equivariant. Also, note that this map is an

automorphism. Therefore, it is an isomorphism in the category CG. Since by the previous

discussion, the restriction of FG to RAG classifies isomorphisms, it follows that that there exists

an equivariant *-automorphism ψ : (A,α) → (A, β) such that FG(ψ) = [idA]au. In particular,

α and β are conjugate. Using that F(ψ) = FG(ψ) = [idA]au = F(idA) and that F classifies

homomorphisms, we get that ψ ∼au idA. In other words, ψ is approximately inner.

Remark VIII.2.17. In view of [188, Remark 3.6], it may be worth pointing out that one can

directly modify the proof of [188, Lemma 3.4] to get rid of the assumption that A has almost

stable rank one. Indeed, one just needs to replace the element w in the proof by the unitary w′ =∑
g∈G

(vg − λg1Ã)fg + 1Ã, where λg ∈ C is such that vg − λg1Ã ∈ A.
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Applications

In this section we apply Theorem VIII.2.13, Theorem VIII.2.15, and Theorem VIII.2.16,

and known classification results, to obtain classification of equivariant homomorphisms and finite

group actions on certain classes of 1-dimensional NCCW-complexes and AH-algebras.

1-dimensional NCCW-complexes

Let E and F be finite dimensional C∗-algebras, and for x ∈ [0, 1], denote by

evx : C([0, 1], F ) → F the evaluation map at the point x. Recall that a C∗-algebra A is said to

be a one-dimensional non-commutative CW-complex, abbreviated 1-dimensional NCCW-complex,

if A is given by a pullback diagram of the form:

A

��

// E

��
C([0, 1], F )

ev0⊕ev1

// F ⊕ F.

Theorem VIII.2.18. Let G be a finite group. Let (A,α) and (B, β) be separable C*-dynamical

systems such that A can be written as an inductive limit of 1-dimensional NCCW-complexes with

trivial K1-groups and such that B has stable rank one. Assume that β has the Rokhlin property.

(1) Fix strictly positive elements sA and sB of A and B, respectively. Let ρ : Cu∼(A)→ Cu∼(B)

be a morphism in the category Cu such that

ρ([sA]) ≤ [sB ] and ρ ◦ Cu∼(αg) = Cu∼(βg) ◦ ρ

for all g ∈ G. Then there exists an equivariant homomorphism

φ : (A,α)→ (B, β) such that Cu∼(φ) = ρ.

(2) If φ, ψ : (A,α)→ (B, β) are equivariant homomorphisms, then Cu∼(φ) = Cu∼(ψ) if and only

if φ ∼G−au ψ.
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Moreover, if A is unital, or if it is simple and has trivial K0-group, or if it can be written as

an inductive limit of punctured-trees algebras, then the functor Cu∼ can be replaced by the Cuntz

functor Cu in the statement of this theorem.

Proof. (1) Let ρ : Cu∼(A) → Cu∼(B) be as in the statement of the theorem. By [230, Theorem

1], there exists a homomorphism ψ : A → B such that Cu∼(ψ) = ρ. Using that ρ is equivariant,

we get Cu∼(βg ◦ ψ) = Cu∼(ψ ◦ αg) for all g ∈ G. By the uniqueness part of [230, Theorem 1], it

follows that βg ◦ ψ ∼au ψ ◦ αg for all g ∈ G. By Proposition VIII.2.9, there exists an equivariant

homomorphism φ : A → B such that φ ∼au ψ. Since Cu∼ is invariant under approximate unitary

equivalence, we conclude Cu∼(φ) = Cu∼(ψ), as desired.

(2) The “if” implication is clear. For the converse, let φ and ψ be as in the statement of

the theorem. By the uniqueness part of [230, Theorem 1], we have φ ∼au ψ. It now follows from

Proposition VIII.2.7 that φ ∼G−au ψ.

It follows from [230, Remark 3 (2)], and by [230, Corollary 4 (b)], [60, Corollary 6.7], and

[261, Corollary 8.6], respectively, that the functors Cu∼ and Cu are equivalent when restricted

to the class of C∗-algebras that are inductive limits of 1-dimensional NCCW-complexes which

are either unital or simple and with trivial K0-group. Hence, for these classes of C∗-algebras,

the theorem holds when Cu∼ is replaced by Cu. For C∗-algebras that are inductive limits of

punctured-trees algebras, one can use [27, Theorem 1.1] instead of [230, Theorem 1] in the proof

above to obtain the desired result. Finally, since B has stable rank one, the results in [230] show

that Cu(B) is a subsemigroup of Cu∼(B). In particular, for a homomorphism φ : A → B, the

range of the induced map Cu∼(φ) : Cu∼(A)→ Cu∼(B) is contained in Cu(B) ⊆ Cu∼(B).

Theorem VIII.2.19. Let G be a finite group, and let (A,α) and (B, β) be separable dynamical

systems such that A and B can be written as inductive limits of 1-dimensional NCCW-complexes

with trivial K1-groups. Suppose that α and β have the Rokhlin property.

(1) Fix strictly positive elements sA and sB of A and B respectively. Then the actions α and

β are conjugate if and only if there exists an isomorphism γ : Cu∼(A) → Cu∼(B) with

γ([sA]) = [sB ], such that

γ ◦ Cu∼(αg) = Cu∼(βg) ◦ γ for all g ∈ G.
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(2) Assume that A = B. Then the actions α and β are conjugate by an approximately inner

automorphism of A if and only if Cu∼(αg) = Cu∼(βg) for all g ∈ G.

Moreover, if both A and B are unital, or if they are simple and have trivial K0-groups, or if

they can be written as inductive limits of punctured-trees algebras, then the functor Cu∼ can be

replaced by the Cuntz functor Cu.

Proof. Part (2) clearly follows from (1). Let us prove (1). Let B denote the subcategory of the

category A of C∗-algebras consisting of those C∗-algebras that can be written as an inductive

limit of 1-dimensional NCCW-complexes with trivial K1-groups. By [230, Theorem 1], the functor

(Cu∼(·), [s · ]), where s · is a strictly positive element of the given algebra, restricted to B classifies

homomorphisms. Therefore, by Theorem VIII.2.15, the associated functor (Cu∼G(·), [s · ]) restricted

to RBG classifies isomorphisms, which implies (1).

The last part of the theorem follows from the same arguments used at the end of the proof

of Theorem VIII.2.18.

Let G be a finite group. Recall that the action µG : G → Aut
(
M|G|∞

)
constructed in

Example VIII.2.4 has the Rokhlin property, and that µGg is approximately inner for all g ∈ G.

In the next corollary, we do not assume that either α or β has the Rokhlin property.

Corollary VIII.2.20. Let G be a finite group and let (A,α) and (A, β) be C*-dynamical systems

such that A can be written as an inductive limit of 1-dimensional NCCW-complexes with trivial

K1-groups. Suppose that Cu∼(αg) = Cu∼(βg) for all g ∈ G. Then α ⊗ µG and β ⊗ µG are

conjugate.

Moreover, if A belongs to one of the classes of C∗-algebras described in the last part of

Theorem VIII.2.19, then the statement of the corollary holds for the functor Cu in place of the

functor Cu∼.

Proof. The actions α ⊗ µG and β ⊗ µG have the Rokhlin property by part (1) of

Proposition VIII.2.3. Note that µGg is approximately inner for all g ∈ G. Thus,

Cu∼(α⊗ µGg ) = Cu∼(α⊗ idM|G|∞ ) = Cu∼(β ⊗ idM|G|∞ ) = Cu∼(β ⊗ µGg )

for all g ∈ G. It follows from Theorem VIII.2.19 (2) that α⊗ µG and β ⊗ µG are conjugate.
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AH-algebras

Recall that a C∗-algebra A is approximate homogeneous (AH) if it can be written as an

inductive limit A = lim−→(An, φn,m), with

An = ⊕s(n)
j=1Pn,jMn,j(C(Xn,j))Pn,j ,

where Xn,j is a finite dimensional compact metric space, and Pn,j ∈ Mn,j(C(Xn,j)) is a projection

for all n and j. The C∗-algebra A is said to have no dimension growth if there exists an inductive

limit decomposition of A as an AH-algebra such that

sup
n

max
j

dimXn,j <∞.

Let A be a unital simple separable C∗-algebra and let T (A) denote the metrizable compact

convex set of tracial states of A. Denote by T the induced contravariant functor from the category

of unital separable simple C∗-algebras to the category of metrizable compact convex sets. It is not

difficult to check that T is continuous, meaning that it sends inductive limits to projective limits.

Let T be a metrizable compact convex set and let Aff(T ) denote the set of real-valued

continuous affine functions on T . Let Aff denote the induced contravariant functor from the

category of metrizable compact convex sets to the category of normed vector spaces. Denote by

ρA : K0(A)→ Aff(T (A)) the map defined by

ρA([p]− [q])(τ) = (τ ⊗ Trn)(p)− (τ ⊗ Trn)(q) (VIII.3)

for p, q ∈Mn(C), where Trn denotes the standard trace on Mn(C).

Let A be a unital C∗-algebra. Denote by U(A) the unitary group of A and by CU(A) the

closure of the normal subgroup generated by the commutators of U(A). We denote the quotient

group by

H(A) = U(A)/CU(A).

(see [260] and [190] for properties of this group). The set H(A), endowed with the distance

induced by the distance in U(A), is a complete metric space. We denote by H the induced functor
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from the category of C∗-algebras to the category of complete metric groups. Also, if A is a simple

unital AH-algebra of no dimension growth (or more generally, a simple unital C∗-algebra of tracial

rank no greater than one), then there exists an injection

λA : Aff(T (A))/ρA(K0(A))→ H(A). (VIII.4)

(See [260] and [171].)

For a C∗-algebra A, denote by K(A) the sum of all K-groups with Z/nZ coefficients for

all n ≥ 1. Let Λ denote the category generated by the Bockstein operations on K(A) (see [43]).

Then K(A) becomes a Λ-module and it induces a continuous functor K from the category of

C∗-algebras to the category of Λ-modules.

Let A and B be unital simple AH-algebras and let KL(A,B) denote the group defined

in [234]. By the Universal Coefficient Theorem and the Universal Multicoefficient Theorem (see

[43]), the groups KL(A,B) and HomΛ(K(A),K(B)) are naturally isomorphic. Let KL++
e (A,B)

be as in [171, Definition 6.4]. By the previous isomorphism, the group KL++
e (A,B) is naturally

isomorphic to

{κ ∈ HomΛ(K(A),K(B)) : κ(K0(A)+ \ {0}) ⊆ K0(B)+ \ {0}, κ([1A]) = κ([1B ])}.

Let us define a functor K++ from the category of separable, unital, simple, finite C∗-

algebras to the category whose objects are 4-tuples (M,N,E, e), where M is a Λ-module,

N is a subgroup of M , E is a subset of N , and e is an element of N ; and whose morphisms

κ : (M,N,E, e) → (M ′, N ′, E′, e′) are Λ-module maps κ : M → M ′ such that κ(N) ⊆ N ′,

κ(E) ⊆ E′, and κ(e) = e′. The functor K++ is defined as follows:

K++(A) = (K(A),K0(A),K0(A)+ \ {0}, [1A]), and K++(φ) = K(φ).

Note that if A and B are unital AH-algebras then KL++
e (A,B) is isomorphic to

Hom(K++(A),K++(B)).

Let C denote the category whose objects are tuples

((M,N,E, e), T,H, ρ, λ) ,
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where (M,N,E, e) is as above, T is a metrizable compact convex set, H is a complete metric

group, ρ : N → Aff(T ) is a group homomorphism, and λ : Aff(T )/ρ(N) → H is an injective

continuous group homomorphism. The maps in C are triples

(κ, η, µ) : ((M,N,E, e), T,H, ρ, λ)→ ((M ′, N ′, E′, e′), T ′, H ′, ρ′, λ′) ,

where κ : (M,N,E, e) → (M ′, N ′, E′, e′), η : T ′ → T , and µ : H → H ′ are maps in the

corresponding categories that satisfy the compatibility conditions:

ρ′ ◦ κ|N = Aff(η) ◦ ρ, and λ′ ◦ µ = Aff(η) ◦ λ,

where

Aff(η) : Aff(T )/ρ(N)→ Aff(T ′)/ρ(N ′)

is the map induced by Aff(η). Using that inductive limits of sequences exist in each of the

categories that form C, it is not difficult to show that C is also closed under taking inductive

limits of sequences. Also, it is easy to see that F = (K++, T,H) is a functor from the category of

unital, simple, separable, finite C∗-algebras to the category C. Moreover, since the functors that

form F are continuous, F is also continuous.

Theorem VIII.2.21. Let G be a finite group. Let (A,α) and (B, β) be dynamical systems such

that A and B are unital simple AH-algebras of no dimension growth. Assume that β has the

Rokhlin property.

(1) Let

κ : K++(A)→ K++(B), η : T (B)→ T (A), and µ : H(A)→ H(B),

be maps in the corresponding categories that satisfy the compatibility conditions

ρB ◦ κ|K0(A) = Aff(η) ◦ ρA, and λB ◦ µ = Aff(η) ◦ λA,
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where ρA, ρB , λA, and λB are as in (VIII.3) and (VIII.4). Suppose that

κ ◦K(αg) = K(βg) ◦ κ, η ◦ T (βg) = T (αg) ◦ η, µ ◦H(αg) = H(βg) ◦ µ,

for all g ∈ G. Then there exists an equivariant homomorphism

φ : (A,α)→ (B, β)

such that

K++(φ) = κ, T (φ) = η, and H(φ) = µ.

(2) Let φ, ψ : A→ B be equivariant homomorphisms such that

K(φ) = K(ψ), T (φ) = T (ψ), and H(φ) = H(ψ).

Then φ ∼G−au ψ.

Proof. It is shown in [103] that every unital simple AH-algebra of no dimension growth has tracial

rank almost one. By [171, Theorems 5.11 and 6.10] applied to the algebras A and B, and using

the computations of KL++
e (A,B) given in the paragraphs preceding the theorem, we deduce

that the functor F (defined above) restricted to the category of unital simple AH-algebras of no

dimension growth classifies homomorphisms. The theorem now follows from Theorem VIII.2.13.

Theorem VIII.2.22. Let G be a finite group and let A and B be unital simple AH-algebras of

no dimension growth. Let α and β be actions of G on A and B with the Rokhlin property.

(1) The actions α and β are conjugate if and only if there exist isomorphisms

κ : K++(A)→ K++(B), η : T (B)→ T (A), µ : H(A)→ H(B),
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in the corresponding categories, that satisfy the compatibility conditions of the previous

theorem, and such that

κ ◦K(αg) = K(βg) ◦ κ, η ◦ T (βg) = T (αg) ◦ ρ, µ ◦H(αg) = H(βg) ◦ λ,

for all g ∈ G.

(2) Assume that A = B. Then the actions α and β are conjugate by an approximately inner

automorphism if and only if

K(αg) = K(βg), T (αg) = T (βg), and H(αg) = H(βg),

for all g ∈ G.

Proof. Part (2) clearly follows from (1) and part (2) of Theorem VIII.2.21. Let us prove (1). As

in the proof of Theorem VIII.2.21, the functor F restricted to the category of unital simple AH-

algebras of no dimension growth classifies homomorphisms. The statements of the theorem now

follows from Theorem VIII.2.15.

Corollary VIII.2.23. Let G be a finite group and let A be a unital simple AH-algebra of no

dimension growth. Let (A,α) and (A, β) be C*-dynamical systems. Suppose that

K++(αg) = K++(βg), T (αg) = T (βg), and H(αg) = H(βg),

for all g ∈ G. Then α⊗ µG and β ⊗ µG are conjugate.

Proof. The proof of this corollary follows line by line the proof of Corollary VIII.2.20, using the

functor F instead of the functor Cu∼ and Theorem VIII.2.22 instead of Theorem VIII.2.19.

Cuntz Semigroup and K-theoretical Constraints

In this section, a Cuntz semigroup obstruction is obtained for a C∗-algebra to admit an

action with the Rokhlin property. Also, the Cuntz semigroup of the fixed-point C∗-algebra and

the crossed product C∗-algebra associated to an action of a finite group with the Rokhlin property
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are computed in terms of the Cuntz semigroup of the given algebra. As a corollary, similar results

are obtained for the Murray-von Neumann semigroup and the K-groups.

We begin with some preliminaries.

Definition VIII.3.1. Let S be a semigroup in the category Cu. Let I be a nonempty set and let

γi : S → S for i ∈ I, be a family of endomorphisms of S in the category Cu. We introduce the

following notation:

Sγ =

s ∈ S : ∃ (st)t∈(0,1] in S :
sr � st if r < t, st = sup

r<t
sr ∀ t ∈ (0, 1],

s1 = s, and γi(st) = st ∀ t ∈ (0, 1] and ∀ i ∈ I

 ,

and

SγN =

s ∈ S : ∃ (sn)n∈N in S :

sn � sn+1 ∀ n ∈ N, s = sup
n∈N

sn,

and γi(sn) = sn ∀ n ∈ N and ∀ i ∈ I

 .

Lemma VIII.3.2. Let S be a semigroup in the category Cu. Let I be a nonempty set and let

γi : S → S for i ∈ I, be a family of endomorphisms of S in the category Cu. Then

(1) SγN is closed under suprema of increasing sequences;

(2) Sγ is an object in Cu.

Proof. (1). Let (sn)n∈N be an increasing sequence in SγN. For each n ∈ N, choose a rapidly

increasing sequence (sn,m)m∈N in S such that sn = sup
m∈N

sn,m and γi(sn,m) = sn,m for all i ∈ I and

m ∈ N. By the definition of the compact containment relation, there exist increasing sequences

(nj)j∈N and (mj)j∈N in N such that sk,l ≤ snj ,mj whenever 1 ≤ k, l ≤ j, and such that (snj ,mj )j∈N

is increasing. Let s be the supremum of (snj ,mj )j∈N in S. Then s ∈ SγN, and it is straightforward

to check, using a diagonal argument, that s = sup
n∈N

sn, as desired.

(2). It is clear that Sγ satisfies O2, O3 and O4. Now let us check that Sγ satisfies axiom

O1. Let (s(n))n∈N be an increasing sequence in Sγ and let s be its supremum in S. It is sufficient

to show that s ∈ Sγ .

For each n ∈ N, choose a path (s
(n)
t )t∈(0,1] as in the definition of Sγ for s(n). Using that

s
(n)
t � s(n+1) for all n ∈ N and all t ∈ (0, 1), together with a diagonal argument, choose an
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increasing sequence (tn)n∈N in (0, 1] converging to 1, such that

s
(n)
tn � s

(n+1)
tn+1

∀ n ∈ N, and s = sup
n∈N

s
(n)
tn .

This implies, using the definition of the compact containment relation, that for each n ∈ N there

exists t′n+1 such that tn < t′n+1 < tn+1 and

s
(n)
tn � s

(n+1)
t ≤ s(n+1)

tn+1
for all t ∈ (t′n+1, tn+1].

Choose an increasing function f : (0, 1]→ (0, 1] such that

f

((
1− 1

n
, 1− 1

n+ 1

])
= (t′n+1, tn+1]

for all n ∈ N. Define a path (st)t∈(0,1] in S by taking s1 = s and

st = s
(n+1)
f(t) for t ∈

(
1− 1

n
, 1− 1

n+ 1

]
.

Then γi(st) = st for all t ∈ (0, 1] and all i ∈ I, so s ∈ Sγ . It is clear that this path satisfies the

conditions in the definition of Sγ for s.

With the notation of Lemma VIII.3.2, we do not know in general whether SγN is an object

in Cu. However, if α : G → Aut(A) is an action of a finite group G on a C∗-algebra A with

the Rokhlin property, it will follow from the next theorem that Cu(A)
Cu(α)
N coincides with

Cu(A)Cu(α), and with the Cuntz semigroup of Aα, so in particular belongs to Cu.

We need a lemma.

Lemma VIII.3.3. Let S be a semigroup in Cu, let s be an element in S and let (sn)n∈N be a

rapidly increasing sequence in S such that s = sup
n∈N

sn. Let T be a subset of S such that every

element of T is the supremum of a rapidly increasing sequence of elements in T . Suppose that for

every n ∈ N there is t ∈ T such that sn � t ≤ s. Then there exists an increasing sequence (tn)n∈N

in T such that s = sup
n∈N

tn.

Proof. It is sufficient to construct an increasing sequence (nk)k∈N of natural numbers and a

sequence (tk)k∈N in T such that snk ≤ tk ≤ snk+1
for all k ∈ N, since this implies that s = sup

k∈N
tk.
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For k = 1, set n1 = 1 and sn1
= 0. Assume inductively that we have constructed nj and tj

for all j ≤ k and let us construct nk+1 and tk+1. By the assumptions of the lemma, there exists

t ∈ T such that snk � t ≤ s. Also by assumption, t is the supremum of a rapidly increasing

sequence of elements of T . Hence there exists t′ ∈ T such that snk ≤ t′ � s. Use that s = sup
n∈N

sn

and t′ � s, to choose nk+1 ∈ N with nk+1 > nk such that t′ ≤ snk+1
� s. Set tk+1 = t′. Then

snk ≤ tk+1 ≤ snk+1
. This completes the proof of the lemma.

The following lemma is a restatement of [231, Lemma 4].

Lemma VIII.3.4. Let A be a C∗-algebra, let (xi)
n
i=0 be elements of Cu(A) such that xi+1 � xi

for all i = 0, . . . , n, and let ε > 0. Then there exists a ∈ (A⊗K)+ such that

xn � [(a− (n− 1)ε)+]� xn−1 � [(a− (n− 2)ε)+]� · · ·

· · · �x3 � [(a− 2ε)+]� x2 � [(a− ε)+]� x1 � [a] = x0.

For use in the proof of the next theorem, if φ : A → B is a homomorphism between C∗-

algebras A and B, we denote by φs : A⊗K → B ⊗K the stabilized homomorphism φs = φ⊗ idK.

Theorem VIII.3.5. Let A be a C∗-algebra and let α be an action of a finite group G on A with

the Rokhlin property. Let i : Aα → A be the inclusion map. Then:

(1) The map Cu(̃i) : Cu(Ãα)→ Cu(Ã) is an order embedding;

(2) The map Cu(i) : Cu(Aα)→ Cu(A) is an order embedding and

Im(Cu(i)) = Im

∑
g∈G

Cu(αg)

 = Cu(A)
Cu(α)
N = Cu(A)Cu(α);

Proof. In the proof of this theorem, we will denote the action induced by α on Ã⊗K again by α.

(1) Let a, b ∈ Ãα ⊗ K satisfy a - b in Ã ⊗ K. We want to show that a - b in Ãα ⊗ K. Let

ε > 0. By Lemma II.6.6, there exists d ∈ Ã ⊗ K such that (a − ε)+ = dbd∗. Apply αg to this

equation to get (a− ε)+ = αg(d)bαg(d
∗) for all g ∈ G.

260



Let π : Ã → C be the quotient map and let j : C → Ã be the inclusion j(λ) = λ1Ã for all

λ ∈ C. It is clear that π ◦ j = idC. Set

a1 = (js ◦ πs)((a− ε)+) ∈ C1Ã ⊗K, a2 = (a− ε)+ − a1 ∈ Aα ⊗K,

b1 = (js ◦ πs)(b) ∈ C1Ã ⊗K, b2 = b− b1 ∈ Aα ⊗K,

d1 = (js ◦ πs)(d) ∈ C1Ã ⊗K, d2 = d− d1 ∈ A⊗K.

Then a1 = d1b1d
∗
1. Set

F = {αg(d2)bαg(d2) : g ∈ G} ∪ {d1bαg(d
∗
2) : g ∈ G} ∪ {a2 − d1b2d

∗
1} ⊆ Ã⊗K.

Use Lemma VIII.2.2 (2) to choose orthogonal positive contractions (rg)g∈G in (A ⊗ K)∞ ∩ F ′ ⊆

(Ã⊗K)∞ ∩ F ′ such that αg(rg) = rgh for all g, h ∈ G, and

(∑
g∈G

rg

)
x = x for all x ∈ F . Set

f =
∑
g∈G

rgαg(d2) + d1 ∈ (Ã⊗K)∞.

In the following computation, we use in the first step the identities rgx = xrg for all g ∈ G

and x ∈ F , rgrh = 0 for all g 6= h, and (r2
g − rg)x = x for all g ∈ G and x ∈ F ; in the second

step the definition of d2; in the fourth step that d1 ∈ (Ã ⊗ K)α and the identity (a − ε)+ =

αg(d)bαg(d
∗) for all g ∈ G; in the fifth step the identity a1 = d1b1d

∗
1; and in the last step the
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identity (
∑
g∈G

rg)x = x for all x ∈ F :

fbf∗ =

 ∑
g,h∈G

rgαg(d2)bαh(d∗2)rh +
∑
g∈G

rgαg(d2)bd∗1 +
∑
g∈G

d1bαg(d
∗
2)rg

+ d1bd
∗
1

=

∑
g∈G

rgαg(d2)bαg(d
∗
2) +

∑
g∈G

rgαg(d2)bd∗1 +
∑
g∈G

rgd1bαg(d
∗
2)

+ d1bd
∗
1

=

∑
g∈G

rg (αg(d− d1)bαg(d
∗ − d∗1) + αg(d2)bd∗1 + d1bαg(d

∗
2))

+ d1bd
∗
1

=

∑
g∈G

rg (αg(d)bαg(d
∗)− αg(d− d2)bd∗1 − d1bαg(d

∗ − d∗2) + d1bd
∗
1)

+ d1bd
∗
1

=

∑
g∈G

rg ((a− ε)+ − d1bd
∗
1 − d1bd

∗
1 + d1bd

∗
1)

+ d1bd
∗
1

=

∑
g∈G

rg ((a− ε)+ − d1bd
∗
1)

+ d1bd
∗
1

=

∑
g∈G

rg (a1 + a2 − d1b1d
∗
1 − d1b2d

∗
1)

+ d1bd
∗
1

=

∑
g∈G

rg (a2 − d1b2d
∗
1)

+ d1bd
∗
1

= a2 + d1b1d
∗
1

= (a− ε)+.

Shortly, (a− ε)+ = fbf∗ in (Ã⊗K)∞. Since

f =
∑
g∈G

rgαg(d2) + d1 =
∑
g∈G

αg(red2) + d1,

it follows that αg(f) = f for all g ∈ G. This implies that f is the image of a sequence (fn)n∈N in

`∞(N, Ãα ⊗K), which satisfies

lim
n→∞

fnbf
∗
n = (a− ε)+.

Thus, (a − ε)+ - b in Ãα ⊗ K. Since ε > 0 is arbitrary, we conclude that [a] ≤ [b] in Cu(Ãα), as

desired.
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(2) Since A is an ideal in Ã, the semigroup Cu(A) can be identified with the subsemigroup

of Cu(Ã) given by

{[a] ∈ Cu(Ã) : a ∈ (A⊗K)+}.

Using this identification, it is clear that the restriction of Cu(̃i) to Cu(A) is Cu(i). Therefore, it

follows from the first part of the theorem that Cu(i) is an order embedding.

Let us now proceed to prove the equalities stated in the theorem. It is sufficient to show

that

Im(Cu(i)) ⊆ Im

∑
g∈G

Cu(αg)

 ⊆ Cu(A)Cu(α) ⊆ Cu(A)
Cu(α)
N ⊆ Im(Cu(i)). (VIII.5)

The third inclusion is immediate and true in full generality. The second inclusion follows using

that for [a] ∈ Cu(A), the element
∑
g∈G

Cu(αg)([a]) is Cu(α)-invariant, that
∑
g∈G

Cu(αg)([a]) is the

supremum of the path

t 7→
∑
g∈G

Cu(αg)([(a+ t− 1)+]),

and that Cu(A)Cu(α) = Cu(A)Cu(α) by part (2) of Lemma VIII.3.2.

We proceed to show the first inclusion. Fix a positive element a ∈ Aα ⊗ K and let ε > 0.

Using the Rokhlin property for α ⊗ idK with F = {a}, choose orthogonal positive contractions

(rg)g∈G ⊆ A⊗K such that

∥∥∥∥∥∥a−
∑
g∈G

rgarg

∥∥∥∥∥∥ < ε and ‖αg(reare)− rgarg‖ < ε, (VIII.6)

for all g ∈ G. Using the first inequality above and Lemma II.6.6, we obtain

[
(a− 4ε)+

]
≤

∑
g∈G

rgarg − 3ε


+

 ≤
∑

g∈G
rgarg − ε


+

 ≤ [a].

Furthermore, using the second inequality in (VIII.6) and again using Lemma II.6.6, we deduce

that [
(rgarg − 3ε)+

]
≤
[
(αg(reare)− 2ε)+

]
≤
[
(rgarg − ε)+

]
.
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Take the sum of the previous inequalities, add them over g ∈ G, and use that Cu(αg)[(reare −

2ε)+] = [(αg(reare)− 2ε)+], to conclude that

[
(a− 4ε)+

]
�
∑
g∈G

Cu(αg)
[
(reare − 2ε)+

]
≤ [a].

We have shown that for every ε > 0, there is an element x in Im

(∑
g∈G

Cu(αg)

)
such that

[(a− ε)+]� x ≤ [a].

By Lemma VIII.3.3 applied to [a] = sup
ε>0

[(a− ε)+] and to the set S = Im

(∑
g∈G

Cu(αg)

)
, it follows

that [a] is the supremum of an increasing sequence in Im

(∑
g∈G

Cu(αg)

)
, showing that the first

inclusion in (VIII.5) holds.

In order to complete the proof, let us show that the fourth inclusion in (VIII.5) is also

true. Fix x ∈ Cu(A)
Cu(α)
N . Choose a rapidly increasing sequence (xn)n∈N in Cu(A) such that

Cu(αg)(xn) = xn for all n ∈ N and all for all g ∈ G. Fix m ∈ N and consider the elements xn

with n ≥ m. Note that xm � xm+1 � · · · � x. By Lemma VIII.3.4, there is a positive element

a ∈ A⊗K such that

xm � [(a− 3ε)+]� xm+1 � (a− 2ε)+ � xm+2 � (a− ε)+ � x = [a].

Note that this implies that

[αg(a)] = Cu(αg)[a] = Cu(αg)(x) = x = [a] ≤ [a]

and

[(a− 2ε)+] ≤ xm+2 = Cu(αg)(xm+2) ≤ Cu(αg)[(a− ε)+] = [αg((a− ε)+)]

for every g ∈ G. By the definition of Cuntz subequivalence, there are elements fg, hg ∈ A ⊗ K for

g ∈ G such that

‖αg(a)− fgaf∗g ‖ <
ε

|G|
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and

‖(a− 2ε)+ − hgαg((a− ε)+)h∗g‖ <
ε

|G|
.

Using the Rokhlin property for α, with

F = {αg(a), αg((a− ε)+), fg, hg : g ∈ G} ∪ {(a− 2ε)+},

choose positive orthogonal contractions (rg)g∈G ⊆ (A⊗K)∞ ∩ F ′ as in (2) of Lemma VIII.2.2. Set

f =
∑
g∈G

fgrg and h =
∑
g∈G

hgrg. Then

∥∥∥∥∥∥
∑
g∈G

rgαg(a)rg − faf∗
∥∥∥∥∥∥ =

∥∥∥∥∥∥
∑
g∈G

rg(αg(a)− fgaf∗g )

∥∥∥∥∥∥ < |G| · ε|G| = ε,

in (A⊗K)∞. Similarly,

∥∥∥∥∥∥(a− 2ε)+ − h

∑
g∈G

αg((a− ε)+)

h∗

∥∥∥∥∥∥ < ε.

Using that rg commutes with αg(a) and that r2
gαg(a) = rgαg(a) for all g ∈ G, one easily shows

that ∑
g∈G

rgαg(a)rg =
∑
g∈G

α(reare), and rg(αg((a− ε)+))rg = (rgαg(a)rg − ε)+,

for all g ∈ G. Thus, we have

∑
g∈G

rg(αg((a− ε)+))rg =
∑
g∈G

rg(αg(a)− ε)+rg

=
∑
g∈G

(rgαg(a)rg − ε)+

=

∑
g∈G

rgαg(a)rg − ε


+

=

∑
g∈G

αg(reare)− ε


+

.
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Therefore, we conclude that ∥∥∥∥∥∥
∑
g∈G

αg(reare)− faf∗
∥∥∥∥∥∥ < ε,

and ∥∥∥∥∥∥(a− 2ε)+ − h

∑
g∈G

αg(reare)− ε


+

h∗

∥∥∥∥∥∥ < ε.

Let (rn)n∈N, (fn)n∈N, and (hn)n∈N be representatives of re, f , and h in `∞(N, A ⊗ K), with

rn positive for all n ∈ N. By the previous inequalities, there exists k ∈ N such that

∥∥∥∥∥∥
∑
g∈G

αg(rkark)− fkaf∗k

∥∥∥∥∥∥ < ε,

and ∥∥∥∥∥∥(a− 2ε)+ − hk

∑
g∈G

αg(rkark)− ε


+

h∗k

∥∥∥∥∥∥ < ε

hold in A ⊗ K. By Lemma II.6.6 applied to the elements
∑
g∈G

αg(rkark) and fkaf
∗
k , and to the

elements (a− 2ε)+ and hk

(∑
g∈G

α(rkark)− ε

)
+

h∗k, we deduce that

[(a− 3ε)+] ≤

∑
g∈G

αg(rkark)− ε


+

 ≤ [a].

Therefore,

xm �

∑
g∈G

αg(rkark)− ε


+

� x.

Note that the element

(∑
g∈G

αg(rkark)− ε

)
+

belongs to (A⊗ K)α and so it is in the image

of the inclusion map is = i⊗ idK : (A⊗K)α → A⊗K. Since m is arbitrary, we deduce that x is the

supremum of an increasing sequence in Im(Cu(i)) by Lemma VIII.3.3. Choose a sequence (yn)n∈N

in Cu(Aα) such that (Cu(i)(yn))n∈N is increasing in Cu(A) and set x = sup
n∈N

(Cu(i)(yn)). Since

Cu(i) is an order embedding, it follows that (yn)n∈N is itself increasing in Cu(Aα). Set y = sup
n∈N

yn.

Then Cu(y) = x since Cu(i) preserves suprema of increasing sequences.
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Corollary VIII.3.6. Let A be a C∗-algebra and let α be an action of a finite group G on A with

the Rokhlin property. Then Cu(Aoα G) is order isomorphic to the semigroup:

x ∈ Cu(A) : ∃ (xn)n∈N in Cu(A) :

xn � xn+1 ∀n ∈ N and x = sup
n∈N

xn,

Cu(αg)(xn) = xn ∀g ∈ G,∀n ∈ N

 .

Proof. Since α has the Rokhlin property, the fixed point algebra Aα is Morita equivalent to the

crossed product AoαG by [199, Theorem 2.8]. Therefore, there is a natural isomorphism Cu(Aoα

G) ∼= Cu(Aα). Denote by i : Aα → A the natural embedding. By Theorem VIII.3.5, the semigroup

Cu(Aα) can be naturally identified with its image under the order embedding Cu(i), which is

Cu(A)
Cu(α)
N again by Theorem VIII.3.5. The result follows.

Corollary VIII.3.7. Let A be a C∗-algebra, let α be an action of a finite group G on A with

the Rokhlin property, and set n = |G|. Suppose that Cu(αg) = idCu(A) for every g ∈ G, and

that the map multiplication by n on Cu(A) is an order embedding (in other words, whenever

x, y ∈ Cu(A) satisfy nx ≤ ny, one has x ≤ y.) Then the map multiplication by n in Cu(A) is an

order isomorphism.

Proof. It suffices to show that for all x ∈ Cu(A), there exists y ∈ Cu(A) such that x = ny. By

Theorem VIII.3.5 (2), we have

Im

∑
g∈G

Cu(αg)

 = Cu(A)
Cu(α)
N .

Since Cu(αg) = idCu(A) for all g ∈ G, this identity can be rewritten as

nCu(A) = Cu(A).

In particular, if x is an element in Cu(A), then there exists a sequence (yk)k∈N in Cu(A) such

that (nyk)k∈N is increasing and x = sup
k∈N

(nyk). Since (nyk)k∈N is increasing, it follows from our

assumptions that (yk)k∈N is increasing as well. Set y = sup
k∈N

yk. Then

x = sup
k∈N

(nyk) = n sup
k∈N

yk = ny,
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and the claim follows.

Let A be a C∗-algebra and let p and q be projections in A. We say that p and q are

Murray-von Neumann equivalent, and denote this by p ∼MvN q, if there exists v ∈ A such that

p = v∗v and q = vv∗. We say that p is Murray-von Neumann subequivalent to q, and denote this

by p -MvN q, if there is a projection p′ ∈ A such that p ∼MvN p′ and p′ ≤ q. The projection p is

said to be finite if whenever q is a projection in A with q ≤ p and q ∼MvN p, then q = p.

If A is unital, then A is said to be finite if its unit is a finite projection. Moreover, A is said

to be stably finite if Mn(A) is finite for all n ∈ N. If A is not unital, we say that A is (stably)

finite if so is its unitization Ã.

Lemma VIII.3.8. Let A be a stably finite C∗-algebra and let p ∈ A⊗K be a projection. Suppose

that there are positive elements a, b ∈ A ⊗ K such that [p] = [a] + [b] in Cu(A). Then a and b are

Cuntz equivalent to projections in A⊗K (see the comments before Lemma 2.4 for the definition of

Cuntz equivalence).

Proof. Let a and b be elements in A⊗K as in the statement. By Remark II.6.7, we have

[a] = sup
ε>0

[(a− ε)+] and [b] = sup
ε>0

[(b− ε)+].

Since [p] � [p], there exists ε > 0 such that [p] = [(a − ε)+] + [(b − ε)+]. Choose a function

fε ∈ C0(0,∞) that is zero on the interval [ε,∞), nonzero at every point of (0, ε) and ‖fε‖∞ ≤ 1.

Then

[p] + [fε(a)] + [fε(b)] = [(a− ε)+] + [fε(a)] + [(b− ε)+] + [fε(b)] ≤ [a] + [b] = [p].

Hence, [p] + [fε(a)] + [fε(b)] = [p]. Choose c ∈ (A⊗K)+ such that [c] = [fε(a)] + [fε(b)] and cp = 0.

Then p + c - p. By part (4) of Lemma 2.3 in [152], for every δ > 0 there exists x ∈ A ⊗ K such

that

p+ (c− δ)+ = x∗x, xx∗ ∈ p(A⊗K)p.

Fix δ > 0 and let x be as above. Let x = v|x| be the polar decomposition of x in the bidual of

A ⊗ K. Set p′ = vpv∗ and c′ = v(c − δ)+v
∗. Then p′ is a projection, p′ and c′ are orthogonal, p

and p′ are Murray-von Neumann equivalent, and p′ + c′ ∈ pAp. Using stable finiteness of A we
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conclude that p = p′ and c′ = 0. It follows that (c − δ)+ = 0 for all δ > 0, and thus c = 0. Hence,

fε(b) = fε(a) = 0 and in particular, a and b have a gap in their spectra. Therefore, they are Cuntz

equivalent to projections.

Recall that the Murray-von Neumann semigroup of A, denoted by V (A), is defined as the

quotient of the set of projections of A⊗K by the Murray-von Neumann equivalence relation.

Note that p -Cu q if and only if p -MvN q. On the other hand, p -MvN q and q -MvN p do

not in general imply that p ∼MvN q, although this is the case whenever A is finite. In particular,

if A is finite, then p ∼Cu q if and only if p ∼MvN q. Hence, if A is stably finite, then the

semigroup V(A) can be identified with the ordered subsemigroup of Cu(A) consisting of the Cuntz

equivalence classes of projections of A⊗K.

Recall that if S is a semigroup in Cu and x and y are elements of S, we say that x is

compactly contained in y, and denote this by x � y, if for every increasing sequence (yn)n∈N

in S such that y = sup
n∈N

yn, there exists n0 ∈ N such that x ≤ yn for all n ≥ n0.

Definition VIII.3.9. Let S be a semigroup in Cu and let x be an element of S. We say that x

is compact if x � x. Equivalently, x is compact if whenever (xn)n∈N is a sequence in S such that

x = sup
n∈N

xn, then there exists n0 ∈ N such that xn = x for all n ≥ n0.

It is easy to check that the Cuntz class [p] ∈ Cu(A) of any projection p in a C∗-algebra

A (or in A ⊗ K) is a compact element in Cu(A). Moreover, when A is stably finite, then every

compact element of Cu(A) is the Cuntz class of a projection in A ⊗ K by [22, Theorem 3.5]. In

particular, V (A) can be identified with the semigroup of compact elements of Cu(A) if A is a

stably finite C∗-algebra.

When studying stably finite C∗-algebras in connection with finite group actions with the

Rokhlin property, the following lemma is often times useful. The result may be interesting in its

own right, and could have been proved in [191] since it is a direct application of their methods.

Lemma VIII.3.10. Let G be a finite group, let A be a unital stably finite C∗-algebra and let

α : G → Aut(A) be an action with the Rokhlin property. Then the crossed product A oα G and

the fixed point algebra Aα are stably finite.
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Proof. The fixed point algebra Aα, being a unital subalgebra of A, is stably finite. On the other

hand, the crossed product A oα G, being stably isomorphic to Aα by [199, Theorem 2.8], must

itself also be stably finite.

For unital, simple C∗-algebras, part (2) of the theorem below was first proved by Izumi in

[132]. The proof in our context follows completely different ideas.

Theorem VIII.3.11. Let A be a stably finite C∗-algebra and let α be an action of a finite group

G on A with the Rokhlin property. Let i : Aα → A be the inclusion map.

(1) The map V (i) : V (Aα)→ V (A) is an order embedding and

Im(V (i)) = Im

∑
g∈G

V (αg)

 = {x ∈ V (A) : V (αg)(x) = x, ∀g ∈ G} .

(2) If A has an approximate identity consisting of projections, then the map K0(i) : K0(Aα) →

K0(A) is an order embedding and

Im(K0(i)) = Im

∑
g∈G

K0(αg)

 = {x ∈ K0(A) : K0(αg)(x) = x, ∀g ∈ G} .

Proof. (1) The fact that V (i) is an order embedding is a consequence of Theorem VIII.3.5 and the

remarks before and after Definition VIII.3.9. Let us now show the inclusions

Im(V (i)) ⊆ Im

∑
g∈G

V (αg)

 ⊆ {x ∈ V (A) : V (αg)(x) = x ∀ g ∈ G} ⊆ Im(V (i)). (VIII.7)

Let p ∈ Aα⊗K be a projection. By Theorem VIII.3.5, there exists a sequence (an)n∈N in (A⊗K)+

such that

(∑
g∈G

Cu(αg)([an])

)
n∈N

is increasing and

[i(p)] = sup
n∈N

∑
g∈G

Cu(αg)([an])

 .

Since [i(p)] is a compact element in Cu(A), it follows that there exists n0 ∈ N such that [i(p)] =∑
g∈G

Cu(αg)([an]) for all n ≥ n0. Fix m ≥ n0. It is easy to check that if S is a semigroup in the

category Cu, then a sum of elements in S is compact if and only if each summand is compact. It
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follows that Cu(αg)([am]) is compact for all g ∈ G. In particular, and denoting the unit of G by

e, we deduce that [am] = Cu(αe)([am]) is compact. Since A is stably finite by assumption, there

exists a projection q ∈ A⊗K such that [q] = [am]. Thus

V (i)([p]) =
∑
g∈G

V (αg)([q]) ∈ Im

∑
g∈G

V (αg)

 ,

showing that the first inclusion in (VIII.7) holds.

Using the fact that αh ◦

(∑
g∈G

αg

)
=
∑
g∈G

αg for all h ∈ G, it is easy to check that

Im

∑
g∈G

V (αg)

 ⊆ {x ∈ V (A) : V (αg)(x) = x, ∀g ∈ G} ,

thus showing that the second inclusion also holds.

We proceed to prove the third inclusion. Let x ∈ V(A) be such that V(αg)(x) = x for all

g ∈ G. Note that x is compact as an element in Cu(A). It follows that Cu(αg)(x) = x for all

g ∈ G and hence by Theorem VIII.3.5 there exists a ∈ (Aα ⊗ K)+ such that Cu(i)([a]) = x.

Since the map Cu(i) is an order embedding again by Theorem VIII.3.5, one concludes that [a] is

compact.

Finally, the fixed point algebra Aα is stably finite by Lemma VIII.3.10 and thus there is a

projection p ∈ Aα ⊗ K such that [p] = [a] in Cu(Aα). It follows that Cu(i)([p]) = x, showing that

the third inclusion in (VIII.7) is also true.

(2) Follows using the first part, together with the fact that the K0-group of a C∗-algebra

containing an approximate identity consisting of projections, agrees with the Grothendieck group

of the Murray-von Neumann semigroup of the algebra; see Proposition 5.5.5 in [13].

In the following corollary, the picture of V (Aoα G) is valid for arbitrary A.

Corollary VIII.3.12. Let A be a stably finite C∗-algebra containing an approximate identity

consisting of projections, and let α be an action of a finite group G on A with the Rokhlin
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property. Then there are isomorphisms

V (Aoα G) ∼= {x ∈ V (A) : V (αg)(x) = x, ∀g ∈ G} ,

K∗(Aoα G) ∼= {x ∈ K∗(A) : K∗(αg)(x) = x, ∀g ∈ G} .

Proof. Recall that if α has the Rokhlin property, then the fixed point algebra Aα and the crossed

product A oα G are Morita equivalent, and hence have isomorphic K-theory and Murray-von

Neumann semigroup. The isomorphisms for V (A oα G) and K0(A oα G) then follow from

Theorem VIII.3.11 above.

Denote B = A ⊗ C(S1) and give B the diagonal action β = α ⊗ idC(S1) of G. Note that

B is stably finite and has an approximate identity consisting of projections, and that β has the

Rokhlin property by part (1) of Proposition VIII.2.3. Moreover, there is a natural isomorphism

B oβ G ∼= (A oα G) ⊗ C(S1). Applying the Künneth formula in the first step, together with the

conclusion of this proposition for K0 (which was shown to hold in the paragraph above) in the

second step, and again the Künneth formula in the fourth step, we obtain

{x ∈ K∗(A) : K∗(αg)(x) = x, ∀ g ∈ G} ∼= {x ∈ K0(B) : K0(βg)(x) = x, ∀ g ∈ G}

∼= K0(B oβ G)

∼= K0((Aoα G)⊗ C(S1))

∼= K∗(Aoα G),

as desired.

Equivariant UHF-absorption

In this section, we study absorption of UHF-algebras in relation to the Rokhlin property.

We show that for a certain class of C∗-algebras, absorption of a UHF-algebra of infinite type is

equivalent to existence of an action with the Rokhlin property that is pointwise approximately

inner. (The cardinality of the group is related to the type of the UHF-algebra.) Moreover, in

this case, not only the C∗-algebra absorbs the corresponding UHF-algebra, but also the action in
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question absorbs the model action constructed in Example VIII.2.4. Thus, Rokhlin actions allow

us to prove that certain algebras are equivariantly UHF-absorbing.

Unique n-divisibility.

The goal of this section is to show that for certain C∗-algebras, absorption of the UHF-

algebra of type n∞ is equivalent to its Cuntz semigroup being n-divisible. Along the way, we show

that for a C∗-algebra A, the Cuntz semigroups of A and of A⊗Mn∞ are isomorphic if and only if

Cu(A) is uniquely n-divisible.

We point out that some of the results of this section, particularly Theorem VIII.4.5,

were independently obtained in the recent preprint [4], as applications of their theory of tensor

products of Cuntz semigroups. On the other hand, the proofs we give here are direct and

elementary. Additionally, our techniques also apply to other functors, for instance the functor

Cu∼.

We begin defining the main notion of this section. Recall that if S and T are ordered

semigroup and ϕ : S → T is a semigroup homomorphism, we say that ϕ is an order embedding

if ϕ(s) ≤ ϕ(s′) implies s ≤ s′ for all s, s′ ∈ S. A semigroup isomorphism is called an order

preserving semigroup isomorphism if it is an order embedding.

Definition VIII.4.1. Let S be an ordered semigroup and let n be a positive integer.

1. We say that S is n-divisible, if for every x in S there exists y in S such that x = ny.

2. We say that G is uniquely n-divisible, if multiplication by n on S is an order preserving

semigroup isomorphism.

Recall that the category Cu is closed under sequential inductive limits.

Lemma VIII.4.2. Let n ∈ N and let S be a semigroup in the category Cu. Denote by ρ : S → S

the map given by ρ(s) = ns for all s ∈ S. Let T be the semigroup in Cu obtained as the inductive

limit of the sequence

S
ρ // S

ρ // S
ρ // · · · .

Then T is uniquely n-divisible.
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Proof. Let S and T be as in the statement. To avoid any confusion with the notation, we will

denote the map between the k-th and (k + 1)-st copies of S by ρk, so we write T as the direct

limit

S
ρ1 // S

ρ2 // S
ρ3 // · · · // T.

For k,m ∈ N with m > k, we let ρk,m : S → S denote the composition ρm−1 ◦ ρm−2 ◦ · · · ◦ ρk, and

we let ρk,∞ : S → T denote the canonical map from the k-th copy of S to T .

Let s, t ∈ T satisfy ns ≤ nt. By part (1) of Proposition II.6.4, there exist sequences (sk)k∈N

and (tk)k∈N in S such that

ρk(sk)� sk+1 for all k ∈ N and s = sup
k∈N

ρk,∞(sk)

ρk(tk)� tk+1 for all k ∈ N and t = sup
k∈N

ρk,∞(tk).

It follows that ρk,∞(sk)� ρk+1,∞(sk+1) and ρk,∞(tk)� ρk+1,∞(tk+1) for all k ∈ N.

Let k ≥ 2 be fixed. Since

ρk,∞(nsk)� ns ≤ nt = sup
k∈N

ρk,∞(ntk),

there exists l ∈ N such that ρk,∞(nsk) ≤ ρl,∞(ntl). Use part (2) of Proposition II.6.4 and

ρj−1(sj−1)� sj for all j ∈ N, to choose m ≥ k, l such that ρk−1,m(nsk−1) ≤ ρl,m(ntl). Therefore,

ρk−1,∞(sk−1) = ρm+1,∞(ρm+1(ρk−1,m(sk−1)))

= ρm+1,∞(nρk−1,m(sk−1))

= ρm+1,∞(ρk−1,m(nsk−1))

≤ ρm+1,∞(ρl,m(ntl))

= ρm+1,∞(nρl,m(tl))

= ρm+1,∞(ρm+1(ρl,m(tl)))

= ρl,∞(tl)

≤ t,
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that is, ρk−1,∞(sk−1) ≤ t. Since this holds for all k ≥ 2, we conclude that

s = sup
k≥2

ρk−1,∞(sk−1) ≤ t.

We have shown that ns ≤ nt in T implies s ≤ t. In other words, multiplication by n on T is an

order embedding, as desired.

To conclude the proof, let us show that T is n-divisible. Fix t ∈ T and choose a sequence

(tk)k∈N in T satisfying

ρk(tk)� tk+1 for all k ∈ N and t = sup
k∈N

ρk,∞(tk).

For each k ∈ N we have

ρk,k+2(tk) = n2tk = nρk+1,k+2(tk).

With xk = ρk+1,∞(tk), it follows that ρk,∞(tk) = nxk. Since (ρk,∞(tk))k∈N is an increasing

sequence in T , we deduce that (nxk)k∈N is an increasing sequence in T as well. Since we have

shown in the first part of this proof that multiplication by n on T is an order embedding, we

conclude that (xk)k∈N is also increasing. With x denoting the supremum of (xk)k∈N, we have

t = sup
k∈N

ρk,∞(tk) = supnxk = n sup
k∈N

xk = nx,

which completes the proof.

We point out that the functor Cu∼ does not distinguish between homomorphisms that

are approximately unitarily equivalent (with unitaries taken in the unitization). On the other

hand, the corresponding statement for approximate unitary equivalence with unitaries taken in

the multiplier algebra is not known in general. The following proposition, of independent interest,

implies that this is the case whenever the codomain has stable rank one. This will be used in the

proof of Lemma VIII.4.4 to deduce that certain homomorphisms are trivial at the level of Cu∼.

Proposition VIII.4.3. Let A and B be C∗-algebras with B stable, and let φ, ψ : A → B be

homomorphisms. Suppose that φ and ψ are approximately unitarily equivalent with unitaries

275



taken in the multiplier algebra of B. Then φ and ψ are approximately unitarily equivalent with

unitaries taken in the unitization of B.

Proof. Denote by ι : B → M(B)∞ the canonical inclusion as constant sequences. We will identify

B with a subalgebra of M(B), and suppress ι from the notation. Hence we will denote the maps

ι ◦ φ, ι ◦ ψ : A→M(B)∞ again by φ and ψ, respectively.

Let F ⊆ A be a finite set. Then there exists a unitary u = πM(B)((un)n∈N) in M(B)∞ such

that φ(a) = uψ(a)u∗ for all a ∈ F . Choose a sequence (sn)n∈N of positive contractions in B such

that

lim
n→∞

snψ(a) = lim
n→∞

ψ(a)sn = ψ(a)

for all a ∈ F . Let s = πM(B)((sn)n∈N) denote the image of (sn)n∈N in B∞ ⊆M(B)∞. Then

sφ(a) = φ(a)s = φ(a)

for all a ∈ F . Since B is stable, we have B ⊆ GL(B̃) by [15, Lemma 4.3.2]. Hence, elements in B

have approximate polar decompositions with unitaries taken in B̃. This implies that there exists a

sequence (vn)n∈N of unitaries in B̃ such that lim
n→∞

‖unsn − vnsn‖ = 0. Let v = πB̃((vn)n∈N) denote

the image of (vn)n∈N in (B̃)∞. Then us = vs and

φ(a) = uψ(a)u∗ = usψ(a)su∗ = vsψ(a)sv∗ = vψ(a)v∗

for all a ∈ F . This implies that lim
n→∞

‖φ(a) − vnψ(a)v∗n‖ = 0 for all a ∈ F . Since vn is a unitary

in B̃ for all n ∈ N, we conclude that φ and ψ are approximately unitarily equivalent with unitaries

taken in the unitization of B.

Let n, k ∈ N. We let
(
f

(nk)
i,j

)nk−1

i,j=0
denote the set of matrix units of Mnk(C). Recall that

if A and B are C∗-algebras and φ, ψ : A → B are homomorphisms with orthogonal ranges, then

φ+ ψ is also a homomorphism and Cu(φ+ ψ) = Cu(φ) + Cu(ψ).

Lemma VIII.4.4. Let A be a C∗-algebra and let n, k ∈ N. Let ιk : A → Mnk(A) be the map

given by ιk(a) = a ⊗ f (nk)
0,0 for all a ∈ A, and let jk : Mnk(A) → Mnk+1(A) be the map given by
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jk(a) = a⊗ 1n for all a ∈Mnk(A). Then the map

Cu(ιk+1)−1 ◦ Cu(jk) ◦ Cu(ιk) : Cu(A)→ Cu(A),

is the map multiplication by n.

Proof. Since Cu is invariant under stabilization, we may assume that the algebra A is stable.

Fix k in N. For each 0 ≤ i ≤ n − 1, let jk,i : Mnk(A) → Mnk+1(A) be the map defined

by jk,i(b) = b ⊗ f (n)
i,i for all b ∈ Mnk(A). Then the maps (jk,i)

n−1
i=0 have orthogonal ranges and

jk =
n−1∑
i=1

jk,i. By the comments before this lemma, we have

Cu(jk) =

n−1∑
i=0

Cu(jk,i).

Since f
(n)
i,i and f

(n)
`,` are unitarily equivalent in Mn(C) for all i, ` = 0, . . . , n − 1, we conclude

that the maps jk,i and jk,` are unitarily equivalent with unitaries in the multiplier algebra of

Mnk+1(A). By Proposition VIII.4.3, this implies that the maps jk,i and jk,` are approximately

unitarily equivalent (with unitaries taken in the unitization of Mnk+1(A)). Since approximate

unitarily equivalent maps yield the same morphism at the level of the Cuntz semigroup, we

deduce that Cu(jk,i) = Cu(jk,`) for all i, ` = 0, . . . , n − 1. Given a positive element a in A ⊗ K,we

have

(Cu(ιk+1)−1 ◦ Cu(jk) ◦ Cu(ιk))([a]) = (Cu(ιk+1)−1 ◦ Cu(jk))
([
a⊗ f (nk)

0,0

])
= Cu(ιk+1)−1

(
n−1∑
i=0

Cu(jk,i)
([
a⊗ f (nk)

0,0

]))

= Cu(ιk+1)−1
(
nCu(jk,0)

([
a⊗ f (nk)

0,0

]))
= nCu(ιk+1)−1

([
a⊗ f (nk)

0,0 ⊗ f
(n)
0,0

])
= nCu(ιk+1)−1

([
a⊗ f (nk+1)

0,0

])
= n[a]

We conclude that Cu(ιk+1)−1 ◦ Cu(jk) ◦ Cu(ιk) is the map multiplication by n.
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Theorem VIII.4.5. Let A be a C∗-algebra and let n ∈ N with n ≥ 2. Then Cu(A) is uniquely

n-divisible if and only if Cu(A) ∼= Cu(A⊗Mn∞) as order semigroups.

Proof. Assume that there exists an isomorphism Cu(A) ∼= Cu(A ⊗Mn∞) as ordered semigroups.

Using the inductive limit decomposition Mn∞ = lim−→Mnk with connecting maps jk : Mnk−1(A) →

Mnk(A) is given by jk(a) = a ⊗ 1n for all a ∈ Mnk−1(A), we can write A ⊗Mn∞ as the inductive

limit

A
j1 // Mn(A)

j2 // Mn2(A)
j3 // · · · // A⊗Mn∞ .

By continuity of the functor Cu (see [36, Theorem 2]), the semigroup Cu(A ⊗Mn∞) is isomorphic

to the inductive limit in the category Cu of the sequence

Cu(A)
Cu(j0) // Cu(Mn(A))

Cu(j1) // Cu(Mn2(A))
Cu(j2) // · · · . (VIII.8)

By [36, Appendix], the inclusion ik : A → Mnk(A) from A into the upper left corner of Mnk(A)

induces an isomorphism between the Cuntz semigroup of A and that of Mnk(A). For k ∈ N, let

ϕk : Cu(A)→ Cu(A) be given by

ϕk = Cu(ik+1)−1 ◦ Cu(jk) ◦ Cu(ik).

The sequence (VIII.8) implies that Cu(A⊗Mn∞) is the inductive limit of the sequence

Cu(A)
ϕ1 // Cu(A)

ϕ2 // Cu(A)
ϕ3 // · · · . (VIII.9)

By Lemma VIII.4.4, each ϕk is the map multiplication by n. It follows from Lemma VIII.4.2 that

Cu(A⊗Mn∞) is uniquely n-divisible. This shows the “if” implication.

Conversely, assume that Cu(A) is uniquely n-divisible and adopt the notation used above.

The map ϕk is the map multiplication by n on Cu(A) by Lemma VIII.4.4, so it is an order

isomorphism by assumption. By the inductive limit expression of Cu(A ⊗ Mn∞) in (VIII.9),

we conclude that Cu(A) ∼= Cu(A⊗Mn∞), as desired.
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Remark VIII.4.6. Let Q denote the universal UHF-algebra. Using the same ideas as in the

proof of the previous theorem, one can show that Cu(A) ∼= Cu(A ⊗ Q) if and only if Cu(A) is

uniquely p-divisible for every prime number p.

We now turn to direct limits of one-dimensional NCCW-complexes. The following lemma

will allow us to reduce to the case where the algebra itself is a one-dimensional NCCW-complex

when proving that multiplication by n is an order embedding at the level of the Cuntz semigroup.

Lemma VIII.4.7. Let (Sk, ρk)k∈N be an inductive system in the category Cu, and let S =

lim−→(Sk, ρk) be its inductive limit in Cu. Let n ∈ N. If multiplication by n on Sk is an order

embedding for all k in N, then the same holds for S.

Proof. For l ≥ k, denote by ρk,l : Sk → Sl+1 the composition ρk,l = ρl ◦ · · · ◦ ρk, and denote by

ρk,∞ : Sk → S the canonical map as in the definition of the inductive limit. Let s, t ∈ S satisfy

ns ≤ nt. By part (1) of Proposition II.6.4, for each k ∈ N there exist sk, tk ∈ Sk such that

ρk(sk)� sk+1 and s = sup
k∈N

ρk,∞(sk),

ρk(tk)� tk+1 and t = sup
k∈N

ρk,∞(tk).

Note in particular that ρk,∞(sk)� ρk+1,∞(sk+1) and ρk,∞(tk)� ρk+1,∞(tk+1) for all k ∈ N.

Fix k ∈ N. Then

ρk,∞(nsk)� ρk+1,∞(nsk+1)� sup
j∈N

ρj,∞(ntj).

By the definition of the compact containment relation, there exists j ∈ N such that

ρk,∞(nsk)� ρk+1,∞(nsk+1) ≤ ρj,∞(ntj).

By part (2) of Proposition II.6.4, there exists l ∈ N such that

nρk,l(sk) = ρk,l(nsk) ≤ ρj,l(ntj) = nρj,l(tj).
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Using that multiplication by n on Sk is an order embedding, we obtain ρk,l(sk) ≤ ρj,l(tj). In

particular,

ρk,∞(sk) ≤ ρj,∞(tj) ≤ t.

Since k ∈ N is arbitrary and s = sup
k∈N

ρk,∞(sk), we conclude that s ≤ t.

Proposition VIII.4.8. Let A be a C∗-algebra that can be written as the inductive limit of 1-

dimensional NCCW-complexes. Then the endomorphism of Cu(A) given by multiplication by n is

an order embedding.

Proof. By Lemma VIII.4.7, it is sufficient to show that the proposition holds when A is a 1-

dimensional NCCW-complex. Let E =
r⊕
j=1

Mkj (C) and F =
s⊕
j=1

Mlj (C) be finite dimensional

C∗-algebras, and for x ∈ [0, 1] denote by evx : C([0, 1], F ) → F the evaluation map at the point x.

Assume that A is given by the pullback decomposition

A

��

// E

��
C([0, 1], F )

ev0⊕ev1

// F ⊕ F,

By [3, Example 4.2], the Cuntz semigroup of A is order isomorphic to a subsemigroup of

Lsc
(

[0, 1],Z+
s
)
⊕ (Z+)r.

Since multiplication by n on this semigroup is an order embedding, the same holds for any

subsemigroup; in particular, it hold for Cu(A).

Corollary VIII.4.9. Let A be a C∗-algebra in one of the following classes: unital algebras

that can written as inductive limits 1-dimensional NCCW-complexes with trivial K1-groups;

simple algebras with trivial K0-groups that can be written as inductive limits 1-dimensional

NCCW-complexes with trivial K1-groups; and algebras that can written as inductive limits of

punctured-tree algebras. Let n ∈ N. Suppose that the map multiplication by n on Cu(A) is an

order isomorphism. Then A ∼= A⊗Mn∞ .

Proof. By Proposition VIII.4.8 together with the assumptions in the statement, it follows that the

map multiplication by n on Cu(A) is an order isomorphism. Hence, it is an isomorphism in the
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category Cu. By part (2) of Theorem VIII.4.5, there is an isomorphism Cu(A) ∼= Cu(A⊗Mn∞) in

Cu.

The same arguments used at the end of the proof of Theorem VIII.2.13 show that the

classes of C∗-algebras in the statement can be classified up to stable isomorphism by their Cuntz

semigroup. Therefore, we deduce that

A⊗K ∼= A⊗Mn∞ ⊗K.

Using that Mn∞-absorption is inherited by hereditary C*-subalgebras ([265, Corollary 3.1]), we

conclude that A ∼= A⊗Mn∞ .

Absorption of the model action

We now proceed to obtain an equivariant UHF-absorption result (compare with [133,

Theorems 3.4 and 3.5]).

Theorem VIII.4.10. Let G be a finite group and let A be a C∗-algebra belonging to one of

the classes of C∗-algebras described in Corollary VIII.4.9. Then the following statements are

equivalent:

1. The C∗-algebra A absorbs the UHF-algebra M|G|∞ .

2. There is an action α : G → Aut(A) with the Rokhlin property such that Cu(αg) = idCu(A)

for all g ∈ G.

3. There are actions of G on A with the Rokhlin property, and for any action β : G → Aut(A)

with the Rokhlin property and for any action δ : G→ Aut(A) such that Cu(βg) = Cu(δg) for

all g ∈ G, one has

(A, β) ∼= (A⊗M|G|∞ , δ ⊗ µG),

that is, there is an isomorphism ϕ : A→ A⊗M|G|∞ such that

ϕ ◦ βg = (δ ⊗ µG)g ◦ ϕ

for all g in G.
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In particular, if the above statements hold for A, and if α : G → Aut(A) is an action with

the Rokhlin property such that Cu(αg) = idCu(A) for all g ∈ G, then (A,α) ∼= (A ⊗M|G|∞ , idA ⊗

µG).

Proof. (1) implies (2). Fix an isomorphism ϕ : A → A ⊗ M|G|∞ and define an action α : G →

Aut(A) by αg = ϕ−1 ◦ (idA ⊗ µG)g ◦ ϕ for all g in G. For a fixed group element g in G, the

automorphism idA ⊗ µGg of A ⊗M|G|∞ is approximately inner, and hence so is αg. It follows that

Cu(αg) = idCu(A) for all g in G, as desired.

(2) implies (1). Assume that there is an action α : G → Aut(A) with the Rokhlin property

such that Cu(αg) = idCu(A) for all g ∈ G. Then A ∼= A ⊗ M|G|∞ by Proposition VIII.4.8,

Corollary VIII.4.9 and Corollary VIII.3.7.

(1) and (2) imply (3). Let β and δ be actions of G on A as in the statement. Since M|G|∞

is a strongly self-absorbing algebra, there exists an isomorphism φ : A → A ⊗ M|G|∞ that is

approximately unitarily equivalent to the map ι : A→ A⊗M|G|∞ given by ι(a) = a⊗ 1M|G|∞ for a

in A. In particular, one has Cu(φ) = Cu(ι). Hence, for every a ∈ (A⊗K)+ we have

(Cu(φ) ◦ Cu(βg))([a]) = Cu(ι)[(βg ⊗ idK)(a)] =
[
((βg ⊗ idK)(a))⊗ 1M|G|∞

]
and

(Cu(δg ⊗ µG) ◦ Cu(φ))([a]) = Cu(δg ⊗ µG)
([
a⊗ 1M|G|∞

])
=
[
((δg ⊗ idK)(a))⊗ 1M|G|∞

]
.

Since Cu(βg) = Cu(δg) for all g ∈ G, it follows that

Cu(φ) ◦ Cu(βg) = Cu(δg ⊗ µg) ◦ Cu(φ)

for all g in G. In other words, the Cu-isomorphism Cu(φ) : Cu(A) → Cu(A ⊗ M|G|∞) is

equivariant. Therefore, by the unital case of Theorem VIII.2.19, there exists an isomorphism

ϕ : A→ A⊗M|G|∞ such that ϕ ◦ βg = (δ ⊗ µG)g ◦ ϕ for all g ∈ G, showing that β and δ ⊗ µG are

conjugate.
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(3) implies (1). The existence of an action β : G → Aut(A) with the Rokhlin property

implies the existence of an isomorphism A→ A⊗M|G|∞ , simply by taking δ = β.

The last claim follows immediately from (3).
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CHAPTER IX

CLASSIFICATION THEOREMS FOR CIRCLE ACTIONS ON

KIRCHBERG ALGEBRAS

We study and classify certain circle actions on Kirchberg algebras. It is shown that the

Rokhlin property implies severe K-theoretical constraints on the algebra it acts on. We prove

that circle actions with the Rokhlin property have an Ext(K∗(A
T),K∗+1(AT))-class naturally

associated to them. If A is a Kirchberg algebra satisfying the UCT, this Ext-class is shown to

be a complete invariant for such actions up to conjugacy. More generally, circle actions with the

Rokhlin property on Kirchberg algebras are uniquely determined by the KK-class of their predual

automorphisms. We are not able to compute the range of the invariant, but we conjecture that it

is an arbitrary invertible KK-class in the kernel of the canonical map KK → KL.

We also define a strengthening of the Rokhlin property, asking for a continuous path of

unitaries instead of a sequence. Circle actions with the continuous Rokhlin property on Kirchberg

algebras are classified by the KK-equivalence class of their fixed point algebra, and in the

presence of the UCT, by their equivariant K-theory. In this case, we are able to completely

characterize the K-theoretical invariants that arise in this way.

As an important technical result, we show that the continuous Rokhlin property implies the

existence of a unital completely positive asymptotic homomorphism from the algebra to its fixed

point subalgebra, which is moreover a left inverse for the canonical inclusion. As a consequence,

we prove that the UCT is preserved under formation of crossed products and passage to fixed

point algebras by such actions.

We exhibit examples that show that the continuous Rokhlin property is really stronger than

the Rokhlin property, even on Kirchberg algebras that satisfy the UCT.

Introduction

It is natural to explore the classification of Rokhlin actions of compact groups on

classifiable classes of C∗-algebras, generalizing work of Izumi in the finite group case. This chapter

focuses on the classification problem for circle actions with the Rokhlin property on purely infinite

simple C∗-algebras. A C∗-algebra is said to be a Kirchberg algebra if it is purely infinite, simple,
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separable and nuclear. (This terminology was first introduced by Rørdam in [235] to recognize the

significant contribution of Eberhard Kirchberg to the study and classification of these algebras,

which were originally called pisun.)

The classification results in [150] and [200] can be thought of as a starting point for this

work, so we briefly recall them. If A and B are two unital Kirchberg algebras, then A and B are

isomorphic if and only if there is an invertible element in KK(A,B) that respects the classes of

the units of A and B. If A and B moreover satisfy the Universal Coeffcient Theorem (UCT), then

for every Z2-graded isomorphism ϕ∗ : K∗(A) → K∗(B) satisfying ϕ0([1A]) = [1B ], there is an

isomorphism ψ : A → B such that K∗(ψ) = ϕ∗. Furthermore, every pair of countable abelian

groups arises as the K-groups of a unital Kirchberg algebra that satisfies the UCT, and the class

of the unit of the algebra in K0 can be arbitrary.

One of the main results in this chapter, which is based on [80] and [81], asserts that

circle actions on Kirchberg algebras are completely classified by the KK-class of their

predual automorphism. In the presence of the UCT, the invariant reduces to a certain

Ext(K∗(A
T),K∗+1(AT))-class naturally associated to them.

The problem of computing the range of the invariant remains open. In an attempt to

remedy this, we introduce a strengthening of the Rokhlin property, which we shall call the

continuous Rokhlin property. The advantage of working with a continuous analog of the Rokhlin

property lies in the fact that the fixed point algebra by any such action can be shown to be a

KK-retract of the original algebra, in a sense that will be made precise in Theorem IX.8.3.

Roughly speaking, if α : T → Aut(A) is an action with the continuous Rokhlin property, then

the KK-theory of Aα is very closely related to that of A. The picture of KK-theory that is most

suitable for our purposes is the one obtained by Houghton-Larsen and Thomsen in [130], using

completely positive contractive asymptotic homomorphisms. With this approach, we are able to

prove that the UCT is preserved under formation of crossed products and passage to fixed point

algebras by actions with the continuous Rokhlin property, without requiring the algebras to be

simple or nuclear (unlike in Theorem VII.3.13).

We point out that the difference between the continuous Rokhlin property and the Rokhlin

property is similar to (and, in some sense, “the same” as) the difference between approximate
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innerness and asymptotic innerness for automorphisms of C∗-algebras. In the context of Kirchberg

algebras, this amounts to the difference between the functors KL and KK.

We show that the KK-class of the predual automorphism of a circle action with the

continuous Rokhlin property is trivial. In the presence of the UCT, this amounts to saying that

the canonical pure extension associated to the circle action is in fact split. The range of the

invariant can be completely determined in this case: any split extension arises the invariant of

a circle action with the continuous Rokhlin property. Since the continuous Rokhlin property and

the Rokhlin property are equivalent for circle actions on Kirchberg algebras with finitely generated

K-theory, these results can also be applied to many Rokhlin actions of interest.

While working on this project, we learned that Rasmus Bentmann and Ralf Meyer have

developed techniques that allow them to classify objects in triangulated categories with projective

resolutions of length two. See [9]. Their study applies to circle actions on C∗-algebras, the

invariant being equivariant K-theory, and isomorphism of actions being KKT-equivalence.

Their results predict the same outcome that we have obtained, at least up to KKT-equivalence.

Some work has to be done to deduce conjugacy from KKT-equivalence for circle actions with

the Rokhlin property on Kirchberg algebras. The fact that the corresponding non-equivariant

statement is true, as was shown in Corollary 4.2.2 in [200], and also [150], strongly suggests

that this ought to be true in the equivariant case as well. In Subsection 9.6.1, we include some

comments on how the work of Bentmann-Meyer could be used to obtain KKT-equivalence in the

cases we consider.

This chapter is organized as follows. In Section IX.3, we develop an averaging technique

using the Rokhlin property that will allow us to define, given a compact subset F of A, a

linear map A → Aα which is an approximate ∗-homomorphism on F , in a suitable sense. See

Theorem IX.3.3. What is done there is really a particular case of what was done in Section V.4.

However, we need more general statements because the extra flexibility (particularly in

Theorem IX.3.3) will be crucial in Section IX.8, where we will construct homotopies between

linear maps A→ Aα coming from different choices of tolerance and compact set.

In Section IX.4, we apply our averaging technique to associate, to each circle action with

the Rokhlin property, a pure extension involving the K-theory of the underlying algebra and that

of the fixed point algebra; see Theorem IX.4.3. In Section IX.5, we specialize to purely infinite
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simple C∗-algebras, and prove classification results for circle actions with the Rokhlin property

on them. See Theorem IX.5.4 for the general Kirchberg algebra case, and Theorem IX.5.6 for the

Kirchberg UCT case.

In Section IX.6, we motivate some connections with the work of Bentmann-Meyer, motivate

some connections with what we do in later sections regarding the continuous Rokhlin property,

and also give some indications of the difficulties of adapting the techniques used in this chapter to

the classification of actions of other compact Lie groups.

In Section IX.7, we introduce the definition of the continuous Rokhlin property for a circle

action on a unital C∗-algebra, and develop its basic theory. Our definition of the continuous

Rokhlin property is a strengthening of the Rokhlin property of Hirshberg and Winter from

[122] that, roughly speaking, asks for a continuous path of unitaries rather than a sequence. The

purpose of introducing this definition is to obtain more rigid classifications results than in the case

of the Rokhlin property, and to obtain a complete description of the range of the invariant.

Section IX.8 contains our most relevant results for such actions. First, we show in

Corollary IX.8.5 that if A is a separable, unital C∗-algebra, and α : T → Aut(A) is a circle

action with the continuous Rokhlin property, then there are isomorphisms K0(A) ∼= K1(A) ∼=

K0(Aα) ⊕ K1(Aα). This result should be compared with Theorem IX.4.3, where we only assume

that the action has the Rokhlin property, but where some assumtions on K∗(A) are needed.

Second, we show in Theorem IX.8.8, that under the same assumptions on the C∗-algebra A and

the circle action α, the C∗-algebra A satisfies the UCT if and only if Aα does. Both results will

follow from the existence of a unital completely positive asymptotic morphism A → Aα which is a

left inverse for the canonical inclusion of Aα in A at the level of KK-theory. See Theorem IX.8.3.

Section IX.9 contains the classification result for circle actions with the continuous Rokhlin

property in terms of either the KK-equivalence class of the fixed point algebra in the general case,

or in terms of the equivariant K-theory in the presence of the UCT. We also provide a complete

description of the range of the invariant. Subsection 9.9.1 contains some comments and results

about existence and non-existence of model actions in this context.

Finally, in Section IX.10, we show that for unital Kirchberg algebras with finitely generated

K-theory, the continuous Rokhlin property and the Rokhlin property are equivalent for actions

of the circle; see Corollary IX.10.2). It is also shown that the continuous Rokhlin property is not
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equivalent to the Rokhlin property (Example IX.10.3), even on Kirchberg algebras satisfying the

UCT (Example IX.10.4).

The Rokhlin Property for Circle Actions

In this section, we introduce the definition of the Rokhlin property for a circle action, and

deduce some of the basic properties that will be needed to prove our classification results.

Definition IX.2.1. Let A be a unital C∗-algebra and let α : T → Aut(A) be a continuous action.

We say that α has the Rokhlin property if for every ε > 0 and every finite subset F ⊆ A, there

exists a unitary u in A such that

1. ‖αζ(u)− ζu‖ < ε for all ζ ∈ T.

2. ‖ua− au‖ < ε for all a ∈ F .

Remark IX.2.2. Since compact subsets of metric spaces are completely bounded, one gets an

equivalent notion if in Definition IX.2.1 above one allows the subset F of A to be norm compact

instead of finite. We will make repeated use of this fact without mentioning it further.

We must first check that Definition IX.2.1 is equivalent to Definition VI.2.1 for circle

actions.

Proposition IX.2.3. Let A be a separable, unital C∗-algebra, and let α : T → Aut(A) be a

continuous action. Then α has the Rokhlin property in the sense of Definition VI.2.1 if and only if

it has the Rokhlin property in the sense of Definition IX.2.1.

Proof. Since unital homomorphisms from C(T) into a unital C∗-algebra are in one-to-

one correspondence with unitaries in the algebra, it is clear that Definition IX.2.1 implies

Definition VI.2.1.

To prove the converse implication, let F ⊆ A be a finite subset and let ε > 0. Let u ∈

A∞,α ∩ A′ be a unitary inducing a unital homomorphism as in Definition VI.2.1 for G = T.

Choose a sequence (un)n∈N of unitaries in A such that

κA((un)n∈N) = u.
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Since u belongs to the commutant of A, we have

lim
n→∞

‖aun − una‖ = 0 (IX.1)

for all a ∈ A.

On the other hand, the fact that (α∞)ζ(u) = ζu, for all ζ ∈ T, shows that

lim
n→∞

‖αζ(un)− ζun‖ = 0 (IX.2)

for all ζ ∈ T. This by itself does not imply that we can choose n large enough so that ‖αζ(un) −

ζun‖ < ε holds for all ζ ∈ T. Put in a different way, one needs to show that the sequence of

functions fn : T→ R given by

fn(ζ) = ‖αζ(un)− ζun‖

for ζ ∈ T, converges uniformly to zero. Equation (IX.2) implies that (fn)n∈N converges pointwise

to zero. Without losss of generality, we may assume that fn(ζ) ≥ fn+1(ζ) for all n ∈ N and all

ζ ∈ T.

Since u belongs to Aα,∞ (as opposed to A∞), it follows that fn is continuous for all

n ∈ N. Now, by Dini’s theorem (Proposition 11 in Chapter 9 of [239]), a decreasing sequence of

continuous functions converges uniformly if it converges pointwise to a continuous function. Thus,

for the finite set F ⊆ A and the tolerance ε > 0 given, we use this fact together with Equation

(IX.1) to find n0 ∈ N such that ‖αζ(un0) − ζun0‖ < ε for all ζ ∈ T, and ‖aun0 − un0a‖ < ε for all

a ∈ F .

The result below is an application of the fact that the action of T on C(T) by left

translation is equivariantly semiprojective. Informally speaking, this means that whenever we

are given an almost equivariant unital homomorphism from C(T) into another unital C∗-algebra

with a circle action, then there is a nearby exactly equivariant unital homomorphism from C(T)

into the same algebra.

Proposition IX.2.4. Let A be a unital C∗-algebra and let α : T → Aut(A) be a continuous

action. Then α has the Rokhlin property if and only if for every ε > 0 and every finite subset

F ⊆ A, there exists a unitary u in A such that
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1. αζ(u) = ζu for all ζ ∈ T.

2. ‖ua− au‖ < ε for all a ∈ F .

The definition of the Rokhlin property differs from the conclusion of this proposition in that

in condition (1), one only requires ‖αζ(u)− ζu‖ < ε for all ζ ∈ T.

Proof. This is an immediate consequence of Theorem VI.4.6 and the comments after it.

Since circle actions have an associated 6-term exact sequence for the K-theory of the

crossed product, Theorem VI.4.2 has strong implications on the K-theory of an algebra that

admits a circle action with the Rokhlin property (besides the already strong constraints it

imposes for general compact groups). Indeed, assume that A is a unital C∗-algebra and that

α : T → Aut(A) is an action with the Rokhlin property. The Pimsner-Voiculescu for α (see

Subsection 10.6 in [13]) is

K0(Aoα T)
1−K0(α̂) // K0(Aoα T) // K0(A)

��
K1(A)

OO

K1(Aoα T)oo K1(Aoα T).
1−K1(α̂)

oo

The automorphism Kj(α̂) is the identity on Kj(Aoα T) for j = 0, 1 by Theorem VI.4.2. Thus the

exact sequence above splits into two short exact sequences

0→ Kj(Aoα T)→ Kj(A)→ K1−j(Aoα T)→ 0

for j = 0, 1. It follows that if one of the K-groups of A is trivial, then so is the other one

(this is not true for general compact groups). In particular, there are no circle actions with the

Rokhlin property on AF-algebras, AI-algebras, the Jiang-Su algebra Z, or any of the Cuntz

algebras On with n > 2. On the other hand, there are many such actions on O2: it is shown in

Corollary IX.5.5 that circle actions with the Rokhlin property on O2 are generic.

There are other restrictions that follow from the short exact sequences above. We list a few

of them:

– K0(A) is finitely generated if and only if K1(A) is finitely generated.

290



– K0(A) is torsion if and only if K1(A) is torsion.

– If K0(A) and K1(A) are free, then K0(A) ∼= K1(A).

– More generally, the free ranks of the K-groups of A must agree, that is, rkK0(A) =

rkK1(A).

It is nevertheless not clear at this point whether K0(A) = Z and K1(A) = Z ⊕ Z2 can happen.

This combination of K-groups will be ruled out by Theorem IX.4.3.

Definition IX.2.5. Let B be a C∗-algebra and let β be an automorphism of B. Then β is said to

be approximately representable if there exists a unitary v ∈ (M(B)β)∞ such that β(b) = vbv∗ for

all b ∈ B.

It is easy to check that the definition above is equivalent to Definition VI.4.1 for Γ = Z

Next, we show that every circle action with the Rokhlin property arises as the dual action

of an automorphism of the fixed point algebra, and that this automorphism is essentially unique.

Theorem IX.2.6. Let A be a C∗-algebra and let α : T → Aut(A) be an action with the

Rokhlin property. Then there exist an approximately representable automorphism θ of Aα and

an equivariant isomorphism

ϕ : (Aα oθ Z, θ̂)→ (A,α)

which is the identity on Aα.

Moreover, θ is unique up to unitary equivalence. This is, if θ′ is another automorphism of

Aα and ϕ′ : (Aα oθ′ Z, θ̂′) → (A,α) is another equivariant isomorphism, then there is a unitary w

in Aα such that θ = Ad(w) ◦ θ′.

Proof. Existence of θ ∈ Aut(Aα) follows from Corollary VI.4.7. We now turn to uniqueness of θ.

Let θ′ and ϕ′ be as in the statement. Let v be the canonical unitary in Aα oθ Z that implements

θ̂, and let v′ be the canonical unitary in Aα oθ′ Z that implements θ̂′. Set w = ϕ(v)ϕ′(v′)∗, which

is a unitary in A. We claim that w is fixed by α. Indeed, for ζ ∈ T, we use the facts that ϕ and ϕ′

are equivariant, to obtain

αζ(w) = ϕ(θ̂ζ(v))ϕ′(θ̂′ζ(v
′))∗) = ζϕ(v)ζϕ′(v′) = w.

291



Whence w belongs to Aα. Finally, given a in Aα, we have

(Ad(w) ◦ θ)(a) = (ϕ(v)ϕ′(v′)∗)(ϕ′(v′)aϕ′(v′)∗)(ϕ′(v′)ϕ(v)∗)

= ϕ(v)aϕ(v)∗ = θ′(a),

and the result follows.

If α : T → Aut(A) is an action of the circle on a unital C∗-algebra A with the

Rokhlin property, then we will usually denote an automorphism of Aα as in the conclusion of

Theorem IX.2.6, which is unique up to unitary equivalence, by α̌. Since ̂̌α is conjugate to α, we

will usually refer to α̌ as the predual automorphism of α (hence the notation α̌).

Corollary IX.2.7. Let A be a C∗-algebra and let α : T → Aut(A) be an action with the Rokhlin

property. Then there is a natural isomorphism Aoα T ∼= Aα ⊗K(L2(T)).

Proof. This is an immediate consequence of Theorem IX.2.6 together with the natural

isomorphism given by Takai duality.

An Averaging Technique

The goal of this section is to develop an averaging technique using the Rokhlin property

that will allow us to define, given a compact subset F of A, a linear map A → Aα which is an

approximate ∗-homomorphism on F , in a suitable sense. See Theorem IX.3.3.

What we do here is really a particular case of what was done in Section V.4. However, we

need more general statements because the extra flexibility (particularly in Theorem IX.3.3) will be

crucial in Section IX.8, where we will construct homotopies between linear maps A → Aα coming

from different choices of tolerance and compact set. We will also take advantage of the fact that

homotopies between partitions of unity on T are easy to construct.

We begin with some farily general observations.

Let G be a compact group, let A be a unital C∗-algebra, and let α : G → Aut(A) be a

continuous action. Identify C(G) ⊗ A with C(G,A), and denote by γ : G → Aut(C(G,A)) the

diagonal action, this is, γg(a)(h) = αg(a(g−1h)) for all g, h ∈ G and all a ∈ C(G,A). Define an
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averaging process φ : C(G,A)→ C(G,A) by

φ(a)(g) = αg(a(1))

for all a in C(G,A) and all g in G.

We specialize to G = T now. Let ε > 0 and let F be a compact subset of C(T, A). Set

F ′ =
⋃
ζ∈T

γζ(F ) and F ′′ = {a(ζ) : a ∈ F ′, ζ ∈ T} ,

which are compact subsets of C(T, A) and A, respectively. Choose δ > 0 such that whenever ζ1

and ζ2 in T satisfy |ζ1 − ζ2| < δ, then

‖αζ1(a(1))− αζ2(a(1))‖ < ε

2

for all a in F ′. Let (fj)
n
j=0 be a partition of unity of T and let ζ1, . . . , ζn be group elements in

T such that fj(ζ) 6= 0 for some ζ in T implies |ζ − ζj | < δ
2 . In particular, this implies that

|ζj − ζk| < δ whenever the supports of fj and fk are not disjoint. (Such partition of unity and

group elements are easy to construct: take, for example, the support of each function fj to be ani

interval of radius δ
2 , and let ζj be the center of its support.)

For use in the proof of the following lemma, we recall the following standard fact about

self-adjoint elements in a C∗-algebra: if A is a unital C∗-algebra and a, b ∈ A with b∗ = b, then

−‖b‖a∗a ≤ a∗ba ≤ ‖b‖a∗a, and hence ‖a∗ba‖ ≤ ‖b‖‖a‖2.

Lemma IX.3.1. Adopt the notation and assumptions of the discussion above. Then φ is a

homomorphism and its range is contained in the fixed point subalgebra of C(T, A). Moreover,

for every ζ ∈ T and every a in F ′, we have

∥∥∥∥∥∥γζ
 n∑
j=1

fjαζj (a(1))

− n∑
j=1

fjαζj (a(1))

∥∥∥∥∥∥ < ε.
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Proof. We begin by showing that the averaging process φ : C(T, A) → C(T, A) is a

homomorphism. Let a, b ∈ C(T, A), and let ζ in T. We have

(φ(a)φ(b))(ζ) = αζ(a(1))αζ(b(1)) = αζ(ab(1)) = φ(ab)(ζ),

showing that φ is multiplicative. It is clearly linear and preserves the involution, so it is a

homomorphism.

We will now show that γλ(φ(a)) = φ(a) for all λ in T and all a in C(T, A). Indeed, for ζ in

T, we have

γλ(φ(a))(ζ) = αλ(φ(a)(λ−1ζ)) = αλ(αλ−1ζ(a(1))) = αζ(a(1)) = φ(a)(ζ),

which proves the claim.

Since every element in a C∗-algebra is the linear combination of two self-adjoint elements,

we may assume without loss of generality that every element of F is self-adjoint, so that the same

holds for the elements of F ′ and F ′′. Given ζ in T and a in F ′, we have

φ(a)(ζ)−
n∑
j=1

fj(ζ)αζj (a(1)) =

n∑
j=1

fj(ζ)1/2(αζj (a(1))− αζ(a(1)))fj(ζ)1/2

≤
n∑
j=1

‖αζj (a(1))− αζ(a(1))‖fj(ζ).

Now, for j = 1, . . . , n, if fj(ζ) 6= 0, then |ζj − ζ| < δ, and hence ‖αζj (a(1)) − αζ(a(1))‖ < ε
2 . In

particular, we conclude that

−ε
2
< φ(a)(ζ)−

n∑
j=1

fj(ζ)αζj (a(1)) <
ε

2
.

Since ζ is arbitrary, we deduce that

∥∥∥∥∥φ(a)−
n∑
j=1

fjαζj (a(1))

∥∥∥∥∥ < ε
2 . Since φ(a) is fixed by the action

γ, the result follows from an easy application of triangle inequality.

If we start with a compact subset of A, viewed as a compact subset of C(T, A) consisting

of constant functions, then the above lemma shows that any partition of unity with sufficiently

small supports provides us with a way to take a discrete average over the group T. We will later
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see that this discrete averaging has the advantage of being almost multiplicative in an appropriate

sense. See Theorem IX.3.3.

We come back to actions with the Rokhlin property in the next lemma.

Lemma IX.3.2. Let A be a unital C∗-algebra, let α : T→ Aut(A) be an action with the Rokhlin

property, let ε > 0, let F be a compact subset of A and let S be a compact subset of C(T)

consisting of positive functions. Then there exists a unitary u in A such that αζ(u) = ζu for

all ζ in T and

‖af(u)− f(u)a‖ < ε

|S|

for all a in F and all f in S.

Proof. For every m in N, use Proposition IX.2.4 for α to find a unitary um in A such that

– αζ(um) = ζum for all ζ ∈ T.

– ‖uma− aum‖ < 1
m for all a ∈ F .

It is clear that

lim
m→∞

‖af(um)− f(um)a‖ = 0

for all a in F and all f in C(T). Since S is compact, one can choose m large enough so that, with

u = um, we have

‖af(u)− f(u)a‖ < ε

|S|

for all a in F and all f in S, as desired.

Let A be a C∗-algebra and let α : T → Aut(A) be a continuous action. We denote by

E : A → Aα the standard conditional expectation. If µ denotes the normalized Haar measure on

T, then E is given by

E(a) =

∫
T
αζ(a) dµ(ζ)

for all a in A.

The way the next theorem is formulated will be convenient in the proof of Theorem IX.8.3.

See Remark IX.3.4 below.
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Theorem IX.3.3. Let A be a unital C∗-algebra, let α : T → Aut(A) be an action with the

Rokhlin property, let ε > 0 and let F be a compact subset of A. Set F ′ =
⋃
ζ∈T

αζ(F ), which is a

compact subset A. Let δ > 0 such that whenever ζ1 and ζ2 in T satisfy |ζ1 − ζ2| < δ, then

‖αζ1(a)− αζ2(a)‖ < ε

2

for all a in F ′. Let (fj)
n
j=0 be a partition of unity of T and let ζ1, . . . , ζn be group elements in T

such that fj(ζ) 6= 0 for some ζ in T implies |ζ − ζj | < δ
2 . Let u be a unitary as in the conclusion of

Lemma IX.3.2 for the tolerance ε, compact subset F ′ ⊆ A and compact subset S = {fj , f1/2
j : j =

1, . . . , n} ⊆ C(T).

Define a linear map σ : A→ Aα by

σ(a) = E

 n∑
j=1

fj(u)1/2αζj (a)fj(u)1/2


for all a in A. Then σ is unital and completely positive, and

‖σ(ab)− σ(a)σ(b)‖ < ε(‖a‖+ ‖b‖+ 3)

for all a and b in F ′.

We point out that one can always choose a positive number δ > 0, a partition of unity

(fj)
n
j=1 and a unitary u in A satisfying the hypotheses of this theorem. We will use this fact

without further reference in the future, and we will simply say “choose δ, (fj)
n
j=1 and u as in the

assumptions of Theorem IX.3.3”.

Proof. It is clear that σ is linear, completely positive, and unital. In particular, it is completely

contractive.

We claim that ∥∥∥∥∥∥σ(a)−
n∑
j=1

fj(u)1/2αζj (a)fj(u)1/2

∥∥∥∥∥∥ ≤ ε
for all a in F ′.

Denote by ψ : C(T, A) → A the equivariant completely positive contractive map which is

the identity on A, and sends the canonical generator of C(T) to u. Let a be in F ′. For ζ in T, we
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use Lemma IX.3.1 at the last step to show that

∥∥∥∥∥∥αζ
 n∑
j=1

fj(um)1/2αζj (a)fj(um)1/2

− n∑
j=1

fj(um)1/2αζj (a)fj(um)1/2

∥∥∥∥∥∥
=

∥∥∥∥∥∥αζ
ψ

 n∑
j=1

fj ⊗ αζj (a)

− ψ
 n∑
j=1

fj ⊗ αζj (a)

∥∥∥∥∥∥
=

∥∥∥∥∥∥ψ
γζ

 n∑
j=1

fj ⊗ αζj (a)

− n∑
j=1

fj ⊗ αζj (a)

∥∥∥∥∥∥
≤

∥∥∥∥∥∥γζ
 n∑
j=1

fj ⊗ αζj (a)

− n∑
j=1

fj ⊗ αζj (a)

∥∥∥∥∥∥ < ε,

as desired.

Note that ‖[fj(u)1/2, a]‖ < ε
2n for all a in F ′. Let a and b in F ′. Using at the third step

that fjfk 6= 0 implies |ζj − ζk| < δ, we have

σ(a)σ(b) ≈ε(‖a‖+‖b‖)
n∑

j,k=1

fj(u)1/2αζj (a)fj(u)1/2fk(u)1/2αζk(b)fk(u)1/2

≈ε
∑

fjfk 6=0

fj(u)1/2αζj (a)fj(u)1/2αζk(b)fk(u)

≈ε
∑

fjfk 6=0

fj(u)1/2αζj (a)fj(u)1/2αζj (b)fk(u)

≈ε
∑

fjfk 6=0

fj(u)1/2αζj (ab)fj(u)1/2fk(u)

=

n∑
j=0

fj(u)1/2αζj (ab)fj(u)1/2

 ∑
k : fkfj 6=0

fk(u)


=

n∑
j=0

fj(u)1/2αζj (ab)fj(u)1/2 = σ(ab).

Hence ‖σ(a)σ(b)− σ(ab)‖ < ε(‖a‖+ ‖b‖+ 3), as desired.

Remark IX.3.4. For the immediate applications of Theorem IX.3.3, it will be enough to choose

any δ, (fj)
n
j=1 and u satisfying the assumptions of said theorem. However, we will need the more

general statement in the proof of Theorem IX.8.3, in which we will need to construct homotopies

between the linear maps σ obtained from different choices of δ, (fj)
n
j=1 and u.
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The Pure Extension of a Circle Action with the Rokhlin Property

In this section, we show that there are severe obstructions on the K-theory of a unital C∗-

algebra that admits a circle action with the Rokhlin property. Specifically, it will be shown in

Theorem IX.4.3, that any circle action α : T→ Aut(A) has a canonically associated pure extension

0→ K0(Aα)→ K0(A)→ K1(Aα)→ 0.

We begin by recalling the definition of a pure subgroup and a pure extension.

Definition IX.4.1. Let G be an abelian group and let G′ be a subgroup. We say that G′ is pure

if every torsion element of G/G′ lifts to a torsion element of the same order in G. Equivalently,

nG′ = nG ∩G′ for all n in N.

An extension 0→ G′ → G→ G′′ → 0 is said to be pure if G′ is a pure subgroup of G.

One checks that a subgroup G′ of an abelian group G is pure if and only if the following

holds: for every finitely generated subgroup H ′′ of G/G′, if H denotes the preimage of H ′′ under

the canonical quotient map G→ G/G′, then the induced extension

0→ G′ → H → H ′′ → 0

splits.

It is not true that every pure extension splits. A classical example is the short exact

sequence

0→ Z∞ → Z∞ → Q→ 0

associated to a free resolution of Q. Somewhat more surprisingly, there are examples of pure

subgroups which are finitely generated, yet not a direct summand (despite being a direct

summand in every finitely generated subgroup that contains it). We are thankful to Derek Holt

for providing the following example.

Example IX.4.2. Let G1 = Z, which we regard as the free group on the generator x, and let G2

be the abelian group on generators {x, yn : n ∈ N} and relations

2yn+1 = yn + x
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for all n in N. Regard G1 as a subgroup of G2 via the obvious inclusion. We claim that G1 is a

pure subgroup of G2.

For n in N, denote by G
(n)
2 the subgroup of G2 generated by x and yn. Then G

(n)
2 is a free

abelian group of rank 2, and G
(n)
2 ⊆ G

(n+1)
2 for all n in N. Let H be a finitely generated subgroup

of G2 containing x. Then there exists N in N such that H ⊆ G
(N)
2
∼= Zx ⊕ ZyN . Set H ′′ = H/G1.

Then H ′′ is a subgroup of ZyN , and thus it is free. In particular, the extension

0→ G1 → H → H ′′ → 0

splits. This shows that G1 is a pure subgroup of G2.

Finally, we claim that G1 is not a direct summand in G2. Assume that it is, and let G be

a direct complement of G1 in G2. Denote by π : G2 → G the canonical quotient map, and by

ι : G→ G2 the canonical inclusion. For every n in N, set

y′n = (ι ◦ π)(yn),

which is an element of G. Then 2y′n = y′n−1 for n ≥ 2. Moreover, for every n in N, there exists kn

in Z such that

y′n = yn + knx.

Now, the identities

y′n−1 = 2y′n = 2yn + 2knx = yn−1 + x+ knx = yn−1 + (2kn + 1)x,

imply that kn−1 = 2kn + 1 for all n ≥ 2. Thus k1 = 2nkn+1 + 1, and hence k1 − 1 is divisible by 2n

for all n in N. This is a contradiction, which shows that G1 does not have a direct complement in

G2.

The example constructed above will be relevant in Section IX.10, where we will show that

there exist circle actions with the Rokhlin property that do not have the continuous Rokhlin

property, even on Kirchberg algebras that satisfy the UCT.

Theorem IX.4.3. Let α : T → Aut(A) be an action of the circle on a unital C∗-algebra A

with the Rokhlin property. Then its 6-term Pimsner-Voiculescu exact sequence induces the pure

299



extension

0 // K∗(Aα)
K∗(ι) // K∗(A) // K∗+1(Aα) // 0.

In particular, if either K0(A) or K1(A) is finitely generated, then both K0(A) and K1(A) are

finitely generated, and there are isomorphisms

K0(A) ∼= K1(A) ∼= K0(Aα)⊕K1(Aα)

such that the class of the unit [1A] ∈ K0(A) is sent to [(1Aα , 0)] ∈ K0(Aα)⊕K1(Aα).

Proof. Since α̌ is approximately inner, the 6-term Pimsner-Voiculescu exact sequence for α

reduces to the exact sequence

0 // K∗(Aα)
K∗(ι) // K∗(A) // K∗+1(Aα) // 0.

Now, it follows from Theorem VI.3.3 that this extension is pure.

To prove the second pat of the statement, assume, without loss of generality,, that K0(A)

is finitely generated. It follows from Theorem VI.3.3 that K0(Aα) is a direct summand of K0(A),

where the inclusion K0(Aα) → K0(A) is induced by the canonical inclusion Aα → A. Since the

factor K0(A)/K0(Aα) (with the above mentioned embedding) is isomorphic to K1(Aα) by the

Pimsner-Voiculescu exact sequence, it follows that there is an isomorphism K0(Aα) ⊕ K1(Aα) ∼=

K0(A). In particular, the groups K0(Aα) and K1(Aα) are finitely generated. The short exact

sequence

0→ K1(Aα)→ K1(A)→ K0(Aα)→ 0

forces K1(A) to be finitely generated as well. Another application of Theorem VI.3.3, together

with the short exact sequence above, yields an isomorphism K1(A) ∼= K1(Aα) ⊕ K0(Aα), as

desired.

Finally, since the unit of A belongs to Aα, it is clear that the isomorphism K0(A) ∼=

K0(Aα)⊕K1(Aα) sends the class of the unit of A in K0(A) to ([1Aα ], 0) in K0(Aα)⊕K1(Aα).
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Classification of Rokhlin Actions on Kirchberg Algebras

This section contains our main results concerning the classification of circle actions with the

Rokhlin property on Kirchberg algebras.

Definition IX.5.1. If A is a C∗-algebra and ϕ is an automorphism of A, we say that ϕ is

aperiodic, if ϕn is not inner for all n in N.

Recall that the center of a simple unital C∗-algebra is trivial.

Proposition IX.5.2. Let A be a simple unital C∗-algebra, and let ϕ be an automorphism of A.

Then ϕ is aperiodic if and only if Aoϕ Z is simple.

Proof. If ϕ is aperiodic, it follows from Theorem 3.1 in [156] that the crossed product A oϕ Z is

simple.

Conversely, suppose that there exist n in N and a unitary v in A such that ϕn = Ad(v). Set

w = vϕ(v) · · ·ϕn−1(v).

Then ϕn
2

= Ad(w), so ϕn
2

is also inner. Moreover, it follows from the fact that v is ϕn-invariant

that w is ϕ-invariant. With u denoting the canonical unitary in A oϕ Z that implements ϕ, we

have uwu∗ = w in Aoϕ Z. Set z = un
2

w∗. We claim that z is a unitary in the center of Aoα Z.

It is clear that z commutes with u, and for a in A we have

zaz∗ = un
2

w∗aw
(
un

2
)∗

= un
2

α−n
2

(a)
(
un

2
)∗

= a,

so the claim follows.

Since the center of A oα Z is trivial, there is a complex number λ with |λ| = 1 such

that un
2

= λw. In particular, un
2

belongs to A, which is a contradiction. This shows that ϕ is

aperiodic.

Definition IX.5.3. Let A and B be C∗-algebras, and let ϕ and ψ be automorphisms of A and

B respectively. We say that ϕ and ψ are KK-conjugate, if there exists an invertible element x in

KK(A,B) such that [1A]× x = [1B ] and KK(ψ) · x = x ·KK(ϕ).
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Theorem IX.5.4. Let A and B be unital Kirchberg algebras, and let α : T → Aut(A)

and β : T → Aut(B) be actions with the Rokhlin property. Denote by α̌ and β̌ the predual

automorphisms of α and β respectively. (See Theorem IX.2.6.) Then α and β are conjugate if

and only if α̌ and β̌ are KK-conjugate.

Proof. Assume that α and β are conjugate, and let θ : A → B be an isomorphism such that

θ ◦ αζ = βζ ◦ θ for all ζ in T. Then θ maps Aα onto Bβ . Denote by φ : Aα → Bβ the restriction of

θ to Aα. Then φ is an isomorphism, and KK(φ) is invertible in KK(Aα, Bβ).

Denote by u the canonical unitary in A ∼= Aα oα̌ Z that implements α̌, and likewise, denote

by v the canonical unitary in B ∼= Bβ oβ̌ Z that implements β̌. Set w = vθ(u)∗, which is a unitary

in B. We claim that w belongs to Bβ . To see this, note that if ζ belongs to T, then

βζ(w) = βζ(vθ(u)∗) = βζ(v)θ(αζ(u))∗ = ζvζθ(u)∗ = vθ(u)∗ = w,

which proves the claim.

Given a in Aα, we have

(Ad(w) ◦ φ ◦ α̌)(a) = w(θ(uau∗))w∗

= wθ(u)φ(a)θ(u)∗w∗

= vφ(a)v∗

= (Ad(v) ◦ φ)(a)

= (β̌ ◦ φ)(a).

In particular, φ ◦ α̌ and β̌ ◦ φ are unitarily equivalent, and thus KK(φ) is a KK-equivalence

between Aα and Bβ intertwining KK(α̌) and KK(β̌). This shows the “only if” implication.

Conversely, assume that α̌ and β̌ are KK-conjugate, and let x ∈ KK(Aα, Bβ) be an

invertible element implementing the equivalence. Since Aα and Bβ are Kirchberg algebras by

Corollary VII.4.11, it follows from Theorem 4.2.1 in [200] that there exists an isomorphism

φ : Aα → Bβ such that KK(φ) = x. Thus, φ ◦ α̌ ◦ φ−1 and β̌ determine the same class in

KK(Bβ , Bβ). Now, since A and B are simple, it follows from Proposition IX.5.2 that α̌ and β̌ are

aperiodic, and, consequently, they are cocycle conjugate by Theorem 5 in [187]. In particular,
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α̌ and β̌ are exterior conjugate. Finally, Proposition II.3.6 implies that the dual actions of α̌

and β̌, which are themselves conjugate to α and β, respectively, are conjugate. This finishes the

proof.

As a consequence, we can show that any two circle actions with the Rokhlin property on O2

are conjugate.

Corollary IX.5.5. Let α and β be circle actions with the Rokhlin property on O2. Then α and

β are conjugate.

Proof. The fixed point algebras (O2)α and (O2)β are Kirchberg algebras by Corollary VII.4.11,

have trivial K-theory by Theorem VI.3.3. They satisfy the UCT by Theorem VII.3.13, so we

conclude that they are isomorphic to O2 by classification. Moreover, KK(α̌) and KK(β̌) are both

trivial since KK(O2,O2) = 0. It follows from Theorem IX.5.4 that α and β are conjugate.

In the presence of the UCT, the invariant takes a more manageable form.

Theorem IX.5.6. Let A and B be unital Kirchberg algebras, and let α : T → Aut(A) and

β : T → Aut(B) be actions with the Rokhlin property. Denote by ιA : Aα → A and ιB : Bβ → B

the canonical inclusions. Then α and β are conjugate if and only if there are Z2-graded group

isomorphisms

ϕ∗ : K∗(A)→ K∗(B) and ψ∗ : K∗(A
α)→ K∗(B

β),

with ϕ0([1A]) = [1B ] and ψ0([1Aα ]) = [1Bβ ], such that the diagram

0 // Kj(A
α)

Kj(ιA) //

ψj

��

Kj(A) //

ϕj

��

K1−j(A
α) //

ψ1−j

��

0

0 // Kj(B
β)
Kj(ιB)

// Kj(B) // K1−j(B
β) // 0

is commutative for j = 0, 1.

Proof. We will check that the assumptions of this theorem imply the hypotheses of

Theorem IX.5.4.

Note that Aα and Aβ satisfy the UCT by Theorem VII.3.13. Denote by α̌ and β̌ the

predual automorphisms of α and β respectively. Then α̌ is approximately representable by
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Theorem IX.2.6, so it induces the identity map on K-theory. Consider the short exact sequence

0 // Ext(K∗(A
α),K∗+1(Aα))

ε // KK(Aα, Aα)
τ // Hom(K∗(A

α),K∗(A
α)) // 0,

coming from the UCT for the pair (Aα, Aα). Then τ(1 − KK(α̌)) = 0, and thus 1 − KK(α̌) is

represented by a class in Ext(K∗(A
α),K∗+1(Aα)). This extension is precisely the sum of the two

short exact sequences arising from the Pimsner-Voiculescu 6-term exact sequence (that one really

gets two short exact sequences follows from the fact that K∗(α̌) = 1). An analogous statement

holds for Bβ and β̌.

Using the UCT for Aα and Bβ , choose an invertible element x in KK(Aα, Bβ) such that

τ(x) = ψ∗. The assumptions on the maps ϕ0 and ϕ1 imply that x implements a KK-equivalence

between 1−KK(α̌) and 1−KK(β̌). Hence it also implements a KK-equivalence between KK(α̌)

and KK(β̌), and thus the result follows from Theorem IX.5.4 above.

Some Remarks

In this section, we describe a possible alternative approach to Theorem IX.5.4, bases on the

work of Bentmann-Meyer. We also motivate some connections with the second part of this work,

where we will study the continuous Rokhlin property for circle actions. Finally, we give some

indications of the difficulties of extending the results in this chapter to actions of other compact

Lie groups.

An alternative approach using Bentmann-Meyer’s work

In [9], Bentmann and Meyer use homological algebra to classify objects in triangulated

categories that have a projective resolution of length two. Starting with a certain homological

invariant, their results show that two objects with a projective resolution of length two can be

classified by the invariant together with a certain obstruction class in an Ext2-group computed

from the given invariant. Their methods apply to the triangulated category KKT of C∗-algebras

with a circle action, where morphisms are given by elements of the equivariant KK-theory, and

the homological invariant is equivariant K-theory. (R(T)-modules have projective resolutions of

length two, since the circle group has dimension one. In general, if G is a Lie group and T is any
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maximal torus, then the cohomological dimension of R(G) is rank(T ) + 1. See the comments below

Proposition 3.1 in [9].)

We compute the equivariant K-theory of a circle action with the Rokhlin property in the

proposition below. We show that for such actions, equivariant K-theory and K-theory of the

fixed point algebra are isomorphic as R(T)-modules (the latter carrying the trivial R(T)-module

structure), thus placing our results (particularly Theorem IX.5.6) in the homological algebra

context of Bentmann-Meyer’s work.

Proposition IX.6.1. Let A be a unital C∗-algebra and let α : T→ Aut(A) be an action with the

Rokhlin property. Then there is a natural R(T)-module isomorphism

Kα
∗ (A) ∼= K∗(A

α),

where the R(T)-module structure on K∗(A
α) is the trivial one.

Proof. Recall that R(T) ∼= Z[x, x−1]. By Julg’s Theorem (here reproduced as Theorem II.3.3),

there is a natural isomorphism Kα
∗ (A) ∼= K∗(A oα T), where the Z[x, x−1]-module structure

on K∗(A oα T) is determined by the dual action α̂, meaning that the action of x agrees with

the action of K∗(α̂). Now, α̂ is approximately inner by Theorem IX.2.6, so it induces the trivial

automorphism of the K-theory. This shows that the R(T)-module structure on Kα
∗ (A) is the

trivial one.

Finally, there is a natural isomorphism K∗(Aoα T) ∼= K∗(A
α) by Corollary IX.2.7.

Let A and B be unital C∗-algebras (not necessarily Kirchberg algebras), and let α : T →

Aut(A) and β : T → Aut(B) be circle actions with the Rokhlin property. Assume that α

and β belong to the equivariant bootstrap class. Bentmann and Meyer show (see Subsection

3.2 in [9]) that in this context, the actions α and β are KKT-equivalent if and only if there is

an isomorphism Kα
∗ (A) ∼= Kβ

∗ (B) that respects the elements in ExtZ(Kα
∗ (A),Kα

∗+1(A)) and

ExtZ(Kβ
∗ (B),Kβ

∗+1(B)) determined by α and β respecively.

It is shown in Proposition 3.1 in [9] that a circle action α : T → Aut(A) on a unital C∗-

algebra A belongs to the equivariant bootstrap class if and only if A and A oα T satisfy the

UCT. When α has the Rokhlin property, this is equivalent to Aα satisfying the UCT. Thus, the
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UCT assumptions in Theorem IX.5.6 amount to requiring the actions α and β there to be in the

equivariant bootstrap class.

We have not been able to identify the element in

ExtZ(Kα
∗ (A),Kα

∗+1(A)) ∼= ExtZ(K∗(A
α),K∗+1(Aα))

determined by α. However, we suspect that under the natural identifications, and up to a sign,

it must agree with the Ext class of its predual automorphism α̌. If this were true, we would have

proved the following.

Conjecture IX.6.2. Let A and B be separable, unital C∗-algebras and let α : T → Aut(A) and

β : T → Aut(B) be circle actions with the Rokhlin property. Assume that Aα and Bβ satisfy the

UCT. Then the following statements are equivalent:

1. The actions α and β are KKT-equivalent;

2. The automorphisms α̌ and β̌ are KK-conjugate;

3. There are group isomorphisms

ϕ∗ : K∗(A)→ K∗(B) and ψ∗ : K∗(A
α)→ K∗(B

β),

with ϕ0([1A]) = [1B ] and ψ0([1Aα ]) = [1Bβ ], such that the diagram

0 // Kj(A
α)

Kj(ιA) //

ψj

��

Kj(A) //

ϕj

��

K1−j(A
α) //

ψ1−j

��

0

0 // Kj(B
β)
Kj(ιB)

// Kj(B) // K1−j(B
β) // 0

is commutative for j = 0, 1.

If in the conjecture above, A and B are simple and nuclear, then the assumption that Aα

and Bβ satisfy the UCT is automatic by Theorem VII.3.13. In the general case, however, we do

not know whether this is the case. We formally raise this as a question:
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Question IX.6.3. Let A be a separable, unital C∗-algebra, and let α : T → Aut(A) be an action

with the Rokhlin property. If A satisfies the UCT, does it follow that Aα satisfies the UCT as

well?

Remark IX.6.4. If α is assumed to have the continuous Rokhlin property, then the result will be

shown to be true in Theorem IX.8.8. If one replaces the circle group T with a finite group, then

the resulting question has a positive answer in the nuclear case, as was shown in Corollary 3.9 in

[191].

A positive answer to Conjecture IX.6.2 would have the advantage of holding for arbitrary

separable, unital C∗-algebras A and B satisfying the UCT (not necessarily purely infinite, or even

simple). In order to recover Theorem IX.5.6 from it, it would be enough to show that under the

assumptions of Conjecture IX.6.2, if moreover A and B are Kirchberg algebras, then α and β are

conjugate if and only if they are KKT-equivalent via a KKT-equivalence that respects the classes

of the units. Corollary 4.2.2 in [200] (see also [150]) suggests that one may be able to prove this

directly, and maybe without even assuming that the actions have the Rokhlin property. We have,

however, not explored this direction any further.

Range of the invariant and related questions

We have shown in Theorem IX.5.4 that circle actions with the Rokhlin property on

Kirchberg algebras are completely determined, up to conjugacy, by the pair (Aα,KK(α̌)),

consisting of the fixed point algebra Aα together with the KK-class KK(α̌) of the predual

automorphism. However, we have not said anything about what pairs (B, x), consisting of

a Kirchberg algebra B and an invertible element x in KK(B,B), arise from circle actions

with the Rokhlin property as described above. There are no obvious restrictions on the C∗-

algebra B, while Theorem IX.2.6 shows that x must belong to the kernel of the natural map

KK(B,B) → KL(B,B). We do not know whether all such pairs are realized by a circle action

with the Rokhlin property.

Section IX.8 addresses this question, and provides a complete answer under the additional

assumption that the action have the continuous Rokhlin property. In Theorem IX.9.3, we show

that every pair (B, x) as above arises from a circle action with the continuous Rokhlin property

307



if and only if x = 1. In other words, the fixed point algebra is arbitrary and the predual

automorphism is an arbitrary KK-trivial aperiodic automorphism.

We also show in Proposition IX.9.6, that all circle actions with the continuous Rokhlin

property on Kirchberg algebras are “tensorially generated” by a specific one (which necessarily has

the continuous Rokhlin property).

Finally, in Section IX.8, we also provide a partial answer to Question IX.6.3, answering it

affirmatively whenever α has the continous Rokhlin property. See Theorem IX.8.8.

Beyond circle actions

We close this article by explaining what difficulties one may encounter when trying to

generalize the methods exhibited here to more general compact Lie group actions.

Bentmann-Meyer’s techniques depend heavily on the fact that R(T)-modules have

projective resolutions of length two, essentially because the circle has dimension one. While this

is also true for SU(2), it fails for other natural examples of compact Lie groups like the two-torus

T2, so their methods break down already in this case.

Our methods are no less dependent on low-dimensionality of the circle, though the

dependence is slightly more subtle. For example, already in dimension two, (C(T2), Lt) is not

equivariantly semiprojective (because C(T2) is not semiprojective), so Proposition IX.2.4,

and hence Theorem IX.2.6, will not be true in general. There is another instance where one-

dimensionality of the circle (or rather, the fact that its dual group Z has rank one) was used,

namely in the proof of Proposition IX.5.2. In fact, the corresponding statement for arbitrary

discrete abelian groups is not true: Example 4.2.3 of [199] shows that there exists an action ϕ of

Z2 × Z2 on M2, with M2 oϕ (Z2 × Z2) ∼= M4, and such that ϕ|Z2×{1} is inner. (For an example

on a UCT Kirchberg algebra, simply tensor with O∞ with the trivial action.) Moreover, the

classification of not necessarily pointwise outer actions of discrete groups (or even finite cyclic

groups!) on Kirchberg algebras is probably a very challenging task.

The conclusion seems to be that neither approach is likely to work for general compact

Lie groups, and that an eventual classification would require a rather different approach and

machinery.
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Circle Actions with the Continuous Rokhlin Property

The Rokhlin property, as in Definition IX.2.1, should be thought of as a “sequential”

Rokhlin property. Indeed, assume that A is a separable unital C∗-algebra and let α : T → Aut(A)

be an action with the Rokhlin property. Let (Fn)n∈N be an increasing family of finite subsets of A

whose union is dense in A, and for every εn = 1
n , choose a unitary un ∈ U(A) such that

– ‖αζ(un)− ζun‖ < 1
n for all ζ ∈ T, and

– ‖una− aun‖ < 1
n for all a ∈ Fn.

We thus obtain a sequence (un)n∈N of unitaries in A such that

1. lim
n→∞

‖αζ(un)− ζun‖ = 0 uniformly on ζ ∈ T,

2. lim
n→∞

‖una− aun‖ = 0 for all a ∈ A.

In fact, it is easy to show that if A is separable, then the Rokhlin property for α is equivalent to

the existence of a sequence of unitaries in A satisfying (1) and (2) above.

We will consider a strengthening of the Rokhlin property in which one asks for a continuous

path (ut)t∈[1,∞) of unitaries satisfying conditions analogous to (1) and (2) above. We call it the

continuous Rokhlin property, and present its precise definition below.

Definition IX.7.1. Let A be a unital C∗-algebra, and let α : T → Aut(A) be an action of T on

A. We say that α has the continuous Rokhlin property if there exists a continuous path (ut)t∈[1,∞)

of unitaries in A such that

1. lim
t→∞

‖αζ(ut)− ζut‖ = 0 uniformly on ζ ∈ T,

2. lim
t→∞

‖uta− aut‖ = 0 for all a ∈ A.

Remarks IX.7.2. We have the following easy observations:

1. It is immediate that if a circle action has the continuous Rokhlin property, then it has the

Rokhlin property.

2. It is also clear that condition (2) in Definition IX.7.1 is satisfied for all a in A if and only

if it is satisfied for all elements of some generating set. This easy observation will be used

repeatedly and without reference.
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In view of the first of the remarks above, an obvious question is whether the continuous

Rokhlin property is actually equivalent to the Rokhlin property. We address this question in detail

in Section IX.10. There, it is shown that, while this is indeed the case for certain classes of C∗-

algebras (see Corollary IX.10.2 and Proposition IX.10.5), it is not true in full generality, even on

Kirchberg algebras that satisfy the UCT (see Example IX.10.3 and Example IX.10.4).

We begin by developing some of the basic theory for actions satisfying the continuous

Rokhlin property.

Proposition IX.7.3. Let A be a unital C∗-algebra and let α : T→ Aut(A) be an action with the

continuous Rokhlin property. If β : T → Aut(B) is any action of T on a unital C∗-algebra B, then

the tensor product action ζ 7→ αζ ⊗ βζ of T on A ⊗ B, for any C∗-tensor product on which it is

defined, has the continuous Rokhlin property.

Proof. Choose a continuous path (ut)t∈[1,∞) of unitaries in A as in the definition of continuous

Rokhlin property for α. For t ∈ [1,∞), set vt = ut ⊗ 1, which is a unitary in A⊗B. For ζ ∈ T, we

have

‖(α⊗ β)ζ(vt)− ζvt‖ = ‖(αζ(ut)⊗ βζ(1))− ζ(ut ⊗ 1)‖ = ‖αζ(ut)− ζut‖,

and thus lim
t→∞

‖(α ⊗ β)ζ(vt) − ζvt‖ = 0 uniformly on ζ ∈ T, and condition (1) of Definition IX.7.1

is satisfied. To check condition (2), let x ∈ A ⊗ B and assume that x = a ⊗ b for some a in A and

some b in B. (Note that such elements generate A⊗B.) Then

‖vtx− xvt‖ = ‖(uta− aut)⊗ b‖ ≤ ‖uta− aut‖‖b‖ → 0

as t→∞. This finishes the proof.

Although we will not make use of the next proposition here, we present it to illustrate the

difference between the Rokhlin property and the continuous Rokhlin property. Some technical

condition seems to be necessary to show that the continuous Rokhlin property passes to direct

limits, although we do not have an example that shows that the result may fail otherwise. The

main difference with part (4) of Theorem VI.2.3, is that one cannot in general get a continuous

path of unitaries using a diagonal argument.
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Proposition IX.7.4. Let A be a unital C∗-algebra. Suppose that A = lim−→(An, ιn) is a direct

limit of unital C∗-algebras with unital maps, and that α : T → Aut(A) is an action obtained as

the direct limit of actions α(n) : T→ Aut(An), such that α(n) has the continuous Rokhlin property

for all n. For every n ∈ N, let (u
(n)
t )t∈[1,∞) be a continuous path of unitaries as in the definition

of continuous Rokhlin property for α(n). Assume that there exists a strictly increasing sequence

(tn)n∈N in [1,∞) with lim
n→∞

tn = ∞ such that ιn(u
(n)
tn ) = u

(n+1)
tn+1

for all n ∈ N. Then α has the

continuous Rokhlin property.

Proof. We define a continuous path (ut)t∈[1,∞) of unitaries in A via

ut =


ι1,∞(u

(1)
t ), for t ∈ [0, t1]

ι2,∞(u
(2)
t ), for t ∈ [t1, t2]

...

We claim that (ut)t∈[1,∞) is a continuous path of Rokhlin unitaries for α. It is easy to see that for

ζ ∈ T, we have

lim
t→∞

‖αζ(ut)− ζut‖ = 0

and that the convergence is uniform on ζ ∈ T. On the other hand, given a ∈ A and ε > 0, find

N ∈ N and b ∈ AN such that ‖ιN,∞(b)− a‖ < ε
2 . Then,

‖uta− aut‖ ≤ ‖uta− utιN,∞(b)‖+ ‖utιN,∞(b)− ιN,∞(b)ut‖+ ‖ιN,∞(b)ut − aut‖

< ε+ ‖utιN,∞(b)− ιN,∞(b)ut‖

and hence lim
t→∞

‖uta − aut‖ ≤ ε. Since ε is arbitrary, this proves the claim. This finishes the proof

of the proposition.

Example IX.7.5. Let α : T → Aut(C(T)) be the action by left translation. Then α has the

continuous Rokhlin property. Simply take ut(ζ) = ζ for all t ∈ [1,∞) and all ζ ∈ T.

The following example is similar to Example VI.2.8. Showing that it has the continuous

Rokhlin property requires some work. Unfortunately, we cannot apply Proposition IX.7.4 in this
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example since it is not clear how to choose the continuous paths of Rokhlin unitaries to satisfy its

hipotheses.

Example IX.7.6. For n ∈ N, let An = C(T) ⊗ M2n , which we identify with C(T,Mn)

when necessary. Consider the action α(n) : T → Aut(An) given by α(n)(ζ)(f)(w) = f(ζ−1w)

for ζ, w ∈ T and f in C(T,M2n). In other words, α(n) is the tensor product of the regular

representation of T with the trivial action on M2n . Then α(n) has the continuous Rokhlin

property by Proposition IX.7.3 and Example IX.7.5.

We construct a direct limit algebra A = lim−→(An, ιn) as follows. Fix a countable dense subset

X = {x1, x2, x3, . . .} ⊆ T. With fx(ζ) = f(x−1ζ) for f ∈ An, x ∈ X and ζ ∈ T, define maps

ιn : An → An+1 for n ∈ N, by

ιn(f) =

 f 0

0 fxn

 f ∈ An.

The limit algebra A = lim−→(An, ιn) is a simple unital AT-algebra.

Moreover, it is clear that
(
α(n)

)
n∈N induces a direct limit action α = lim−→α(n) of T on A.

We claim that α has the continuous Rokhlin property. For each n ∈ N, write xn = e2πisn for some

sn ∈ R. Define a homotopy H(n) : [0, 1]→M2n+1(C(T)) between ιn(z ⊗ 1M2n
) and z ⊗ 1M2n+1 by

H
(n)
t (ζ) =

 ζ 0

0 x−1
n e2πitsnζ

⊗ 1M2n

for all t ∈ [0, 1] and all ζ ∈ T. Note that H
(n)
t commutes with ιn(An) for all t ∈ [0, 1] and all

n ∈ N.
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Define a continuous path (ut)t∈[1,∞) of unitaries in A by

ut =



ι1,∞(u
(1)
t ), for t ∈ [0, 1

2 ]

ι2,∞(H
(1)
2t−1), for t ∈ [ 1

2 , 1]

ι2,∞(u
(2)
t ), for t ∈ [1, 3/2]

ι3,∞(H
(2)
2t−3), for t ∈ [3/2, 2]

...

We claim that (ut)t∈[1,∞) is a continuous path of Rokhlin unitaries for α. It is easy to

check that αζ(ut) = ζut for all ζ ∈ T and all t ∈ [1,∞), since this is true for each of the paths(
u

(n)
t

)
t∈[1,∞)

and for each of the homotopies H(n), for n in N. On the other hand, given a ∈ A

and ε > 0, find N ∈ N and b ∈ AN such that ‖ιN,∞(b)− a‖ < ε
2 . Then

‖utιN,∞(b)− ιN,∞(b)ut‖ = 0

for every t ≥ N + 1, since all of the images of the homotopies H(n) and all of the unitaries

(u
(n)
t )t∈[1,∞), for n ≥ N + 1, commute with the image of AN in An. The rest is a routine

application of the triangle inequality:

‖uta− aut‖ ≤ ‖uta− utιN,∞(b)‖+ ‖utιN,∞(b)− ιN,∞(b)ut‖+ ‖ιN,∞(b)ut − aut‖

< ε+ ‖utιN,∞(b)− ιN,∞(b)ut‖

and hence lim
t→∞

‖uta− aut‖ ≤ ε. Since ε is arbitrary, this proves the claim.

The next result should be thought of as asserting that the action of T on C(T) by left

translation is continuously equivariantly semiprojective, in an appropriate sense which we do not

make explicit here.

Proposition IX.7.7. Let A be a unital C∗-algebra and let α : T → Aut(A) be a continuous

action. Then α has the continuous Rokhlin property if and only if there exists a continuous path

(ut)t∈[1,∞) of unitaries in A such that

1. αζ(ut) = ζut for all ζ ∈ T and all t ∈ [1,∞).
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2. lim
t→∞

‖uta− aut‖ = 0 for all a ∈ A.

The definition of the continuous Rokhlin property differs in that in condition (1), one only

requires lim
t→∞

‖αζ(ut)− ζut‖ = 0 uniformly on ζ ∈ T.

Proof. Choose a path (vt)t∈[1,∞) of unitaries in A as in the definition of the continuous Rokhlin

property. Without loss of generality, we may assume that ‖αζ(vt)− ζvt‖ < 1
3 for all ζ in T and all

t in [1,∞). Denote by µ the normalized Haar measure on T, and for t in [1,∞), set

xt =

∫
T
ζαζ(vt) dµ(ζ).

Given t in [1,∞), one checks that ‖xt‖ ≤ 1 and ‖xt − vt‖ ≤ 1
3 . Thus ‖x∗txt − 1‖ < 1, so x∗txt is

invertible. Set ut = xt(x
∗
txt)

− 1
2 , which is a unitary in A.

For ζ in T and t in [1,∞), it is immediate to check that αζ(xt) = ζxt, and thus αζ(ut) =

ζut. An application of the triangle inequality shows that lim
t→∞

‖uta − aut‖ = 0 for all a in A.

Finally,

‖xt − xs‖ =

∥∥∥∥∫
T
ζαζ(vt − vs) dµ(ζ)

∥∥∥∥ ≤ ‖vt − vs‖
for all t and s in [1,∞), which shows that the map t 7→ xt is continuous. This proves that t 7→ ut

is also continuous, and hence the path (ut)t∈[1,∞) satisfies conditions (1) and (2) of the statement.

We turn to duality.

Definition IX.7.8. Let B be a C∗-algebra and let β be an automorphism of B. We say that β is

asymptotically representable if there exists a continuous path (ut)t∈[1,∞) of unitaries in M(B) such

that

1. lim
t→∞

‖β(b)− utbu∗t ‖ = 0 for all b ∈ B, and

2. lim
t→∞

‖β(ut)− ut‖ = 0.

Remarks IX.7.9. We have the following easy observations:

1. It is immediate that if an automorphism is asymptotically representable, then it is

asymptotically inner and approximately representable.
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2. It is also clear that condition (2) in Definition IX.7.8 is satisfied for all b in B if and only

if it is satisfied for all elements of some generating set. This easy observation will be used

repeatedly and without reference.

Remark IX.7.10. Let B be a C∗-algebra and let β be an automorphism of B. One can easily

show that β is asymptotically representable if and only if there exists a unitary v in

Cb([1,∞),M(B)β)/C0([1,∞),M(B)β)

such that β(b) = vbv∗ for all b in B. We leave the proof as an exercise for the reader. We point

out that one does not need to assume the C∗-algebra B to be separable.

We proceed to show that asymptotic representability is the notion dual to the continuous

Rokhlin property, in complete analogy with the duality between the Rokhlin property and

approximate representability.

Proposition IX.7.11. Let B be a unital C∗-algebra and let β be an automorphism of B.

Consider the dual action β̂ : T → Aut(B oϕ Z) of T on the crossed product. Then β is

asymptotically representable if and only if β̂ has the continuous Rokhlin property.

Proof. Assume that β is asymptotically representable. Let (ut)t∈[1,∞) be a continuous path of

unitaries in B satisfying

lim
t→∞

‖β(b)− utbu∗t ‖ = 0 for all b ∈ B and lim
t→∞

‖β(ut)− ut‖ = 0.

Denote by v the canonical unitary in B oβ Z that implements β. For t ∈ [1,∞), set wt = u∗t v,

which is a unitary in B oβ Z. Moreover, for ζ in T we have β̂ζ(wt) = ζwt, so condition (1)

of Definition IX.7.1 is satisfied for β̂ with (wt)t∈[1,∞). To check condition (2), it is enough to

consider a ∈ B ∪ {v}. For a in B, we have

wtaw
∗
t = u∗t vav

∗ut = u∗tβ(a)ut →t→∞ β−1(β(a)) = a,

and hence lim
t→∞

‖wta− awt‖ = 0, as desired. Finally,

‖wtvw∗t − v‖ = ‖u∗t vut − v‖ = ‖vutv∗ − ut‖ = ‖β(ut)− ut‖ →t→∞ 0.
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We conclude that β̂ has the continuous Rokhlin property.

Conversely, assume that β̂ has the continuous Rokhlin property. Use Proposition IX.7.7 to

choose a continuous path (wt)t∈[1,∞) of unitaries in B oβ Z such that

– β̂ζ(wt) = wt for all ζ in T and all t in [1,∞);

– lim
t→∞

‖wta− awt‖ = 0 for all a in B oβ Z.

For t in [1,∞), set ut = vw∗t , which is a unitary in B oβ Z. We claim that ut belongs to B. For ζ

in T, we have β̂ζ(ut) = ut, so ut belongs to (B oβ Z)β̂ = B, as desired.

For b in B, we have

‖utbu∗t − β(b)‖ = ‖vw∗t bwtv∗ − vbv∗‖ = ‖w∗t bwt − b‖ →t→∞ 0.

It follows that the continuous path (ut)t∈[1,∞) of unitaries in B satisfies the conditions of

Definition IX.7.8, and hence β is asymptotically representable.

Proposition IX.7.12. Let A be a unital C∗-algebra, and let α : T → Aut(A) be a

continuous action. Then α has the continuous Rokhlin property if and only if α̂ is asymptotically

representable.

We point out thet we do not require A to be separable, unlike in Theorem VI.4.2.

Proof. Assume that α has the continuous Rokhlin property. By Theorem IX.2.6, there are an

approximately representable automorphism θ of Aα and an isomorphism between A oθ Z and

A that intertwines the dual action of θ and α. Denote by λ : T → U(B(L2(T))) the left regular

representation of T. Since
̂̂
θ is conjugate to θ ⊗ (Ad ◦ λ), it follows that

̂̂
θ is asymptotically

representable as well. The result now follows since
̂̂
θ is conjugate to α̂.

The converse is analogous, and is left to the reader.

The next proposition will not be needed until the following section. In contrast to

Lemma IX.7.14, the analogous result for an infinite tensor product is probably not true, although

we do not have a counterexample.

Proposition IX.7.13. Let A and B be unital C∗-algebras, let ϕ ∈ Aut(A) and ψ ∈ Aut(B) be

asymptotically representable automorphisms of A and B, respectively. Then the automorphism

ϕ⊗ ψ of A⊗B, for any tensor product on which it is defined, is asymptotically representable.
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Proof. Let (ut)t∈[1,∞) and (vt)t∈[1,∞) be two continuous paths of unitaries in A and B satisfying

the conditions in Definition IX.7.8 for ϕ and ψ respectively. For each t ∈ [1,∞), set wt = ut ⊗ vt.

Then wt is a unitary in A ⊗ B for all t, and moreover t 7→ wt is continuous. We claim that

(wt)t∈[1,∞) is the desired path of unitaries for ϕ⊗ ψ. We have

lim sup
t→∞

‖(ϕ⊗ ψ)(ut ⊗ vt)− ut ⊗ vt‖ ≤ lim
t→∞

(‖ϕ(ut)− ut‖+ ‖ψ(vt)− vt‖) = 0,

so condition (1) is satisfied. In order to check condition (2), let x ∈ A ⊗ B. Since A and B are

unital, it follows that A⊗B is generated by the set

{a⊗ 1: a ∈ A} ∪ {1⊗ b : b ∈ B}.

We may therefore assume that x = a⊗ 1 for some a in A. Then

‖(ϕ⊗ ψ)(x)− wtxw∗t ‖ = ‖ϕ(a)⊗ 1− utau∗t ⊗ 1‖ = ‖ϕ(a)− utau∗t ‖ →t→∞ 0,

which completes the proof.

For the sake of comparison and for later use, we show next that the tensor product of

countably many approximately representable automorphisms is again approximately representable.

Lemma IX.7.14. Let (An)n∈N be a sequence of unital C∗-algebras. For each n ∈ N, let

ϕn ∈ Aut(An) be an approximately representable automorphism, and let ϕ be the product type

automorphism ϕ =
∞⊗
n=1

ϕn of A =
∞⊗
n=1

An, for any tensor product on which it is defined. Then ϕ is

approximately representable.

Proof. Let ε > 0 and let F ⊆ A be a finite set. With m = card(F ), write F = {a1, . . . , am}. Find

N ∈ N and a′1, . . . , a
′
m in the finite tensor product

N⊗
j=1

An such that ‖ak − a′k‖ < ε
4 for all k =

1, . . . ,m. Moreover, for each k = 1, . . . ,m, find a positive integer Lk ∈ N and a
(k,j)
1 , . . . , a

(k,j)
Lk

∈ Aj

for j = 1, . . . , N , satisfying

∥∥∥∥∥a′k −
Lk∑
`=1

a
(k,1)
` ⊗ a(k,2)

` ⊗ · · · ⊗ a(k,N)
`

∥∥∥∥∥ < ε.
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Set

K = max
{∥∥∥a(k,j)

`

∥∥∥ : k = 1, . . . ,m, j = 1, . . . , N, ` = 1, . . . , Lk

}
.

For each j = 1, . . . , N , choose a unitary uj ∈ U(Aj) such that

–
∥∥∥ϕj(a(k,1)

` )− uja(k,1)
` u∗j

∥∥∥ < ε
2NKN−1+2

for all ` = 1, . . . , Lk and for all k = 1, . . . ,m,

– ‖ϕj(uj)− uj‖ < ε
2NKN−1+2

.

Set u = u1 ⊗ · · · ⊗ uN ⊗ 1⊗ · · · ∈ U(A). For j = 1, . . . ,m we have

‖ϕ(aj)− uaju∗‖ ≤
∥∥ϕ(aj)− ϕ(a′j)

∥∥+
∥∥ϕ(a′j)− ua′ju∗

∥∥+
∥∥ua′ju∗ − uaju∗∥∥

≤ ε

2
+

∥∥∥∥∥ϕ(a′j)− ϕ

(
Lk∑
`=1

a
(k,1)
` ⊗ a(k,2)

` ⊗ · · · ⊗ a(k,N)
`

)∥∥∥∥∥
+

∥∥∥∥∥ϕ
(
Lk∑
`=1

a
(k,1)
` ⊗ a(k,2)

` ⊗ · · · ⊗ a(k,N)
`

)

−u

(
Lk∑
`=1

a
(k,1)
` ⊗ a(k,2)

` ⊗ · · · ⊗ a(k,N)
`

)
u∗

∥∥∥∥∥
≤ ε

2
+

ε

2NKN−1 + 2
+NKN−1 ε

2NKN−1 + 2

= ε.

Moreover, a repeated use of the triangle inequality yields

‖ϕ(u)− u‖ = ‖ϕ1(u1)⊗ · · · ⊗ ϕN (uN )− u1 ⊗ · · · ⊗ uN‖

< N
ε

2NKN−1 + 2
< ε.

Hence, u is an approximately fixed implementing unitary for ϕ, and thus ϕ is approximately

representable.

Corollary IX.7.15. Let (An)n∈N be a sequence of unital C∗-algebras. For each n ∈ N, let un be

a unitary in An. Let ϕ be the product type automorphism ϕ =
∞⊗
n=1

Ad(un) of A =
∞⊗
n=1

An, for any

tensor product on which it is defined. Then ϕ is approximately representable.

Proof. This follows from Lemma IX.7.14 and the fact that inner automorphisms are

approximately representable.
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We return to the main development of the section. The example constructed in

Theorem IX.7.17 below will be needed in the proof of Theorem IX.9.3 to show that every possible

value of the equivariant K-theory can be realized by an action with the continuous Rokhlin

property. We introduce a definition from [187] first.

Definition IX.7.16. (See Theorem 1 in [187].) Let A be a unital C∗-algebra and let ϕ be an

automorphism of A. We say that ϕ has the Rokhlin property if for every ε > 0, for every finite

subset F ⊆ A and for every N ∈ N, there exist projections e0, . . . , eN−1 and f0, . . . , fN in A such

that

1.
N−1∑
j=0

ej +
N∑
k=0

fj = 1

2. ‖eja− aej‖ < ε and ‖fka− afk‖ < ε for all j = 0, . . . , N − 1, for all k = 0, . . . , N and for all

a ∈ F .

3. ‖ϕ(ej)− ej+1‖ < ε and ‖ϕ(fk)− fk+1‖ < ε for all j = 0, . . . , N − 1 and for all k = 0, . . . , N ,

where eN is taken to be e0 and fN+1 is taken to be f0.

It is easy to show that an automorphism with the Rokhlin property is aperiodic, meaning

that none of its powers is inner. In [187], Nakamura showed that an automorphism of a unital

Kirchberg algebra is aperiodic if and only if it has the Rokhlin property.

Theorem IX.7.17. There is an approximately representable automorphism ψ of O∞ with

the Rokhlin property (and in particular, aperiodic by the comments above). Moreover, the

automorphism ψ can be chosen to be asymptotically representable.

Proof. For every n ∈ N, choose a unital embedding ϕn : Mn ⊕Mn+1 ↪→ O∞ such that if e ∈ Mn

and f ∈ Mn+1 are rank one projections, then ϕn((e, 0)) = p with [p] = 1 in K0(O∞) ∼= Z and

ϕn((0, f)) = q with [q] = −1 in K0(O∞). Consider the permutation unitary

u(1)
n =



0 1 0 · · · 0 0

0 0 1 · · · 0 0

0 0 0
. . . 0 0

...
...

...
. . .

. . .
...

0 0 0 · · · 0 1

1 0 0 · · · 0 0


∈Mn.
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Then un = ϕn

(
u

(1)
n , u

(1)
n+1

)
is a unitary in O∞ with the property that there are two towers

e0, . . . , en−1 and f0, . . . , fn of projections in ϕn(Mn ⊕ 0) ⊆ O∞ and ϕn(0 ⊕ Mn+1) ⊆ O∞,

respectively, such that

1.
n−1∑
j=0

ej +
n∑
k=0

fk = 1,

2. with en = e0, we have Ad(un)(ej) = ej+1 for all j = 0, . . . , n− 1, and

3. with fn+1 = f0, we have Ad(un)(fk) = fk+1 for all k = 0, . . . , n.

Set ϕ =
∞⊗
n=1

Ad(un), which defines an automorphism of
∞⊗
n=1
O∞ ∼= O∞. We claim that

ϕ is aperiodic (and hence has the Rokhlin property thanks to Nakamura’s result). Assume that

ϕm = Ad(u) for some m ∈ N and some u ∈ U
( ∞⊗
n=1
O∞

)
. Given ε < 1, let M ∈ N and

v ∈ U
(
O⊗M∞

)
such that ‖u − v‖ < ε. Choose N > max{m,M} and find towers e0, . . . , eN−1 and

f0, . . . , fN of nonzero projections in O∞ such that, with

e′j = 1⊗ · · · ⊗ 1⊗ ej ⊗ 1⊗ · · · ∈
∞⊗
n=1

O∞ and f ′k = 1⊗ · · · ⊗ 1⊗ fk ⊗ 1⊗ · · · ∈
∞⊗
n=1

O∞

for j = 0, . . . , N − 1 and for k = 0, . . . , N , the following hold:

1.
n−1∑
j=0

e′j +
n∑
k=0

f ′k = 1,

2. with e′n = e′0, we have ϕ(e′j) = e′j+1 for all j = 0, . . . , n− 1, and

3. with f ′n+1 = f ′0, we have ϕ(f ′k) = f ′k+1 for all k = 0, . . . , n.

In particular,

ϕm(e′0) = e′m−1 and e′0e
′
m−1 = 0.

It moreover follows that e′0 and e′m−1 commute with v, and hence

2 = ‖e′0 − e′m−1‖ = ‖e′0 − ue′0u∗‖ ≤ ‖e′0 − ve′0v∗‖+ 2‖u− v‖ = 2ε < 2,

which is a contradiction. This shows that ϕm is not inner. Since m is arbitrary, it follows that ϕ

is aperiodic.

Since ϕ is the direct limit of the inner automorphisms ϕk = Ad

(
k⊗

n=1
un

)
for k in N, it

follows from Corollary IX.7.15 that it is approximately representable.
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Finally, we claim that ϕ is asymptotically representable. For n ∈ N, set ũn = u1 ⊗ · · · ⊗

un, which is a unitary in O∞. Note that ϕ = lim−→Ad(ũn) and that ϕ(ũn) = ũn for all n ∈ N.

Thus, in order to show that ϕ is asymptotically representable, it will be enough to show that for

each n ∈ N, the unitary ũn can be connected to ũn+1 by a path of unitaries within the fixed

point algebra of ϕ. For this, it will be enough to show that each un is connected to the unit of

O∞ within ϕn (Mn ⊕Mn+1) by a path of unitaries that are fixed by Ad(un), that is, a path of

unitaries that commute with un. It is easily seen that the set of elements in Mn ⊕Mn+1 which

commute with
(
u

(1)
n , u

(1)
n+1

)
is isomorphic to Cn⊕Cn+1. Since the unitary group of this C∗-algebra

is connected, this shows that ϕ is asymptotically representable.

Remark IX.7.18. Adopt the notation of Theorem IX.7.17 above. Using the Pimsner-Voiculescu

exact sequence for ψ, the K-theory of O∞ oψ Z is easily seen to be

K0(O∞ oψ Z) ∼= K1(O∞ oψ Z) ∼= Z,

with [1O∞oψZ] = 1 in K0(O∞ oψ Z).

Corollary IX.7.19. Let A be a unital C∗-algebra such that A ⊗ O∞ ∼= A. Then there exists a

asymptotically representable, aperiodic automorphism of A.

Proof. Let φ : A ⊗ O∞ → A be an isomorphism. Use Theorem IX.7.17 to choose an

asymptotically representable, aperiodic automorphism ψ of O∞. Proposition IX.7.13 then shows

that φ ◦ (idA ⊗ ψ) ◦ φ−1 is an asymptotically representable automorphism of A, and it is clearly

aperiodic.

Proposition IX.7.20. Let A be a unital Kirchberg algebra, and let ϕ be an aperiodic, KK-

trivial automorphism of A. Then ϕ is asymptotically representable and its dual action is an action

of the circle on a unital Kirchberg algebra with the continuous Rokhlin property. Moreover, any

two such automorphisms are cocycle conjugate.

Proof. Most of the work has already been done. Since A absorbs O∞ by Theorem 3.15 in [151],

we can use Corollary IX.7.19 to choose an asymptotically representable, aperiodic automorphism

ψ of A. It follows from Theorem 5 in [187] that ϕ and ψ are cocycle conjugate, and hence ϕ is

asymptotically representable. It follows from Proposition IX.7.11 that the dual action of ϕ has
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the continuous Rokhlin property. Finally, it is well-known that crossed products by aperiodic

automorphisms preserve unital Kirchberg algebras. (See Corollary 4.6 in [135], here reproduced as

part (2) of Theorem II.2.8, for preservation of pure infiniteness in the simple case.)

Uniqueness up to conjugacy follows from Theorem 5 in [187].

Asymptotic Homomorphisms, K-theoretical Obstructions and the

Universal Coefficient Theorem

The goal of this section is to prove two crucial results. First, we will show in

Corollary IX.8.5 that if A is a separable, unital C∗-algebra, and α : T → Aut(A) is an action

with the continuous Rokhlin property, then there are isomorphisms

K0(A) ∼= K1(A) ∼= K0(Aα)⊕K1(Aα).

(Compare with Theorem IX.4.3, where we only assumed that the action has the Rokhlin property,

but where some assumptions on K∗(A) were needed.) Second, we will show that, under the

same assumptions, the C∗-algebra A satisfies the UCT if and only if Aα satisfies the UCT; see

Theorem IX.8.8. Both results will follow from the existence of an asymptotic morphism A → Aα

which is a left inverse for the canonical inclusion Aα → A at the level of KK-theory. See

Theorem IX.8.3 below. We therefore begin by recalling the definition of asymptotic morphisms

from [31], and that of a completely positive contractive asymptotic morphism from [130].

Definition IX.8.1. Let A and B be C∗-algebras. An asymptotic morphism from A to B, is a

family ψ = (ψt)t∈[1,∞) of maps ψt : A→ B, satisfying the following conditions:

1. For every a in A, the map [1,∞)→ B given by t 7→ ψt(a) is continuous.

2. For every λ in C and every a and b in A, we have

lim
t→∞

‖ψt(λa+ b)− λψt(a)− ψt(b)‖ = 0,

lim
t→∞

‖ψt(ab)− ψt(a)ψt(b)‖ = 0, and lim
t→∞

‖ψt(a∗)− ψt(a)∗‖ = 0.
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Let ψ = (ψt)t∈[0,∞) : A → B be an asymptotic morphism. We say that ψ is completely

positive (respectively, unital, or contractive), if there exists t0 ∈ [0,∞) such that ψt is completely

positive (respectively, unital, or contractive) for all t ≥ t0.

It is clear that a unital, completely positive asymptotic morphism is contractive.

Remark IX.8.2. E-theory was introduced by Connes and Higson in [31], using a suitable

equivalence between asymptotic morphisms between C∗-algebras. Despite coinciding when the

first variable is nuclear, E-theory and KK-theory do not in general agree. Even more, there are

C∗-algebras that satisfy the UCT in E-theory, but do not satisfy the UCT (in KK-theory); see

[252] (we are thankful to Rasmus Bentmann for providing this reference).

On the other hand, Theorem 4.2 in [130] asserts that if one only considers completely

positive contractive asymptotic morphisms, and carries out the construction used to define E-

theory, the object one obtains is canonically isomorphic to KK-theory. We will use this fact in

Corollary IX.8.4.

It should be pointed out that the arguments in this section can be simplified if one is only

interested in nuclear C∗-algebras, since in this case E-theory agrees with KK-theory. In fact,

in [257], Szábo has provided a shorter proof of the implication (1) ⇒ (2) of Theorem IX.8.8

under the additional assumption that the algebra A be nuclear. (The extra condition is needed

to deduce the UCT from the E-theoretic version of the UCT.)

Our approach, despite being more technical, requires only minimal assumptions. Moreover,

some of the arguments are needed elsewhere.

Given a real number t, we denote

btc = max{n ∈ Z : n ≤ t}.

Theorem IX.8.3. Let A be a unital separable C∗-algebra and let α : T → Aut(A) be an action

with the continuous Rokhlin property. Denote by ι : Aα → A the canonical inclusion. Then there

exists a unital completely positive asymptotic morphism ψ = (ψt)t∈[0,∞) : A→ Aα satisfying

lim
t→∞

‖(ψt ◦ ι)(a)− a‖ = 0
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for all a in Aα.

Proof. Let (Fn)n∈N be an increasing family of compact subsets of A such that
⋃
n∈N

Fn is dense in

A. Upon replacing Fn with
⋃
ζ∈T

αζ(Fn), we may assume that Fn is invariant under α for all n in N.

Fix t in [0,∞), and choose δt > 0 such that whenever ζ1 and ζ2 in T satisfy |ζ1 − ζ2| < δt, then

‖αζ1(a)− αζ2(a)‖ < 1

2t

for all a in Fbtc. Let Nt be a positive integer such that Nt >
2
δt

and let f (t) be a continuous

function on T whose support is contained in the interval of radius 1
Nt

around 1 and such that

– 0 ≤ f (t) ≤ 1;

– With ζ
(t)
j = e

2πij
Nt for j = 0, . . . , Nt − 1, set f

(t)
j = Lt

ζ
(t)
j

(f (t)). Then the family
{
f

(t)
j

}Nt−1

j=0
is

a partition of unity on T.

We assume further that the graph of the function f (t) is a symmetric triangle whose base is

centered at 1. This assumption is not strictly necessary, but it is made to give an explicit

description of the relevant homotopy below.

Use Proposition IX.7.7 to find a continuous path (us)s∈[1,∞) of unitaries in A such that

– αζ(us) = ζus for all ζ in T and all s in [0,∞);

– lim
s→∞

‖usa− aus‖ = 0 for all a in A.

Fix t in [1,∞), and choose st in [0,∞) satisfying

∥∥∥f (t)(ust)a− af (t)(ust)
∥∥∥ < 1

t
and

∥∥∥(f (t))
1
2 (ust)a− a(f (t))

1
2 (ust)

∥∥∥ < 1

t

for all a in Fbtc. Abbreviate ust to u(t) = ust .

Denote by µ the normalized Lebesgue measure on T, and by E : A → Aα the standard

conditional expectation, which is given by

E(a) =

∫
T
αζ(a) dµ(ζ)
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for all a in A. Define a unital completelyi positive linear map σt : A→ Aα by

σt(a) = E

Nt−1∑
j=0

f
(t)
j (u(t))

1
2α

ζ
(t)
j

(a)f
(t)
j (u(t))

1
2


for all a in A. By Theorem IX.3.3, we have

‖σt(ab)− σt(a)σt(b)‖ <
1

t
(‖a‖+ ‖b‖+ 3) (IX.3)

for all a and b in Fbtc.

Note that for all λ in C and for all a and b in A, we have

σt(λa+ b) = λσt(a) + σt(b) and σt(a
∗) = σt(a)∗

for all t in [0,∞), and

lim
t→∞

‖σt(ab)− σt(a)σt(b)‖ = 0.

Hence, condition (2) in Definition IX.8.1 is satisfied. However, condition (1) is not in general

satisfied for the family (σt)t∈[0,∞), so we cannot conclude that σ is an asymptotic homomorphism.

The strategy will be to “keep” σt for integer t, which will be denoted by ψn for n in N, and

connect these by taking homotopies of the corresponding partitions of unity (f
(n)
j )Nn−1

j=0 in such a

way that the multiplicativity of the intermediate averages is controlled by the multiplicativity of

the averages at the endpoints.

We make this argument rigorous as follows. Note that for each n in N, if one replaces

Nn by a larger integer and takes another partition of unity as above for the larger integer, then

the resulting positive linear map satisfies the inequality in (Equation IX.3) for all a in Fbtc, by

Theorem IX.3.3. We may therefore assume, for simplicity of the argument, that Nn is a power of

two, and that Nn divides Nn+1 for every n in N.

Fix n in N. We will construct a homotopy between the linear maps ψn and ψn+1. Since

Nn+1/Nn is a multiple of 2, we may assume, without loss of generality, that Nn+1 = 2Nn. In the

general case, if Nn+1/Nn = 2k, then one divides the interval [0, 1] in k − 1 intervals, and performs

k homotopies of the same kind as the one we will perform below.
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The partition of unity of T corresponding to ψn+1 has 2Nn functions, so the idea will be to

construct a homotopy that “splits”, in a controlled way, each of the Nn functions appearing in the

formula for ψn, into two of the functions that appear in the formula of ψn+1. To be more precise,

for j = 0, . . . , 2Nn − 1, set ζj = e
2πij
Nn , and for k = 0, . . . , 2Nn − 1, set ζ ′k = e

2πij
2Nn . (We will not

include n explicitly in the notation for the circle elements ζj and ζ ′k because n is fixed.) With

{
f

(n)
0 , f

(n)
1 , . . . , f

(n)
Nn−1

}
and

{
f

(n+1)
0 , f

(n+1)
1 , . . . , f

(n+1)
2Nn−1

}

denoting the partitions of unity corresponding to ψn and ψn+1, respectively, we will construct

“controlled” homotopies

f
(n)
0 (u(n))αζ0(a) ∼

(
f

(n+1)
0 (u(n+1))αζ′0(a) + f

(n+1)
1 (u(n+1))αζ′1(a)

)
,

and similarly with the other functions appearing in the formula for ψn. What we mean by

“controlled” is that the resulting path t 7→ ψt, for t in [1,∞), will be an asymptotic morphism.

It is enough to find homotopies

1

2
f

(n)
0 (u(n))αζ0(a) ∼h f (n+1)

0 (u(n+1))αζ′0(a) and

1

2
f

(n)
0 (u(n))αζ0(a) ∼h f (n+1)

1 (u(n+1))αζ′1(a),

since the other ones will be obtained by translating appropriately. The assumption that the

graphs of the functions f (n) and f (n+1) are symmetric triangles centered at 1 implies that the

identity f (n+1)(ζ) = f (n)(ζ2) holds for all ζ in T. We define a homotopy H : [0, 1] × T → T with

H(0, ζ) = 1
2f

(n)(ζ) and H(1, ζ) = f (n+1)(ζ) for ζ in T, by

H(s, ζ) =
s+ 1

2
f (n)(ζs+1)

for s in [0, 1] and ζ in T. Let G : [0, 1] × T → T satisfying G(0, ζ) = 1
2f

(n)(ζ) and G(1, ζ) =

f
(n+1)
1 (ζ) for ζ in T, be constructed analogously (for fixed s, the function ζ 7→ G(s, ζ) will be an

appropriate translate of ζ 7→ H(s, ζ)). Now, for t in [n, n + 1], denote by Ht : T → T the function

given by Ht(ζ) = H(t − n, ζ) for ζ in T, and similarly for Gt. For j = 0, . . . , 2Nn − 1, denote by

ζ
(t)
j the center of the support of LtζjGt, and note that t 7→ ζ

(t)
j is a path from ζj to ζ ′2j+1. For t in
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[n, n+ 1] and a in A, define

ψt(a) = E

2Nn−1∑
j=0

(LtζjHt)(u
(t))

1
2αζj (a)(LtζjHt)(u

(t))
1
2

+

2Nn−1∑
j=0

(LtζjGt)(u
(t))

1
2α

ζ
(t)
j

(a)(LtζjGt)(u
(t))

1
2

 .

It is clear that each ψt is unital and completely positive.

We claim that the family ψ = (ψt)t∈[1,∞) is an asymptotic homomorphism in the sense of

Definition IX.8.1.

Fix t in [n, n + 1]. To check approximate multiplicativity, we will verify the hypotheses of

Theorem IX.3.3. Note that the family

{
LtζjHt : j = 0, . . . , 2Nn − 1

}
∪
{
LtζjGt : j = 0, . . . , 2Nn − 1

}
is a partition of unity of T. Moreover, (LtζjHt)(ζ) 6= 0 implies |ζ − ζj | < 2

δn
, and similarly

(LtζjGt)(ζ) 6= 0 implies |ζ − ζ
(t)
j | < 2

δn
. It follows from the choices of δn and u(t), and from

Theorem IX.3.3, that

‖ψt(ab)− ψt(a)ψt(b)‖ <
1

n
(‖a‖+ ‖b‖+ 3)

for all a and b in Fn. In particular,

lim
t→∞

‖ψt(ab)− ψt(a)ψt(b)‖ = 0

for all a and b in A. We conclude that ψ = (ψt)t∈[0,∞) is an asymptotic homomorphism.

It remains to check that ψ is a left inverse of the canonical inclusion of Aα into A. Note

first that

lim
t→∞

‖au(t) − u(t)a‖ = 0

for all a in A. Hence, the difference in norm between ψt(a) and

E

2Nn−1∑
j=0

(LtζjHt)(u
(t))αζj (a) +

2Nn−1∑
j=0

(LtζjGt)(u
(t))α

ζ
(t)
j

(a)
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is negligible as t becomes arbitrarily large, for any a in A. Since the expresion above equals a

whenever a is fixed by α, it follows that

lim
t→∞

‖(ψ ◦ ι)(a)− a‖ = 0

for a in Aα, which concludes the proof.

Corollary IX.8.4. Let A be a unital separable C∗-algebra and let α : T → Aut(A) be an

action with the continuous Rokhlin property. Let B be any separable C∗-algebra, and denote

by ι∗ : KK(A,B) → KK(Aα, B) the group homomorphism induced by the canonical inclusion

ι : Aα → A. Then there exists ψ∗ : KK(Aα, B) → KK(A,B) such that ι∗ ◦ ψ∗ = idKK(Aα,B). In

particular,

KK(A,B) ∼= KK(Aα, B)⊕ ker(ψ∗).

Proof. Recall (see Theorem 4.2 in [130]) that given separable C∗-algebras A and B, the KK-

group KK(A,B) is canonically isomorphic to the group of homotopy classes of completely positive

asymptotic morphisms SA → SB ⊗ K. The unital completely positive asymptotic morphism A →

Aα constructed in Theorem IX.8.3 induces a group homomorphism ψ∗ : KK(Aα, B) → KK(A,B)

which satisfies

ι∗ ◦ ψ∗ = idKK(Aα,B),

since ψ ◦ ι is in fact asymptotically equal to the identity on Aα (not just homotopic). This proves

the first claim. The existence of an isomorphism KK(A,B) ∼= KK(Aα, B)⊕ ker(ψ∗) is a standard

fact in group theory.

Using these results, we can show that the ismorphisms K0(A) ∼= K1(A) ∼= K0(Aα)⊕K1(Aα),

which were shown to exist when α has the Rokhlin property and either K0(A) or K1(A) is finitely

generated in Theorem IX.4.3, exist in full generality if α is assumed to have the continuous

Rokhlin property.

Corollary IX.8.5. Let A be a unital separable C∗-algebra, and let α : T → Aut(A) be an action

with the continuous Rokhlin property.
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1. There is an isomorphism ϕ : K0(Aα)⊕K1(Aα) ∼= K0(A) such that

ϕ([1Aα ], 0) = [1A].

2. There is an isomorphism K0(A) ∼= K1(A).

Proof. (1). By taking C as the first coordinate and A as the second in the conclusion of

Corollary IX.8.4, we deduce that K0(A) ∼= K0(Aα) ⊕ ker(ψ∗), where ψ∗ : K0(A) → K0(Aα) is the

group homomorphism induced by the asymptotic morphism ψ : A→ Aα given by Theorem IX.8.3.

Moreover, the canonical inclusion Aα → A induces the above splitting of K0(A).

Consider the Pimsner-Voiculescu exact sequence for α̌ : Z→ Aut(Aα):

K0(Aα)
1−K0(α̌) // K0(Aα) // K0(A)

��
K1(A)

OO

K1(Aα)oo K1(Aα).
1−K1(α̌)

oo

Since α̌ acts trivially on K-theory, the above sequence splits into two short exact sequences

0→ Kj(A
α)→ Kj(A)→ K1−j(A

α)→ 0

for j = 0, 1. Since ψ∗ : K0(A) → K0(Aα) is a splitting for the map on K0, and hence it follows

that K0(A)/K0(Aα) is isomorphic to K1(Aα). This shows that there is an isomorphism K0(Aα)⊕

K1(Aα) ∼= K0(A), which clearly maps ([1Aα ], 0) to [1A].

(2). An analogous argument, taking suspensions, shows that the inclusion Aα → A induces

a direct sum decomposition K1(A) ∼= K1(Aα) ⊕K0(Aα). Using the first part of this corollary, we

conclude that K0(A) ∼= K1(A).

Remark IX.8.6. The argument used in the proof of Corollary IX.8.5 can be modified in a

straightforward manner to show something slightly stronger: under the assumptions there, the

C∗-algebra A is KK-equivalent to A ⊕ SA. Since we do not need this, and for the sake of brevity,

we do not present the proof here. (The nuclear case follows from Theorem 3.1 in [257].)
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We can also show that in the presence of the continuous Rokhlin property, the UCT for

the underlying algebra is equivalent to the UCT for the fixed point algebra. We begin by defining

what exactly it means for a C∗-algebra to “satisfy the UCT”.

Definition IX.8.7. Let A and B be separable C∗-algebras. We say that the pair (A,B) satisfies

the UCT if the following conditions are satisfied:

1. The natural map τA,B : KK(A,B) → Hom(K∗(A),K∗(B)) defined by Kasparov in [145], is

surjective.

2. The natural map µA,B : ker(τA,B)→ Ext(K∗(A),K∗+1(B)) is an isomorphism.

If this is the case, by setting εA,B = µ−1
A,B : Ext(K∗(A),K∗+1(B)) → KK(A,B), we obtain a short

exact sequence

0 // Ext(K∗(A),K∗+1(B))
εA,B// KK(A,B)

τA,B// Hom(K∗(A),K∗(B)) // 0,

which is natural on both variables because so are τA,B and µA,B .

We further say that A satisfies the UCT, if (A,B) satisfies the UCT for every separable

C∗-algebra B.

Theorem IX.8.8. Let A be a unital separable C∗-algebra and let α : T → Aut(A) be an action

with the continuous Rokhlin property. Then the following are equivalent

1. A satisfies the UCT;

2. The crossed product Aoα T satisfies the UCT;

3. The fixed point algebra Aα satisfied the UCT.

Note that, unlike in Corollary 3.9 in [191], we do not assume the algebra A to be nuclear.

Proof. The equivalence between assertions (2) and (3) follows from the fact that A oα T ∼= Aα ⊗

K(L2(T)) by Corollary IX.2.7. That (3) implies (1) follows from the fact that Aα oα̌ Z ∼= A by

Theorem IX.2.6.
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We will prove that (1) implies (3), so assume that A satisfies the UCT. Let B be a

separable C∗-algebra. Since A satisfies the UCT, there is a short exact sequence

0 // Ext(K∗(A),K∗+1(B))
εA,B// KK(A,B)

τA,B// Hom(K∗(A),K∗(B)) // 0,

which is natural on both variables. Denote by ι : Aα → A the canonical inclusion. Use

Theorem IX.8.3 to choose a unital completely positive asymptotic morphism ψ = (ψt)t∈[1,∞) : A→

Aα with

lim
t→∞

‖(ψt ◦ ι)(a)− a‖ = 0

for all a in Aα. Then ψ induces group homomorphisms

Ext(K∗(A
α),K∗+1(B))→ Ext(K∗(A),K∗+1(B))

KK(Aα, B)→ KK(A,B)

Hom(K∗(A
α),K∗(B)→ Hom(K∗(A),K∗(B),

which we will all denote by ψ∗, that are right inverses of the canonical homomorphisms induced

by ι (which we will all denote by ι∗).

The diagrams

Ext(K∗(A),K∗+1(B))

ι∗

��

ker(τA,B)
µA,Boo

ι∗

��
Ext(K∗(A

α),K∗+1(B))

ψ∗

DD

ker(τAα,B)

ψ∗

DD

µAα,B
oo

and

KK(A,B)
τA,B //

ι∗

��

Hom(K∗(A),K∗(B))

ι∗

��
KK(Aα, B)

τAα,B //

ψ∗

DD

Hom(K∗(A
α),K∗(B))

ψ∗

CC

are easily seen to be commutative, using naturality of all the horizontal maps involved.
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We claim that µAα,B is an isomorphism. Since

ψ∗ ◦ µAα,B = µA,B ◦ ψ∗

and ψ∗, µA,B and ψ∗ are injective, it follows that µAα,B is injective. Surjectivity follows similarly

from the identity

µAα,B ◦ ι∗ = ι∗ ◦ µA,B

and the fact that ι∗, µA,B and ι∗ are surjective. The claim is proved.

We now claim that τAα,B is surjective. Given x in Hom(K∗(A
α),K∗(B)), use surjectivity of

τA,B to choose y in KK(A,B) such that τA,B(y) = ψ∗(x). Then

(τAα,B ◦ ι∗)(y) = (ι∗ ◦ τA,B)(y) = x,

showing that τAα,B is surjective. This proves the claim.

We conclude that (A,B) satisfies the UCT. Since B is arbitrary, it follows that A satisfies

the UCT.

Remark IX.8.9. Adopt the notation of the theorem above. It is clear that the same argument,

verbatim, shows that if A satisfies the E-theoretic version of the UCT, then so do Aα and Aoα T.

More general compact groups

In this subsection, we give some indication of how to generalize Theorem IX.8.8 to actions

of more general compact groups with the continuous Rokhlin property, with focus on finite groups.

We begin by defining the latter in a way which is convenient for our purposes.

Definition IX.8.10. Let G be a second countable compact group, let A be a separable unital

C∗-algebra, and let α : G → Aut(A) be a continuous action. We say that α has the continuous

Rokhlin property if there exists a unital asymptotic morphism

ϕ = (ϕt)t∈[0,∞) : C(G)→ A

such that
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1. lim
t→∞

sup
g∈G
‖ϕt(Ltg(f))− αg(ϕt(f))‖ = 0 for all f ∈ C(G).

2. lim
t→∞

‖ϕt(f)a− aϕt(a)‖ = 0 for all a ∈ A.

The techniques used in the first part of this section can be adapted to deal with arbitrary

second countable compact groups:

Theorem IX.8.11. Let G be a second countable compact group, let A be a separable C∗-

algebra, and let α : G → Aut(A) be an action with the continuous Rokhlin property. If A satisfies

the UCT (or its E-theoretic analog), then so do Aα and A.

Again, note that we do not assume the algebra A to be nuclear in the theorem above.

We point out that Szabo’s argument in [257] also works for metrizable compact groups, and

Theorem 2.5 in [257] provides an alternative proof for the E-theory part of our Theorem IX.8.11.)

The proof Theorem IX.8.11 is more technical than that of Theorem IX.8.8, but the

argument is identical. Since we do not have any immediate application for it, we omit the proof.

For finite groups, however, the proof of Theorem IX.8.11 takes a much simpler form, which we

proceed to sketch.

Assume that α : G → Aut(A) is an action of a finite group G on a separable, unital

C∗-algebra A with the continuous Rokhlin property. Use Definition IX.8.10, and equivariant

semiprojectivity of (C(G), Lt) (see [205]), to choose continuous paths t 7→ e
(t)
g of projections in

A, for g ∈ G, satisfying

1. αg(e
(t)
h ) = e

(t)
gh for all g, h ∈ G and all t ∈ [0,∞);

2. lim
t→∞

∥∥∥e(t)
g a− ae(t)

g

∥∥∥ = 0 for all a ∈ A;

3.
∑
g∈G

e
(t)
g = 1 for all t ∈ [0,∞).

Fix t ∈ [0,∞), and consider the linear map ψt : A→ Aα given by

ψt(a) =
∑
g∈G

e(t)
g αg(a)e(t)

g

for a ∈ A. It is easy to check that the range of ψt is really contained in Aα, and that ψt is unital

and completely positive. It is also readily verified that (ψt)t∈[0,∞) is an asymptotic morphism

A→ Aα, and that

lim
t→∞

‖ψt(a)− a‖ = 0

333



for all a ∈ Aα. This proves the analog of Theorem IX.8.3 in the case of a finite group, and the

proof of Theorem IX.8.11 follows the same argument as that of Theorem IX.8.8. We omit the

details.

Existence and Uniqueness Results for Circle Actions

In the following theorem, we use equivariant K-theory as the invariant. See Subsection 2.2.

Theorem IX.9.1. Let A and B be unital Kirchberg algebras, and let α : T → Aut(A) and

β : T→ Aut(B) be actions with the continuous Rokhlin property.

1. The actions α and β are conjugate if and only if Aα and Bβ are KK-equivalent.

2. Assume that A and B satisfy the UCT. Then the actions α and β are conjugate if and only

if α and β have isomorphic equivariant K-theory, that is, if and only if there is a Z2-graded

R(T)-module (with distinguished element) isomorphism

(Kα
0 (A), [1A],Kα

1 (A)) ∼= (Kβ
0 (B), [1B ],Kβ

1 (B)).

Proof. (1). It is immediate to verify that if α and β are conjugate via an isomorphism θ : A →

B, then θ restricts to an isomorphism between Aα and Bβ , and hence these algebras are KK-

equivalent.

Conversely, assume that Aα and Bβ are KK-equivalent. Use Theorem 4.2.1 in [200]

to choose an isomorphism φ : Aα → Bβ implementing the equivalence. Denote by α̌ and β̌

the predual automorphisms of α and β, respectively, given by Theorem IX.2.6. It follows from

Proposition IX.7.11 that α̌ and β̌ represent the trivial KK-elements on Aα and Bβ respectively.

Thus, φ ◦ α̌ ◦ φ−1 and β̌ determine the same KK-class on Bβ . Now, Aα and Bβ are Kirchberg

algebras and α̌ and β̌ are aperiodic by Proposition IX.5.2, so it follows from Theorem 5 in [187]

that φ ◦ α̌ ◦ φ−1 and β̌ are cocycle conjugate. In other words, α̌ and β̌ are exterior equivalent, and

thus α and β are conjugate by Proposition II.3.6.

(2). It is immediate to verify that if α and β are conjugate, then their equivariant K-

theories are isomorphic as R(T)-modules.
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Conversely, suppose that there is a Z2-graded R(T)-module isomorphism

ψ : (Kα
0 (A), [1A],Kα

1 (A))→ (Kβ
0 (B), [1B ],Kβ

1 (B)).

By Julg’s Theorem, there is a natural group isomorphism Kα
∗ (A) ∼= K∗(A oα T). In addition to

this, there is a natural isomorphism A oα T ∼= Aα ⊗ K(L2(T)) by Corollary IX.2.7. It follows

that there is a natural group isomorphism Kα
∗ (A) ∼= K∗(A

α), that is, the equivariant K-theory for

α and the K-theory of its fixed point algebra agree. It is clear that this isomorphism maps [1A]

in Kα
0 (A) to [1Aα ] in K0(Aα). Similarly, Kβ

∗ (B) ∼= K∗(B
β) via an isomorphism that sends [1B ]

in Kβ
0 (B) to [1Bβ ] in K0(Bβ). Since Aα and Bβ satisfy the UCT by Theorem IX.8.8, it follows

from Kirchberg-Phillips classification theorem (see, for example, Theorem 4.2.4 in [200]), that Aα

and Bβ are isomorphic. The result now follows from part (1) of this theorem. This finishes the

proof.

Remark IX.9.2. It should be noted that the R(T)-module structure of the equivariant K-theory

was not used in the proof of part (2) of Theorem IX.9.1. In fact, this module structure is trivial.

Indeed, R(T) is isomorphic to Z[x, x−1], where the action of x on Kα
∗ (A) ∼= K∗(A oα T) is given

by K∗(α̂). The automorphism α̂ is approximately inner by Theorem VI.4.2, and hence it is trivial

on K-theory.

Theorem IX.9.1 may be regarded as a uniqueness theorem. It states that whenever two

circle actions with the continuous Rokhlin property on a unital Kirchberg algebra that satisfies

the UCT, are conjugate whenever they have the same equivariant K-theory. It is natural to look

for existence results, that is, try to answer the following question. What pairs of triples

((G0, g0, G1), (H0, h0, H1))

where G0 and G1 are abelian groups, H0 and H1 are R(T)-modules, and g0 ∈ G0 and h0 ∈ H0 are

distinguished elements, arise as the K-theory and equivariant K-theory of an action of the circle

on a unital Kirchberg algebra with the continuous Rokhlin property?

We address this existence question in the remainder of the present section, and show that

the only possible restrictions are the ones that were already discovered in Corollary IX.8.5 and

Remark IX.9.2.
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Theorem IX.9.3. Let A be unital Kirchberg algebra that satisfies the UCT. A triple (H0, h0, H1)

consisting of R(T)-modules H0 and H1, together with a distinguished element h0 ∈ H0, is the

equivariant K-theory of a circle action on A with the continuous Rokhlin property, if and only if

the following conditions hold:

1. The R(T)-module structures on H0 and H1 are trivial,

2. There is an isomorphism K0(A) ∼= K1(A), and

3. There exists a group isomorphism ϕ : H0 ⊕H1 → K0(A) such that ϕ(h0, 0) = [1A].

Proof. Necessity of condition (1) follows from Remark IX.9.2, and necessity of conditions (2) and

(3) follows from Corollary IX.8.5.

Conversely, assume that K0(A) ∼= K1(A), and suppose that (H0, h0, H1) satisfies H0 ⊕H1
∼=

K0(A) via an isomorphism that sends (h0, 0) to [1A]. Use Theorem 4.2.5 in [200] to choose a

unital Kirchberg algebra B satisfying the UCT such that

(K0(B), [1B ],K1(B)) ∼= (H0, h0, H1).

Let θ : B ⊗ O∞ → B be an isomorphism, and let ψ ∈ Aut(O∞) be the automorphism constructed

in Theorem IX.7.17. Define an automorphism ϕ of B by ϕ = φ ◦ (idB ⊗ ψ) ◦ φ−1, and note that ϕ

is asymptotically representable. The crossed product

B oϕ Z ∼= (O∞ oψ Z)⊗B

is a unital Kirchberg algebra satisfying the UCT, and the Künneth formula together with

Remark IX.7.18 yield

K0(B oϕ Z) ∼= K1(B oϕ Z) ∼= K0(B)⊕K1(B) ∼= H0 ⊕H1,

in such a way that the class of the unit in K0(B oϕ Z) is sent to (h0, 0) ∈ H0 ⊕ H1. It follows

from the classification of Kirchberg algebras satisfying the UCT that there exists an isomorphism

γ : B oϕ Z→ A.
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Denote by β : T → Aut(B oϕ Z) the dual action of ϕ. It follows from Proposition IX.7.11

that β has the continuous Rokhlin property. Let α : T→ Aut(A) be given by

αζ = γ ◦ βζ ◦ γ−1

for ζ in T. Then α has the continuous Rokhlin property as well. Moreover,

(Kα
0 (A), [1A],Kα

1 (A)) ∼= (K0(Aα), [1Aα ],K1(Aα))

∼= (K0(B), [1B ],K1(B))

∼= (H0, h0, H1).

Therefore α is the desired action on A with the continuous Rokhlin property, and the proof is

complete.

As a simple application, we show how we can use Theorem IX.9.3 to compute the number

of conjugacy classes of circle actions with the continuous Rokhlin property that a given Kirchberg

algebra has.

Example IX.9.4. Let A be a unital Kirchberg algebra satisfying the UCT, with K-theory given

by

K0(A) ∼= K1(A) ∼= Z⊕ Z6,

such that [1A] corresponds to (1, 0) in K0(A). We will compute how many conjugacy classes of

circle actions with the continuous Rokhlin property on A there are. By Theorem IX.9.3, conjugacy

classes are in bijection with direct sum decompositions of the form Z ⊕ Z6
∼= H0 ⊕H1 that satisfy

(1, 0) 7→ (h0, 0) for some h0 in H0. There are only 4 such direct sum decompositions, namely:

Z⊕ Z6
∼= (Z⊕ Z6)⊕ {0} ∼= (Z⊕ Z2)⊕ Z3

∼= (Z⊕ Z3)⊕ Z2.

(The direct sum decompositions {0} ⊕ (Z ⊕ Z6), Z2 ⊕ (Z ⊕ Z3), Z3 ⊕ (Z ⊕ Z2) and Z6 ⊕ Z do not

satisfy condition (3) in Theorem IX.9.3.) We conclude that there are exactly 4 conjugacy classes.

It will be shown in Corollary IX.10.2 that the continuous Rokhlin property agrees with the

Rokhlin property for circle actions on Kirchberg algebras whose K-theory is finitely generated.
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In particular, in the example above we can omit the word “continuous” everywhere, and the

conclusion is that there are exactly 4 conjugacy classes of circle actions with the Rokhlin property

on the algebra considered.

We now give a complete answer to the question stated before Theorem IX.9.3.

Corollary IX.9.5. Any unital Kirchberg algebra (not necessarily satisfying the UCT) arises

as the fixed point algebra of a circle action with the continuous Rokhlin property on some other

Kirchberg algebra. In particular, a pair of triples

((G0, g0, G1), (H0, h0, H1))

where G0 and G1 are abelian groups, H0 and H1 are R(T)-modules, and g0 ∈ G0 and h0 ∈ H0

are distinguished elements, arises as the K-theory and equivariant K-theory of an action of the

circle on a unital Kirchberg algebra with the continuous Rokhlin property if and only if the R(T)-

module structures on H0 and H1 are trivial, and there are isomorphisms H0 ⊕H1
∼= G0

∼= G1, the

first one of which maps (h0, 0) to g0.

Comments on (non-)existence of model actions.

As an application of Theorem IX.9.3, we explain why no obvious generalization of Theorem

3.4 in [133] is possible for circle actions with the Rokhlin property.

It is already clear from the family of examples constructed in Example VI.2.8 that, even

within the class of unital Kirchberg algebras, there is no C∗-algebra D with a circle action δ : T→

Aut(D) that has the Rokhlin property, and such that whenever α : T → Aut(A) is an action on a

unital Kirchberg algebra A with the Rokhlin property (or even the continuous Rokhlin property),

then (A,α) ∼= (A ⊗ D, idA ⊗ δ). (This is the straightforward and also quite naive generalization

of Theorem 3.4 in [133], since arbitrary actions of the circle are always trivial on K-theory by

Proposition XI.3.6.) To see this, construct simple unital AT-algebras A1 and A2 with Rokhlin

actions of the circle as in Example VI.2.8, using the 2∞ and 3∞ UHF-patterns instead of the

rational UHF-pattern. Tensor these algebras with O∞, and take the trivial circle action on O∞,

to obtain two unital Kirchberg algebras B1 and B2 such that K0(B1) ∼= K1(B1) ∼= Z
[

1
2

]
and

K0(B2) ∼= K1(B2) ∼= Z
[

1
3

]
. K-theoretical considerations show that the only possible K-groups of
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a unital C∗-algebra D that is absorbed both by B1 and B2, are either (Z, 0) or (0,Z). However,

none of these groups arises as the K-groups of a unital C∗-algebra that admits a circle action with

the Rokhlin property by Theorem IX.4.3.

The conclusion is that there is no “absorbing”, or model action, for circle actions with the

Rokhlin property. Nevertheless, with a weaker notion of “model action”, an analogous result for

circle actions on Kirchberg algebras does in fact hold, at least for actions with the continuous

Rokhlin property. Denote by ψ the automorphism of O∞ constructed in Theorem IX.7.17,

and set D = O∞ oψ Z. Denote by δ : T → Aut(D) the dual action of ψ. Then δ has the

continuous Rokhlin property. It is clear that δ will not be absorbed by an arbitrary action with

the (continuous) Rokhlin property on a Kirchberg algebra, for example, if the algebra has K-

theory (Z2,Z2). However, δ is a generating action, in the sense of the following proposition.

Proposition IX.9.6. Adopt the notation of the comments above. Let A be a unital Kirchberg

algebra, and let α : T → Aut(A) be an action with the continuous Rokhlin property. Then there is

an equivariant isomorphism

θ : (A,α)→ (Aα ⊗D, idAα ⊗ δ).

Proof. It is easy to check, using that Dδ = O∞, that the fixed point algebra of Aα ⊗ D is

isomorphic to Aα. The result follows from part (1) of Theorem IX.9.1.

We point out that we did not need to assume that the algebra A in the proposition above

satisfies the UCT, unlike in Theorem 3.4 in [133].

Comparison Between the Rokhlin Property and the Continuous

Rokhlin Property

The goal of this section is to show that for unital Kirchberg algebras with finitely generated

K-theory, the Rokhlin property and the continuous Rokhlin property are equivalent; see

Corollary IX.10.2. A similar result is proved for the class of commutative unital C∗-algebras; see

Proposition IX.10.5. We also show in Example IX.10.3 and Example IX.10.4, that the two notions

are not in general equivalent, even on Kirchberg algebras satisfying the UCT.
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In the next result, we characterize those circle actions with the Rokhlin property on

Kirchberg algebras that have the continuous Rokhlin property. We point out that no UCT

assumptions are needed.

Theorem IX.10.1. Let A be a unital Kirchberg C∗-algebra and let α : T → Aut(A) be an

action with the Rokhlin property. Denote by α̌ the predual automorphism of α. Then α has the

continuous Rokhlin property if and only if KK(α̌) = 1.

Proof. If α has the continuous Rokhlin property, then α̌ is asymptotically representable by

Proposition IX.7.11. Hence it is asymptotically inner, and KK(α̌) = 1.

Conversely, assume that KK(α̌) = 1. Since α̌ is aperiodic by Proposition IX.5.2, it follows

from Proposition IX.7.20 that it is asymptotically representable.

We recall the construction of the PExt-group. Given abelian groups G1 and G2, the group

PExt(G2, G1) is the subgroup of Ext(G2, G1) consisting of the pure extensions of G1 by G2

(Definition IX.4.1). See [248] for more about the PExt-group. We refer the reader to Example

8.4.14 in [235] for the definition of the KL-class of an automorphism.

Corollary IX.10.2. Let A be a unital Kirchberg C∗-algebra and let α : T → Aut(A) be an

action with the Rokhlin property. Assume that PExt(K∗(A
α),K∗+1(Aα)) = 0. Then α has the

continuous Rokhlin property. In particular, if A has finitely generated K-theory, then every circle

action on A with the Rokhlin property has the continuous Rokhlin property.

Proof. Since PExt(K∗(A
α),K∗+1(Aα)) = 0, it follows that an automorphism of Aα is KK-trivial

if and only if it is KL-trivial. Let α̌ be the predual automorphism of α. Then α̌ is approximately

representable by Theorem IX.2.6, and in particular KL-trivial. The first part of the corollary then

follows from Theorem IX.10.1 above.

If the K-groups of A are finitely generated, then the condition

PExt(K∗(A
α),K∗+1(Aα)) = 0

is automatically satisfied, since the K-groups of Aα are also finitely generated by Theorem VI.3.3.

This finishes the proof.
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In the corollary above, the condition PExt(K∗(A
α),K∗+1(Aα)) = 0 will also be satisfied

if the K-groups of A are (possibly infinite) direct sums of cyclic groups. However, it is in general

unclear whether one can replace said condition with

PExt(K∗(A),K∗+1(A)) = 0,

which is significantly easier to check in practice. The problem is that K∗(A
α) is not in general a

direct summand in K∗(A), just a subgroup.

As promised after Definition IX.7.1, we will exhibit an example of a circle action that has

the Rokhlin property but not the continuous Rokhlin property, showing that these two notions

are not equivalent in general. This can happen even on Kirchberg algebras that satisfy the UCT

(although their K-theory must be infinitely generated, by Corollary IX.10.2).

We need to introduce some notation first. Let A be a unital C∗-algebra and let ϕ be an

approximately inner automorphism of A. With ι : A → A oϕ Z denoting the canonical inclusion,

the Pimsner-Voiculescu exact sequence for ϕ reduces to the short exact sequences

0 // Kj(A)
Kj(ι) // Kj(Aoϕ Z) // K1−j(A) // 0 j = 0, 1.

We denote the class of the above extensions by ηj(ϕ) for j = 0, 1, and by

η : Inn(A)→ Ext(K1(A),K0(A))⊕ Ext(K0(A),K1(A))

the map η(ϕ) = (η0(ϕ), η1(ϕ)) for ϕ ∈ Inn(A). It is well known that η is a group homomorphism

when A satisfies the UCT (the operation on Inn(A) is composition), but we shall not make use of

this fact here.

Example IX.10.3. Let G1 = Z
[

1
2

]
, which we will regard as the abelian group generated by

elements yn with n in N, subject to the relations

2yn+1 = yn
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for all n in N. It is clear that G1 is torsion free. Let G0 = Z, and let E be the abelian group

generated by the set {x, yn : n ∈ N}, subject to the relations

2yn+1 = yn + x

for all n in N. There is an extension

0→ G0 → E → G1 → 0,

where the map G0 → E is determined by 1 7→ x, and the map E → G1 is the corresponding

quotient map. It was shown in Example IX.4.2 that this extension is pure but not trivial (that is,

it does not split). (We warn the reader that the notation we are using here differs slightly from

the one used in Example IX.4.2.) Denote by ξ ∈ Ext(G1, G0) the extension class determined by E,

and note that ξ 6= 0.

Use Elliott’s classification of AT-algebras (see [58]), or the comments before Proposition

3.2.7 in [235]) to find a simple, unital AT-algebra A with real rank zero, such that Kj(A) ∼= Gj for

j = 0, 1. Use Theorem 3.1 in [159] in the case i = 1 to find an approximately inner automorphism

ϕ of A such that η(ϕ) = (0, ξ). The proof of Theorem 3.1 in [159] is constructive, and the case

i = 1 (which is presented in Subsection 3.11 in [159]) shows that for n in N, there are a circle

algebra An, an embedding ψn : An → An+1 and a unitary un in An such that

Ad(un+1) ◦ ψn = ψn ◦Ad(un)

and lim−→Ad(un) = ϕ. It is immediate to check that such a direct limit action is approximately

representable in the sense of Definition IX.2.5.

Denote by α : T → Aut(A oϕ Z) the dual action of ϕ. Then α has the Rokhlin property

by Theorem VI.4.2. On the other hand, since η(ϕ) is not the trivial class, we conclude that ϕ is

not asymptotically inner (let alone asymptotically representable), and hence α does not have the

continuous Rokhlin property.

The example above can be adapted to construct a circle action on a Kirchberg algebra

satisfying the UCT that has the Rokhlin property but not the continuous Rokhlin property.
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Example IX.10.4. Adopt the notation of the previous example. The automorphism ϕ of A

obtained there is easily seen to be aperiodic, so the crossed product A oϕ Z is simple by Theorem

3.1 in [156]. Set B = A ⊗ O∞ and φ = ϕ ⊗ idO∞ , which is an automorphism of B. Moreover,

K∗(A) ∼= K∗(B) by the Künneth formula, and clearly η(φ) = η(ϕ). With β : T → Aut(B oφ Z)

denoting the dual action of φ, the same argument used in Example IX.10.3 shows that β has the

Rokhlin property and does not have the continuous Rokhlin property. Finally, note that B oφ Z ∼=

(A oϕ Z) ⊗ O∞ is a Kirchberg algebra, and it satisfies the UCT because A does, since crossed

products by Z preserve the UCT.

M. Izumi has found (see [134]) examples of Z2-actions on O∞ that are approximately

representable (see Definition 3.6 in [132]) but not asymptotically representable (in the obvious

sense for actions of Z2). The crossed products by the actions he constructed are Kirchberg

algebras satisfying the UCT, so by taking the dual actions of his examples, one obtains actions

of Z2 on Kirchberg algebras satisfying the UCT that have the Rokhlin property but not the

continuous Rokhlin property. We point out that in all these examples, the Kirchberg algebra in

question has infinitely generated K-theory, and he also shows that his method cannot produce

similar examples with finitely generated K-groups. It seems plausible, then, that a result similar

to Corollary IX.10.2 holds for finite abelian group actions as well, and possibly even more

generally. We have, nevertheless, not explored this direction any further.

We conclude this work by proving that the Rokhlin property agrees with the continuous

Rokhlin property on commutative C∗-algebras.

Proposition IX.10.5. Let A be a commutative unital C∗-algebra and let α : T → Aut(A) be an

action with the Rokhlin property. Then α has the continuous Rokhlin property.

Proof. By Theorem VI.4.9, there is an equivariant isomorphism A ∼= Aα ⊗ C(T), where T

acts trivially on Aα and via Lt on C(T). Since Lt has the continuous Rokhlin property by

Example IX.7.5, the result follows from Proposition IX.7.3.
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CHAPTER X

AUTOMATIC TOTAL DISCONNECTEDNESS FOR GROUPS ACTING

WITH THE ROKHLIN PROPERTY

We study compact group actions with the Rokhlin property on C∗-algebras with exactly

one vanishing K-group. One of our main results is that the group must be totally disconnected,

which can be regarded as the noncommutative counterpart of the fact that if a compact group

acts freely on a totally disconnected metric compact space, then the group itself must be totally

disconnected. Along the way, we develop further properties of arbitrary compact group actions

with the Rokhlin property. The main tools are the interactions between subgroups or quotients of

the acting group with the K-theory of the algebra.

Generalizing techniques from the finite group case, we prove classification results for

equivariant homomorphisms between Rokhlin dynamical systems with totally disconnected groups.

As an application, we classify compact group actions with the Rokhlin property on AF-algebras

and on certain direct limits of one-dimensional noncommutative CW-complexes.

Given a totally disconnected compact group G, we construct a model action of G on a

certain UHF-algebra naturally associated with G. This action is shown to have the Rokhlin

property, and it is moreover proved that it tensorially generates (and is tensorially absorbed by)

all actions of G with the Rokhlin property on a class of UHF-absorbing C∗-algebras.

Introduction

The Rokhlin property for finite groups, formally defined by Izumi in [132], has been

extensively studied by a number of authors; see, for example, [133], [191], [194], [91], [188], and

[243]. The Rokhlin property is rare, but there exist interesting examples of finite group actions

with the Rokhlin property. For example, Izumi constructed ([132]) nontrivial Rokhlin actions of

cyclic groups on Cuntz algebras, and Phillips and Viola ([214]) used the Rokhlin property of a

certain Z3-action to construct a separable C∗-algebra not isomorphic to its opposite.

Hirshberg and Winter extended in [122] Izumi’s definition to actions of compact groups,

where they began a study of the structure of their crossed products. Examples of non-finite

compact group actions with the Rokhlin property were constructed in [81] and [85], but it would
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be desirable to have more examples. Some obstructions were obtained in [79] and [80] for circle

actions, and in [83] for Lie groups.

In this work, we show that any C∗-algebra with exactly one vanishing K-group does not

admit an action with the Rokhlin property of a compact group which is not totally disconnected.

This class of C∗-algebras contains all Cuntz algebras on at least three generators, as well as all

AF- and AI-algebras. The motivation for this result was the fact, proved in [79], that the circle

action on a UHF-algebra
∞⊗
k=1

Mkn , given by

ζ 7→ Ad

(
diag

(
1, e

2πi
nk , . . . , e

2πi(nk−1)

nk

))
,

does not have the Rokhlin property (even though its restrictions to cyclic groups usually do).

We provide the necessary generalizations of Izumi’s techniques that allow us to classify

equivariant homomorphisms between totally disconnected group actions with the Rokhlin

property. For every such group G, we construct a model action µG on a UHF-algebra DG whose

type is naturally associated to G, and prove that this action generates all Rokhlin actions of

G on algebras that absorb DG. We also establish conditions under which absorption of DG is

automatic.

This chapter, which is based on [84], is organized as follows. In Section X.2, we show that

the Rokhlin property is preserved under passing to a subgroup in a special case (Lemma X.2.1),

and that it is always preserved under taking the induced action of the quotient group on the

corresponding fixed point algebra (Proposition X.2.2). In Section X.3, we prove our main

result, Theorem X.3.3, which asserts that any C∗-algebra with exactly one vanishing K-group

does not admit an action with the Rokhlin property of a compact group which is not totally

disconnected. We devote the rest of that section to constructing a model action µG of a totally

disconnected group G on a UHF-algebra DG. (Uniqueness of µG will not be proved until

Section X.5.) Section X.4 contains our classification result (Theorem X.4.7) for Rokhlin actions

of totally disconnected groups, using techniques from [132] and [91]. Finally, in Section X.5 we

prove that the action µG constructed in Section X.3 is unique up to equivariant isomorphism

(Proposition X.5.8), and that it tensorially generates all Rokhlin actions of a given totally

disconnected group on certain stably finite C∗-algebras with trivial K1-groups.
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Subgroups and Quotient Groups Acting with The Rokhlin

Property

In this section, we complement the results in Chapter VI about compact groups actions

with the Rokhlin property.

While the restriction of an action with the Rokhlin property rarely has the Rokhlin

property, this is true in some special cases; see Proposition VI.2.4. The next observation will

be used in the proof of Theorem X.3.3 in the following section.

Lemma X.2.1. Let (Gn, πn)n∈N be an inverse limit of compact groups with quotient maps

πn : Gn → Gn+1 for n ∈ N. Denote its inverse limit by G = lim←−(Gn, πn)n∈N. For n ∈ N, let Hn be

a subgroup of Gn satisfying πn(Hn) ⊆ Hn+1. Assume moreover that Hn is a direct summand in

Gn. Set H = lim←−(Hn, πn|Hn)n∈N, which is a closed subgroup of G.

Let A be a unital C∗-algebra and let α : G → Aut(A) be an action with the Rokhlin

property. Then α|H : H → Aut(A) has the Rokhlin property.

Proof. We will construct an H-equivariant unital homomorphism ρ : C(H) → C(G). Assume we

have accomplished this, and let ϕ : C(G) → A∞,α ∩ A′ be a unital G-equivariant homomorphism

as in Definition VI.2.1 for α. Then ϕ ◦ ρ : C(H) → A∞,α ∩ A′ is a a unital H-equivariant

homomorphism, showing that α|H has the Rokhlin property.

For n ∈ N, denote by ψn : C(Gn) → C(Gn+1) the unital homomorphism induced by πn;

denote by φn : C(Hn) → C(Hn+1) the unital homomorphism induced by πn|Hn ; and denote by

ρn : C(Hn)→ C(Gn) the unital homomorphism induced by the canonical quotient map Gn → Hn.

Since H is the inverse limit of Hn with the restricted quotient maps, it follows that the diagram

C(G1)
ψ1 // · · · // C(Gn)

ψn // · · · // C(G)

C(H1)

ρ1

OO

φ1

// · · · // C(Hn)

ρn

OO

φn

// · · · // C(H)

is commutative. By the universal property of the inductive limit in the category of C∗-algebras,

there exists a unital homomorphism ρ : C(H) → C(G). It is straightforward to check that ρ is

H-equivariant, and the result follows.
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On the other hand, the Rokhlin property is preserved under taking the induced action of a

quotient group on the corresponding fixed point algebra, as the next proposition shows.

Proposition X.2.2. Let G be a compact group, let A be a unital C∗-algebra and let α : G →

Aut(A) be an action with the Rokhlin property. Let H be a normal closed subgroup of G. Then

the induced action α : G/H → Aut(AH) has the Rokhlin property.

Proof. Let ϕ : C(G) → A∞,α ∩ A′ be a unital equivariant homomorphism as in the definition of

the Rokhlin property for α. Let φ : C(G/H) → C(G) be the H-equivariant unital homomorphism

associated with the quotient map G → G/H. Since φ ◦ ϕ is H-equivariant, its image is contained

in the H-fixed point algebra (A∞,α ∩A′)H . We claim that

(A∞,α ∩A′)H = (AH)∞,α ∩A′.

It is immediate that (A∞,α ∩ A′)H = (A∞,α)H ∩ A′. It therefore suffices to check that (A∞,α)H =

(AH)∞,α. The inclusion of the right-hand side in the left-hand side is immediate. Conversely, let

a = κA((an)n∈N) be an element of (A∞,α)H . For every n ∈ N, let

bn =

∫
H

αh(an)dh,

which is an element in AH . Thus κA((bn)n∈N) belongs to (AH)∞. By compactness of H, for every

ε > 0 there exists n0 ∈ N such that

‖αh(an)− an‖ < ε

for all h ∈ H and all n ≥ n0. Denote by dh the normalized Haar measure on H. Moreover,

‖bn − an‖ ≤
∫
H

‖αh(an)− an‖dh ≤ ε,

and hence κA((bn)n∈N) = a in A∞, showing that a ∈ (AH)∞. It remains to check that

g 7→ (α∞)g((bn)n∈N)

347



is continuous as a map G→ A∞. This is immediate, since

(α∞)g((bn)n∈N) = (α∞)g((an)n∈N)

for all g in G, and (an)n∈N belongs to A∞,α. This proves the claim.

Denote by α : G/H → Aut(AH) the induced action. We then get a diagram

C(G)
ϕ // A∞,α ∩A′

C(G/H)

φ

OO

// (AH)∞,α ∩A′ //

OO

(AH)∞,α ∩ (AH)′.

The map C(G/H) → (AH)∞,α ∩ (AH)′ is easily seen to be a unital, G/H-equivariant

homomorphism, thus showing that α has the Rokhlin property.

The proof of the lemma above shows something even stronger, namely the following. If

α : G → Aut(A) has the Rokhlin property and H is a normal closed subgroup, then there is an

equivariant unital embedding C(G/H)→ (AH)∞,α∩A′. In particular, the asymptotical embedding

of C(G/H) into AH can be chosen to approximately commute with arbitrary finite subsets of A,

rather than finite subsets of just AH . The following lemma is a convenient formulation of this fact

incorporating the passage to a finite subgroup of the quotient. It will be crucial in the proof of

Lemma X.4.2, which is rather technical.

Lemma X.2.3. Let G be a compact group, let A be a unital C∗-algebra and let α : G → Aut(A)

be an action with the Rokhlin property. Let H be a normal subgroup of G with finite index (and

hence automatically closed). Denote by α : G/H → Aut(AH) the induced action. Let K be any

subgroup of G/H. Then for any ε > 0 and any finite subset F ⊆ A, there exist orthogonal

projections ek in AH , for k in K, such that

1. ‖αk(eh)− ekh‖ < ε for k, h in K,

2. ‖eka− aek‖ < ε for all k in K and all a in F , and

3.
∑
k∈K

ek = 1.
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Proof. It follows from (the proof of) Proposition X.2.2 (see also the comments above), that there

is an equivariant unital embedding

C(G/H)→ (AH)∞,α ∩A′.

Set n = |G/H|. The existence of the above embedding implies the existence of projections pg in

AH , for g in G/H, such that

– ‖αh(ph)− pgh‖ <
ε
n for g, h in G/H,

– ‖pga− apg‖ < ε
n for all g in G/H and all a in F , and

–
∑

g∈G/H
pg = 1.

Choose a set R of right coset representatives of K in G/H. For k in K, set ek =
∑
r∈R

prk. It is

immediate that the projections ek for k in K, satisfying conditions (1) and (3) in the statement of

the lemma (with ε
n in place of ε). For the second one, we have

‖eka− aek‖ ≤
∑
r∈R
‖prka− aprk‖ ≤ ε.

This finishes the proof.

Next, we recall results from [80] and [81] concerning circle actions with the Rokhlin

property, and combine them in a form that is convenient for our purposes.

Theorem X.2.4. Let A be a unital C∗-algebra, and let α : T → Aut(A) be an action with the

Rokhlin property. Let j ∈ {0, 1}. If H is a finitely generated subgroup of Kj(A), then there exists

an injective group homomorphism

ψ : H → K1−j(A).

In particular, every finitely generated subgroup of Kj(A) is isomorphic to a finitely

generated subgroup of K1−j(A).

Moreover, this homomorphism is natural in the following sense. Let β : T → Aut(B)

be another circle action on a unital C∗-algebra B, let s ∈ N, and let ι : A → B be a unital

homomorphism satisfying

βζ(ι(a)) = ι(αζs(a))
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for all ζ ∈ T and for all a ∈ A. Suppose that given ε > 0 and a finite subset F ⊆ B, there exists a

unitary u ∈ U(A) such that

1. ‖βζ(ι(u))− ζι(u)‖ < ε for all ζ ∈ T; and

2. ‖ι(u)b− bι(u)‖ < ε for all b ∈ F .

(This, in particular, implies that β has the Rokhlin property.)

Let j ∈ {0, 1} and let H be a finitely generated subgroup of Kj(A). Then there exist

injective group homomorphisms

ψA : H → K1−j(A) and ψB : Kj(ι)(H)→ K1−j(B)

making the following diagram commute:

H
K0(ι) //

ψA

��

K0(ι)(H)

ψB

��
K1(A)

K1(ι)
// K1(B).

Proof. Without loss of generality, we may assume that j = 0. The first part is what is actually

proved in part (2) of Theorem 5.2 in [80]. We review its proof since it will be needed to prove the

second claim. We adopt the notation used in Theorem 5.2 of [80]. Let h1, . . . , hn be generators of

H. Without loss of generality, we can assume that there exist projections p1, . . . , pn and q1, . . . , qn

in A (rather than in matrices over A) such that hj = [pj ] − [qj ] for j = 1, . . . , n. Denote by u ∈ A

any unitary as in the definition of the Rokhlin property, for an appropriately chosen finite subset

(and tolerance). For a partition of unity (fk)mk=1 in C(T) with sufficiently small supports, and

group elements gk ∈ supp(fk), we define a completely positive contractive map σ : A→ Aα by

σ(a) = E

(
m∑
k=1

fk(u)
1
2αgk(a)fk(u)

1
2

)

for a ∈ A. If the finite set and the tolerances are chosen appropriately, then one can show that σ

induces a local splitting ψ : H → K0(A).
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Naturality can be proved in a straightforward manner, by choosing a partition of unity

(fk)mk=1, and group elements in their supports, such that both fk and the function ζ 7→ fk(ζs) has

sufficiently small support. We omit the details.

We review here the definition of discrete K-theory for a compact group action on a C∗-

algebra. (We will use equivariant K-theory as in Chapter 2 of [199].) This notion will be crucial in

the proof of Theorem X.3.3.

Definition X.2.5. If α : G → Aut(A) is an action of a compact group G on a C∗-algebra A, we

say that α has discrete K-theory if there exists n ∈ N such that InG ·KG
∗ (A) = 0.

When G is abelian, discrete K-theory can be expressed in a more manageable way using

the dual action α̂ of Ĝ on A oα G. We will only need this in the case when G is the circle; see

Lemma X.2.7.

Notation X.2.6. If β is an automorphism of a C∗-algebra B, we usually identify it with the

integer action it generates, and use the symbol β to denote both the automorphism and the action

n 7→ βn of Z on B.

Lemma X.2.7. Let A be a unital C*-algebra, and let α : T → Aut(A) be an action of the circle

group T on A. Then α has discrete K-theory if and only if there exists n in N such that

(idK∗(AoαT) −K∗(α̂))n = 0

as a homomorphism K∗(Aoα T)→ K∗(Aoα T).

Proof. Recall that R(T) ∼= Z[t, t−1], and that under this identification, IT is the ideal generated by

1−t. Moreover, under the natural identification KT
∗ (A) ∼= K∗(AoαT) given by Julg’s isomorphism,

the action of t on K∗(Aoα T) is given by K∗(α̂). It follows that

Im
(
(idK∗(AoαT) −K∗(α̂))m

)
= ImT ·K∗(Aoα T)

for every m ∈ N. For a given m ∈ N, it follows that ImT ·KT
∗ (A) = 0 if and only if (idK∗(AoαT) −

K∗(α̂))m = 0, so the result follows.
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Totally Disconnected Compact Groups

In this section, we show that if A is a C∗-algebra such that exactly one of either K0(A)

or K1(A) vanishes, and if G is a compact group acting on A with the Rokhlin property, then

G must be totally disconnected. See Theorem X.3.3 below. We spend the rest of the section

constructing examples of actions of totally disconnected groups with the Rokhlin property on

UHF-algebras; see Example X.3.8. These actions will later be shown to be universal in some

sense; see Theorem X.5.13.

The following result is well known.

Theorem X.3.1. (von Neumann) Let G be a second countable compact group. Then there exists

a decreasing sequence (Hn)n∈N of closed normal subgroups of G such that G/Hn is a Lie group

and
⋂
n∈N

Hn = {e}. In other words, G is an inverse limit of Lie groups.

Corollary X.3.2. Let G be a totally disconnected compact group. Then there exists a decreasing

sequence (Hn)n∈N of closed normal subgroups of G such that G/Hn is a finite group and⋂
n∈N

Hn = {e}.

Proof. It is immediate to check that the quotient of a totally disconnected group by a normal

subgroup is again totally disconnected, and that a compact Lie group is totally disconnected if

and only if it is finite. This, together with Theorem X.3.1, implies the result.

The argument in the following theorem would be much simpler if every compact connected

group had one-parameter subgroups. Unfortunately, this is not the case: the compact group G

obtained as the inverse limit of the inverse system G → · · ·T → T → · · · with stationary maps

T→ T given by ζ 7→ ζ2, is connected but does not have a subgroup isomorphic to T.

Theorem X.3.3. Let G be a compact group, let A be a unital C∗-algebra such that exacly one

of either K0(A) or K1(A) is zero, and let α : G → Aut(A) be an action with the Rokhlin property.

Then G is totally disconnected.

Proof. Assume first that K1(A) = 0, and assume that G is connected. Denote by Z0(G) the

connected component of the unit in the center of G. By Corollary 12.37 in [129], there are a

(possibly empty) indexing family J , simply connected compact Lie groups Sj for j ∈ J , a central

352



totally disconnected compact subgroup N of Z0(G)×
∏
j∈J

Sj , and an isomorphism

G ∼=
Z0(G)×

∏
j∈J

Sj

N
.

Now, assume the family J is non-empty. We claim that G has a closed subgroup isomorphic to

T. Indeed, choose j ∈ J . Then Sj has a closed subgroup H isomorphic to T. Then H/(H ∩ N)

is a closed subgroup of G. Since N is zero dimensional and H ∩ N is a Lie group (being a closed

subgroup of the Lie group H), we deduce that H ∩N is finite. Hence, the image of H in G is also

isomorphic to T. The claim follows.

Denote by β : T → Aut(A) the restriction of α to T. Then β has finite Rokhlin dimension

with commuting towers by Theorem 4.5 in [83] (see also the comments after the theorem). By

Corollary 4.6 in [83], β has discrete K-theory (Definition X.2.5). By Lemma X.2.7, there exists

n ∈ N such that

ker((idK∗(AoβT) −K∗(β̂))n) = K∗(Aoβ T).

Using that K1(A) = 0, it follows from the Pimsner-Voiculescu exact sequence associated to β,

K0(Aoβ T)
1−K0(β̂) // K0(Aoβ T) // K0(A)

��
K1(A)

OO

K1(Aoβ T)oo K1(Aoβ T),
1−K1(β̂)

oo

that the map idK0(AoβT)−K0(β̂) is injective. It follows that (idK0(AoβT)−K0(β̂))n is also injective,

and from this we conclude that K0(A oβ T) = 0. The remaining potentially non-zero terms in the

Pismner-Voiculescu exact sequence yield the short exact sequence

0→ K0(A)→ K1(Aoβ T)→ K1(Aoβ T)→ 0,
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where the last map is idK1(AoβT) − K1(β̂). Since said map is surjective, every power of it is

surjective as well, and hence the identity

(
idK1(AoβT) −K1(β̂)

)n
= 0

forces K1(Aoβ T) = 0. In this case, it must be K0(A) = 0 as well, which contradicts the fact that

K0(A) is not zero. The contradiction implies that J must be empty.

If J is empty, then G is abelian. Since any compact abelian connected Lie group is

isomorphic to Tm for some m ∈ N, it follows that G is an inverse limit of tori. Choose a

decreasing sequence (Hn)n∈N of closed subgroups of G such that
⋂
n∈N

Hn = {e} and G/Hn
∼= Tmn

for some mn ∈ N, for all n ∈ N. By Lemma X.2.1, we may assume that mn = 1 for all n ∈ N, so

that G is a so-called solenoid. Observe that for n ∈ N, there exists kn ∈ Z with kn 6= 0, such that

the induced group homomorphism

G/Hn
∼= T→ G/Hn+1

∼= T

is given by ζ 7→ ζkn .

For n ∈ N, denote by ιn : AHn → AHn+1 the canonical inclusion. Then A is isomorphic to

the direct limit

AH1
ι1 // AH2

ι2 // · · · // A.

Moreover, the induced action of G/Hn
∼= T on AHn has the Rokhlin property by

Proposition X.2.2.

Claim: K0(A) ∼= 0. Once we have proved the claim, we will have contradicted our

assumptions, from which it will follow that G must be trivial (since it was assumed to be

connected).

Since K0(A) is isomorphic to the direct limit lim−→(K0(AHn),K0(ιn))n∈N, it is enough to

show that for ` ∈ N and x ∈ K0(AH`), there exists m > ` such that

(K0(ιm−1) ◦ · · · ◦K0(ι`))(x) = 0
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in K0(AHm). Let ` ∈ N and x ∈ K0(AH`). By dropping the first ` − 1 terms in the direct system,

we may assume, without loss of generality, that ` = 1. Set x1 = x, and for n ≥ 2, set

xn = K0(ιn−1)(xn−1) ∈ K0(AHn).

For n ∈ N, denote by 〈xn〉 the subgroup of K0(AHn) generated by xn, which is obviously

finitely generated. By Theorem X.2.4, there exist injective group homomorphisms ψn : 〈xn〉 →

K1(AHn), for n ∈ N, satisfying

K1(ιn) ◦ ψn = ψn+1 ◦K0(ιn).

Set yn = ψn(xn) ∈ K1(AHn). Since K1(A) ∼= lim−→(K1(AHn),K1(ιn))n∈N is the trivial group,

there exists m ∈ N such that ym = 0. Using commutativity of the diagram

〈x1〉
K0(ιn)|〈x1〉 //

ψ1

��

〈x1〉

ψ1

��
K1(AH1)

K1(ιn)
// K1(AHm),

and injectivity of ψm, we deduce that xm = 0. We conclude that K0(A) ∼= 0, as desired.

In the general case, the restriction of α to the connected component of the unit G0 has the

Rokhlin property by part (3) of Proposition VI.2.4. The argument above implies that G0 is the

trivial group, and thus G is totally disconected.

Assume now that K0(A) = 0. Let P be any unital C∗-algebra with K0(P ) = 0 and

K1(P ) ∼= Z. Set B = A⊗ P and let β : G→ Aut(B) be the diagonal action, that is, βg = αg ⊗ idP

for all g in G. Then β has the Rokhlin property by part (1) of Proposition VI.2.4. Moreover,

K0(B) ∼= K1(A) and K1(B) ∼= K0(A) by the Künneth formula. It follows from the first case of

this proof that G must be totally disconnected.

As a consequence of the above theorem, we show that no non-trivial compact group acts

on the Cuntz algebra O∞ or the Jiang-Su algebra Z with the Rokhlin property. Some time after

we proved Theorem X.3.4 below, we learned that Hirshberg and Phillips proved a stronger result

under the additional assumption that G be a Lie group: there are no non-trivial compact Lie
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group actions on O∞ or Z with the X-Rokhlin property for any free G-space X. See [120]. Using

Theorem 4.5 in [83], we deduce that there are no non-trivial compact Lie group actions on O∞

or Z with finite Rokhlin dimension with commuting towers. Our techniques are, nevertheless,

different from those used by Hirshberg and Phillips.

Theorem X.3.4. There are no non-trivial compact group actions with the Rokhlin property on

either the Cuntz algebra O∞ or the Jiang-Su algebra Z.

Proof. We claim that it is enough to prove the result for O∞. Indeed, there is an isomorphism

O∞ ⊗ Z ∼= O∞, and hence if there were a non-trivial compact group G acting on Z with the

Rokhlin property, then by tensoring such action with the trivial action on O∞ and using part (1)

of Proposition VI.2.4, we would conclude that G also acts on O∞ with the Rokhlin property. This

proves the claim.

Assume that G is a compact group acting on O∞ with the Rokhlin property, and let α

be one such action. Since K0(O∞) ∼= Z and K1(O∞) ∼= {0}, Theorem X.3.3 above implies

that G must be totally disconnected. Let N be a normal subgroup of G such that G/N is

finite. Since G/N is finite, the restriction of α to N has the Rokhlin property by part (1)

of Proposition VI.2.4. It follows from part (1) in Theorem 3.3 of [85] that the canonical inclusion

ι : ON∞ → O∞ induces an injective group homomorphism K0(ι) : K0(ON∞) → K0(O∞). Since the

unit of ON∞ is the unit of O∞, and [1O∞ ] generates K0(O∞), it follows that K0(ι) is surjective and

thus an automorphism. We deduce that K0(ON∞) ∼= Z, with the class of the unit corresponding to

1 ∈ Z.

Set H = G/N and denote by α : H → Aut(ON∞) the action induced by α. Being unital,

the automorphism αh induces the identity map on K0(ON∞), for every h ∈ H. Let ε = 1 and

F = ∅. Using the definition of the Rokhlin property for α, which is a finite group action, choose

projections eh in ON∞ for h ∈ H such that

1. ‖αh(e1)− eh‖ < 1 for all k, h ∈ H.

2.
∑
h∈H

eh = 1.

One concludes from condition (1) that αh(e1) is unitarily equivalent (in O∞N ) to eh for all h ∈ H,

and hence they determine the same element in K0(ON∞). Since K0(αh) = idK0(ON∞), it follows
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that [eh] = [e1] for all h ∈ H. In particular, condition (2) implies that the class of the unit in

K0(ON∞) ∼= Z is divisible by |H|, forcing H to be the trivial group.

It follows that the only finite quotient of G is the trivial group. Since G is the inverse limit

of its finite quotients, it follows that G itself is trivial.

Remark X.3.5. The above argument works for any unital C∗-algebra A with K0(A) = Z with

[1A] = 1 and K1(A) = {1}. (It does not depend on A being strongly self-absorbing, unlike the

argument in Theorem 4.6 of [120].)

It is straightforward to show that a compact group admits a free action on a compact,

totally disconnected space if and only if it is totally disconnected; this follows from the fact that

each orbit is homeomorphic to G. The following is its non-commutative analog.

Corollary X.3.6. Let G be a compact group. Then G admits an action on a unital AF-algebra

with the Rokhlin property if and only if it is totally disconnected.

Proof. If G is totally disconnected, then C(G) is a unital AF-algebra and the action of G by left

translation has the Rokhlin property. The converse follows from Theorem X.3.3 since AF-algebras

have trivial K1-group.

More interesting examples of totally disconnected group actions with the Rokhlin property

on AF-algebras (in particular, on simple AF-algebras), were constructed in Example 2.11 in [85].

In general, the AF-algebras constructed there will not be UHF-algebras, even if a UHF-pattern is

followed (unless G is the trivial group).

Example X.3.8 provides an example of a totally disconnected group action with the Rokhlin

property on a UHF-algebra. It requires some preparation.

Lemma X.3.7. Let A be a unital C∗-algebra and let G be a locally compact group. Suppose

that

(a) A = lim−→(An, ιn) is a direct limit of unital C∗-algebras with unital connecting maps ιn : An →

An+1 for n in N,

(b) G = lim←−(Gn, πn) is an inverse limit of locally compact groups with quotient maps πn : Gn →

Gn−1 for n in N,
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(c) There are continuous actions α(n) : Gn → Aut(An) satifying

α(n+1)
g ◦ ιn = ιn ◦ α(n)

πn+1(g)

for all n ∈ N and all g ∈ Gn+1.

Then there is a continuous action α : G→ Aut(A) such that for g ∈ Gk and a ∈ An, one has

αg(a) = ι∞,m

(
α

(m)
πm,k(g)(ιm−1,n(a))

)
(X.1)

for any m ≥ k, n.

Proof. We start by checking that for g ∈ Gk and a ∈ An, the expression in Equation X.1 does not

depend on m as long as m ≥ n, k. This follows from the following computation:

ι∞,m+1

(
α

(m+1)
πm,k(g)(ιm,n(a))

)
=
(
ιm+1 ◦ α(m+1)

πm,k(g) ◦ ιm,n
)

(a)

=
(
ιm+1 ◦ ιm ◦ α(m)

πm−1,k(g) ◦ ιm−1,n

)
(a)

= ι∞,m

(
α

(m)
πm−1,k(g)(ιm−1,n(a))

)
.

We conclude that for each g in G, Equation X.1 defines an automorphism αg of A. One easily

checks that the assignment g 7→ αg determines a group homomorphism α : G→ Aut(A). We claim

that α is continuous.

Given ε > 0 and a finite subset F ⊆ A, write F = {a1, . . . , aN} for some N ∈ N and some

a1, . . . , aN ∈ A. Choose n ∈ N and b1, . . . , bN ∈ An such that ‖aj − bj‖ < ε
3 for all j = 1, . . . , N .

Set F ′ = {b1, . . . , bN} ⊆ An. Since α(n) is continuous, there exists δ > 0 such that whenever h and

h′ are elements of Gn such that d(h, h′) < δ, it follows that ‖α(n)
h (b)− α(n)

h′ (b)‖ < ε
3 for all b in F ′.

Given g and g′ in G such that d(g, g′) < δ and given j = 1, . . . , N , we have

‖αg(aj)− αg′(aj)‖ ≤ ‖αg(aj)− αg(ι∞,n(bj))‖+ ‖αg(ι∞,n(bj))− αg′(ι∞,n(bj))‖

+ ‖αg′(ι∞,n(bj))− αg′(aj)‖

< 2‖aj − bj‖+
ε

3
< ε,

thus showing that α is a continuous action.
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The following example will play a crucial role in Theorem X.5.13.

Example X.3.8. Let G be a totally disconnected group. We construct an action of G with

the Rokhlin property on a UHF-algebra as follows. Let (Hk)k∈N be a decreasing sequence of

normal (closed) subgroups of G with
⋂
k∈N

Hk = {e}, such that Gk = G/Hk is finite for all

k ∈ N. (Closedness of Hk is redundant: any subgroup of finite index is automatically closed.)

For each k ∈ N, set Ak = B(`2(Gk)) and let α(k) : Gk → Aut(Ak) be conjugation by the left

regular representation. Since Gk is a quotient of Gk+1, it follows that |Gk| divides |Gk+1|. Set

dk = |Gk+1|/|Gk| and let ιk : Ak → Ak+1 be given by a 7→ diag(a, . . . , a), where a is repeated

dk times. It is easy to check that ιk(Ak) is precisely the fixed point algebra of Ak+1 by the action

α(k+1) restricted to Hk/Hk+1, and hence ιk is equivariant with respect to the actions α(k) and

α(k+1).

Define A as the direct limit

A1
ι(1)
// A2

ι(2)
// · · · // A,

and let α : G → Aut(A) be the limit action given by Lemma X.3.7 above. It is clear that A is a

UHF-algebra.

There is a commutative diagram

C(G1)

ϕ1

��

// C(G2)

ϕ2

��

// · · · // C(G)

ϕ

��
A1

ι(1)

// A2
ι(2)

// · · · // A,

where all the maps in the finite stages are unital and injective. For k ∈ N, let Gk act on C(Gk)

by left translation, and let it act on Ak via α(k). Then all the maps are also equivariant. It follows

that ϕ : C(G) → A is unital and equivariant. Note that this does not a imply that α has the

Rokhlin property, since the homomorphism ϕ is not necessarily approximately central. (The

action α will in fact almost never have the Rokhlin property.) We fix this by taking the infinite

tensor product of copies of α.

Set B =
⊗
n∈N

A and let β : G → Aut(B) be the diagonal action, that is, βg =
⊗
n∈N

αg. Again,

B is a UHF-algebra, and we moreover claim that β has the Rokhlin property.
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Let F ⊆ B be a finite set and ε > 0. Write F = {b1, . . . , bN} for some N ∈ N and some

b1, . . . , bN ∈ B. Find M ∈ N and c1, . . . , cN ∈
M⊗
n=1

A such that ‖bj − cj‖ < ε
2 for all j = 1, . . . , N .

Let ψ : C(G) → B be the composition of the map ϕ with the inclusion of A in B as the (M + 1)-

st factor. Then ψ is a unital equivariant homomorphism, and it remains to check that its image

approximately commutes with the elements of F . It is clear that ψ(C(G)) exactly commutes with

cj for all j = 1, . . . , N . The rest is just an ε
2 argument: for j = 1, . . . , N and for f ∈ C(G) of norm

at most one, we have

‖ψ(f)bj − bjψ(f)‖ ≤ ‖ψ(f)(bj − cj)‖+ ‖ψ(f)cj − cjψ(f)‖+ ‖(bj − cj)ψ(f)‖

<
ε

2
+
ε

2
= ε,

and the result follows.

Classification and Consequences

Finite group actions with the Rokhlin property are considerably easier to handle than

general compact group actions with the Rokhlin property. Nevertheless, in some cases, if one

starts with a compact group action with the Rokhlin property, then the restriction to a finite

subgroup again has the Rokhlin property. If one is able to classify these restrictions, then one can

use an intertwining argument applied to an exhausting increasing sequence of finite subgroups to

obtain classification of the actions.

Unfortunately, this idea has no hope of working beyond the compact Lie group case, since

compact groups need not have any torsion elements. For example, give Q the discrete topology,

and set G = Q̂. Then G is a compact, connected, second countable abelian group with no torsion

elements. For a totally disconnected example, consider the p-adic integers Zp.

Nevertheless, for our purposes, it will be enough to consider “approximate” subgroups, in

the sense of the following lemma.

Lemma X.4.1. Let G be a compact group, let ε > 0 and let g ∈ G. Then there exists n ∈ N such

that d(gn, 1) < ε.

Proof. Consider the sequence (gm)m∈N in G. Since G is compact, there exist a subsequence

(mk)k∈N and a group element g0 ∈ G such that gmk → g0 in G as k → ∞. In particular, for
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the ε > 0 given in the statement, and using translation invariance of the metric d in the second

step, we conclude that there exists k0 ∈ N such that

ε > d(gmk0+1 , gmk0 ) = d(gmk0+1−mk0 , 1).

Now n = mk0+1 −mk0
is the desired positive integer.

With the notation of the above lemma, we may regard the set {1, g, . . . , gn−1} as an ε-

approximate subgroup of G.

Lemma X.4.2. Let G be a totally disconnected compact group, let A and B be unital C∗-

algebras, let α and β be actions of G on A and B respectively, such that β has the Rokhlin

property, and let ψ : A → B be a homomorphism such that ψ ◦ αg is approximately unitarily

equivalent to βg ◦ ψ for all g ∈ G. Then for all ε > 0, for all finite subsets F ⊆ A and for all

g0 ∈ G, there exist a finite subset S ⊆ G containing g0 and a unitary w in U(B) such that

‖(Ad(w) ◦ βg ◦Ad(w∗) ◦ ψ)(a)− (ψ ◦ αg)(a)‖ < ε

for all g ∈ S and all a ∈ F , and

‖wψ(a)− ψ(a)w‖ < ε+ sup
g∈S
‖(βg ◦ ψ)(a)− (ψ ◦ αg)(a)‖

for all a ∈ F . Moreover, the finite set S ⊆ G can be chosen to have the form S = {1, g0, . . . , g
N
0 }

for some N ∈ N.

Proof. Let ε > 0, let F ⊆ A be a finite set, and let g0 ∈ G. Upon normalizing the elements of F ,

we may and will assume that ‖a‖ ≤ 1 for all a in F . Observe that if g0 is the unit of G, then the

result can be obtained by simply setting w = 1 and S = {g0}. We may therefore assume that g0 is

not the unit of G.

Set F ′ =
⋃
g∈G

αg(F ), which is a compact subset of A. Choose δ > 0 such that for g and g′ in

G with d(g, g′) < δ, one has

‖αg(x)− αg′(x)‖ < ε

14
and ‖βg(ψ(x))− βg′(ψ(x))‖ < ε

14
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for all x ∈ F ′. For g in G, use the fact that ψ ◦ αg is approximately unitarily equivalent to βg ◦ ψ

to choose a unitary vg in B such that

‖(ψ ◦ αg)(x)− (Ad(vg) ◦ βg ◦ ψ)(x)‖ < ε

for all x in F ′.

Using Lemma X.4.1, denote by n ∈ N the smallest positive integer such that d(gn0 , 1) <

δ. By Corollary X.3.2, there is a normal closed subgroup H of G such that G/H is finite

and the group elements 1, g0, . . . , g
n−1 are sent to pairwise distinct elements in G/H. By

Proposition X.2.2, the action β : G/H → Aut(BH) has the Rokhlin property. Since the

Rokhlin property for finite groups passes to arbitrary subgroups, we may assume that G/H is

the cyclic group generated be the image of g0 in G/H, so that there exists N ∈ N such that

G/H = {1, g0, . . . , g
N
0 }. (Note that we must have N ≥ n− 1.)

Choose δ0 > 0 such that whenever s ∈ A satisfies ‖s∗s − 1‖ ≤ δ0 and ‖ss∗ − 1‖ ≤ δ0, then

there exists a unitary u ∈ U(A) such that ‖u− s‖ ≤ ε
14 . Set ε0 = min{ ε14 , δ0}.

Use Lemma X.2.3 and Proposition 5.26 in [205] to choose projections e0, . . . , eN in BH ⊆ B

such that

1. βg0
j (ek) = ej+k for all j, k = 0, . . . , N , where the indices are taken modulo N + 1.

2. ‖ejy − yej‖ < ε0
2 for all j = 0, . . . , N and all

y ∈ {vgk0 : k = 0, . . . , N} ∪ {ψ(a) : a ∈ F}.

3.
N∑
j=0

ej = 1.

For x in F ′ and j, k in {0, . . . , N}, we have d(gj0g
k
0 , g

j+k
0 ) < δ, and consequently

∥∥∥(βgj0 ◦ βgk0 ◦ ψ) (x)−
(
βgj+k0

◦ ψ
)

(x)
∥∥∥ < ε

14
,

and similarly with α: ∥∥∥(αgj0 ◦ αgk0) (x)−
(
αgj+k0

)
(x)
∥∥∥ < ε

14
.
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Set

w =

N∑
j=0

ejvgj0
.

Then w is an almost unitary. Indeed, we have

‖w∗w − 1‖ =

∥∥∥∥∥∥
N∑

j,k=0

v∗
gj0
ejekvgk0 − 1

∥∥∥∥∥∥ =

∥∥∥∥∥∥
N∑
j=0

v∗
gj0
ejvgj0

− 1

∥∥∥∥∥∥ ≤ ε0

2
< δ0.

Likewise,

‖ww∗ − 1‖ =

∥∥∥∥∥∥
N∑

j,k=0

ejvgj0
v∗gk0

ek − 1

∥∥∥∥∥∥ = 2
ε0

2
+

∥∥∥∥∥∥
N∑
j=0

ejvgj0
v∗
gj0
− 1

∥∥∥∥∥∥ = ε0 ≤ δ0.

It follows that there exists a unitary u in B such that ‖u− w‖ ≤ ε
14 .

From now on and until the end of this proof, whenever c and d are elements of B and t ∈

R>0, the symbol c =t d will mean ‖c− d‖ ≤ t.

For a in F and k ∈ {0, . . . , N}, we have

(
Ad(u) ◦ βgk0 ◦Ad(u∗) ◦ ψ

)
(a)

= 4ε
14

(
Ad(w) ◦ βgk0 ◦Ad(w∗) ◦ ψ

)
(a)

= ε0
2

N∑
j=0

(
Ad(w) ◦ βgk0

)(
ejv
∗
gj0
ψ(a)vgj0

)

= ε0
2

N∑
j=0

ej+k

(
Ad(w) ◦ βgk0 ◦Ad

(
v∗
gj0

)
◦ ψ
)

(a)

=

N∑
j=0

ej+k

(
Ad
(
vgj+k0

)
◦ βgk0 ◦Ad

(
v∗
gj0

)
◦ ψ
)

(a)

=

N∑
j=0

ej+k

(
Ad
(
vgj+k0

)
◦ βgk0 ◦ βgj0 ◦

(
Ad
(
vgj0

)
◦ βgj0

)−1

◦ ψ
)

(a).
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For k ∈ {0, . . . , N}, we have the following computation, where in the fourth step we set x =

α−1

gj0
(a), which belongs to F ′:

∥∥∥(ψ ◦ αgk0) (a)−
(

Ad(u) ◦ βgk0 ◦Ad(u∗) ◦ ψ
)

(a)
∥∥∥

≤ 4ε

14
+
∥∥∥(ψ ◦ αgk0) (a)−

(
Ad(w) ◦ βgk0 ◦Ad(w∗) ◦ ψ

)
(a)
∥∥∥

≤ 8ε

14
+ ε0 +

∥∥∥∥∥∥
N∑
j=0

ej+k

[(
ψ ◦ αgk0

)
(a)−

(
Ad
(
vgj+k0

)
◦ βgk0 ◦ βgj0 ◦

(
Ad
(
vgj0

)
◦ βgj0

)−1

◦ ψ
)

(a)

]∥∥∥∥∥∥
≤ 8ε

14
+ ε0 + sup

j=0,...,N

∥∥∥∥(ψ ◦ αgk0) (a)−
(

Ad
(
vgj+k0

)
◦ βgk0 ◦ βgj0 ◦

(
Ad
(
vgj0

)
◦ βgj0

)−1

◦ ψ
)

(a)

∥∥∥∥
=

8ε

14
+ ε0 + sup

j=0,...,N

∥∥∥∥(ψ ◦ αgk0 ◦ αgj0) (x)−
(

Ad
(
vgj+k0

)
◦ βgk0 ◦ βgj0 ◦

(
Ad
(
vgj0

)
◦ βgj0

)−1

◦ ψ ◦ αgj0

)
(x)

∥∥∥∥
≤ 8ε

14
+ ε0 + sup

j=0,...,N

∥∥∥(ψ ◦ αgk0 ◦ αgj0) (x)−
(

Ad
(
vgj+k0

)
◦ βgk0 ◦ βgj0 ◦ ψ

)
(x)
∥∥∥

+

∥∥∥∥ψ(x)−
((

Ad
(
vgj0

)
◦ βgj0

)−1

◦ ψ ◦ αgj0

)
(x)

∥∥∥∥
≤ 10ε

14
+ ε0 + sup

j=0,...,N

∥∥∥(ψ ◦ αgk+j
0

)
(x)−

(
Ad
(
vgj+k0

)
◦ βgk+j

0 k ◦ ψ
)

(x)
∥∥∥

+
∥∥∥(Ad

(
vgj0

)
◦ βgj0 ◦ ψ

)
(x)−

(
ψ ◦ αgj0

)
(x)
∥∥∥

≤ 12ε

14
+ ε0

< ε.
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Finally, if a ∈ F , and again by setting x = α−1

gj0
(a) ∈ F ′ in the fifth step, we have

‖ψ(a)u− uψ(a)‖ = ‖u∗ψ(a)u− ψ(a)‖

≤ 2ε

14
+ ‖w∗ψ(a)w − ψ(a)‖

≤ 5ε

14
+

∥∥∥∥∥∥
N∑
j=0

ej

(
v∗
gj0
ψ(a)vgj0

− ψ(a)
)∥∥∥∥∥∥

≤ 5ε

14
+ sup
j=0,...,N

∥∥∥(Ad
(
v∗
gj0

)
◦ ψ ◦ αgj0 ◦ α

−1

gj0

)
(a)− ψ(a)

∥∥∥
≤ 5ε

14
+ sup
j=0,...,N

∥∥∥(Ad
(
v∗
gj0

)
◦ ψ ◦ αgj0

)
(x)−

(
βgj0
◦ ψ
)

(x)
∥∥∥

+ sup
j=0,...,N

∥∥∥(βgj0 ◦ ψ ◦ αg−j0

)
(a)− ψ(a)

∥∥∥
≤ 6ε

14
+ sup
j=0,...,N

∥∥∥(ψ ◦ αg−j0

)
(a)−

(
βg−j0

◦ ψ
)

(a)
∥∥∥

< ε+ sup
j=0,...,N

∥∥∥(ψ ◦ αg−j0

)
(a)−

(
βg−j0

◦ ψ
)

(a)
∥∥∥ ,

and the result follows.

We will need the following technical lemma.

Lemma X.4.3. Let A be a separable C∗-algebra, let G be a compact group, and let α : G →

Aut(A) be a continuous action. Let (εn)n∈N be a sequence of positive real numbers such that∑
n∈N

εn < ∞, and choose an increasing family of compact subsets Fn ⊆ A for n ∈ N whose union

is dense in A. Assume that we can inductively choose a unitary un in A for n ∈ N such that, with

α(1) = α and F ′1 =
⋃
g∈G

αg(F1), if we let

α(n−1)
g = Ad(un−1) ◦ α(n−2)

g ◦Ad(u∗n−1)

for n ≥ 2, then ‖una− aun‖ < εn for all a in a compact set F ′n that contains

⋃
g∈G

α(n−1)
g

(
F ′n−1 ∪ Fn ∪Ad(un−1 · · ·u1)(F ′n−1)

)
.

Then lim
n→∞

Ad(un · · ·u1) exists in the topology of pointwise norm convergence in Aut(A) and

defines an approximately inner automorphism µ of A. Moreover, for every g in G and for every a
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in A, the sequence
(
α

(n)
g (a)

)
n∈N

converges and

lim
n→∞

α(n)
g (a) = µ ◦ αg(a) ◦ µ−1.

In particular, g 7→ lim
n→∞

α
(n)
g is a continuous action of G on A.

Proof. We will first show that lim
n→∞

Ad(un · · ·u1) exists and defines an automorphism of A. Such

an automorphism will clearly be approximately inner.

For n ≥ 1, set vn = un · · ·u1. Let

S = {a ∈ A : (vnav
∗
n)n∈N converges in A}.

We claim that S is dense in A. Indeed, S contains the set Fn for all n, and since
⋃
n∈N

Fn is dense

in A, the claim follows.

In particular, S is a dense ∗-subalgebra of A. For each a in S, denote by µ0(a) the limit of

the sequence (vnav
∗
n)n∈N. The map µ0 : S → A is linear, multiplicative, preserves the adjoint, and

is isometric, and therefore extends by continuity to a homomorphism µ : A→ A with ‖µ(a)‖ = ‖a‖

for all a in A. Given a in A and given ε > 0, choose b in S such that ‖a− b‖ < ε
3 , using density of

S in A. Choose N ∈ N such that ‖vNbv∗N − µ(b)‖ < ε
3 . Then

‖µ(a)− vNav∗N‖ ≤ ‖µ(a− b)‖+ ‖µ(b)− vNbv∗N‖+ ‖vNav∗N − vNbv∗N‖

<
ε

3
+
ε

3
+
ε

3
= ε,

It follows that µ = lim
n→∞

Ad(un · · ·u1) is an endomorphism of A, and it is isometric since it is a

norm-pointwise limit of isometric maps. In particular, it is injective. We still need show that it is

an automorphism. For this, we construct its inverse. By a similar reasoning, the norm-pointwise

limit lim
n→∞

Ad(u∗1 · · ·u∗n) defines another injective endomorphism of A, since ‖u∗naun − a‖ < εn

for all n ∈ N and for all a in F ′n. We denote this endomorphism by ν. We claim that ν is a right

inverse for µ, which will imply that µ is an automorphism since it is injective. For a in Fk and

k ≤ n ≤ m, and using that Ad(uj · · ·un)(a) ∈ F ′j and that uj+1 commutes with the elements of F ′j
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up to εj in the last step, we have

‖a−
(
µm ◦ µ−1

n

)
(a)‖ = ‖umum−1 · · ·un+1au

∗
n+1 · · ·u∗m − a‖

≤
m−1∑
j=n

‖Ad(uj+1 · · ·un)(a)−Ad(uj · · ·un)(a)‖

<

m−1∑
j=n

εj .

The estimate above implies that µ(ν(a)) = a since
∞∑
j=1

εj converges. Now, the union of the sets Fk

with k ∈ N is dense in A, so this proves the first part of the statement.

We now show that given g in G and a in A, the sequence
(
α

(n)
g (a)

)
n∈N

converges by

showing that it is Cauchy. Since
∞⋃
n=1

Fn is dense in A, it suffices to consider elements in this

union. Let n ∈ N and choose a in Fn ⊆ F ′n. If g ∈ G and m ≥ k ≥ n, then

‖α(k)
g (a)− α(m)

g (a)‖

= ‖α(k)
g (a)−Ad(um) ◦ · · · ◦Ad(uk+1) ◦ α(k)

g ◦Ad(u∗k+1) ◦ · · · ◦Ad(u∗m)(a)‖

≤
m−1∑
j=k

(
‖Ad(uj+1 · · ·uk) ◦ α(k)

g ◦Ad(u∗k · · ·u∗j+1)(a)

−Ad(uj · · ·uk) ◦ α(k)
g ◦Ad(u∗k · · ·u∗j )(a)‖

)
<

m−1∑
j=k

εj ,

where in the last step we use that

(
Ad(uj · · ·uk) ◦ α(k)

g ◦Ad(u∗k · · ·u∗j )
)

(a) ∈ F ′j

and that uj+1 commutes with the elements of F ′j up to εj . Since
∑
j∈N

εj <∞, the claim follows.

Fix g ∈ G and a ∈ A. We claim that

lim
n→∞

(Ad(un · · ·u1) ◦ αg ◦Ad(u∗1 · · ·u∗n))(a) = (µ ◦ αg ◦ µ−1)(a).
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Let ε > 0. Choose n ∈ N such that

‖Ad(un · · ·u1)(x)− µ(x)‖ < ε

2

for all x ∈ {a} ∪
⋃
g∈G

αg(µ
−1(a)). Then

‖(Ad(un · · ·u1) ◦ αg ◦Ad(u∗1 · · ·u∗n))(a)− (µ ◦ αg ◦ µ−1)(a)‖

≤ ‖(Ad(un · · ·u1) ◦ αg ◦Ad(u∗1 · · ·u∗n))(a)− (Ad(un · · ·u1) ◦ αg ◦ µ−1)(a)‖

+ ‖(Ad(un · · ·u1) ◦ αg ◦ µ−1)(a)− (µ ◦ αg ◦ µ−1)(a)‖

= ‖Ad(u∗1 · · ·u∗n)(a)− µ−1(a)‖

+ ‖(Ad(un · · ·u1) ◦ αg ◦ µ−1)(a)− (µ ◦ αg ◦ µ−1)(a)‖

≤ ε

2
+
ε

2
= ε.

This finishes the proof.

The following is a variant of an argument used by Evans and Kishimoto. Some of the

hypotheses of the theorem can be relaxed, but this version is good enough for our purposes. In

particular, for the result to hold, the connecting maps need not be injective, and conditions (5)

and (6) can assumed to hold only approximately on the sets Xn and Yn respectively. On the other

hand, we do not assume that the actions α and β are direct limit actions, but only limit actions.

Theorem X.4.4. Let G be a locally compact group. Let (An, in) and (Bn, jn) be direct systems

in which in : An → An+1 and jn : Bn → Bn+1 are inclusions for all n ∈ N. Let α(n) : G→ Aut(An)

and β(n) : G → Aut(Bn) be continuous actions that induce norm-pointwise limit actions α =

lim
n
α(n) and β = lim

n
β(n) of G on A = lim−→An and B = lim−→Bn respectively. This is, for every k in

N, we have that αg(a) = lim
n→∞,n≥k

α
(n)
g (a) exists for every g ∈ G and every a ∈ Ak, and g 7→ αg

defines a continuous action of G on lim−→An, and similarly with β.

Suppose there are a sequence (εn)n∈N of positive numbers, maps ϕn : An → Bn, increasing

compact subsets Xn ⊆ An and Yn ⊆ Bn, and a family of subsets Gn ⊆ G such that

1.
∑
n∈N

εn <∞;

2.

( ∞⋃
m=n

Xm

)
∩An is dense in An and

( ∞⋃
m=n

Ym

)
∩Bn is dense in Bn for all n ∈ N;
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3. ϕn(Xn) ⊆ Yn for all n ∈ N;

4. α
(n)
g (Xn) ⊆ Xn and β

(n)
g (Yn) ⊆ Yn for all g ∈ G and all n ∈ N;

5. ‖(jn ◦ ϕn)(a)− (ϕn+1 ◦ in)(a)‖ < εn for all a ∈ Xn and all n ∈ N;

6.
⋃
n≥N

Gn = G for all N ∈ N;

7. ‖(ϕn ◦ α(n)
g )(a)− (β

(n)
g ◦ ϕn)(a)‖ < εn for all a ∈ Xn and for all g ∈ Gn;

8. ‖(in ◦ α(n)
g )(a)− (α

(n+1)
g ◦ in)(a)‖ < εn for all a ∈ Xn and g ∈ Gn; and

9. ‖(jn ◦ β(n)
g )(b)− (β

(n+1)
g ◦ jn)(b)‖ < εn for all b ∈ Yn and g ∈ Gn.

Then the map ϕ0 :
⋃
n∈N

An →
⋃
n∈N

Bn, given by

ϕ0(a) = lim
n→∞

ϕn(a)

is well defined and extends by continuity to a homomorphism ϕ : A→ B such that

ϕ ◦ αg = βg ◦ ϕ

for all g ∈ G.

Proof. Consider the map ϕ0 :
⋃
n∈N

An →
⋃
n∈N

Bn defined above. It is straightforward to show that

ϕ0 is well-defined and norm-decreasing, and hence it extends by continuity to a homomorphism

ϕ : A→ B. It remains to check that it intertwines the actions α and β.

Fix n ∈ N and choose g in Gn and a in Xn. We claim that

(ϕ ◦ αg)(a) = (βg ◦ ϕ)(a).

For m, k ∈ N with m ≥ k, denote by im−1,k : Ak → Am and jm−1,k : Bk → Bm the compositions

im−1,k = im−1 ◦ · · · ◦ ik and jm−1,k = jm−1 ◦ · · · ◦ jk, respectively. We have

(ϕ ◦ αg)(a) = lim
m→∞

(ϕ ◦ α(m)
g ◦ im−1,n)(a) = lim

m→∞
(ϕm ◦ α(m)

g ◦ im−1,n)(a)
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and likewise,

(βg ◦ ϕ)(a) = lim
m→∞

(βg ◦ ϕm ◦ im−1,n)(a) = lim
m→∞

(β(m)
g ◦ ϕm ◦ im−1,n)(a).

Moreover, if r ≥ m, then

‖(ϕr ◦ α(r)
g ◦ ir−1,n)(a)− (jr−1,m ◦ β(m)

g ◦ ϕm ◦ im−1,n)(a)‖

≤ ‖(ϕr ◦ α(r)
g ◦ ir−1,n)(a)− (β(r)

g ◦ ϕr ◦ ir−1,n)(a)‖

+ ‖(β(r)
g ◦ ϕr ◦ ir−1,n)(a)− (jr−1,m ◦ β(m)

g ◦ ϕm ◦ im−1,n)(a)‖

< εr +

r−1∑
k=m

‖(β(k+1)
g ◦ ϕk+1 ◦ ik,n)(a)− (jk ◦ β(k)

g ◦ ϕk ◦ ik−1,n)(a)‖

= εr +

r−1∑
k=m

‖(β(k+1)
g ◦ ϕk+1 ◦ ik(ik−1,n)(a))− (jk ◦ β(k)

g ◦ ϕk(ik−1,n)(a))‖

< εr +

r−1∑
k=m

∥∥∥(β(k+1)
g ◦ ϕk+1 ◦ ik(ik−1,n)(a))− (jk ◦ β(k)

g ◦ ϕk+1 ◦ ik(ik−1,n)(a))
∥∥∥

<

r∑
k=m

εk.

Since
∑
j∈N

εj <∞, we conclude that

lim
m→∞

(ϕm ◦ α(m)
g ◦ im−1,n)(a) = lim

m→∞
(β(m)
g ◦ ϕm ◦ im−1,n)(a)

and the claim follows.

For fixed a ∈ Xn, the conclusion is that the identity

(ϕ ◦ αg)(a) = (βg ◦ ϕ)(a)

holds for all g in Gn. Since the family (Xn)n∈N is increasing, the identity above holds for all g in⋃
m≥n

Gm. Since
⋃
m≥n

Gm is dense in G, the identity (ϕ ◦ αg)(a) = (βg ◦ ϕ)(a) holds for all g in G,

and for all a in Xn. Therefore it holds for all a in
⋃
n∈N

Xn, and by continuity, it holds for all a in

A. The result follows.
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With the aid of Lemma X.4.2, we can show that the results in [132] (specifically

Theorem 3.5 there) hold for totally disconnected compact groups. We begin proving an existence

result for equivariant homomorphisms.

Proposition X.4.5. (Compare with Proposition 4.2 of [91].) Let G be a totally disconected

compact group, let A and B be unital C∗-algebras, with A separable, and let α and β be actions

of G on A and B respectively, such that β has the Rokhlin property. Let ψ : A → B be a

homomorphism such that βg ◦ ψ and ψ ◦ αg are approximately unitarily equivalent for all g ∈ G.

Then there exists an equivariant homomorphism θ : A → B that is approximately unitarily

equivalent to ψ.

Proof. Choose an increasing family of finite subsets Fn ⊆ A for n ∈ N whose union is dense in A.

Choose a countable subset {g1, g2, . . .} ⊆ G such that {gn, gn+1, . . .} is dense in G for all n ∈ N.

Set α(1) = α, β(1) = β and ψ(1) = ψ. Choose a unitary u1 ∈ U(A) and a finite subset S1 of G

such that the conclusion of Lemma X.4.2 holds for α(1), β(1) and ψ(1), with the choices g0 = g1,

with F ′1 =
⋃
g∈G

(αg(F1) ∪ βg(F1)) and ε = 1. For g ∈ G, let α
(2)
g = Ad(u1) ◦ α(1) ◦ Ad(u∗1), let

ψ(2) = Ad(u1) ◦ ψ(1), and let

F ′2 =
⋃
g∈G

α(2)
g (F2 ∪ F ′1 ∪Ad(u1)(F ′1)) ∪

⋃
g∈G

β(1)
g (F2 ∪ F ′1 ∪Ad(u1)(F ′1)).

Choose a unitary v1 ∈ U(A) such that the conclusion of Lemma X.4.2 is satisfied with α(2),

β(1) and ψ(2), with the choices g0 = g2, with F = F ′2 and ε = 1
2 . Analogously, for g ∈ G, set

β
(2)
g = Ad(v1) ◦ βg ◦Ad(v∗1) and ψ(3) = Ad(v1) ◦ ψ(2), and let

F ′3 =
⋃
g∈G

α(2)
g (F2 ∪ F ′1 ∪Ad(v1)(F ′1)) ∪

⋃
g∈G

β(2)
g (F2 ∪ F ′1 ∪Ad(v1)(F ′1)).

Iterating this process, we obtain a family of compact subsets F ′n ⊆ A for n ∈ N whose union is

dense in A, a family of finite subsets Sn ⊆ G such that
⋃
n≥N

Sn is dense in G for all N ∈ N, two

sequences (un)n∈N and (vn)n∈N of unitaries in A, two families (α(n))n∈N and (β(n))n∈N of actions

of G on A and a family (ψ(n))n∈N of endomorphisms of A, that with α(1) = α, β(1) = β and

ψ(1) = ψ, are given by

α(n+1)
g = Ad(un) ◦ α(n)

g ◦Ad(u∗n) , β(n+1)
g = Ad(vn) ◦ β(n)

g ◦Ad(v∗n),
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ψ(2n+1) = Ad(un) ◦ ψ(2n) and ψ(2n) = Ad(vn) ◦ ψ(2n−1)

for all g ∈ G, and such that, with F ′1 =
⋃
g∈G

(αg(F1) ∪ βg(F1)), the compact sets F ′n are given by

F ′2n+1 =
⋃
g∈G

α(n+1)
g (F2n+1 ∪ F ′2n ∪Ad(vnvn−1 · · · v1)(F ′2n))

∪
⋃
g∈G

β(n)
g (F2n+1 ∪ F ′2n ∪Ad(vnvn−1 · · · v1)(F ′2n))

F ′2n+2 =
⋃
g∈G

α(n+1)
g (F2n+2 ∪ F ′2n+1 ∪Ad(unun−1 · · ·u1)(F ′2n))

∪
⋃
g∈G

β(n+1)
g (F2n+2 ∪ F ′2n+1 ∪Ad(unun−1 · · ·u1)(F ′2n));

the actions α(n) and β(n) become closer to being intertwined by the homomorphism ψ(n):

∥∥∥(β(n)
g ◦ ψ(2n)

)
(a)−

(
ψ(2n) ◦ α(n+1)

g

)
(a)
∥∥∥ < 1

2n

for a in F ′2n and g in Sn+1, and

∥∥∥(β(n+1)
g ◦ ψ(2n+1)

)
(a)−

(
ψ(2n+1) ◦ α(n+1)

g

)
(a)
∥∥∥ < 1

2n+1

for a in F ′2n+1 and g in Sn+1. The unitaries un and vn satisfy the following approximate

commutation condition:

∥∥∥vn (ψ(2n+1)(a)
)
−
(
ψ(2n+1)(a)

)
vn

∥∥∥
<

1

2n
+ sup
g∈Sn

∥∥∥(β(n)
g ◦ ψ(2n)

)
(a)−

(
ψ(2n) ◦ α(n+1)

g

)
(a)
∥∥∥ < 1

2n−1

for a ∈ F ′2n, and

∥∥∥un+1

(
ψ(2n)(a)

)
−
(
ψ(2n)(a)

)
un+1

∥∥∥
<

1

2n+1
+ sup
g∈Sn+1

∥∥∥(β(n+1)
g ◦ ψ(2n+1)

)
(a)−

(
ψ(2n+1) ◦ α(n+1)

g

)
(a)
∥∥∥ < 1

2n

for a ∈ F ′2n+1 for n ∈ N.
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By Lemma X.4.3, there exist approximately inner automorphisms µ and ν of A and B

respectively, such that for all g ∈ G,

lim
n→∞

α(n)
g = µ ◦ αg ◦ µ−1 and lim

n→∞
β(n)
g = ν ◦ βg ◦ ν−1.

The conditions of Theorem X.4.4 are satisfied with the direct limit decompositions An = A and

Bn = B, connecting maps in = idA and jn = idB , morphisms ϕn = ψ(n), and subsets Gn = Sn for

all n ∈ N. Denote by ϕ : A→ B the homomorphism provided by Theorem X.4.4. It follows that

ϕ ◦ µ ◦ αg ◦ µ−1 = ν ◦ βg ◦ ν−1 ◦ ϕ

for all g ∈ G, and by setting θ = ν−1 ◦ ϕ ◦ µ, the claim follows.

In order to state our results in full generality, we recall some terminology and notation used

in [91].

Notation X.4.6. Let G be a locally compact group. Let B be a subcategory of the category A

of C∗-algebras, let C be a category and let F: B→ C be a functor.

1. Let BG denote the category whose objects are dynamical systems (G,A, α) with A in B,

and its morphisms are equivariant homomorphisms of C∗-algebras in B.

2. Let CG denote the category whose objects are triples (G,C, γ), where C is an object in C

and γ : G → Aut(C) is a group homomorphism, and whose morphisms are the morphisms of

C that are equivariant.

3. Let FG : BG → CG denote the functor defined as follows:

(a) For an object (G,A, α) in BG, define an action F(α) : G → Aut(F(A)) by (F(α))g =

F(αg) for g ∈ G. We then set FG(A,α) = (F(A),F(α));

(b) For an equivariant morphism φ : A→ B, we set FG(φ) = F(φ).

When G is compact, we let RBG denote the subcategory of BG consisting of those C∗-dynamical

systems (G,A, α) such that A is separable and α has the Rokhlin property.
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The next theorem asserts that the functor on RBG induced by a functor that classifies

homomorphisms on a subcategory B of C∗-algebras, again classifies homomorphisms. Its proof is

identical to that of Theorem 3.2 in [91], using Proposition X.4.5 above instead of Proposition 3.2

in [91]. We omit the details. See Definition 4.2 in [91] for the definition of functor that classifies

homomorphisms.

Theorem X.4.7. Let G be a totally disconnected compact group, let B be a subcategory of

A that is closed under countable direct limits, and let C be a category where inductive limits

of sequences exist. Let F: B → C be a functor that classifies homomorphisms. Assume that F

preserves countable direct limits.

1. Let (G,A, α) be an object in BG and let (G,B, β) be an object in RBG. Assume that A

and B are separable. Then

(a) For every morphism γ : (G,F(A),F(α)) → (G,F(B),F(β)) in CG there exists a

morphism φ : (G,A, α)→ (G,B, β) in BG such that FG(φ) = γ.

(b) If φ, ψ : (G,A, α) → (G,B, β) are morphisms in BG such that FG(φ) = FG(ψ), then φ

and ψ are equivariantly unitarily approximately equivalent.

2. The restriction of the functor FG to RBG classifies homomorphisms.

Analogously, one can show that the functor on RBG, induced by a functor that classifies

isomorphisms on a subcategory B of C∗-algebras, again classifies isomorphisms. (Compare with

Theorem

We give two examples of applications of Theorem X.4.7 to concrete classes of C∗-algebras.

Theorem X.4.8. Let G be a compact group, let A = lim−→(An, ιn) and B = lim−→(Bn, jn) be direct

limits of unital 1-dimensional NCCW-complexes An and Bn with trivial K1-groups, and unital

connecting maps ιn : An → An+1 and j : Bn → Bn+1, and let α and β be actions of G with the

Rokhlin property on A and B respectively.

Then for every morphism φ : Cu(A)→ Cu(B) such that

φ([1A]) ≤ [1B ] and φ ◦ Cu(αg) = Cu(βg) ◦ φ for all g ∈ G,

there exists a unital homomorphism θ : A→ B such that θ ◦ αg = βg ◦ θ for all g ∈ G. Moreover,
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1. The homomorphism θ is unique up to equivariant approximate unitary equivalence.

2. The homomorphism θ is unital if and only if φ([1A]) = [1B ].

3. The actions α and β are conjugate if and only if there exists a unit-preserving isomorphism

φ : Cu(A)→ Cu(B) such that φ−1 ◦ Cu(βg) ◦ φ = Cu(αg) for all g ∈ G.

4. If A = B, then the actions α and β are approximately inner conjugate if and only if

Cu(αg) = Cu(βg) for all g ∈ G.

Proof. Let B denote the class of C∗-algebras consisting of all C∗-algebras A such that A is

isomorphic to a direct limit of the form lim−→(An, ιn), where each of the An is a 1-dimensional

NCCW-complex with K1(An) = 0, and each of the ιn : An → An+1 is unital. By Theorem

1 in [230], the functor consisting of the Cuntz semigroup and the class of the unit classifies

homomorphisms in B. This theorem is then a consequence of Theorem X.4.7 above.

Likewise, since the ordered K0 group classifies homomorphisms of AF-algebras, we conclude

the following.

Theorem X.4.9. Let G be a compact group, let A and B be unital AF-algebras, and let α and

β be actions of G on A and B respectively with the Rokhlin property. Then for every morphism

φ : K0(A)→ K0(B) of partially ordered groups such that

φ([1A]) ≤ [1B ] and φ ◦K0(αg) = K0(βg) ◦ φ for all g ∈ G,

there exists a homomorphism θ : A→ B such that θ ◦ αg = βg ◦ θ for all g ∈ G. Moreover,

1. The homomorphism θ is unique up to equivariant approximate unitary equivalence.

2. The actions α and β are conjugate if and only if there exists a positive isomorphism

φ : K0(A)→ K0(B) such that φ−1 ◦K0(βg) ◦ φ = K0(αg) for all g ∈ G.

3. When A = B, the actions α and β are approximately inner conjugate if and only if

K0(αg) = K0(βg) for all g ∈ G.
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Model Actions

We return to Example X.3.8 and prove that the action constructed there is unique up to

equivariant isomorphism. We need some results on profinite groups first.

Compare the following definition with the usual definitions of subnormal and composition

series, which are always taken to have finite length.

Definition X.5.1. Let G be a totally disconnected compact group.

1. A profinite subnormal series is a sequence

G = H1 ≥ H2 ≥ · · ·

of subgroups of G satisfying
⋂
n∈N

Hn = {e} such that for all n in N, Hn+1 is normal in Hn

and Hn/Hn+1 is finite.

2. A refinement of a profinite subnormal series

G = H1 ≥ H2 ≥ · · ·

is another profinite subnormal series

G = K1 ≥ K2 ≥ · · ·

such that for all n in N there exists m in N such that Hn = Km.

3. A profinite composition series is a profinite subnormal series

G = H1 ≥ H2 ≥ · · ·

where Hn/Hn+1 is simple for all n in N. The factors Hn/Hn+1 are called composition

factors of G.

It is clear that only finite groups can have profinite subnormal series of finite length. In

particular, this notion is really different from the usual one used in group theory. Nevertheless, we
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will show that profinite composition series have the same uniqueness property that composition

series have.

Remark X.5.2. Using that the factors in a profinite subnormal series are finite, it is easy to see

that any profinite subnormal series has a refinement which is a profinite composition series.

We will prove analogs of the classical results for composition series for profinite composition

series. Our main technical device will be Zassenhaus lemma, whose statement we recall below.

Lemma X.5.3. (Zassenhaus) Let G be a group and let H1, H2,K1,K2 be subgroups of G such

that H2 is normal in H1 and K2 is normal in K1. Then there is an isomorphism

H2(H1 ∩K1)

H2(H1 ∩K2)
∼=
K2(H1 ∩K1)

K2(H1 ∩K2)
.

Definition X.5.4. Let G be a totally disconnected compact group. Given two profinite

subnormal sequences

G = H1 ≥ H2 ≥ · · · and G = K1 ≥ K2 ≥ · · · ,

set H(n) = Hn/Hn+1 and K(n) = Kn/Kn+1 for all n in N. The profinite subnormal sequences are

said to be equivalent if there is a bijection σ : N→ N such that H(n) ∼= K(σ(n)) for all n in N.

The following is the promised generalization of the Jordan-Hölder Theorem.

Theorem X.5.5. Let G be a totally disconnected compact group.

1. Any two profinite subnormal series for G have equivalent refinements.

2. Any two profinite composition series for G are equivalent.

Proof. (1). Suppose that

G = H1 ≥ H2 ≥ · · · and G = K1 ≥ K2 ≥ · · · ,

are two profinite subnormal series for G. Given n in N, we claim that there exists mn in N such

that

Hn+1(Hn ∩Kmn) = Hn+1.
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To see this, notice that

Hn+1 ≤ · · · ≤ Hn+1(Hn ∩K2) ≤ Hn+1(Hn ∩K1) = Hn

is a chain of subgroups, each of which is normal in the next one by the Second Isomorphism

Theorem. Now, Hn/Hn+1 is a finite group and hence the sequence must eventually stabilize at

Hn+1. This proves the claim.

For each n in N, we replace the pair Hn ≥ Hn+1 by the finite subnormal series

Hn = Hn+1(Hn ∩K1) ≥ Hn+1(Hn ∩K2) ≥ · · · ≥ Hn+1(Hn ∩Kmn) = Hn+1.

The resulting series is clearly a refinement of G = H1 ≥ H2 ≥ · · · . This refinement has quotients

of the form

Hn+1(Hn ∩Km)

Hn+1(Hn ∩Km+1)

for n and m in N.

Perform the analogous operation to the series G = K1 ≥ K2 ≥ · · · to obtain the

corresponding refinement, whose quotients have the form

Km+1(Km ∩Hn)

Km+1(Km ∩Hn+1)

for n and m in N. It follows by Zassenhaus lemma that the quotients associated to these two

refinements are isomorphic, and hence the refinements are equivalent.

(2). Given two profinite composition series for G, use (1) to find equivalent refinements.

Since profinite composition series have no proper refinements, this shows that the two profinite

composition series we started with are themselves equivalent.

Notation X.5.6. Let G be a totally disconnected group and let G = H1 ≥ H2 ≥ · · · be

a profinite subnormal series. Denote by P the set of all prime numbers. Define its associated
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supernatural number S{Hn}n∈N : P → {0, . . . ,∞} by

S{Hn}n∈N(p) =

 ∞, if p divides the order of Hn/Hn+1 for some n in N;

0, otherwise

for p ∈ P.

Lemma X.5.7. Let G be a totally disconnected group.

1. Let G = H1 ≥ H2 ≥ · · · be a profinite subnormal series for G and let G = K1 ≥ K2 ≥ · · · be

a refinement. Then

S{Hn}n∈N = S{Kn}n∈N .

2. Any two profinite subnormal series have the same associated supernatural number.

In particular, the supernatural number associated to a profinite subnormal series is independent of

the series, and depends only on the group G.

Proof. (1). For every n in N there exist m and k in N such that

Hn ≥ Km ≥ Km+1 ≥ · · · ≥ Km+k ≥ Hm+1

is subnormal. It follows that

|Hn/Hn+1| = |Km/Km+1| · · · |Km+k−1/Km+k| .

Thus, a prime number p divides the order of Hn/Hn+1 for some n in N if and only if it divides the

order of Km/Km+1 for some m in N, showing that S{Hn}n∈N = S{Kn}n∈N .

(2). Given two profinite subnormal series, use part (2) of Theorem X.5.5 to find equivalent

refinements, which by part (1) have the same associated supernatural number as the original

series. Since equivalent profinite composition series have the same associated supernatural

number, we conclude that the two profinite subnormal series have the same associated

supernatural number.

The last claim follows immediately from (2).
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The following proposition implies that the algebra and the action constructed in

Example X.3.8 are unique up to equivariant isomorphism.

Proposition X.5.8. Let G be a totally disconnected compact group. Given two decreasing

sequences {Nk}k∈N and {N ′k}k∈N of normal subgroups of G with
⋂
k∈N

Nk =
⋂
k∈N

N ′k = {e} and

such that G/Nk and G/N ′k are finite for all k ∈ N, denote by (B, β) and (B′, β′) the G-dynamical

systems with the Rokhlin property obtained by applying the construction of Example X.3.8 to

both sequences of subgroups.

Then there is an isomorphism θ : B → B′ such that θ ◦ βg = β′g ◦ θ for all g ∈ G.

Proof. It follows from part (2) of Lemma X.5.7 above that the corresponding profinite subnormal

series associated to {Nk}k∈N and {N ′k}k∈N have the same associated supernatural number. Since

these are the supernatural numbers associated to B and B′ respectively, it follows that there is an

isomorphism ϕ : B → B′. The order isomorphism K0(ϕ) : K0(B) → K0(B′) intertwines K0(βg)

and K0(β′g) for all g ∈ G, since these maps are the identity on the respective K0-groups. By

Theorem X.4.9, we conclude that β and β′ are conjugate, as desired.

If G is a totally disconnected compact group, we denote by DG and µG : G → Aut(DG)

the (unique up to equivariant isomorphism) UHF-algebra and Rokhlin action constructed in

Example X.3.8. Notice that µGg is approximately inner for all g ∈ G.

Remark X.5.9. Let G be a compact, totally disconnected group. Denote by P the set of all

prime numbers. Then it is easy to check that the supernatural number SG : P → {0, . . . ,∞}

associated to the UHF-algebra DG is

SG(p) =

 ∞, if there is a finite quotient of G whose order is divisible by p;

0, otherwise

for p ∈ P. In particular, it follows that DG is strongly self-absorbing; see [265].

As a consequence of our results, we are able to describe all Rokhlin actions of a compact

group on a unital direct limit of 1-dimensional NCCW-complexes with trivial K1-groups, whose

induced action at the level of the Cuntz semigroup is trivial: they are all conjugate to the tensor

product of the identity on the algebra with the model action µG. See Theorem X.5.13.
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Analogous results are available for finite groups (see Chapter VIII), and it was shown in

Chapter IX that nothing like this can be true for circle actions with the Rokhlin property. Similar

arguments can be used to show that there is no “generating” or model Rokhlin action (in the

sense of Theorem X.5.13 below) for a compact group G that is not totally disconnected, using

that the restriction of a Rokhlin action of G to the connected component of the unit G0 must

again have the Rokhlin property. In this sense, our results on model actions are the best possible:

only totally disconnected compact groups admit model Rokhlin actions.

Definition X.5.10. Let S be an abelian partially ordered semigroup and let n ∈ N.

1. We say that S is n-divisible, if multiplication by n, as a map S → S of partially ordered

semigroups, is surjective.

2. We say that S is uniquely n-divisible, if multiplication by n, as a map S → S of partially

ordered semigroups, is an isomorphism.

Remark X.5.11. Let S be an abelian partially ordered semigroup and let n ∈ N. If S is

(uniquely) n-divisible and d divides n, then S is (uniquely) d-divisible. Indeed, write n = dk.

Given s in S, choose t in S such that nt = s. Then d(kt)t = s, showing that S is d-divisible. Now

suppose S is uniquely n-divisible, and let s, t in S satisfy ds ≤ dt. Then ns = k(ds) ≤ k(dt) = nt,

and thus s ≤ t.

Lemma X.5.12. Let S be an abelian partially ordered semigroup and that can be written as a

direct limit S = lim−→(Sk, ιk) in the category Cu, and let n ∈ N. Assume that there exists k0 ∈ N

such that Sk is uniquely n-divisible for all k ≥ k0. Then S is uniquely n-divisible.

Proof. By dropping the first k0 − 1 terms of the sequence of semigroups if necessary, we can

assume that k0 = 1. It was shown in Lemma 2.9 in [91] that multiplication by n on S is injective,

so we just need to show that this map is surjective, which is easier. Let s in S and choose

semigroup elements sk in Sk for k ∈ N such that

ιk(sk)� sk+1, s = sup
k∈N

ιk,∞(sk).
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Since multiplication by n on Sk is a surjection, it follows that there exist tk ∈ Sk for k ∈ N such

that ntk = sk. It then follows that (ιk,∞(tk))k∈N is increasing in S, and hence it has a limit

t = sup
k∈N

ιk,∞(tk).

Now,

nt = n sup
k∈N

ιk,∞(tk) = sup
k∈N

ιk,∞(ntk) = sup
k∈N

ιk,∞(sk) = s,

showing that S is n-divisible.

Compare the following with Theorem 3.5 and Theorem 3.6 in [133], and with Theorem 4.26

in [91].

Theorem X.5.13. Let G be a totally disconnected compact group and let A be a unital C∗-

algebra that can be written as direct limit of a sequence of unital 1-dimensional NCCW-complexes

with trivial K1-groups. Then the following statements are equivalent:

1. There is an isomorphism A→ A⊗DG.

2. There is an action α : G → Aut(A) with the Rokhlin property such that Cu(αg) = idCu(A)

for all g ∈ G.

3. There are actions of G on A with the Rokhlin property, and for any action β : G → Aut(A)

with the Rokhlin property and for any action δ : G→ Aut(A) such that Cu(βg) = Cu(δg) for

all g in G, one has (A, β) ∼= (A⊗DG, δ⊗µG), that is, there is an isomorphism ϕ : A→ A⊗DG

such that

ϕ ◦ βg = (δ ⊗ µG)g ◦ ϕ

for all g in G.

In particular, if the above statements hold for A and α : G → Aut(A) is an action with the

Rokhlin property such that Cu(αg) = idCu(A) for all g ∈ G, then (A,α) ∼= (A⊗DG, idA ⊗ µG).

Proof. The proofs of (1) implies (2), (1)+(2) imply (3), and (3) implies (1) are similar to the ones

exhibited in the proof of Theorem 4.26 in [91].

(2) implies (1). Assume that there is an action α : G → Aut(A) with the Rokhlin property

such that Cu(αg) = idCu(A) for all g ∈ G. Choose a decreasing sequence (Hn)n∈N of normal
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subgroups of G with
⋂
n∈N

Hn = {e} and such that the factor Gn = G/Hn is finite for all n ∈ N. For

n ∈ N, denote by dn the cardinality of Gn. In order to show that A absorbs the UHF-algebra DG,

it is enough, by Remark X.5.9, to show that A absorbs the UHF-algebra of type d∞n for all n ∈ N.

Using Corollary 2.13 in [91] and the fact that A can be written as direct limit of a sequence of

1-dimensional NCCW-complexes with trivial K1-group, it is enough to show that Cu(A) is dn-

divisible. (In other words, dn-divisibility implies unique dn-divisibility in this context.)

We claim that Cu(αgHn) = idCu(AHn ) for all gHn in G/Hn and for all n in N. To see this,

given g in G and n in N, consider the commutative diagram in Cu

Cu(AHn)
Cu(ιHn ) //

Cu(αgHn )

��

Cu(A)

Cu(αg)

��
Cu(AHn)

Cu(ιHn )

// Cu(A).

Since G/Hn is finite, the restriction of α to Hn has the Rokhlin property by part (1) of

Proposition VI.2.4. It follows from part (1) of Theorem 3.14 in [85] that the horizontal arrows are

order embeddings, and Cu(αg) = idCu(A) by assumption. It follows that Cu(αgHn) = idCu(AHn ), as

desired. This proves the claim.

Fix n ∈ N. For any k ∈ N, it is true that Gn is a factor of Gn+k, and thus it follows

that dn divides dn+k. The induced action α : Gn+k → Aut
(
AHn+k

)
has the Rokhlin property

by Proposition X.2.2. Since Gn+k is a finite group and Cu(αgHn+k
) = idCu(AHn+k ) by the claim

above, it follows from Corollary 4.25 in [91] that Cu(AHn+k) is dn+k-divisible. Thus it is uniquely

dn+k-divisible, and therefore also uniquely dn-divisible by Remark X.5.11.

Recall that if we denote by ιn : AHn → AHn+1 the inclusion map, then A can be written as

the direct limit A = lim−→(AHn , ιn). By continuity of the functor Cu, it follows that Cu(A) can be

written as the direct limit

Cu(AG)
Cu(ι1) // Cu(AH2)

Cu(ι2) // · · · // Cu(A)

in the category Cu. Using that Cu(AHn+k) is uniquely dn-divisible for all k ∈ N together with

Lemma X.5.12, it follows that Cu(A) is uniquely dn-divisible as well. This shows that A absorbs

the UHF-algebra Md∞n for all n in N, and hence also DG
∼=
⊗
n∈N

Md∞n
.
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The last claim follows immediately from (3).

Remark X.5.14. Let G be a totally disconnected group and A be a unital C∗-algebra as in the

theorem above. Assume that A absorbs DG and let α : G→ Aut(A) be an action with the Rokhlin

property. It follows from Theorem X.5.13 that α absorbs the model action µG tensorially.

For AF-algebras, one can prove a result analogous to Theorem X.5.13 using K-theory

instead of the Cuntz semigroup, and Elliott’s classification results instead of Robert’s. We present

the statement but omit the proof.

Theorem X.5.15. Let G be a totally disconnected compact group and let A be a unital AF-

algebra. Then the following statements are equivalent:

1. There is an isomorphism A→ A⊗DG.

2. There is an action α : G → Aut(A) with the Rokhlin property such that K0(αg) = idK0(A)

for all g ∈ G.

3. For any action β : G → Aut(A) with the Rokhlin property and for any action δ : G →

Aut(A) such that K0(βg) = K0(δg) for all g in G, one has (A, β) ∼= (A⊗DG, δ⊗ µG), that is,

there is an isomorphism ϕ : A→ A⊗DG such that

ϕ ◦ βg = (δ ⊗ µG)g ◦ ϕ

for all g in G.

In particular, if the above statements hold for A and α : G → Aut(A) is an action with the

Rokhlin property such that K0(αg) = idK0(A) for all g ∈ G, then (A,α) ∼= (A⊗DG, idA ⊗ µG).
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CHAPTER XI

CIRCLE ACTIONS ON UHF-ABSORBING C∗-ALGEBRAS

We study circle actions with the Rokhlin property, in relation to their restrictions to finite

subgroups. We construct examples showing the following: the restriction of a circle action with

the Rokhlin property (even on a real rank zero C∗-algebra), need not have the Rokhlin property;

and even if every restriction of a given circle action has the Rokhlin property, the circle action

itself need not have it. As a positive result, we show that the restriction of a circle action with the

Rokhlin property to the subgroup Zn has the Rokhlin property if the underlying algebra absorbs

Mn∞ . The condition on the algebra is also necessary in most cases of interest.

Introduction

This chapter, which is based on [79], is devoted to the study of restrictions of circle

actions with the Rokhlin property. Our main result is as follows: if A is a separable, unital

C∗-algebra that absorbs the UHF-algebra Mn∞ , and if α : T → Aut(A) is an action with the

Rokhlin property, then the restriction of α to the finite cyclic group Zn ⊆ T has the Rokhlin

property. See Theorem XI.2.17. The condition that A absorb Mn∞ is shown to be necessary in

most cases of interest. We also give examples of circle actions with the Rokhlin property such

that no restriction to any finite cyclic group has the Rokhlin property; see Example XI.3.5 and

Example XI.3.7. Additionally, Example XI.3.8 and Example XI.3.9 show that even if a circle

action has the property that every restriction to a finite subgroup has the Rokhlin property, the

action itself need not have the Rokhlin property, even on Kirchberg algebras satisfying the UCT.

Theorem XI.2.17, together with Izumi’s classification of finite group actions with the

Rokhlin property, will be used in subsequent work to classify circle actions on UHF-absorbing

C∗-algebras.

Restrictions of Circle Actions with the Rokhlin Property

This section is devoted to proving that for n ∈ N, the restriction of a circle action with

the Rokhlin property on a Mn∞-absorbing C∗-algebra to the finite cyclic group Zn again has the

Rokhlin property; see Theorem XI.2.17.
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We give a rough outline of what our strategy will be. We will first focus on cyclic group

actions which are restrictions of circle actions with the Rokhlin property. These have what

we call the “unitary Rokhlin property”, which is a weakening of the Rokhlin property of

Definition XI.2.1, that asks for a unitary instead of projections; see Definition XI.2.6. Dual

actions of actions with the unitary Rokhlin property can be completely characterized, and we

do so in Proposition XI.2.11. The relevant notion is that of “strong approximate innerness”; see

Definition XI.2.3. We will later show in (the proof of) Theorem XI.2.17 that, under a number

of assumptions, every strongly approximately inner action of Zn is approximately representable,

which is the notion dual to the Rokhlin property, as was shown by Izumi in [132]. The conclusion

is then that the original restriction, which a priori had the unitary Rokhlin property, actually has

the Rokhlin property.

We begin this section by recalling the definition of the Rokhlin property for a finite group

action on a unital C∗-algebra.

Definition XI.2.1. Let A be a unital C∗-algebra, let G be a finite group, and let α : G→ Aut(A)

be an action. We say that α has the Rokhlin property if for every ε > 0 and for every finite set

F ⊆ A there exist orthogonal projections eg in A for g in G such that

1. ‖αg(eh)− egh‖ < ε for all g and h in G

2. ‖ega− aeg‖ < ε for all g in G and all a in F

3.
∑
g∈G

eg = 1.

The definition of the Rokhlin property for finite group actions on C∗-algebras was originally

introduced by Izumi in [132], although a similar notion has been studied by Herman and Jones in

[113] for Z2 actions on UHF-algebras, and by Herman and Ocneanu in [114] for integer actions.

The Rokhlin property also played a crucial role in the classification of finite group actions on von

Neumann algebras.

The following is part of Proposition 2.14 in [202], and we include the proof for

the convenience of the reader. This result should be compared with Example XI.3.5 and

Example XI.3.7.
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Proposition XI.2.2. Let A be a unital C∗-algebra, let G be a finite group, and let α : G →

Aut(A) be an action with the Rokhlin property. If H ⊆ G is a subgroup, then α|H has the

Rokhlin property.

Proof. Set n = card(G/H). Given ε > 0 and a finite subset F ⊆ A, choose projections eg for

g in G as in the definition of the Rokhlin property for F and ε
n . We claim that the projections

fh =
∑

x∈G/H
ehx for h in H, form a family of Rokhlin projections for the action α|H , the finite set

F and tolerance ε.

Given h and k in H, we have

‖αk(fh)− fkh‖ =

∥∥∥∥∥∥
∑

x∈G/H

αk(ehx)− ekhx

∥∥∥∥∥∥
≤

∑
x∈G/H

‖αk(ehx)− ekhx‖ ≤ card(G/H)
ε

n
= ε.

Finally, for a in F and h in H, we have

‖afh − fha‖ ≤
∑

x∈G/H

‖aehx − ehxa‖ < ε.

The following is Definition 3.6 in [132].

Definition XI.2.3. Let B be a unital C∗-algebra, and let β be an action of a finite abelian group

G on B.

1. We say that β is strongly approximately inner if there exist unitaries u(g) in (Bβ)∞, for g in

G, such that

βg(b) = u(g)bu(g)∗

for b in B and g in G.

2. We say that β is approximately representable if β is strongly approximately inner and the

unitaries u(g) for g ∈ G as in (1) above, can be chosen to form a representation of G in

(Bβ)∞.
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Notation XI.2.4. Let B be a C∗-algebra, let G be a cyclic group (that is, either Z or Zn for

some n in N), and let β : G→ Aut(B) be action of G on B. We will usually make a slight abuse of

notation and also denote by β the generating automorphism β1.

If G is a finite cyclic group, we have the following characterization of strong approximate

innerness in terms of elements in B, rather than in (Bβ)∞.

Lemma XI.2.5. Let B be a separable, unital C∗-algebra, let n ∈ N, and let β be an action of

Zn on B. Then β is strongly approximately inner if and only if for every finite subset F ⊆ B and

every ε > 0, there is a unitary w in U(B) such that ‖β(w) − w‖ < ε and ‖β(b) − wbw∗‖ < ε for

all b in F . Moreover, β is approximately representable if and only if the unitary w above can be

chosen so that wn = 1.

Proof. Assume that β is strongly approximately inner. Use a standard perturbation argument

to choose a sequence (um)m∈N of unitaries in Bβ that represents u(1) in (Bβ)∞. Then

lim
m→∞

‖β(um)− um‖ = 0, and for b in B, we have lim
m→∞

‖β(b)− umbu∗m‖ = 0.

Given a finite set F ⊆ B and ε > 0, choose M ∈ N such that ‖β(uM ) − uM‖ < ε and

‖β(b)− uMbu∗M‖ < ε for all b in F , and set w = uM .

Conversely, for m in N, set ε = 1
m and let wm be as in the statement. Then

u = (wm)m∈N ∈ (Bβ)∞

satisfies β(b) = ubu∗ for all b in F , and hence β is strongly approximately inner.

For the second statement, observe that a unitary of order n in (Bβ)∞ can be lifted to a

sequence unitaries of order n in Bβ . Indeed, a standard functional calculus argument shows that

if v is a unitary in Bβ such that ‖vn − 1‖ is small, then v is close to a unitary ṽ in Bβ such that

ṽn = 1.

Theorem VI.4.2 asserts that the Rokhlin property and approximate representability are

dual notions. It is natural to ask what condition on β is equivalent to its dual action being

strongly approximately inner. Such a condition will necessarily be weaker than the Rokhlin

property. We define the relevant notion below.

Definition XI.2.6. Let B be a unital C∗-algebra, let n ∈ N and let β : Zn → Aut(B) be

an action. We say that β has the unitary Rokhlin property if for every ε > 0 and for every
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finite subset F ⊆ B, there exists u ∈ U(B) such that ‖ub − bu‖ < ε for all b in F and∥∥βk(u)− e2πik/nu
∥∥ < ε for all k ∈ Zn.

Let A be a unital C∗-algebra. Given a continuous action α : T → Aut(A), and n ∈ N, we

denote by α|n the restriction α|Zn : Zn → Aut(A) of α to

{1, e2πi/n, . . . , e2πi(n−1)/n} ∼= Zn.

Recall that if v is the canonical unitary in Aoα|nZn implementing α|n, then the dual action

α̂|n : Zn ∼= Ẑn → Aut(Aoα|n Zn)

of α|n is given by
(
α̂|n
)
k

(a) = a for all a in A and
(
α̂|n
)
k

(v) = e2πik/nv for all k ∈ Zn.

The following easy lemmas provide us with many examples of cyclic group actions with the

unitary Rokhlin property.

Lemma XI.2.7. If α : T → Aut(A) has the Rokhlin property, then α|n has the unitary Rokhlin

property for all n ∈ N.

Proof. Given ε > 0 and a finite subset F ⊆ A, choose a unitary u in U(A) such that ‖ua− au‖ < ε

for all a in F and ‖αζ(u)− ζu‖ < ε for all ζ ∈ T. If n ∈ N, then

∥∥∥(α|n)k(u)− e2πik/nu
∥∥∥ =

∥∥∥αe2πik/n(u)− e2πik/nu
∥∥∥ < ε

for all k ∈ Zn, as desired.

Lemma XI.2.8. If β : Zn → Aut(B) has the Rokhlin property, then it has the unitary Rokhlin

property.

Proof. Given ε > 0 and a finite subset F ⊆ B, choose projections e0, . . . , en−1 as in the definition

of the Rokhlin property for the tolerance ε
n and the finite set F , and set u =

n−1∑
j=0

e−2πij/nej . Then

u is a unitary in B. Moreover, ‖ub− bu‖ < ε for all b in F and

∥∥∥βk(u)− e2πik/nu
∥∥∥ =

∥∥∥∥∥∥
n−1∑
j=0

e2πij/nβk(ej)− e2πik/n
n−1∑
j=0

e−2πij/nej

∥∥∥∥∥∥ < ε
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since ‖βk(ej) − ej+k‖ < ε
n for all j, k ∈ Zn, and the projections e0, . . . , en−1 are pairwise

orthogonal.

The converse of the preceding lemma is not in general true, since the unitary Rokhlin

property does not ensure the existence of any non-trivial projections on the algebra. We present

examples of this situation in Section XI.3.

We will nevertheless show that the restriction of an action of the circle with the Rokhlin

property to any finite cyclic subgroup again has the Rokhlin property if the algebra is separable

and absorbs the universal UHF-algebra Q. See Corollary XI.2.18 below.

Lemma XI.2.9. Let A be a separable unital C∗-algebra, let n ∈ N and let α : Zn → Aut(A) be

an action of Zn on A. Regard Zn ⊆ T as the n-th roots of unitry, and let γ : Zn → Aut(C(T)) be

the restriction of the action by left translation of T on C(T). Let α∞ : Zn → Aut(A∞ ∩ A′) be

the action on A∞ ∩A′ induced by α. Then α has the unitary Rokhlin property if and only if there

exists a unital equivariant homomorphism

ϕ : (C(T), γ)→ (A∞ ∩A′, α∞).

Proof. Choose an increasing sequence (Fm)m∈N of finite subsets of A such that
⋃
m∈N

Fm = A. For

each m ∈ N, there exists a unitary um in A such that

‖uma− aum‖ <
1

m
and

∥∥∥αj(um)− e2πij/num

∥∥∥ < 1

m

for every a in Fm and for every j in Zn. Denote by u = (um)m∈N the image of the sequence of

unitaries (um)m∈N in A∞. Then u belongs to the relative commutant of A in A∞. Consider the

unital map ϕ : C(T)→ A∞ ∩A′ given by ϕ(f) = f(u) for f in C(T). One checks that

αj(ϕ(f)) = ϕ(γe2πij/n(f))

for all j ∈ Zn and all f in C(T), so ϕ is equivariant.

Conversely, assume that there is an equivariant unital homomorphism

ϕ : C(T)→ A∞ ∩A′.
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Let z ∈ C(T) be the unitary given by z(ζ) = ζ for all ζ in T, and let v = ϕ(z). By

semiprojectivity of C(T), we can choose a representing sequence (vm)m∈N in `∞(N, A) consisting

of unitaries. It follows that

lim
m→∞

∥∥∥αj(vm)− e2πij/nvm

∥∥∥ = 0 = lim
m→∞

‖vma− avm‖

for every a in A, and this is clearly equivalent to α having the unitary Rokhlin property.

The following result is analogous to Proposition IX.2.4, and so is its proof.

Proposition XI.2.10. Let B be a separable, unital C∗-algebra, let n ∈ N and let β : Zn →

Aut(B) be an action on B. Then β has the unitary Rokhlin property if and only if for every finite

set F ⊆ B and every ε > 0, there is a unitary u ∈ U(B) such that

1. βk(u) = e2πik/nu for all k ∈ Zn;

2. ‖ub− bu‖ < ε for all b in F .

Similarly to what was pointed out after the statement of Proposition IX.2.4, the

definition of the unitary Rokhlin property differs in that in condition (1), one only requires

‖βk(u)− e2πik/nu‖ < ε for all k ∈ Zn.

Proof. Recall that (C(T),T, Lt) is equivariantly semiprojective. Since the quotient T/Zn is

compact, it follows from Theorem 3.11 in [213] that the restriction (C(T),Zn, Lt) is equivariantly

semiprojective as well. The result now follows using an argument similar to the one used in the

proof of Proposition IX.2.4. The details are left to the reader.

Proposition XI.2.11. Let n in N and let β : Zn → Aut(B) be an action of Zn on a unital

separable C∗-algebra B.

1. The action β has the unitary Rokhlin property if and only if its dual action β̂ is strongly

approximately inner.

2. The action β is strongly approximately inner if and only if its dual action β̂ has the unitary

Rokhlin property.
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Proof. Part (a). Assume that β has the unitary Rokhlin property. Use Lemma XI.2.9 to choose

a unital equivariant homomorphism ϕ : C(T) → B∞ ∩ B′. Denote by u ∈ B∞ ∩ B′ the image

under this homomorphism of the unitary z ∈ C(T) given by z(ζ) = ζ for ζ ∈ T, and denote

by λ the implementing unitary representation of Zn in B oβ Zn for β. In (B oβ Zn)∞, we have

u∗λju = e2πij/nλj for all j ∈ Zn, and ub = bu (that is, ubu∗ = b) for all b in B. Therefore, if

β has the unitary Rokhlin property, then β̂ is implemented by u∗, and thus it is approximately

representable. The converse follows from the same computation, as we have (B oβ Zn)β̂ = B.

Part (b). Denote by v the canonical unitary in the crossed product, and assume that β is

strongly approximately inner. Let F ⊆ B oβ Zn be a finite subset, and let ε > 0. Since B and v

generate B oβ Zn, we can assume that there is a finite subset F ′ ⊆ B such that F = F ′ ∪ {v}.

Choose w ∈ U(B) such that ‖β(w) − w‖ < ε and ‖β(b) − wbw∗‖ < ε for all b in F ′. Since

β(b) = vbv∗ for every b in B, if we let u = w∗v, the first of these conditions is equivalent to

‖vu − uv‖ < ε, while the second one is equivalent to ‖ub − bu‖ < ε for all b in F ′. On the other

hand, β̂k(u) = β̂k(w∗v) = w∗(e2πik/nv) = e2πik/nu for k ∈ Zn. Thus, u is the desired unitary, and

β̂ has the unitary Rokhlin property.

Conversely, assume that β̂ has the unitary Rokhlin property. Let F ′ ⊆ B be a finite subset,

and let ε > 0. Set F = F ′ ∪ {v}. Use Proposition XI.2.10 to choose u in the unitary group of

Aoβ Zn such that ‖ub− bu‖ < ε for all b in F , and β̂k(u) = e2πik/nu for all k ∈ Zn. Set w = vu∗.

Then w ∈ B since

β̂k(w) = e2πik/nve2πik/nu∗ = vu∗ = w

for all k ∈ Zn and (B oβ Zn)Zn = B. On the other hand,

‖β(b)− wbw∗‖ = ‖vbv∗ − vu∗buv∗‖ = ‖b− u∗bu‖ = ‖ub− bu‖ < ε,

for all b in F . Hence w is an implementing unitary for F ′ and ε, and β is strongly approximately

inner.

Corollary XI.2.12. Let α : T → Aut(A) be an action with the Rokhlin property, and let n ∈ N.

Then α̂|n : Zn → Aut(Aoα|n Zn) is strongly approximately inner.

Proof. The restriction α|n has the unitary Rokhlin property by Lemma XI.2.7, and by part (a) of

Proposition XI.2.11, its dual α̂|n is strongly approximately inner.
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The next ingredient needed is showing that crossed products by restrictions of Rokhlin

actions of compact groups preserve absorption of strongly self-absorbing C∗-algebras. For Rokhlin

actions, this was shown by Hirshberg and Winter in [122]. The more general statement is proved

using similar ideas.

Proposition XI.2.13. Let A be a separable unital C∗-algebra, let G be a compact Hausdorff

second countable group, and let α : G → Aut(A) be an action satisfying the Rokhlin property.

Let H be a closed subgroup of G. If B is a unital separable C∗-algebra which admits a central

sequence of unital homomorphisms into A, then B admits a unital homomorphism into the fixed

point subalgebra of α|H in A∞ ∩A′.

Proof. Notice that (A∞ ∩A′)α is a subalgebra of (A∞ ∩A′)α|H . The result now follows from

Theorem 3.3 in [122].

Remark XI.2.14. In the proposition above, if B is moreover assumed to be simple, for example

if it is strongly self-absorbing, it follows that the unital homomorphism obtained is actually an

embedding, since it is not zero.

Recall the following result by Hirshberg and Winter.

Lemma XI.2.15. (Lemma 2.3 of [122].) Let A and D be unital separable C∗-algebras. Let

G be a compact group and let α : G → Aut(A) be a continuous action. If there is a unital

homomorphism D → (A∞ ∩A′)G, then there is a unital homomorphism

D → (M(Aoα G))∞ ∩ (Aoα G)′.

Theorem XI.2.16. Let D be a strongly self-absorbing C∗-algebra, let A be a D-absorbing,

separable unital C∗-algebra, and let α : T → Aut(A) be an action with the Rokhlin property.

Then, for every n ∈ N, the crossed product A oα|n Zn is a unital separable D-absorbing C∗-

algebra.

Proof. By Theorem 7.2.2 in [235], there exists a unital embedding of D into A∞ ∩ A′, which

is equivalent to the existence of a central sequence of unital embeddings of D into A. Use

Proposition XI.2.13 to obtain a unital homomorphism of D into the fixed point subalgebra of α|Zn

in A∞ ∩ A′. It follows that this homomorphism is actually an embedding, since it is not zero and
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D is simple, by Theorem 1.6 in [265]. Lemma 2.3 in [122] (here reproduced as Lemma XI.2.15)

provides us with a unital embedding of D into (Aoα Zn)∞ ∩ (Aoα Zn)′, which again by Theorem

7.2.2 in [235] is equivalent to Aoα Zn being D-absorbing, since D is strongly self-absorbing.

The following is the main theorem of this section.

Theorem XI.2.17. Let A be a separable unital C∗-algebra, let n ∈ N and let α : T → Aut(A)

be an action with the Rokhlin property. Suppose that A absorbs Mn∞ . Then α|n has the Rokhlin

property.

Proof. By Theorem VI.4.2, it is enough to show that α̂|n : Zn → Aut(Aoα|n Zn) is approximately

representable. Recall that by Corollary XI.2.12, the action α̂|n is strongly approximately inner. In

view of Lemma 3.10 in [132], to show that it is in fact approximately representable, it is enough to

show that there is a unital map

Mn →
(

(Aoα|n Zn)α̂|n
)
∞
∩ (Aoα|n Zn)′,

where the relative commutant is taken in (Aoα|n Zn)∞.

Claim:
(

(Aoα|n Zn)α̂|n
)
∞
∩ (Aoα|n Zn)′ = (A∞ ∩A′)(α|n)∞ .

Since (Aoα|n Zn)α̂|n = A, we have

(
(Aoα|n Zn)α̂|n

)
∞
∩ (Aoα|n Zn)′ = A∞ ∩ (Aoα|n Zn)′

=
{

(am)m∈N ∈ A∞ : lim
m→∞

‖amx− xam‖ = 0 for all x ∈ Aoα|n Zn
}
.

Let v be the canonical unitary in A oα|n Zn that implements α|n in the crossed product.

Then for a bounded sequence (am)m∈N in A, the condition lim
m→∞

‖amx − xam‖ = 0 for all x in

A oα|n Zn is equivalent to lim
m→∞

‖ama − aam‖ = 0 for all a in A and lim
m→∞

‖amv − vam‖ = 0. The

above set is therefore equal to

(am)m∈N ∈ A∞ :
lim
m→∞

‖ama− aam‖ = 0 for all a ∈ A and

lim
m→∞

‖(α|n)(am)− am‖ = 0

 ,
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which is precisely the same as the subset of A∞ ∩ A′ that is fixed under the action on A∞ ∩ A′

induced by α|n. This proves the claim.

Since A absorbs the UHF-algebra Mn∞ , it follows that there is a unital embedding

ι : Mn → A∞∩A′. By Proposition XI.2.13, there is a unital homomorphism Mn → (A∞∩A′)(α|n)∞ .

Using the claim above, we conclude that there is a unital homomorphism

Mn →
(

(Aoα|n Zn)α̂|n
)
∞
∩ (Aoα|n Zn)′.

This homomorphism is necessarily an embedding, since it is not zero. Apply Lemma 3.10 in [132]

to the action α̂|n : Zn → Aut(Aoα|n Zn) to conclude that α̂|n is approximately representable, and

hence that α|n has the Rokhlin property, by Theorem VI.4.2.

Denote by Q the universal UHF-algebra, that is, the unique, up to isomorphism, UHF-

algebra with K-theory

(K0(Q), [1Q]) ∼= (Q, 1).

It is well-known that Q⊗Mn∞
∼= Q for all n in N, and that Q⊗O2

∼= O2.

Corollary XI.2.18. Let A be a separable, Q-absorbing unital C∗-algebra, let α : T → Aut(A)

be an action with the Rokhlin property and let n ∈ N. Then α|n has the Rokhlin property.

In particular, restrictions of circle actions with the Rokhlin property on separable, unital O2-

absorbing C∗-algebras, again have the Rokhlin property.

Counterexamples

In this section, we present some examples related to Theorem XI.2.17.

Nonexistence of actions with the Rokhlin property

The goal of this subsection is to prove that UHF-algebras do not admit any direct limit

action of the circle with the Rokhlin property; see Theorem XI.3.4. We need some preliminary

results.
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Notation XI.3.1. Let n ∈ N. We denote by Un(C) the unitary group of Mn. Identify T with the

center Z(Un(C)) of Un(C) via the map ζ 7→ diag(ζ, . . . , ζ), and denote by PUn(C) the quotient

group PUn(C) = Un(C)/T.

Proposition XI.3.2. Let n ∈ N and let γ : T → Aut(Mn) be a continuous action. Then there

exists a continuous map v : T→ Un(C) such that γζ = Ad(v(ζ)) for all ζ in T.

Proof. Recall that every automorphism of Mn is inner, so that for every ζ ∈ T there exists a

unitary u(ζ) ∈ Un(C) such that αζ = Ad(u(ζ)). Moreover, u(ζ) is uniquely determined up

to multiplication by elements of T = Z(Un(C)) and hence γζ determines a continuous group

homomorphism u : T → PUn(C). Denote by ρ : Un(C) → PUn(C) the canonical projection. We

want to solve the following lifting problem:

Un(C)

ρ

��
T

v

;;

u
// PUn(C).

The map u determines an element [u] ∈ π1(PUn(C)) and ρ induces a group homomorphism

π1(ρ) : π1(Un(C)) → π1(PUn(C)). The quotient map ρ : Un(C) → PUn(C) is actually a fiber

bundle, since Un(C) is a manifold and the action of T on Un(C) is free. See the Theorem in

Section 4.1 of [192]. The long exact sequence in homotopy for this fiber bundle is

· · · // π1(T) // π1(Un(C))
π1(ρ) // π1(PUn(C)) // π0(T).

Recall that π1(Un(C)) ∼= Z, and that π0(T) ∼= 0. The map π1(T) → π1(Un(C)) is induced by

ζ 7→ diag(ζ, . . . , ζ), which on π1 corresponds to multiplication by n. In other words, the above

exact sequence is

· · · // Z ·n // Z
π1(ρ) // π1(PUn(C)) // 0,

which implies that π1(PUn(C)) ∼= Zn and that the map π1(ρ) is surjective. It follows that u is

homotopic to a map û : T → PUn(C) that is liftable. The homotopy lifting property for fiber

bundles implies that u itself is liftable, that is, there exists a continuous map v : T → Un(C)
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such that u(ζ) = ρ(v(ζ)) for all ζ ∈ T. (See the paragraph below Theorem 4.41 in [111] for the

definition of the homotopy lifting property. Proposition 4.48 in [111] shows that every fiber bundle

has this property.) This concludes the proof.

Lemma XI.3.3. Let n ∈ N and let v : T → Un(C) be a continuous map. Then for every u in

Un(C), there exists ζ in T such that

‖v(ζ)uv(ζ)∗ − ζu‖ ≥ 2.

Proof. Assume that there exists u ∈ Un(C) such that ‖v(ζ)uv(ζ)∗ − ζu‖ < 2 for all ζ ∈ T. Define

w ∈ C(T,Mn) by w(ζ) = ζv(ζ)uv(ζ)∗u∗ for all ζ in T. Then w is a unitary in C(T,Mn) and∥∥w − 1C(T,Mn)

∥∥ < 2. It follows that w is homotopic to 1C(T,Mn). Define a continuous functions

f : T → T by f = det ◦w. Then f is homotopic to the constant map, and thus its winding number

is zero.

On the other hand,

f(ζ) = det(w(ζ)) = det(ζv(ζ)uv(ζ)∗u∗) = ζ
n
,

so the winding number is actually −n. This is a contradiction, and the result follows.

Theorem XI.3.4. Assume that A = lim−→(Mkn , ιn) is an unital UHF-algebra with unital

connecting maps. If α = lim−→α(n) is a direct limit action of the circle on A, then α does not have

the Rokhlin property.

Proof. Assume that α has the Rokhlin property. Let F ⊆ A be a finite set, and let ε = 2. A

standard approximation argument shows that there exist n ∈ N and u ∈ Ukn(C) such that

‖ua− au‖ < 2 and
∥∥∥α(n)

ζ (u)− ζu
∥∥∥ < 2

for all a in F and for all ζ in T. By Proposition XI.3.2, there is a continuous map v : T → Ukn(C)

such that α
(n)
ζ = Ad(v(ζ)) for all ζ ∈ T. Now, Lemma XI.3.3 implies that ‖v(ζ)uv(ζ)∗ − ζu‖ ≥ 2

for all ζ ∈ T. Therefore, 2 >
∥∥∥α(n)

ζ (u)− ζu
∥∥∥ ≥ 2, which is a contradiction. Thus, α does not have

the Rokhlin property.
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Examples

We begin by exhibiting examples of circle actions with the Rokhlin property whose

restrictions to cyclic subgroups do not have the Rokhlin property. The first one is a rather trivial

one:

Example XI.3.5. Consider the action of left translation of T on C(T). It has the Rokhlin

property, so its restriction to any Zn ⊆ T has the unitary Rokhlin property. However, no non-

trivial finite group action on C(T) can have the Rokhlin property since C(T) has no non-trivial

projections.

Besides merely the lack of projections, there are less obvious K-theoretic obstructions

for the restrictions of an action with the Rokhlin property to have the Rokhlin property. See

Example XI.3.7.

We need a lemma first.

Proposition XI.3.6. Let G be a connected metric group, let A be a unital C∗-algebra, and

let α : G → Aut(A) be a continuous action (not necessarily with the Rokhlin property). Then

K∗(αg) = idK∗(A) for all g in G.

Proof. We just prove it for K0; the proof for K1 is similar, or follows by replacing (A,α) with

(A ⊗ B,α ⊗ idB), where B is any C∗-algebra satisfying the UCT such that K0(B) = 0 and

K1(B) = Z, and using the Künneth formula. (For example, B = C0(R) will do.)

Denote the metric on G by d. Let n ∈ N and let p be a projection in Mn(A). Set α(n) =

α ⊗ idMn , the augmentation of α to Mn(A). Since α(n) is continuous, there exists δ > 0 such that∥∥∥α(n)
g (p)− α(n)

h (p)
∥∥∥ < 1 whenever g and h in G satisfy d(g, h) < δ. Since α

(n)
g (p) and α

(n)
h (p) are

projections in Mn(A), it follows that α
(n)
g (p) and α

(n)
h (p) are homotopic, and hence their classes

in K0(A) agree, that is, K0(αg)([p]0) = K0(αh)([p]0). Denote by e the unit of G. Since g and h

satisfying d(g, h) < δ are arbitrary, and since G is connected, it follows that

K0(αg)([p]0) = K0(αe)([p]0) = [p]0

for any g in G. Since p is an arbitrary projection in A⊗K, it follows that K0(αg) = idK0(A) for all

g in G, as desired.
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Example XI.3.7. This is an example of a purely infinite simple separable nuclear unital C∗-

algebra (in particular, with many projections), and an action of the circle on it satisfying the

Rokhlin property, such that no restriction to a finite subgroup of T has the Rokhlin property.

Let {pn}n∈N be an enumeration of the prime numbers, and for every n in N, set qn =

p1 · · · pn. Fix a countable dense subset X = {x1, x2, x3, . . .} of T with x1 = 1. For x in X and f in

C(T), denote by fx the function in C(T) given by fx(ζ) = f(x−1ζ) for ζ ∈ T. For n in N, define a

unital injective map

ιn : Mqn(C(T))→Mqn+1
(C(T))

by ιn(f) = diag
(
f1, fx2

, . . . , fxpn
)

for f in Mqn(C(T)). The direct limit A = lim−→(Mqn(C(T)), ιn)

is a simple unital AT-algebra. For n ∈ N, let α(n) : T → Aut(Mqn(C(T))) be the tensor product of

the trivial action on Mqn with the action coming from left translation on C(T). Then α(n) has the

Rokhlin property by part (1) of Theorem VI.2.3. Since ιn ◦ α(n)
ζ = α

(n+1)
ζ ◦ ιn for all n ∈ N and all

ζ ∈ T, the sequence
(
α(n)

)
n∈N induces a direct limit action α = lim−→α(n) of T on A, which has the

Rokhlin property by part (4) of Theorem VI.2.3.

Now set B = A ⊗ O∞ and define β : T → Aut(B) by β = α ⊗ idO∞ . Then B is a purely

infinite, simple, separable, nuclear unital C∗-algebra, and β has the Rokhlin property, by part (1)

of Theorem VI.2.3. We claim that for every m > 1, the restriction β|m : Zm → Aut(B) does not

have the Rokhlin property.

Fix m > 1, and assume that β|m has the Rokhlin property. By Proposition XI.3.6, we have

K∗(βζ) = idK∗(B) for all ζ ∈ T. By Theorem 3.4 in [133], it follows that every element of K0(B) is

divisible by m. On the other hand,

(K0(B), [1B ]) ∼= (K0(A), [1A])

∼=
({a

b
: a ∈ Z, b = pk1 · · · pkn : n, k1, . . . , kn ∈ N, kj 6= k` for j 6= `

}
, 1
)
,

where not every element is divisible by m. This is a contradiction.

We finish this work by showing that the Rokhlin property for a circle action cannot in

general be determined just by looking at its restrictions to finite subgroups.
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Example XI.3.8. There are a unital C∗-algebra A and a circle action on A such that its

restriction to every proper subgroup has the Rokhlin property, but the action itself does not.

Let A be the universal UHF-algebra, that is, A = lim−→(Mn!, ιn) where ιn : Mn! → M(n+1)! is

given by ιn(a) = diag(a, . . . , a) for all a in Mn!. For every n ∈ N, let α(n) : T→ Aut(Mn!) be given

by

α
(n)
ζ = Ad(diag(1, ζ, . . . , ζn!−1))

for all ζ ∈ T. Then ιn ◦ α(n)
ζ = α

(n+1)
ζ ◦ ιn for all n ∈ N and all ζ ∈ T, and hence there is a

direct limit action α = lim−→α(n) of T on A. This action does not have the Rokhlin property by

Theorem XI.3.4.

On the other hand, we claim that given m ∈ N, the restriction α|m : Zm → Aut(A) has the

Rokhlin property. So fix m ∈ N. Then α|m is the direct limit of the actions
(
α(n)|m

)
n∈N, whose

generating automorphisms are

α
(n)

e2πi/m
= Ad(diag(1, e2πi/m, . . . , e2πi(n!−1)/m)).

Let F ⊆ A be a finite subset and let ε > 0. Write F = {a1, . . . , aN}. Since
⋃
n∈N

Mn! is dense in

A, there are k ∈ N and a finite subset F ′ = {b1, . . . , bN} ⊆ Mk! such that ‖aj − bj‖ < ε
2 for all

j = 1, . . . , N .

Let n ≥ max{k,m}. Then the Zm-action α(n)|m on Mn! is generated by the automorphism

α
(n)

e2πi/m
= Ad(1, e2πi/m, . . . , e2πi(m−1)/m, . . . , 1, e2πi/m, . . . , e2πi(m−1)/m).
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(There are n!/m repetitions.) Denote by e0 the projection

1M(n−1)!
⊗



1
m

1
m · · · 1

m 0 · · · 0 0 0 · · · 0

1
m

1
m · · · 1

m 0 · · · 0 0 0 · · · 0

...
...

. . .
...

... · · ·
...

...
... · · ·

...

1
m

1
m · · · 1

m 0 · · · 0 0 0 · · · 0

0 0 · · · 0 1
m · · · 0 0 0 · · · 0

...
... · · ·

...
...

. . .
...

...
... · · ·

...

0 0 · · · 0 0 · · · 1
m 0 0 · · · 0

0 0 · · · 0 0 · · · 0 1
m

1
m · · · 1

m

0 0 · · · 0 0 · · · 0 1
m

1
m · · · 1

m

...
... · · ·

...
... · · ·

...
...

...
. . .

...

0 0 · · · 0 0 · · · 0 1
m

1
m · · · 1

m



in Mn! ⊆ A, and for j = 1, . . . ,m− 1, set ej = α
(n)

e2πij/m
(e0) ∈ A. One checks that e0, . . . , em−1 are

orthogonal projections with
m−1∑
j=0

ej = 1, and moreover that α
(n)

e2πi/m
(em−1) = e0.

By construction, these projections are cyclically permuted by the action α|m and they sum

up to one, so we only need to check that they almost commute with the given finite set. The

projections e0, . . . , em−1 exactly commute with the elements of F ′. Thus, if k ∈ {1, . . . , N} and

j ∈ {0, . . . ,m− 1}, then

‖akej − ejak‖ ≤ ‖akej − bkej‖+ ‖bkej − ejbk‖+ ‖ejbk − ejak‖

<
ε

2
+
ε

2
= ε,

and hence α|m has the Rokhlin property.

The phenomenon exhibited in the example above is not special to UHF-algebras:

Example XI.3.9. If A and α are as in Example XI.3.8, set B = A⊗O∞ and let β : T→ Aut(B)

be given by βζ = αζ ⊗ idO∞ for all ζ ∈ T. Then B is a unital Kirchberg algebra satisfying the

UCT, the action β does not have the Rokhlin property, and for every m ∈ N, the restriction

β|m : Zm → Aut(B) has the Rokhlin property.
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Example XI.3.8 and Example XI.3.9 and should be contrasted with the following fact.

Proposition XI.3.10. Let a compact Lie group G act on a locally compact Hausdorff space X.

Then the action is free if and only if its restriction to every finite cyclic subgroup of G of prime

order is free.

Proof. The “only if” implication is immediate. For the “if” implication, let g ∈ G\{1} and assume

that there exists x in X with gx = x. The stabilizer subgroup

Sx = {h ∈ G : hx = x}

of x is therefore non-trivial. Being a closed subgroup of G, it is a Lie group by Cartan’s theorem.

It follows that Sx has a finite cyclic group of prime order: this is immediate if Sx is finite, while

if Sx is infinite, it must contain a (maximal) torus. Now, the restriction of the action to any such

subgroup is trivial, contradicting the assumption. It follows that the action of G on X is free.
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CHAPTER XII

NONCLASSIFIABILITY OF AUTOMORPHISMS OF O2

This chapter is based on joint work with Martino Lupini ([88]).

The group of automorphisms of the Cuntz algebra O2 is a Polish group with respect to the

topology of pointwise convergence in norm. Our main result is that the relations of conjugacy

and cocycle conjugacy of automorphisms of O2 are not Borel. Moreover, we show that from the

point of view of invariant complexity theory, classifying automorphisms of O2 up to conjugacy

or cocycle conjugacy is strictly more difficult than classifying up to isomorphism any class of

countable structures with Borel isomorphism relation. In fact the same conclusions hold even if

one only considers automorphisms of O2 of a fixed finite order. We moreover show that for any

prime number p the relation of isomorphism of simple purely infinite crossed products O2 o Zp

(with trivial K1-group and satisfying the Universal Coefficient Theorem) is not Borel. Moreover,

it is strictly more difficult to classify such crossed products than classifying up to isomorphism any

class of countable structures with Borel isomorphism relation.

Introduction

The Cuntz algebra O2 can be described as the universal unital C∗-algebra generated by two

isometries s1 and s2 subject to the relation

s1s
∗
1 + s2s

∗
2 = 1.

It was defined and studied by Cuntz in the groundbreaking paper [39]. Since then, a stream of

results has made clear the key role of O2 in the classification program of C∗-algebras; see [235,

Chapter 2] for a complete account and more references. This has served as motivation for an

intensive study of the structural properties of O2 and its automorphism group, as in [181], [266],

[32], [34], and [33]. In particular, considerable effort has been put into trying to classify several

important classes of automorphisms; see for example [132] and [133].
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The main result of this chapter, which is based on [88], asserts that the relations of

conjugacy and cocycle conjugacy of automorphisms of O2 are complete analytic sets when

regarded as subsets of Aut(O2)×Aut(O2), and in particular not Borel.

The fact that conjugacy and cocycle conjugacy of automorphisms of O2 are not Borel

should be compared with the fact that for any separable C∗-algebra A, the relation of unitary

equivalence of automorphisms of A is Borel. This is because the relation of coset equivalence

modulo the Borel subgroup Inn(A) of Aut(A). (This does not necessarily mean that the problem

of classifying the automorphisms of A up to unitary equivalence is more tractable: It is shown in

[177] that whenever A is simple –or just does not have continuous trace– then the automorphisms

of A cannot be classified up to unitary equivalence using countable structures as invariants.)

Similarly, the spectral theorem for unitary operators on the Hilbert space shows that the relation

of conjugacy of unitary operators is Borel; more details can be found in [74, Example 55]. On

the other hand, the main result of [74] asserts that the relation of conjugacy for ergodic measure-

preserving transformations on the Lebesgue space is also a complete analytic set.

We will moreover show that classifying automorphisms of O2 up to either conjugacy or

cocycle conjugacy is strictly more difficult than classifying any class of countable structures with

Borel isomorphism relation.

All of these results will be shown to hold even if one only considers automorphisms of a

fixed finite order. Moreover, it will follow from our proof that the same assertions hold for the

relation of isomorphism of simple purely infinite crossed products O2 o Zp (with trivial K0-group

and satisfying the Universal Coefficient Theorem), where p is any prime number.

It should be mentioned that by the main result of [149] the automorphisms of O2 are not

classifiable up to conjugacy by countable structures. This means that there is no explicit way to

assign a countable structure to every automorphism of O2, in such a way that two automorphisms

are conjugate if and only if the corresponding structures are isomorphic. More precisely, for

no class C of countable structures, is the relation of conjugacy of automorphisms of O2 Borel

reducible to the relation of isomorphisms of elements of C. Moreover the same conclusions hold

for any set of automorphisms of O2 which is not meager in the topology of pointwise convergence.

Similar conclusions hold for automorphisms of any separable C∗-algebra absorbing the Jiang-Su

algebra tensorially.
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The strategy of the proof of the main theorem is as follows. Using techniques from

[126] and [52], we show that the relation of isomorphism of countable 2-divisible torsion free

abelian groups is a complete analytic set, and it is strictly more complicated than the relation of

isomorphism of any class of countable structures with Borel isomorphism relation. We then show

that the relation of isomorphism of 2-divisible abelian groups is Borel reducible to the relations of

conjugacy and cocycle conjugacy of automorphisms of O2 of order 2. This is achieved by showing

that there is a Borel way to assign to a countable abelian group G to assign to a countable abelian

group a Kirchberg algebra AG with trivial K1-group, K0-group isomorphic to G, and with the

class of the unit in K0 being the zero element. We then use a result of Izumi from [132] asserting

that there is an automorphism ν of O2 of order 2 with the following property: Tensoring the

identity automorphism of AG by ν, and identifying AG ⊗ O2 with O2 by Kirchberg’s absorption

theorem, gives a reduction of isomorphism of Kirchberg algebras with 2-divisible K0-group and

with the class of the unit being the zero element in K0, to conjugacy and cocycle conjugacy of

automorphisms of O2 of order 2. The proof is concluded by showing –using results from [71]– that

such reduction is implemented by a Borel map. A suitable modification of this argument yields

the same result where 2 is replaced by an arbitrary prime number.

The present chapter is organized as follows. Section XII.2 contains some background

notions on model theory. section XII.3 presents a functorial version of the notion of standard

Borel parametrization of a category as defined in [71]. Several functorial parametrizations for the

category are then presented and shown to be equivalent. Finally, many standard constructions

in C∗-algebra theory are shown to be computable by Borel maps in these parametrizations. The

main result of Section XII.4 asserts that the reduced crossed product of a C∗-algebra by an action

of a countable group can be computed in a Borel way. The same conclusion holds for crossed

products by a corner endomorphism in the sense of [18]. section XII.5 provides a Borel version

of the correspondence between unital AF-algebras and dimension groups established in [57] and

[54]. We show that there is a Borel map that assigns to a dimension group D, a unital AF-algebra

BD such that D is isomorphic to the K0-group of BD. Moreover, given an endomorphism β of D,

one can select in a Borel fashion an endomorphism ρD,β of BD whose induced endomorphism of

K0(BD) is conjugate to β. Finally, section XII.6 contains the proof of the main results.
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In the following, all C∗-algebras and Hilbert spaces are assumed to be separable, and all

discrete groups are assumed to be countable. We denote by ω the set of natural numbers including

0. An element n ∈ ω will be identified with the set {0, 1, . . . , n− 1} of its predecessors. (In

particular 0 is identified with the empty set.) We will therefore write i ∈ n to mean that i is a

natural number and i < n.

If X is a Polish space and D is a countable set, we endow the set XD of D-indexed

sequences of elements of X with the product topology. Likewise, if X is a standard Borel space,

then we give XD the product Borel structure. In the particular case where X = 2 = {0, 1},

we identify 2D with the set of subsets of D with its Cantor set topology, and the corresponding

standard Borel structure. In the following we will often make use –without explicit mention– of

the following basic principle: Suppose that X is a standard Borel space, D is a countable set, and

B is a Borel subset of X ×D such that for every x ∈ X there is y ∈ D such that (x, y) ∈ B. Then

there is a Borel selector for B, that is, a function f from X to D such that (x, f(x)) ∈ B for every

x ∈ X. To see this one can just fix a well order < of D and define f(x) to be the <-minimum of

the set of y ∈ D such that (x, y) ∈ B.

We will use throughout the chapter the fact that a Gδ subspace of a Polish space is Polish

in the subspace topology [147, Theorem 3.11], and that a Borel subspace of a standard Borel

space is standard with the inherited Borel structure [147, Proposition 12.1].

Preliminaries on Borel Complexity

Recall that a topological space is said to be Polish if it is separable and its topology is

induced by a complete metric. A Polish group is a topological group whose topology is Polish. A

standard Borel space is a set endowed with a σ-algebra which is the σ-algebra of Borel sets for

some Polish topology on the space. It is not difficult to verify that, under the assumption that

A is separable, its automorphism group Aut(A) is a Polish group with respect to the topology of

pointwise convergence in norm.

Definition XII.2.1. A subset B of a standard Borel space X is said to be analytic if it is the

image of a standard Borel space under a Borel function.

If B and C are analytic subsets of the standard Borel spaces X and Y , then B is said to

be Wadge reducible to C if there is a Borel map f : X → Y such that B is the inverse image of C
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under f ; see [147, Section 2.E]. An analytic set which is moreover a maximal element in the class

of analytic sets under Wadge reducibility is called a complete analytic set ; more information can

be found in [147, Section 26.C].

It is a classical result of Souslin from the early beginnings of descriptive set theory, that

there are analytic sets which are not Borel. In particular, a complete analytic set is not Borel,

since a set that is Wadge reducible to a Borel set is Borel.

Informally speaking, a set (or function) is Borel whenever it can be computed by a

countable protocol whose basic bit of information is membership in open sets. The fact that a set

X is not Borel can be interpreted as the assertion that the problem of membership in X can not

be decided by such a countable protocol, and it is therefore highly intractable. We can therefore

reformulate the main result of this chapter as follows: There does not exist any countable protocol

able to determine whether a given pair of automorphisms of O2 are conjugate or cocycle conjugate

by only evaluating, at any given stage of the computation, the given automorphisms in some

arbitrarily large finite set of elements of O2 up to some arbitrarily small strictly positive error.

We will work in framework of invariant complexity theory. In this context, classification

problems are regarded as equivalence relations on standard Borel spaces. Virtually any concrete

classification problem in mathematics can be regarded –possibly after a suitable parametrization–

as the problem of classifying the elements of some standard Borel space up to some equivalence

relation. The key notion of comparison between equivalence relations is the notion of Borel

reduction.

Definition XII.2.2. Suppose that E and F are equivalence relation on standard Borel spaces X

and Y . A Borel reduction from E to F is a Borel function f : X → Y such that

xEx′ if and only if f(x)Ff(x′).

A Borel reduction from E to F can be regarded as a way to assign –in a constructive way–

to the objects of X, equivalence classes of F as complete invariants for E.

Definition XII.2.3. The equivalence relation E is said to be Borel reducible to F , in symbol

E ≤B F , if there is a Borel reduction from E to F .
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In this case, the equivalence relation F can be thought of as being more complicated than

E, since any Borel classification of the objects of Y up to F entails –by precomposing with a

Borel reduction from E to F– a Borel classification of objects of X up to E. It is immediate to

check that if E is Borel reducible to F , then E (as a subset of X × X) is Wadge reducible to F

(as a subset of Y × Y ). In particular, if E is a complete analytic set and E ≤B F , then F is a

complete analytic set. Observe that if F is an equivalence relation on Y , and X is an F -invariant

Borel subset of Y , then the restriction of F to X is Borel reducible to F .

Using this terminology, we can reformulate the assertion about the complexity of the

relations of conjugacy and cocycle conjugacy of automorphisms of O2 made in the introduction,

as follows. If C is any class of countable structures such that the corresponding isomorphism

relation ∼=C is Borel, then ∼=C is Borel reducible to both conjugacy and cocycle conjugacy of

automorphisms of O2. Furthermore, if E is any Borel equivalence relation, then the relations

of conjugacy and cocycle conjugacy of automorphisms of O2 are not Borel reducible to E. In

particular this rules out any classification that uses as invariant Borel measures on a Polish space

(up to measure equivalence) or unitary operators on the Hilbert space (up to conjugacy). In fact,

as observed before, the relations of measure equivalence and, by the spectral theorem, the relation

of conjugacy of unitary operators are Borel; see [74, Example 55].

Parametrizing the Category of C∗-algebras

Functorial parametrization

Recall that a (small) semigroupoid is a quintuple (X, CX , s, r, ·), where X and CX are sets,

s, r are functions from CX to X, and · is an associative partially defined binary operation on CX

with domain

{(x, y) ∈ CX × CX : s(x) = r(y)}

such that r(x · y) = r(x) and s(x · y) = s(y) for all x and y in X. The elements of X are called

objects, the elements of CX morphisms, the map · composition, and the maps s and r source and

range map. In the following, a semigroupoid (X, CX , s, r, ·) will be denoted simply by CX . Note

that a (small) category is precisely a (small) semigroupoid, where moreover the identity arrow
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idx ∈ CX is associated with the element x of X. A morphism between semigroupoids CX and CX′

is a pair (f, F ) of functions f : X → X ′ and F : CX → CX′ such that

– s ◦ F = f ◦ s,

– r ◦ F = f ◦ r, and

– F (a · b) = F (a) · F (b) for every a and b ∈ CX .

In the case of categories, a morphism of semigroupoids is just a functor.

A standard Borel semigroupoid is a semigroupoid CX such that X and CX are endowed with

standard Borel structures making the composition function · and the source and range functions s

and r Borel.

Definition XII.3.1. Let D be a category, let CX be a standard Borel semigroupoid, and let

(f, F ) be a morphism from CX to D. We say that (CX , f, F ) is a good parametrization of D if

– (f, F ) is essentially surjective, that is, if every object of D is isomorphic to an object in the

range of f ,

– (f, F ) is full, that is, if for every x, y ∈ X the set Hom(f(x), f(y)) is contained in the range

of F , and

– the set IsoX of elements of CX that are mapped by F to isomorphisms of D, is Borel.

Observe that if (CX , f, F ) is a good parametrization of D, then (X, f) is a good

parametrization of C in the sense of [71, Definition 2.1].

Definition XII.3.2. Let D be a category and let (CX , f, F ) and (CX′ , f ′, F ′) be good

parametrizations of D. A morphism from (CX , f, F ) to (CX′ , f ′, F ′) is a triple (g,G, η) of maps

g : X → X ′, G : CX → CX′ , and η : X → D, satisfying the following conditions:

1. The functions g and G are Borel;

2. η(x) is an isomorphism from f(x) to (f ′ ◦ g) (x) for every x ∈ X;

3. The pair (f ′ ◦ g, F ′ ◦G) is a semigroupoid morphism CX → D;

4. We have sX′ ◦G = g ◦ sX and rX′ ◦G = g ◦ rX ;
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5. For every a ∈ CX

F ′(G(a)) ◦ η (s(a)) = η (r(a)) ◦ F (a).

Two good parametrizations (CX , f, F ) and (CX′ , f ′, F ′) of C are said to be equivalent if

there are isomorphisms from (CX , f, F ) to (CX′ , f ′, F ′) and viceversa. It is not difficult to verify

that if (CX , f, F ) and (CX′ , f ′, F ′) are equivalent parametrizations of D, then (X, f) and (X ′, f ′)

are weakly equivalent parametrizations of D in the sense of [71, Definition 2.1].

In the following, a good parametrization (CX , f, F ) of D will be denoted by CX for short.

The space CΞ̂

We follow the notation in [71, Section 2.2], and denote by Q(i) the field of complex

rationals. A Q(i)-∗-algebra is an algebra over the field Q(i) endowed with an involution x 7→ x∗.

We define U to be the Q(i)-∗-algebra of noncommutative ∗-polynomials with coefficients in Q(i)

and without constant term in the formal variables Xk for k ∈ ω. If A is a C∗-algebra, γ = (γn)n∈ω

is a sequence of elements of A, and p ∈ U , we define p(γ) to be the element of A obtained by

evaluating p in A, where for every k ∈ ω, the formal variables Xk and X∗k are replaced by the

elements γk and γ∗k of A.

We denote by Ξ̂ the set of elements

A = (f, g, h, k, r) ∈ ωω×ω × ωQ(i)×ω × ωω×ω × ωω × Rω

that code on ω a structure of Q(i)-∗-algebra A endowed with a norm satisfying the C*-identity.

The completion Â of ω with respect to such norm is a C∗-algebra (denoted by B(A) in [71,

Subection 2.4]). It is not hard to check that Ξ̂ is a Borel subset of ωω×ω×ωQ(i)×ω×ωω×ω×ωω×Rω.

As observed in [71, Subection 2.4], Ξ̂ can be thought of as a natural parametrization for abstract

C∗-algebras. We use the notation of [71, Subsection 2.4] to denote the operations on ω coded by

an element A = (f, g, h, k, r) of Ξ̂. We denote by dA the metric on ω coded by A, which is given

by

dA (n,m) = ‖n+f (−1) ·g m‖r

for n,m ∈ ω. We will also write n+A m for n+f m, and similarly for g, h, k, r.
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Definition XII.3.3. Suppose that A = (f, g, h, k, r) and A′ = (f ′, g′, h′, k′, r′) are elements of Ξ̂,

and that Φ = (Φn)n∈ω ∈ (ωω)
ω

is a sequence of functions from ω to ω. We say that Φ is a code for

a homomorphism from Â to Â′ if the following conditions hold:

1. The sequence (Φn(k))n∈ω is Cauchy uniformly in k ∈ ω with respect to the metric dA, and

in particular converges to an element Φ̂(k) of Â;

2. The map k 7→ Φ̂(k) is a contractive homomorphism of Q(i)-∗-algebras, and hence it induces

a homomorphism Φ̂ from Â to Â′.

We say that Φ is a code for an isomorphism from Â to Â′ if Φ is a code for

a homomorphism from Â to Â′, and Φ̂ is an isomorphism. If Φ and Φ′ are codes for

homomorphisms from Â to Â′ and from Â′ to Â′′ respectively, we define their composition Φ′ ◦ Φ

by (Φ′ ◦ Φ)n = Φ′n ◦ Φn for n ∈ ω.

It is easily checked that Φ′ ◦ Φ ∈ (ωω)
ω

is a code for the homomorphism Φ̂′ ◦ Φ̂

from Â to Â′′ One can verify that the set CΞ̂ of triples (A,A′,Φ) ∈ Ξ̂ × Ξ̂ × (ωω)
ω

such

that Φ is a code for a homomorphism from Â to Â′, is Borel. We can regard CΞ̂ as a standard

semigroupoid having Ξ̂ as set of objects, where the composition of (A,A′,Φ) and (A′, A′′,Φ′)

is (A′, A′′,Φ′ ◦ Φ), and the source and range of (A,A′,Φ) are A and A′ respectively. The

semigroupoid morphism (A,A′,Φ) 7→
(
Â, Â′, Φ̂

)
defines a parametrization of the category of

C∗-algebras with homomorphisms. It is easy to see that this is a good parametrization in the

sense of Definition XII.3.2. In particular, the set IsoΞ̂ of elements (A,A′,Φ) of Ξ̂× Ξ̂× (ωω)
ω

such

that Φ is a code for an isomorphism from Â to Â′, is Borel.

The space CΞ

We denote by Ξ the Gδ subset of RU consisting of the nonzero functions δ : U → R such

that there exists a C∗-algebra A and a dense subset γ = (γn)n∈ω of A, such that

δ(p) = ‖p(γ)‖ .

It could be observed that, differently from [71, Subsection 2.3], we are not considering the function

constantly equal to zero as an element of Ξ; this choice is just for convenience and will play no
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role in the rest of the discussion. Observe that any element δ of Ξ determines a seminorm on the

Q(i)-∗-algebra U ; therefore one can consider the corresponding Hausdorff completion of U . Denote

by Iδ the ideal of U given by

Iδ = {p ∈ U : δ(p) = 0}.

Then U/Iδ is a normed Q(i)-∗-algebra. Its completion is a C∗-algebra, which we shall denote by δ̂.

(What we denote by δ̂ is denoted by B(δ) in [71, Subsection 2.3].)

Definition XII.3.4. Let δ and δ′ be elements in Ξ, and let Φ = (Φn)n∈ω ∈
(
UU
)ω

be a sequence

of functions from U to U . We say that Φ is a code for a homomorphism from δ̂ to δ̂′, if

1. for every p ∈ U , the sequence (Φn(p))n∈ω is Cauchy uniformly in p ∈ U , with respect to the

pseudometric (q, q′) 7→ δ (q − q′) on U , and in particular converges in δ̂ to an element Φ̂(p),

and

2. p 7→ Φ̂(p) is a morphism of Q(i)-∗-algebras such that
∥∥∥Φ̂(p)

∥∥∥ ≤ δ(p), and hence induces a

homomorphism from δ̂ to δ̂′.

Writing down explicit formulas defining a code for a homomorphism makes it clear that

the set CΞ of triples (δ, δ′,Φ) ∈ Ξ × Ξ ×
(
UU
)ω

such that Φ is a code for a homomorphism from

δ̂ to δ̂′ is Borel. Suppose that Φ,Φ′ are code for homomorphisms from δ to δ′ and from δ′ to δ′′.

Similarly as in Subsection XII.3, it is easy to check that defining

(Φ′ ◦ Φ)n = Φ′n ◦ Φn

for n ∈ ω gives a code for a homomorphism from δ to δ′′. This defines a standard Borel

semigroupoid structure on CΞ, such that the map (δ, δ′,Φ) 7→
(
δ̂, δ̂′, Φ̂

)
is a good standard Borel

parametrization of the category of C∗-algebras.

The space CΓ(H)

Denote by B1(H) the unit ball of B(H) with respect to the operator norm. Recall that

B1(H) is a compact Hausdorff space when endowed with the weak operator topology. The

standard Borel structure generated by the weak operator topology on B1(H) coincide with the

Borel structure generated by several other operator topologies on B1(H), such as the σ-weak,

412



strong, σ-strong, strong-*, and σ-strong-* operator topology; see [14, I.3.1.1]. Denote by B1(H)ω

the product of countably many copies of B1(H), endowed with the product topology, and define

Γ(H) to be the Polish space obtained by removing from B1(H)ω the sequence constantly equal to

0. (The space Γ(H) is defined similarly in [71, Subection 2.1]; the only difference is that here the

sequence constantly equal to 0 is excluded for convenience.) Given an element γ in Γ(H), denote

by C∗(γ) the C*-subalgebra of B(H) generated by {γn : n ∈ ω}. As explained in [71, Subsection

2.1 and Remark 2.3], the space Γ(H) can be thought of as a natural parametrization of concrete

C∗-algebras.

Definition XII.3.5. Let γ and γ′ be elements in Γ(H), and let Φ = (Φn)n∈ω ∈
(
UU
)ω

be a

sequence of functions from U to U . We say that Φ is a code for a homomorphism from C∗(γ) to

C∗ (γ′), if

1. the sequence (Φn(p)(γ′))n∈ω of elements of C∗(γ′) is Cauchy uniformly in p, and hence

converges to an element Φ̂ (p(γ)) of C∗(γ′), and

2. the function p(γ) 7→ Φ̂ (p(γ)) extends to a homomorphism from C∗(γ) to C∗ (γ′).

Again, it is easily checked that the set CΓ(H) of triples (γ, γ′,Φ) such that Φ is a code for

a homomorphism from C∗ (γ) to C∗ (γ′), is Borel. Moreover, one can define a standard Borel

semigroupoid structure on CΓ(H), in such a way that the map (γ, γ′,Φ) 7→
(
C∗(γ), C∗ (γ′) , Φ̂

)
is a

good parametrization of the category of C∗-algebras.

For future reference, we show in Lemma XII.3.6 below that in the parametrization

CΓ(H) one can compute a code for the inverse of an isomorphism in a Borel way. Recall that,

consistently with Definition XII.3.1, IsoΓ(H) denotes the Borel set of (γ, γ′,Φ) ∈ CΓ(H) that code

an isomorphism.

Lemma XII.3.6. There is a Borel map from IsoΓ(H) to
(
UU
)ω

, assigning to an element (γ, γ′,Φ)

of IsoΓ(H) a code Inv (γ, γ′,Φ) for an isomorphism from C∗ (γ′) to C∗(γ) such that ̂Inv(γ, γ′,Φ) =

Φ̂−1.

Proof. Observe that the set E of tuples

((γ, γ′,Φ) , p, n, q,N) ∈ IsoΓ(H) × U × ω × U × ω

413



such that

‖q (γ′)− ΦM (p) (γ′)‖ < 1

n
,

and

‖ΦM ′(p) (γ′)− ΦM (p) (γ′)‖ < 1

n
,

for every M,M ′ ≥ N is Borel. Therefore one can find Borel functions (ξ, q, n) 7→ p(ξ,p,n) and

(ξ, p, n) 7→ N(ξ,p,n) from IsoΓ(H) × U × ω to U and ω respectively such that

(
ξ, q, n, p(ξ,q,n), N(ξ,q,n)

)
∈ E

for every (ξ, q, n) ∈ IsoΓ(H) × U × ω. Defining now Inv(ξ)n(q) = p(ξ,q,n) for every n ∈ ω and q ∈ U

one obtains a Borel map ξ 7→ Inv (ξ). Moreover,

∥∥∥Inv(ξ)n(q)(γ)− Φ̂−1(q (γ′))
∥∥∥

≤
∥∥∥p(ξ,q,n) (γ)− Φ̂−1(ΦN(ξ,q,n)

(p) (γ′))
∥∥∥+

1

n

≤
∥∥∥Φ̂(p(ξ,k,n) (γ))− ΦN(ξ,q,n)

(p) (γ′)
∥∥∥+

1

n

≤ 1

2n
.

This shows that Inv (ξ) is a code for the inverse of Φ̂.

Equivalence of CΞ̂, CΞ and CΓ.

Recall that given an element δ of Ξ, we denote by Iδ the ideal of U given by

Iδ = {p ∈ U : δ(p) = 0}.

Theorem XII.3.7. The good parametrizations CΞ̂, CΞ, and CΓ, of the category of C∗-algebras

with homomorphisms, are equivalent in the sense of Definition XII.3.2.

Proof. We will show first that CΞ̂ and CΞ are equivalent.

We start by constructing a morphism from CΞ to CΞ̂ as in Definition XII.3.2 as follows. As

in the proof of [71, Proposition 2.6], for every n ∈ ω define a Borel map pn : Ξ → U , denoted
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δ 7→ pδn for δ in Ξ, such that {
pδn + Iδ : n ∈ ω

}
is an enumeration of U/Iδ for every δ ∈ Ξ . For δ ∈ Ξ, define a structure of C*-normed Q(i)-∗-

algebra Aδ = (fδ, gδ,hδ, kδ, rδ) on ω by:

– m+fδ n = t whenever pδm + pδn + Iδ = pδt + Iδ;

– q ·gδ m = t whenever q · pδm + Iδ = pδt + Iδ;

– m ·hδ n = t whenever qδmq
δ
n + Iδ = qδt + Iδ;

– m∗kδ = t whenever
(
qδm
)∗

+ Iδ = qδt + Iδ;

– ‖m‖rδ = δ
(
qδm
)
.

It is clear that the map δ 7→ Aδ is Borel. Moreover, for fixed δ in Ξ, the map n 7→ pδn + Iδ

is an isomorphism of normed Q(i)-∗-algebras from Aδ onto U/Iδ. We denote by ηδ : Âδ → δ̂ the

induced isomorphism of C∗-algebras.

Now, if ξ = (δ, δ′,Φ) belongs to CΞ, define Ψξ ∈
(
UU
)ω

by

(Ψξ)n(m) = k whenever Φn
(
pδm
)

+ Iδ = pδk + Iδ,

for n,m and k in ω. It is not difficult to check that Ψξ is a code for a homomorphism from Aδ to

Aδ′ , and that the assignment ξ 7→ Ψξ is Borel. Thus, the map from CΞ to CΞ̂ that assigns to the

element ξ = (δ, δ′,Φ) in CΞ, the element (Aδ, Aδ′ ,Ψξ) of CΞ̂, is Borel. Finally, it is easily verified

that the map

ξ = (δ, δ′,Φ) 7→
(
Âδ, Âδ′ , Ψ̂ξ

)
is a functor from CΞ to the category of C∗-algebras. Moreover, if ξ = (δ, δ′,Φ) ∈ Ξ, then it follows

from the construction that

Φ̂ ◦ ηδ = ηδ′ ◦ Ψ̂ξ.

We now proceed to construct morphism from CΞ̂ to CΞ. This will conclude the proof that

CΞ̂ and CΞ are equivalent parametrizations according to Definition XII.3.2.

415



For A ∈ Ξ̂ and p ∈ U , denote by pA the evaluation of p in the Q(i)-∗-algebra on ω coded

by A, where the formal variable Xj is replaced by j for every j ∈ ω. Write A = (f, g, h, k, r), and

define an element δA of Ξ by

δA(p) = ‖pA‖r ,

for all p in U . It is easily checked that the map A 7→ δA is a Borel function from Ξ̂ to Ξ. For every

n ∈ ω, define a Borel map pn : Ξ̂→ U , denoted A 7→ pAn for A in Ξ̂, such that

{
pAn + IδA : n ∈ ω

}
is an enumeration of U/IδA . The function n 7→ pAn + IδA induces an isomorphism of normed Q(i)-

∗-algebras, from ω with the structure coded by A, and UIδA . One checks that this isomorphism

induces a C∗-algebra isomorphism between Â and δ̂A.

For ξ = (A,A′,Ψ) ∈ CΞ̂, define Ψξ ∈
(
UU
)ω

by

(Ψξ)n (p) = qAm whenever p+ IδA = pAk + IδA and Ψn(k) = m.

It can easily be checked that

– Ψξ is a code for a homomorphism from δ̂A to δ̂A′ ,

– the map ξ 7→ Ψξ is Borel, and

– Ψ̂ξ ◦ ηA = ηA′ ◦ Ψ̂ξ.

This concludes the proof that CΞ and CΞ̂ are equivalent good parametrizations of the

category of C∗-algebras.

We proceed to show that CΞ and CΓ are equivalent parametrizations.

Denote by δ : Γ(H) → Ξ and γ : Ξ → Γ(H) the Borel maps defined in the proof of [71,

Proposition 2.7] witnessing the fact that Ξ and Γ(H) are weakly equivalent parametrizations in

the sense of [71, Definition 2.1]. It is straightforward to check that the maps ∆: CΓ(H) → CΞ and

Γ: CΞ → CΓ(H) given by

∆(γ, γ′,Φ) = (δγ , δγ′ ,Φ) and Γ(δ, δ′,Ψ) = (γδ, γδ′ ,Ψ)
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are morphisms of good parametrizations, witnessing the facts that CΓ(H) and CΞ are equivalent.

Direct limits of C∗-algebras

An inductive system in the category of C∗-algebras is a sequence (An, ϕn)n∈ω, where for

every n in ω, An is a C∗-algebra, and ϕn : An → An+1 is a homomorphism. The inductive limit

of the inductive system (An, ϕn)n∈ω is the C∗-algebra lim−→ (An, ϕn) defined as in [14, II.8.2]. It is

verified in [71, Subsection 3.2] that the inductive limit of an inductive system of C∗-algebras can

be computed in a Borel way. We report here, for the sake of completeness, a different proof.

We will work in the parametrization CΞ of the category of C∗-algebras. In view of the

equivalence of the parametrizations CΞ, CΞ̂, and CΓ(H), the same result holds if one instead

considers either one of the parametrizations CΞ̂ or CΓ(H).

Denote by Rdir (Ξ) the set of sequences (δn,Φn)n∈ω ∈
(
Ξ×

(
UU
)ω)ω

such that

Φn is a code for a homomorphism δ̂n → δ̂n+1 for every n ∈ ω. We can regard Rdir (Ξ) as the

standard Borel space parametrizing inductive systems of C∗-algebras. (The subscript in Rdir

stands for “direct system”. There is essentially no difference in considering inductive systems

or more general countable direct systems. This justifies the notation Rdir, which is chosen for

consistency with [70]. )

Proposition XII.3.8. There is a Borel map from Rdir (Ξ) to Ξ that assigns to an element

(δn,Φn)n∈ω of Rdir (Ξ) an element λ(δn,Φn)n∈ω
of Ξ such that λ̂

(δn,Φn)n∈ω
is isomorphic to the

inductive limit of the inductive system
(
δ̂n, Φ̂n

)
n∈ω

. Moreover, for every k ∈ ω there is a

Borel map from Rdir (Ξ) to
(
UU
)ω

that assigns to (δn,Φn)n∈ω a code Ik for the canonical

homomorphism from δ̂k to the inductive limit λ̂
(δn,Φn)n∈ω

.

Proof. Denote for n ∈ ω by Un the Q(i)-∗-algebra of ∗-polynomials in the pairwise distinct

noncommutative variables
(
X

(n)
i

)
i∈ω

. Similarly define U∞ to be the Q(i)-∗-algebra of ∗-

polynomials in the noncommutative variables
(
X

(n)
i

)
(i,n)∈ω×ω

. We will naturally identify Un

as a Q(i)-∗-subalgebra of U∞, and define Vn to be the Q(i)-∗-subalgebra of U∞ generated by

⋃
i∈n
Ui

417



inside U∞. Fix an element (δn,Φn)k∈ω of Rdir (Ξ). To simplify the notation we will assume that

δn : Un → R for every n ∈ ω, and Φn ∈
(
UUnn+1

)ω
. Correspondingly we will define a function

λ(δn,Φn)n∈ω
: U∞ → R. Fix n ∈ n′ ∈ ω and k ∈ ω. Define

Φn′,n,k : Vn → Un′

to be the function obtained by freely extending the maps

(Φn′−1 ◦ · · · ◦ Φi)k : Ui → Un′

for i ∈ n. Finally define for every N ∈ ω and p ∈ VN ⊂ U∞

λ
(δn,Φn)n∈ω

(p) = lim
n′>N

lim
k→∞

δn′ (Φn′,N,k(p)) .

It is immediate to verify that the definition does not depend on N . Moreover λ
(δn,Φn)n∈ω

→ R

define a seminorm on U∞ such that λ̂(δn,Φn)n∈ω
is isomorphic to the direct limit of the inductive

system
(
δ̂n, Φ̂n

)
n∈ω

. If N ∈ ω and ιN : UN → U∞ denotes the inclusion map, and IN ∈
(
UUN∞

)ω
denotes the sequence constantly equal to ιN , then IN is a code for the canonical homomorphism

from δ̂k to the direct limit λ̂
(δn,Φn)n∈ω

.

One sided intertwinings

Definition XII.3.9. Let (An, ϕn)n∈ω and (A′n, ϕ
′
n)n∈ω be inductive systems of C∗-algebras. A

sequence (ψn)n∈ω of homomorphisms ψn : An → A′n is said to be a one sided intertwining between

(An, ϕn)n∈ω and (A′n, ϕ
′
n)n∈ω, if the diagram

A0
ϕ0 //

ψ0

��

A1
ϕ1 //

ψ1

��

A2
ϕ2 //

ψ2

��

· · ·

A′0
ϕ′0

// A′1
ϕ′1

// A′2
ϕ′2

// · · ·

is commutative.
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If (ψn)n∈ω is a one sided intertwining between (An, ϕn)n∈ω and (A′n, ϕ
′
n)n∈ω, then there is

an inductive limit homomorphism

ψ = lim−→ψn : lim−→(An, ϕn)→ lim−→(A′n, ϕ
′
n)

that makes the diagram

A0
ϕ0 //

ψ0

��

A1
ϕ1 //

ψ1

��

A2
ϕ2 //

ψ2

��

· · · // lim−→(An, ϕn)

ψ

��
A′0

ϕ′0

// A′1
ϕ′1

// A′2
ϕ′2

// · · · // lim−→(A′n, ϕ
′
n)

commutative.

In this subsection, we verify that the inductive limit homomorphism lim−→ψn can be

computed in a Borel way. We will work in the parametrization CΞ of C∗-algebras. In view of the

equivalence between the parametrizations CΞ, CΞ̂ and CΓ(H), the same result holds if one instead

uses CΞ̂ or CΓ(H).

Define Rint (Ξ) to be the Borel set of all elements

(
(δn,Φn)n∈ω , (δ

′
n,Φ

′
n)n∈ω , (Ψn)n∈ω

)
∈ Rdir (Ξ)×Rdir (Ξ)×

((
UU
)ω)ω

such that Ψn is a code for a homomorphism from δ̂n to δ̂′n+1 satisfying

Ψ̂n+1 ◦ Φ̂n = Φ̂′n ◦ Ψ̂n

for every n ∈ ω. In other words, (Ψn)n∈ω is a sequence of codes for a one sided intertwining

between the inductive systems coded by (δn,Φn)n∈ω and (δ′n,Φ
′
n)n∈ω.

Proposition XII.3.10. There is a Borel map from Rint (Ξ) to
(
UU
)ω

assigning to an element

(
(δn,Φn)n∈ω , (δ

′
n,Φ

′
n)n∈ω , (Ψn)n∈ω

)
of Rint (Ξ), a code Λ for the corresponding inductive limit homomorphism between the inductive

limits of the systems coded by (δn,Φn)n∈ω and (δ′n,Φ
′
n)n∈ω.
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Proof. We will use the same notation as in the proof of Proposition XII.3.8. Fix an element(
(δn,Φn)n∈ω , (δ

′
n,Φ

′
n)n∈ω , (Ψn)n∈ω

)
of Rint (Ξ). As in the proof of Proposition XII.3.8 we will

assume that for every n ∈ ω

δn : Un → R,

δ′n : Un → R,

Φn ∈
(
UUnn+1

)ω
and

Φ′n ∈
(
UUnn+1

)ω
.

Therefore

Ψn ∈
(
UUnn

)ω
for every n ∈ ω. Similarly the codes λ(δn,Φn)n∈ω

and λ(δ′n,Φ
′
n)n∈ω

for the direct limits of the

systems coded by (δn,Φn)n∈ω and (δ′n,Φ
′
n)n∈ω will be supposed to be functions from U∞ to R.

We will therefore define a code Λ ∈
(
UU∞∞

)ω
for the homomorphism coded by (Ψn)n∈ω. Recall

from the proof of Proposition XII.3.8 the definition of VN and Φn′,N,k : VN → Un′ for N ∈ n′ ∈ ω

and k ∈ ω. Fix functions σ0, σ1, σ2 : ω → ω such that

n 7→ (σ0 (n) , σ1 (n) , σ2 (n))

is a bijection from ω to ω × ω × ω. Fix N ∈ ω and define for p ∈ Vσ0(N)

ΛN (p) =
(
Ψσ1(N),σ2(N) ◦ Φσ1(N),σ0(N),σ2(N)

)
(p)

and

ΛN (p) = 0

for p /∈ Vσ0(N). It is not difficult to check that the sequence (ΛN )N∈ω ∈
(
UU∞∞

)ω
indeed defines a

code for the inductive limit homomorphism defined by the sequence
(

Ψ̂n

)
n∈ω

.
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Direct limits of groups

We consider as standard Borel space of infinite countable groups the set G of functions

f : ω × ω → ω such that the identity n ·f m = f(n,m) for n,m ∈ ω, defines a group structure on

ω. We consider G as a Borel space with respect to the Borel structure inherited from ωω×ω; such

Borel structure is standard, since G is a Borel subset of ωω×ω. In the following, we will identify a

group G and its code as an element of ωω×ω.

It is not difficult to check that most commonly studied classes of groups correspond to

Borel subsets of G. In particular we will denote by AG the Borel set of abelian groups, and by

AGTF the Borel set of torsion free abelian groups.

Let G be a countable group and let α be an endomorphism of G. We will denote by G∞ =

lim−→(G,α) the inductive limit of the inductive system

G
α // G

α // · · · // G∞ .

For n in ω, denote by ϕn : G → G∞ the canonical group homomorphism obtained by regarding G

as the n-th stage of the inductive system above. Denote by α∞ the unique automorphism of G∞

such that α∞ ◦ ϕn+1 = ϕn for every n ∈ ω.

Denote by EndG the set of all pairs (G,α) ∈ G × ωω, such that α is an injective

endomorphism of G with respect to the group structure on ω coded by G, and note that EndG

is Borel. Similarly define DLimG to be the set of pairs (G,α) ∈ EndG such that the direct limit

lim−→(G,α) is infinite.

Proposition XII.3.11. The set DLimG is a Borel subset of EndG . Moreover there is a Borel map

from DLimG to EndG that assigns to (G,α) ∈ DLimG the pair
(

lim−→(G,α), α∞

)
.

Proof. Let (G,α) be an element in EndG . Consider the equivalence relation ∼α on ω × ω defined

by

(x, i) ∼α (y, j) iff there exists k ≥ max {i, j} with αk−i(x) = αk−j(y).

Observe that (G,α) ∈ DLimG iff ∼α has infinitely many classes. Therefore DLimG is a

Borel subset of G by [147, Theorem 18.10]. Suppose now that (G,α) ∈ DLimG . Consider the

lexicographic order <lex on ω × ω, and define the injective function ηα : ω → ω × ω recursively
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on n as follows. Set ηα(0) = (0, 0), and for n > 0, define ηα(n) to be the <lex-minimum element

(m, i) of ω × ω such that for every k ∈ n, we have ηα(k) 6∼α (m, i). (Observe that the set of

such elements is nonempty since we are assuming that ∼α has infinitely many classes.) Define the

group operation on ω by

n0 ·G∞ n1 = n

whenever there are m0,m1,m, i0, i1, i, ĩ ∈ ω satisfying:

– ηα(n0) = (m0, i0);

– ηα(n1) = (m1, i1);

– η(n) = (m, i);

– max {i0, i1} = ĩ;

–
(
αĩ−i0(m0) ·G αĩ−i1(m1), ĩ

)
∼ (m, i).

Define the function α∞ : ω → ω by α∞(n) = n′ if and only if there are m, i,m′, i′ ∈ ω such

that:

– ηα(n) = (m, i);

– ηα(n′) = (m′, i′);

– (α(m), i) ∼ (m′, i′).

It is not difficult to check that G∞ is the direct limit lim−→(G,α), and α∞ is the

automorphism of lim−→(G,α) corresponding to the endomorphism α of G. Moreover the function

(G,α) 7→ (G∞, α∞) is Borel by construction.

Borel version of the Nielsen-Schreier theorem

The celebrated Nielsen-Schreier theorem asserts that a subgroup of a countable free group

is free. In this subsection we will prove a Borel version of such theorem, to be used in the proof of

Lemma XII.3.14. This will be obtained by analyzing Schreier’s proof of the theorem, as presented

in [138, Chapter 2].

Denote by F the (countable) set of reduced words in the indeterminates xn for n ∈ ω

ordered lexicographically. We can identify the free group on countable many generators with F
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with the operation of reduced concatenation of words. It is immediate to check that the set S(F )

of H ∈ 2ω such that H is a subgroup of F is Borel.

Lemma XII.3.12. There is a Borel function H 7→ BH from S(F ) to 2F such that LH is a set of

free generators of H for every H ∈ S(F ).

Proof. Suppose that H ∈ S(F ). If a ∈ F denote by φH (a) the <-minimal element of the coset

Ha, where < is the lexicographic order of F . Observe that φH (a) ≤ b iff there is b′ ≤ b such that

b′a−1 ∈ H. This shows that the map

S(F ) → FF

H 7→ φH

is Borel. Define BH to be the set containing

φH (a)xnφH (φH (a)xn)
−1

for every (n, a) ∈ ω × F with the property that φH (a)xn 6= φH (c) for every c ∈ F . It is clear that

the map H 7→ BH is Borel. Moreover it can be shown as in [138, Chapter 2, Lemmas 3,4,5] that

BH is a free set of generators of H.

Suppose now that Fω is an element of G representing the group of countably many

generators, and S(F ) is the Borel set of H ∈ 2ω such that H is a subgroup of F∞. Proposition

can be seen as just a reformulation of Lemma

Proposition XII.3.13. There is a Borel map H 7→ BH from S(F ) to 2ω that assigns to H ∈

S(F ) a free set of generators of H.

An exact sequence

The following lemma asserts that the construction of [233, Proposition 3.5] can be made in

a Borel way.

Lemma XII.3.14. There is a Borel function from AG to AGTF × ωω that assigns to an infinite

abelian group G, a pair (H,α), where H is an infinite torsion free abelian group, and α is an
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automorphism of H such that

H /(idH − α) [H] ∼= G.

Proof. Denote by Fω×ω the free group with generators xn,m for (n,m) ∈ ω × ω, suitably coded

as an element of the standard Borel spaces of countable groups G. Given an element G ∈ AG,

denote by NG the subset of ω coding the kernel of the homomorphism from Fω×ω to G obtained

by sending xn,m to n if m = 0, and to zero otherwise. In view of Proposition XII.3.13 one can find

a Borel map

AG → ωω

G 7→ xG

such that xG =
(
xGn
)
n∈ω is an enumeration of a free set of generators of NG. Define an injective

endomorphism δG of Fω×ω by

δG (xn,m) =


xn,m+1 if m 6= −1,

xGn otherwise.

Let βG : Fω×ω → Fω×ω be βG = idFω×ω − δG. By construction, the map G 7→ βG is Borel.

From now on we fix a group G, and abbreviate βG to just β.

By Proposition XII.3.11, the inductive limit group G∞ = lim−→(G, β) and the automorphism

β∞ = lim−→β can be constructed in a Borel way from G and β. We take H = G∞ and α = β∞. It

can now be verified, as in the proof of [233, Proposition 3.5], that G is isomorphic to the quotient

of H by the image of idH−α. Moreover, it follows that the map G 7→ (H,α) is Borel. This finishes

the proof.

Computing Reduced Crossed Products

The goal of this section is to show that the reduced crossed product of a C∗-algebra by an

action of a countable group can be computed in a Borel way.
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Parametrizing actions of countable groups on C∗-algebras

We proceed to construct a standard Borel parametrization of the space of all actions of

countable groups on C∗-algebras. For convenience, we will work using the parametrization Γ(H)

of C∗-algebras. In view of the weak equivalence of Ξ, Ξ̂, and Γ(H), similar statements will hold

for the parametrizations Ξ and Ξ̂.

Definition XII.4.1. Let γ be an element of Γ(H), and G be an element of G. Suppose that

Φ = (Φm,n)(m,n)∈ω×ω ∈
(
UU
)ω×ω

is an (ω × ω)-sequence of functions from U to U . We say that Φ

is a code for an action of G on C∗ (γ), if the following conditions hold:

1. for every m ∈ ω, the sequence (Φm,n)n∈ω ∈
(
UU
)ω

is a code for an automorphism Φ̂m of

C∗ (γ),

2. Φ0,n(m) = m for every n,m ∈ ω, and

3. the function m 7→ Φ̂m is an action of G on C∗(γ), that is,

Φ̂m ◦ Φ̂k = Φ̂n

whenever (m, k, n) ∈ G.

It is easy to verify that any action of G on C∗ (γ) can be coded in such way. Moreover, the

set ActΓ(H) of triples (G, γ,Φ) ∈ G × Γ(H) × (Uω)
ω×ω

such that Φ is a code for an action of G on

C∗(γ), is a Borel subset of G × Γ(H) × (Uω)
ω×ω

. We will regard ActΓ(H) as the standard Borel

space of actions of countable groups on C∗-algebras.

Computing the reduced crossed product

We are now ready to prove that the reduced crossed product of a C∗-algebra by an action

of a countable group can be computed in a Borel way.

Proposition XII.4.2. Let H be a separable Hilbert space. Then there is a Borel map

(G, γ,Φ) 7→ δ(G,γ,Φ) from ActΓ(H) to Γ(H) such that C∗
(
δ(G,γ,Φ)

) ∼= C∗(γ) or
Φ̂
G. In other words,

there is a Borel way to compute the code of the reduced crossed product of separable C∗-algebras

by countable groups.
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Proof. Denote by {ek : k ∈ ω} the canonical basis of `2. Let (G, γ,Φ) be an element of ActΓ(H).

Define the element δ(G,A,Φ) of Γ(H) as follows. Given m in ω, denote by m′ ∈ ω the inverse of m

in G. Now set

(δ(G,γ,Φ))n(ξ ⊗m) =


limk→+∞ γΦ(m′,k)(r)

if n = 2r, where (n,m, k) ∈ G,

ξ ⊗ k otherwise,

for all ξ in H and all m in ω. The fact that C∗
(
δ(G,γ,Φ)

) ∼= C∗ (γ) oΦ̂,r G follows from [197,

Theorem 7.7.5]. Moreover, the map (G, γ,Φ) 7→ δ(G,γ,Φ) is Borel by construction and by [71,

Lemma 3.4].

Proposition XII.4.2 above answers half of [71, Problem 9.5(2)]. It is not clear how to treat

the case of full crossed products, even in the special case when the algebra is C.

Crossed products by a single automorphism

In this subsection, we want to show that the crossed product of a C∗-algebra by a single

automorphism, when regarded as an action of Z, can be computed in a Borel way. In view of the

equivalence of the good parametrizations CΞ, CΞ̂, and CΓ(H), we can work in any of these. For

convenience, we consider the parametrization CΓ(H).

Let us denote by AutΓ(H) the set of pairs (γ,Φ) in Γ(H) ×
(
UU
)ω

such that Φ is a code

for an automorphism of C∗ (γ) . It is immediate to check that such set is Borel. We can regard

AutΓ(H) as the standard Borel space of automorphisms of C∗-algebras.

Lemma XII.4.3. There is a Borel map from AutΓ(H) to ActΓ(H) that assigns to an element

(γ,Φ) in AutΓ(H), a code for the action of Z on C∗(γ) associated with the automorphism coded by

Φ.
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Proof. In the parametrization G of countable infinite groups described before, the group of

integers Z is coded, for example, by the element fZ of ωω×ω given by

fZ(2n, 2m) = 2(n+m)

fZ(2n− 1, 2m− 1) = 2(n+m)− 1

fZ(2n− 1,m) = fZ(m, 2n− 1) = 2(n−m)− 1

fZ(2m− 1, n) = fZ(n, 2m− 1) = 2(n−m)

fZ(k, 0) = fZ(0, k) = k

for n,m, k ∈ ω with n,m ≥ 1. Recall that by Lemma XII.3.6 there is a Borel map ξ 7→ Inv (ξ)

from IsoΓ(H) to
(
UU
)ω

such that if ξ = (γ, γ′,Φ), then Inv (ξ) is a code for the inverse of the *-

isomorphism coded by Φ. Suppose now that (γ,Φ) ∈ AutΓ(H). We want to define a code Ψ for the

action of Z on C∗(γ) induced by Φ̂. For n,m ∈ ω with m ≥ 1 define

Ψ0,n(k) = k,

Ψ2m,n =

m times︷ ︸︸ ︷
Φn ◦ Φn · · · ◦ Φn,

and

Ψ2m+1,n = Inv (γ, γ,Ψm) .

Observe that (fZ, A,Ψ) is a code for the action of Z associated with the automorphism Φ̂ of

C∗(γ). It is not difficult to verify that the map assigning (fZ, A,Ψ) to (A,Φ) is Borel. We omit

the details.

Corollary XII.4.4. Given a C∗-algebra A and an automorphism α of A, there is a Borel way to

compute the crossed product Aoα Z.

Proof. Note that the group of integers Z is amenable, so full and reduced crossed products

coincide. The result now follows immediately from Lemma XII.4.3 together with Proposition

XII.4.2.
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Crossed product by an endomorphism

We now turn to crossed products by injective, corner endomorphisms, as introduced by

Paschke in [193], building on previous work of Cuntz from [39]. Although there are more general

theories for such crossed products allowing arbitrary endomorphisms of C∗-algebras (see, for

example, [65]), the endomorphisms considered by Paschke will suffice for our purposes. We begin

by presenting the precise definition of a corner endomorphism. Throughout this subsection, we fix

a unital C∗-algebra A.

Definition XII.4.5. An endomorphism ρ : A→ A is said to be a corner endomorphism if ρ(A) is

a corner of A, that is, if there exists a projection p in A such that ρ(A) = pAp.

Since A is unital, if ρ : A → A is a corner endomorphism and ρ(A) = pAp for some

projection p in A, then we must have p = ρ(1). Let us observe for future reference that the set

CorEndΓ of pairs (γ,Φ) ∈ Γ ×
(
UU
)ω

such that C∗(γ) is unital and Φ is a code for an injective

corner endomorphism of C∗(γ) is Borel. By [71, Lemma 3.14] the set Γu of γ ∈ Γ such that C∗(γ)

is unital is Borel. Moreover, there is a Borel map Un: Γu → B1(H) such that Un(γ) is the unit

of C∗(γ) for every γ ∈ C∗(γ)2. If now γ ∈ Γu and Φ ∈
(
UU
)ω

, then Φ is a code for an injective

corner endomorphism of C∗(γ) if and only if Φ is a code for an endomorphism of A (which is a

Borel condition, as observed in Subsection XII.3), and for every p ∈ U and n ∈ ω there is m0 ∈ ω

and q ∈ U such that for every m ≥ m0

‖Φm(p)(γ)‖ ≥ ‖p(γ)‖ − 1

n

and

‖Un(γ)p(γ)Un (γ)− Φm (q) (γ)‖ ≤ 1

n
.

Let ρ be an injective corner endomorphism of A. The crossed product A oρ N of A by ρ

is implicitly defined in [193] as the universal C∗-algebra generated by a unital copy of A together

with an isometry s, subject to the relation

sas∗ = ρ(a)

428



for all a in A. Suppose that s is an isometry of A. Notice that the endomorphisms a 7→ sas∗ is

injective and its range is the corner (ss∗)A(ss∗) of A.

Instead of using this construction, which involves universal C∗-algebras on generators

and relations, we will use the construction of the endomorphism crossed product described by

Stacey in [255]. Stacey’s picture has the advantage that, given what we have proved so far, it will

be relatively easy to conclude that crossed products by injective corner endomorphisms can be

computed in a Borel way.

We proceed to describe Stacey’s construction.

Definition XII.4.6. Let ρ : A → A be an injective corner endomorphism. Consider the inductive

system (A,α)n∈ω (the same algebra and same connecting maps throughout the sequence). Denote

by A∞ its inductive limit, and by ιn,∞ : A → A∞ the canonical map into the inductive limit. The

commutative diagram

A
α //

α

��

A
α //

α

��

· · · // A∞

α∞

��
A

α
// A

α
// · · · // A∞.

gives rise in the limit to an endomorphism α∞ : A∞ → A∞, which is in fact an automorphism

of A∞. Denote by e the projection of A∞ corresponding to the unit of A. The (endomorphism)

crossed product of A by ρ is the corner e(A∞ oα∞ Z)e of the (automorphism) crossed product

A∞ oα∞ Z.

As mentioned before, this construction of the crossed product of a C∗-algebra by an

endomorphism makes it apparent that it can be computed in a Borel way. In fact, we have verified

in Proposition XII.3.10, that the limit of a one sided intertwining can be computed in a Borel

way, and in Corollary XII.4.4, that the crossed product of a C∗-algebra by an automorphism can

be computed in a Borel way. Moreover, it is shown in [71, Lemma 3.14], that one can select in

a Borel way the unit of a unital C∗-algebra. The only missing ingredient in the construction is

taking a corner by a projection, which is shown to be Borel in the following lemma. We will work,

for convenience, in the parametrization Γ(H) of C∗-algebras.
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Lemma XII.4.7. The set Γproj(H) of pairs (γ, e) in Γ(H) × B(H) such that e is a nonzero

projection in C∗(γ), is Borel. Moreover, there is a Borel map (γ, e) 7→ cγ,e from Γproj(H) to Γ(H)

such that C∗(cγ,e) is the corner eC∗(γ)e of C∗(γ).

Proof. Enumerate a dense subset {ξn : n ∈ ω} of H, and let (γ, e) be an element in Γ(H) × B(H).

Observe that (γ, e) belongs to Γproj(H) if and only if the following conditions hold:

1. The element e is a projection, that is, for every n, k ∈ ω,

‖(e− e∗) ξk‖ <
1

n+ 1
and

∥∥(e2 − e
)
ξk
∥∥ < 1

n+ 1
;

2. The element e is non-zero, that is, there are k, n ∈ ω such that

‖eξk‖ >
1

n+ 1
;

3. The element e is in C∗(γ), that is, for every n ∈ ω there is p ∈ U such that

‖(p(γ)− e) ξm‖ <
1

n+ 1
,

for every m ∈ ω.

This shows that Γproj(H) is a Borel subset of Γ(H)×B(H). Observe now that by setting

(cγ,e)n = eγne

for every n ∈ ω, one obtains an element cγ,e of Γ(H) such that C∗ (cγ,e) = eC∗(γ)e. It is

immediate to check that the map (γ, e) 7→ cγ,e is Borel.

We have thus proved the following.

Corollary XII.4.8. Given a unital C∗-algebra A and an injective corner endomorphism ρ of A,

there is a Borel way to compute a code for the crossed product of A by ρ.
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More precisely, there is a Borel map

CorEndΓ → Γ

(γ,Φ) 7→ δγ,Φ

such that C∗ (δγ,Φ) ∼= C∗(γ) oΦ̂ N, where, as before, CorEndΓ is the Borel space of pairs (γ,Φ)

in Γ ×
(
UU
)ω

such that C∗(γ) is unital and Φ is a code for an injective corner endomorphism of

C∗(γ) .

Proof. Combine Lemma XII.4.7 with Proposition and Corollary XII.4.4.

Borel Selection of AF-algebras

Bratteli diagrams

We refer the reader to [63] for the standard definition of a Bratteli diagram. We will

identify Bratteli diagrams with elements

(
l, (wn)n∈ω , (mn)n∈ω

)
∈ ωω × (ωω)

ω ×
(
ωω×ω

)ω
such that for every i, j, n,m ∈ ω, the following conditions hold:

1. l (0) = 1;

2. w0(0) = 1;

3. wn(i) > 0 if and only if i ∈ l(n);

4. mn(i, j) = 0 whenever i ≥ l(n) or j ≥ l(n+ 1)

5. Setting kn = i,

wn(i) =
∑

(kj)j∈n∈l(j)n

∏
t∈n

mt(kt, kt+1).

We denote by BD the Borel set of all elements (l, w,m) in ωω×(ωω)
ω×(ωω×ω)

ω
that satisfy

conditions 1–5 above. An element (l, w,m) of BD codes the Bratteli diagram with l(n) vertices at

the n-th level of weight wn (0) , . . . , w (l(n)− 1) and with mn(i, j) arrows from the i-th vertex at
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the n-th level to the j-th vertex and the (n + 1)-st level for n ∈ ω, i ∈ l(n), and j ∈ l(n + 1). We

call the elements of BD simply “Bratteli diagrams”.

Dimension groups

Definition XII.5.1. An ordered abelian group is a pair (G,G+), where G is an abelian group and

G+ is a subset of G satisfying

1. G+ +G+ ⊆ G+;

2. 0 ∈ G+;

3. G+ ∩ (−G+) = {0};

4. G+ −G+ = G.

We call G+ the positive cone of G. It defines an order on G by declaring that x ≤ y

whenever y − x ∈ G+. An element u of G+ is said to be an order unit for (G,G+), if for every

x in G, there exists a positive integer n such that

−nu ≤ x ≤ nu.

An ordered abelian group (G,G+) is said to be unperforated if whenever a positive integer

n and a ∈ A satisfy na ≥ 0, then a ≥ 0. Equivalently, G+ is divisible.

An ordered abelian group is said to have the Riesz interpolation property if for every

x0, x1, y0, y1 ∈ G such that xi ≤ yj for i, j ∈ 2, there is z ∈ G such that

xi ≤ z ≤ yj

for i, j ∈ 2.

Definition XII.5.2. A dimension group is an unperforated ordered abelian group (G,G+, u)

with the Riesz interpolation property and a distinguished order unit u.

Let (G,G+, u) and (H,H+, w) be dimension groups, and let φ : G → H be a group

homomorphism. We say that φ is

1. is positive if φ(G+) ⊆ H+, and
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2. preserves the unit if φ(u) = w.

Notice that positivity for a homomorphism between ordered groups is equivalent to being

increasing with respect to the natural order.

Example XII.5.3. If l ∈ ω and w0, . . . , wl−1 ∈ N, then Zl with Nl as its positive cone, and

(w0, . . . , wl−1) as order unit, is a dimension group. We denote by e
(l)
0 , . . . , e

(l)
l−1 the canonical basis

of Zl.

We refer the reader to [235, Section 1.4] for a more complete exposition on dimension

groups.

A dimension group can be coded in a natural way as an element of ωω×ω × 2ω × ω. The set

DG of codes for dimension groups is a Borel subset of ωω×ω × 2ω × ω, which can be regarded as

the standard Borel space of dimension groups.

One can associate to a Bratteli diagram (l, w,m) the dimension group G(l,w,m) obtained as

follows. For n in ω, denote by

ϕn : Zl(n) → Zl(n+1)

the homomorphism given on the canonical bases of Zl(n) by

ϕn

(
e

(l(n)
k

)
=

∑
i∈l(n+1)

mn(i, j)e
(l(n+1)
j ,

for all k in l(n). Then G(l,w,m) is defined as the inductive limit of the inductive system

(
Zl(n), (wn (0) , . . . , wn (l(n)− 1)) , ϕn

)
n∈ω

.

Theorem 2.2 in [54] asserts that any dimension group is in fact isomorphic to one of the

form G(l,w,m) for some Bratteli diagram (l, w,m). The key ingredient in the proof of [54, Theorem

2.2] is a lemma due to Shen, see [54, Lemma 2.1] and also [251, Theorem 3.1]. We reproduce here

the statement of the lemma, for convenience of the reader.

Lemma XII.5.4. Suppose that (G,G+, u) is a dimension group. If n ∈ ω and θ : n → G is any

function, then there are N ∈ ω, and functions Φ: N → G+ and g : n × N → ω, satisfying the

following conditions:
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1. For all i ∈ n,

θ(i) =
∑
j∈N

g(i, j)Φ(j).

2. Whenever (ki)i∈n ∈ Zn is such that
∑
i∈n kiθ(i) = 0, then

∑
i∈lG(n)

kig(i, j) = 0

for every j ∈ N .

It is immediate to note that the set of tuples ((G,G+, u) , n, θ,N,Φ, g) satisfying 1 and

2 of Lemma XII.5.4 is Borel. It follows that in Lemma XII.5.4 the number N and the maps

Φ and g can be computed from (G,G+, u), n, and θ is a Borel way. This will be used to show

that if we start with a dimension group (G,G+, u), then we can choose in a Borel way a Bratteli

diagram (lG, wG,mG) such that GlG,wG,mG is isomorphic to G as dimension group with order

unit. (The existence of such Bratteli diagram is established in [54, Theorem 2.2].) This is the

content of Proposition XII.5.5 below. A Borel version of [54, Theorem 2.2] is also proved in [63,

Theorem 5.3]. We present here a proof, for the convenience of the reader, and to introduce ideas

and notations to be used in the proof of Proposition XII.5.12.

Proposition XII.5.5. There is a Borel function that associates to a dimension group G =

(G,G+, u) ∈ DG a Bratteli diagram
(
lG, wG,mG

)
∈ BD such that the dimension group associated

with
(
lG, wG,mG

)
is isomorphic to G.

Proof. It is enough to construct in a Borel way a Bratteli diagram
(
lG, wG,mG

)
and maps

θGn : lG(n)→ G satisfying the following conditions:

1. For all i ∈ lG(n),

θGn (i) =
∑

j∈lG(n+1)

mG
n (i, j)θGn (j);

2. For any k0, . . . , klG(n)−1 ∈ Z such that

∑
i∈lG(n)

kiθ
G
n (i) = 0,
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we have that ∑
i∈lG(n)

kim
G
n (i, j) = 0,

for every j ∈ lG(n+ 1);

3. For every x ∈ G+, there are n ∈ ω and i ∈ lG(n), such that θGn (i) = x.

It is not difficult to verify that conditions (1), (2) and (3) ensure that the dimension group

coded by the Bratteli diagram
(
lG, wG,mG

)
is isomorphic to G, via the isomorphism coded by(

θGn
)
n∈ω.

We define θGn , lG(n), wGn and mg
n by recursion on n. Define lG(0) = 1 and θG(0) = u.

Suppose that lG(k), wGk , mG
k , and θGk have been defined for k ≤ n. Define θ′ : lG(n) + 1 =

{0, . . . , lG(n)} → G by

θ′(i) =


θ(i), if i ∈ lG(n),

n, if i = lG(n) and n ∈ G+,

u, otherwise.

Suppose that the positive integer N and the functions Φ: N → G+ and g : n×N → ω are obtained

from lG(n) and θ′ via Lemma XII.5.4. Define now:

lG(n+ 1) = N

mn(i, j) =


g(i, j), if i ∈ lG(n) and j ∈ lG(n+ 1),

0, otherwise.

wn+1(j) =
∑

i∈lG(n)

wn(i, n)mn(i, j).

It is left as an exercise to check that with these choices, conditions (1), (2) and (3) are satisfied.

This finishes the proof.

Approximately finite dimensional C∗-algebras

A unital C∗-algebra A is said to be approximately finite dimensional, or AF-algebra if it

is isomorphic to a direct limit of a direct system of finite dimensional C∗-algebras with unital

connecting maps.
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It is a standard result in the theory of C∗-algebras, that any finite dimensional C∗-algebra

is isomorphic to a direct sum of matrix algebras over the complex numbers [47, Theorem III.l.l].

A fundamental result due to Bratteli (building on previous work of Glimm) asserts that unital

AF-algebras are precisely the unital C∗-algebras that can be locally approximated by finite

dimensional C∗-algebras.

Theorem XII.5.6 (Bratteli-Glimm [19],[102]). Let A be a separable C∗-algebra. Then the

following are equivalent:

1. A is a unital AF-algebra;

2. For every finite subset F of A and every ε > 0, there exists a finite dimensional C*-

subalgebra B of A, such that for every a ∈ F there is b ∈ B such that ‖a− b‖ < ε.

A modern presentation of the proof of Theorem XII.5.6 can be found in [235, Proposition

1.2.2].

A distinguished class of unital AF-algebras are the so called unital UHF-algebras. These are

the unital AF-algebras that are isomorphic to a direct limit of full matrix algebras. Of particular

importance are the UHF-algebras of infinite type. These can be described as follows: Fix a strictly

positive integer n. Denote by Mn∞ the C∗-algebra obtained as a limit of the inductive system

Mn →Mn2 →Mn3 → · · ·

where the inclusion of Mnk into Mnk+1 is given by the diagonal embedding a 7→ diag(a, . . . , a).

The UHF-algebras of infinite type are precisely those ones of the form Mn∞ for some n ∈ N.

A celebrated theorem of Elliott asserts that unital AF-algebras are classified up to

isomorphism by their ordered K0-group. Moreover, dimension groups can be characterized

within the class of ordered abelian groups with a distinguished order unit as the K0-groups of

AF-algebras.

Theorem XII.5.7 (Elliott [57]). Let A and B be unital AF-algebras.

1. For every positive morphism

φ : (K0(A),K0(A)+)→ (K0(B),K0(B)+),
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such that φ([1A]) ≤ [1B ], there exists a homomorphism ρ : A→ B such that K0(ρ) = φ.

2. A and B are isomorphic if and only if there is an isomorphism

(K0(A),K0(A)+, [1A]) ∼= (K0(B),K0(B)+, [1B ])

as dimension groups with order units.

In (1), the range of ρ is a corner of B if and only if the set

{x = [p]− [q] ∈ K0(B)+ : p, q ∈ B and x ≤ φ([1A])}

is contained in φ(K0(A)+).

Let (l, w,m) be a Bratteli diagram. We will describe how to canonically associate to it a

unital AF-algebra, which we will denote by A(l,w,m). For each n in ω, define a finite dimensional

C∗-algebra Fn by

Fn =
⊕
i∈l(n)

Mwn(i).

Denote by ϕn : Fn → Fn+1 the unital injective homomorphism determined as follows. For every

i ∈ l(n) and j ∈ l(n + 1), the restriction of ϕn to the i-th direct summand of Fn and the j-th

direct summand of Fn+1 is a diagonal embedding of mn(i, j) copies of Mwn(i) in Mwn+1(j). Then

A(l,w,m) is the inductive limit of the inductive system (Fn, ϕn)n∈ω.

The K0-group of A(l,w,m) is isomorphic to the dimension group Gl,w,m associated with

(l, w,m).

The main result of [19] asserts that any unital AF-algebra is isomorphic to the C∗-algebra

associated with a Bratteli diagram. We show below that the code for such an AF-algebra can be

computed in a Borel way.

Proposition XII.5.8. Given a Bratteli diagram, there is a Borel way to compute the code for its

associated unital AF-algebra.

Proof. By Proposition XII.3.8, the inductive limit of an inductive system of C∗-algebras can be

computed in a Borel way. It is therefore enough to show that there is a Borel map that assigns
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to each Bratteli diagram, a code for the corresponding inductive system of C∗-algebras. We will

work, for convenience, with the parametrization Γ(H) of C∗-algebras.

Let
{
ξkn : (k, n) ∈ ω × ω

}
be an orthonormal basis of H. For n,m, k ∈ ω, denote by e

(k)
n,m

the rank 1 operator in B(H) sending ξkn to ξkm. For convenience, we will also identify Γ(H) with

the space of nonzero functions from ω × ω × ω to the unit ball of B(H). For n ∈ ω, define γ(n) ∈

Γ(H) by

γ
(n)
i,j,k =


e

(k)
i,j , if k ∈ l(n) and i, j ∈ wn(k),

0, otherwise.

Denote by Ani,j,k the set of triples in ω × ω × ω of the form

(∑
k′∈k

wn(k′)mn(k′, t, n) + dwn(k) + i,
∑
k′∈k

wn(k′)mn(k′, t) + dwn(n), t

)

such that d ∈ mn(k, t), i, j ∈ wn(k) and t ∈ l(n + 1). It is clear that C∗
(
γ(n)

)
is a finite

dimensional C∗-algebra isomorphic to ⊕
i∈l(n)

Mw(i,n).

For n in ω, let Φ(n) : U → U be the unique morphism of Q(i)-∗-algebras satisfying

Φ(n)(Xijk) =
∑

(a,b,t)∈Anijk

Xa,b,t,

for i, j, k in ω. Then Φ(n) is a code for the unital injective homomorphism from C∗
(
γ(n)

)
to

C∗
(
γ(n+1)

)
given by the diagonal embedding of mn(k, t, n) copies of Mwn(k) in Mwn(t) for every

k ∈ l(n) and t ∈ l(n + 1). By construction, the map BD → Rdir (Γ(H)) that assigns to every

Bratteli diagram (l, w,m), the code
(
γ(n),Φ(n)

)
n∈ω, is Borel. This finishes the proof.

Proposition XII.5.5 together with Proposition XII.5.8 imply the following corollary.

Corollary XII.5.9. There is a Borel map that assigns to a dimension group D a unital AF-

algebra AD whose ordered K0-group is isomorphic to D as dimension group.

Since by [70, Proposition 3.4] the K0-group of a C∗-algebra can be computed in a Borel

way, one can conclude that if A is any Borel set of dimension groups, then the relation of
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isomorphisms restricted to A is Borel bireducible with the relation of isomorphism unital AF-

algebras whose K0-group is isomorphic to an element of A.

Fix n ∈ N. A dimension group has rank n if n is the largest size of a linearly independent

subset. Let us denote by ∼=+
n the relation of isomorphisms of dimension groups of rank n, and

by ∼=AF
n the relation of isomorphisms of AF-algebras whose dimension group has rank n. By

the previous discussion and the fact that the computation of the K0-group is given by a Borel

function [70, Corollary 3.7], the relations ∼=+
n and ∼=AF

n are Borel bireducible. Moreover [63,

Theorem 1.11] asserts that

∼=+
n<B

∼=+
n+1

for every n ∈ N. This means that ∼=+
n is Borel reducible to ∼=+

n+1, but ∼=+
n+1 is not Borel reducible

to ∼=+
n . It follows that the same conclusions hold for the relations ∼=AF

n : For every n ∈ N

∼=AF
n <B∼=AF

n+1 .

This amounts to saying that it is strictly more difficult to classify AF-algebras with K0-group of

rank n+ 1 than classifying AF-algebras with K0-group of rank n.

Enomorphisms of Bratteli diagrams

Definition XII.5.10. Let T = (l, w,m) be a Bratteli diagram. We say that an element q =

(qn)n∈ω ∈ (ωω×ω)
ω

is an endomorphism of T , if for every n ∈ ω, i ∈ l(n) and t′ ∈ l (n+ 1), the

following identity holds

∑
t∈l(n+1)

mn(i, t)qn+1(t, t′) =
∑

t∈l(n+1)

qn(i, t)mn+1(t, t′). (XII.1)

The set EndBD of pairs (T, q) ∈ BD × (ωω×ω)
ω

such that T is a Bratteli diagram and q is

an endomorphism of T , is Borel.

We proceed to describe how an endomorphism of a Bratteli diagram, in the sense of the

definition above, gives rise to an endomorphism of the unital AF-algebra associated with it. Let

(Fn, ϕn)n∈ω be the inductive system of finite dimensional C∗-algebras associated with T , and
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denote by AT its inductive limit. By repeatedly applying [47, Lemma III.2.1], one can define

unital homomorphisms ψn : Fn → Fn+1 for n in ω, satisfying the following conditions:

1. ψn is unitarily equivalent to the homomorphism from Fn to Fn+1 such that for every i ∈

l(n) and j ∈ l (n+ 1) the restriction of ψn to the i-th direct summand of Fn and the j-th

direct summand of Fn+1 is a diagonal embedding of qn(i, j) copies of Mwn(i) in Mwn+1(j);

2. ψn ◦ ϕn−1 = ϕn ◦ ψn−1 whenever n ≥ 1.

(Notice in particular that ψ0 is determined solely by condition (1).) One thus obtains a

one sided intertwining (ψn)n∈ω from (Fn, ϕn)n∈ω to itself. We denote by ψT,q : AT → AT the

corresponding inductive limit endomorphism.

Proposition XII.5.11. Given a Bratteli diagram T and an endomorphism q of T , there is a

Borel way to compute a code for the endomorphism ψT,q of AT associated with q.

Proof. By Proposition XII.3.10, a code for the limit homomorphism between two inductive limits

of C∗-algebras can be computed in a Borel way. It is therefore enough to show that there is a

Borel function from EndBD to Rint (Γ(H)) assigning to an element (T, q) of EndBD, a code for the

corresponding one sided intertwining system.

Let ((l, w,m), q) be an element in EndBD, and let {ξnm : (n,m) ∈ ω × ω} be an orthonormal

basis of H. Denote by
(
γ(n),Φ(n)

)
n∈ω the element of Rdir (Γ(H)) associated with the Bratteli

diagram (l, w,m) as in the proof of Proposition XII.5.8. For n in ω, define

u(n) =
∑
k∈l(n)

∑
i∈wn(k)

e
(k)
ii ,

which is an element of B(H). Observe that u(n) is the unit of C∗
(
γ(n)

)
. We define the sequence(

Ψ(n)
)
n∈ω in

(
UU
)ω

as follows. Let Ani,j,k denote the set of triples

(∑
k′∈k

wn (k′) qn (k′, t, n) + dwn(k) + i,
∑
k′∈k

wn (k′) qn (k′, t) + dwn(k), t

)
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such that d belongs to qn (k, t), i and j belong to wn(k), and t belongs to l(n + 1). Let ψ(n) : U →

U be the unique homomorphism of Q(i)-∗-algebras satisfying

ψ(n) (Xijk) =
∑

(a,b,t)∈Anijk

Xa,b,t

for i, j and k in ω. For p ∈ U , set

Ψ
(n)
0 (p) = ψ(n)(p).

By construction, the elements

(
Ψ

(n)
0 ◦ Φ

(n−1)
k

)
(p)
(
γ(n−1)

)
and

(
Φk ◦Ψ

(n−1)
0

)
(p)
(
γ(n−1)

)

are unitarily equivalent in C∗
(
γ(n+1)

)
for every k ∈ ω. Using that γ(n) is a unitary for all n in ω,

choose elements p
(n)
k in U , for k in ω, satisfying the following conditions:

∥∥∥p(n)
k

(
γ(n+1)

)
p

(n)
k

(
γ(n+1)

)∗
− 1
∥∥∥ < 1

k + 1∥∥∥p(n)
k

(
γ(n+1)

)∗
p

(n)
k

(
γ(n+1)

)
− 1
∥∥∥ < 1

k + 1∥∥∥p(n)
k

(
γ(n+1)

)
− p(n)

m

(
γ(n+1)

)∥∥∥ < 1

min {k,m}+ 1

and

∥∥∥p(n)
k

(
γ(n+1)

)((
Ψn

0 ◦ Φn−1
k

)
(p)
(
γ(n−1)

))
p

(n)
k

(
γ(n+1)

)∗
−
(

Φk ◦Ψ
(n−1)
0

)
(p)
(
γ(n−1)

)∥∥∥ < 1

k + 1
.

Finally, define

Ψ
(n)
k (p) = p

(n)
k Ψ

(n)
0 (p)

(
p

(n)
k

)∗
for all p in U . It is clear that for fixed n in ω, the sequence Ψ(n) = (Ψ

(n)
k )k∈ω is a code for a

homomorphism ψ̂(n) : γ̂(n) → γ̂(n+1) that moreover satisfies

Ψ̂(n) ◦ Φ̂(n−1) = Φ̂(n) ◦ Ψ̂(n−1).
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Thus, ((
γ(n),Φ(n)

)
n∈ω

,
(
γ(n),Φ(n)

)
n∈ω

,
(

Ψ(n)
)
n∈ω

)
is an element in Rint (Γ(H)). It is clear that this is a code for the one sided intertwining system

associated with ((l,m,w), q), and that it can be computed in a Borel fashion.

Endomorphisms of dimension groups

Let (G,G+, u) be a dimension group. Let us denote by EndDG the set of pairs (G,φ) ∈

DG × ωω such that G is a dimension group and φ is an endomorphism of G.

Let (l, w,m) be a Bratteli diagram, and let

(
Zl(n), (wn (0) , . . . , wn (l(n)− 1)) , ϕn

)
n∈ω

be the inductive system of dimension groups whose inductive limit is the dimension group Gl,w,m

associated with (l, w,m). Fix an endomorphism q of (l, w,m), and for n ∈ ω, define a positive

homomorphism ψn : Zl(n) → Zl(n+1) by

ψn

(
e

(l(n))
i

)
=

∑
j∈l(n+1)

qn(i, j)e
(l(n+1))
j .

Observe that the sequence (ψn)n∈ω induces an inductive limit endomorphism

φ((l,w,m),q) : G(l,w,m) → G(l,w,m).

Proposition XII.5.12. There is a Borel map

EndDG → EndBD

(G,φ) 7→
(
TG, qG,φ

)
,

such that the dimension group associated with TG is isomorphic to G, and the endomorphism of

the dimension group associated with TG corresponding to qG,φ is conjugate to φ.

Proof. It is enough to construct, in a Borel way,

– a Bratteli diagram
(
lG,φ, wG,φ,mG,φ

)
,
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– an endomorphism qG,φ of
(
lG,φ, wG,φ,mG,φ

)
, and

– functions θG,φn : lG,φ(n)→ G+ for n in ω,

such that the following conditions hold:

1. For every i ∈ lG,φ(n),

θG,φn (i) =
∑

j∈lG(n+1)

mG,φ
n (i, j)θG,φn (j);

2. For any k0, . . . , kl(n)−1 ∈ Z such that

∑
i∈lG(n)

kiθ
G,φ
n (i) = 0,

we have that ∑
i∈lG(n)

kim
G,φ
n (i, j) = 0,

for every j ∈ lG,φ(n+ 1);

3. For every x ∈ G+, there are n ∈ ω and i ∈ lG,φ(n) such that θG,φn (i) = x;

4. φ
(
θG,φn (i)

)
= qG(i) for n ∈ ω and i ∈ lG,φ(n).

In fact, it is not difficult to see that Conditions (1), (2), (3), and (4) ensure that
(
θG,φn

)
n∈ω

defines an isomorphism from the dimension group associated with
(
lG,φ, wG,φ,mG,φ

)
to G that

conjugates the endomorphism associated with qG,φ and φ.

We define lG,φn , wG,φn ,mG,φ
n , qG,φn and θG,φn satisfying conditions 1–4 by recursion on n.

Define lG,φ (0) = 1 and θG,φ0 (0) = u. Suppose that lG,φ(k), wG,φk , mG,φ
k−1, and θG,φk have been

defined for k ≤ n. Define

θ′ : 2lG,φ(n) + 1 = {0, . . . , 2lG,φ(n)} → ω

443



by

θ′(i) =



θG,φ(i) if 0 ≤ i < lG,φ(n),

φ
(
θG,φ(i− lG,φ(n))

)
if lG,φ(n) ≤ i < 2lG,φ(n),

n if i = 2lG,φ(n) and n ∈ G+,

u otherwise.

Suppose the integer N , and the functions Φ: N → G+ and g : (2lG,φ(n) + 1) × N → ω

are obtained via Lemma XII.5.4 from 2lG,φ(n) + 1 and θ′, and let N ′ ∈ ω, Φ′ : N ′ → ω, and

g′ : N ×N ′ → ω satisfy the conclusion of Lemma XII.5.4 for the choices N and Φ. Define now:

lG,φ(n+ 1) = N ′;

wG,φn (j) =
∑

i∈lG(n)

wG,φn (i)mG,φ
n (i, j)

mG,φ
n (i, j) =


∑
t∈N g(i, t)g′(t, j) if i ∈ lG,φ(n) and j ∈ lG,φ(n+ 1),

0 otherwise.

qG,φn (i, j) =
∑
t∈N

g(2i, t)g′(t, j)

θG,φn+1 = Φ.

It is not difficult to check that this recursive construction gives maps satisfying conditions 1–4.

Corollary XII.5.13. There is a Borel map that assigns to a dimension group G with a

distinguished endomorphism φ, a code for a unital AF-algebra A and a code for an endomorphism

ρ of A, such that the K0-group of A is isomorphic to G as dimension groups with order units, and

the endomorphism of the K0-group of A corresponding to ρ is conjugate to φ.

Proof. Let G be a dimension group, and let φ be an endomorphism of G. Using

Proposition XII.5.12, choose in a Borel way a Bratteli diagram (l,m,w) and an endomorphism

q of (l,m,w) such that G is isomorphic to the dimension group associated with (l,m,w), and

ρ is conjugate to the endomorphism associated with q. Use Proposition XII.5.8 to choose in a

Borel way, a unital AF-algebra A whose Bratteli diagram is (l,m,w). Apply Proposition XII.5.11

to choose in a Borel way an endomorphism ρ of A whose induced endomorphism of the Bratteli
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diagram is q. It is clear from the construction that the K0-group of A is isomorphic to G.

Moreover, φ is conjugate to the endomorphism of the K0-group of A corresponding to ρ.

Therefore, the result follows from Proposition XII.5.12 and Proposition XII.5.11.

Conjugacy and Cocycle Conjugacy of Automorphisms of O2

Strongly self-absorbing C∗-algebras

Upon studying the literature around Elliott’s classification program, it is clear that certain

C∗-algebras play a central role in major stages of the program: UHF-algebras (particularly those

of infinite type), the Cuntz algebras O2 and O∞ [39], and, more recently, the Jiang-Su algebra

Z [136]. In [265], Toms and Winter were able to pin down the abstract property that singles out

these algebras. The relevant notion is that of strongly self-absorbing C∗-algebra, which we define

below; see also [265, Definition 1.3].

Definition XII.6.1. Let D be a separable, unital, infinite dimensional C∗-algebra. Denote by

D ⊗ D the completion of the algebraic tensor product D � D with respect to any compatible C*-

norm on D � D. We say that D is strongly self-absorbing if there exists an isomorphism ϕ : D →

D ⊗D which is approximately unitarily equivalent to the map a 7→ a⊗ 1D.

It is shown in [265] that a C∗-algebra D satisfying Definition XII.6.1 is automatically

nuclear. In particular the choice of the tensor product norm on D � D is irrelevant. By [265,

Examples 1.14] the following C∗-algebras are strongly-self-absorbing: UHF-algebras of infinite

type, the Cuntz algebras O2 and O∞, the tensor product of a UHF-algebra of infinite type and

O∞, and the Jiang-Su algebra. No other strongly self-absorbing C∗-algebra is currently known.

Definition XII.6.2. Suppose that D is a nuclear C∗-algebra. A C∗-algebra A absorbs D

tensorially –or is D-absorbing– if the tensor product A⊗D is isomorphic to A.

The particular case of Theorem XII.6.3 when D is the Jiang-Su algebra Z has been proved

in [70, Theorem A.1].

Theorem XII.6.3. Suppose that D is a strongly self-absorbing C∗-algebra. The set of γ ∈ Γ(H)

such that C∗(γ) is a D-absorbing unital C∗-algebra is Borel.

Proof. By [71, Lemma 3.14], the set Γu(H) of γ ∈ Γ(H) such that C∗(γ) is unital, is Borel.

Moreover, there is a Borel function Un : Γu(H) → B(H) such that Un(γ) is the unit of C∗ (γ)
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for every γ ∈ Γu(H). Denote as in Subsection XII.3 by U the Q(i)-∗-algebra of polynomials

with coefficients in Q(i) and without constant term in the formal variables Xk for k ∈ ω Let

{dn : n ∈ ω} be an enumeration of a dense subset of D such that d0 = 1, and let {pn : n ∈ ω}

be an enumeration of U . By [265, Theorem 2.2], or [235, Theorem 7.2.2], a unital C∗-algebra

A is D-absorbing if and only if for every n,m ∈ N and every finite subset F of A, there are

a0, a1, . . . , an ∈ A such thatQ(i)-∗-algebra of noncommutative ∗-polynomials with coefficients

– a0 is the unit of A,

– ‖xai − aix‖ < 1
m for every i ∈ n and x ∈ F , and

– ‖pi (a0, . . . , an)− pi (d0, . . . , dn)‖ < 1
m for every i ∈ m.

Let γ ∈ Γ(H) be such that C∗(γ) is unital. Then C∗(γ) is D-absorbing if and only if for

every n,m ∈ N there are k1, . . . , kn ∈ ω such that

–
∥∥γiγkj − γkjγi∥∥ < 1

m for i ∈ m and 1 ≤ j ≤ n,

– ‖pi (Un(γ), γk1
, . . . , γkn)− pi (d0, . . . , dn)‖ < 1

m for every i ∈ m.

This shows that the set of γ ∈ Γ(H) such that C∗(γ) is unital and D-absorbing, is Borel.

Borel spaces of Kirchberg algebras

We will denote by ΓuKir(H) the set of γ ∈ Γ(H) such that C∗(γ) is a unital Kirchberg

algebra.

Proposition XII.6.4. The set ΓuKir(H) is Borel.

Proof. Corollary 7.5 of [71] asserts that the set Γuns(H) of γ ∈ Γ(H) such that C∗(γ) is unital,

nuclear, and simple is Borel. The result then follows from this fact together with Theorem XII.6.3.

Definition XII.6.5. Fix a projection p in O∞ such that [p] = 0 in K0(O∞) ∼= Z. Define the

standard Cuntz algebra Ost∞ to be the corner pO∞p.
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The C∗-algebra Ost∞ is a unital Kirchberg algebra that satisfies the UCT, with K-theory

given by

(K0(Ost∞),
[
1Ost∞

]
,K1(Ost∞)) ∼= (Z, 0, 0).

Moreover, it is the unique, up to isomorphism, unital Kirchberg algebra satisfying the UCT with

said K-theory. In particular, a different choice of the projection p in Definition XII.6.5 (as long as

its class on K-theory is 0), would yield an isomorphic C∗-algebra.

We point out that, even though there is an isomorphism Ost∞ ⊗ Ost∞ ∼= Ost∞ (see comments

on page 262 of [132]), the C∗-algebra Ost∞ is not strongly self-absorbing. Indeed, if D is a strongly

self-absorbing C∗-algebra, then the infinite tensor product
∞⊗
n=1
D of D with itself, is isomorphic to

D. However,
∞⊗
n=1
Ost∞ is isomorphic to O2, and thus Ost∞ is not strongly self-absorbing.

We proceed to give a K-theoretic characterization of those unital Kirchberg algebras that

absorb Ost∞. Our characterization will be used to show that the set of all Ost∞-absorbing unital

Kirchberg algebras is Borel.

For use in the proof of the following lemma, we recall here that if A and B are nuclear

separable C∗-algebras, and at least one of them satisfies the UCT, then the K-groups of their

tensor product A ⊗ B are “essentially” determined by the K-groups of A and B, up to an

extension problem. This is the content of the Künneth formula, which will be needed in the next

proof.

Lemma XII.6.6. Let A be a unital Kirchberg algebra. Then the following are equivalent:

1. A is Ost∞-absorbing.

2. The class [1A] of the unit of A in K0(A) is zero.

Proof. We first show that (1) implies (2). Since Ost∞ satisfies the UCT, the Knneth formula

applied to A⊗Ost∞ gives

K0(A⊗Ost∞) ∼= K0(A) and K1(A⊗Ost∞) ∼= K1(A),

with
[
1A⊗Ost∞

]
= 0 as an element in K0(A). The claim follows since any isomorphism A⊗Ost∞ ∼= A

must map the unit of A⊗Ost∞ to the unit of A.
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Let us now show that (2) implies (1). Fix a non-zero projection p in O∞ such that [p] = 0

as an element of K0(O∞). Then 1A ⊗ 1O∞ , which is an element of A ⊗ O∞, represents the zero

element in K0(A ⊗ O∞). Likewise, 1A ⊗ p also represents the zero element in K0(A ⊗ O∞). Since

any two non-zero projections in a Kirchberg algebra are Murray-von Neumann equivalent if and

only if they determine the same class in K-theory (see [41]), it follows that there is an isometry v

in A⊗O∞ such that

vv∗ = 1A ⊗ p.

The universal property of the algebraic tensor product yields a linear map

ϕ0 : A�O∞ → (1A ⊗ p)(A⊗O∞)(1A ⊗ p) ∼= A⊗Ost∞

such that ϕ0(a ⊗ b) = v(a ⊗ b)v∗ for a in A and b in O∞. It is straightforward to check that ϕ0

extends to a homomorphism ϕ : A⊗O∞ → A⊗Ost∞. We claim that ϕ is an isomorphism. For this,

it is enough to check that the homomorphism

ψ : (1A ⊗ p)(A⊗O∞)(1A ⊗ p)→ A⊗O∞

given by ψ(x) = v∗xv for all x in (1A ⊗ p)(A⊗O∞)(1A ⊗ p), is an inverse for ϕ. This is immediate

since (1A ⊗ p)x(1A ⊗ p) = x for all x in (1A ⊗ p)(A⊗O∞)(1A ⊗ p).

Once we have A ⊗ Ost∞ ∼= A ⊗ O∞, the result follows from the fact that there is an

isomorphism A ∼= A ⊗ O∞ by Kirchberg’s O∞-isomorphism Theorem (Theorem 3.15 in [151]).

This finishes the proof of the lemma.

Corollary XII.6.7. The set of all γ ∈ Γ(H) such that C∗(γ) is a Ost∞-absorbing unital Kirchberg

algebra, is Borel.

Proof. This follows from Lemma XII.6.6, together with the fact that the K-theory of a C∗-algebra

and the class of its unit in K0 can be computed in a Borel fashion; see [70, Section 3.3].

We will denote by D2 the tensor product of Ost∞ with the UHF algebra M2∞ of type 2∞.

Since M2∞ is strongly self-absorbing, it follows from Theorem XII.6.3 and Corollary XII.6.7,

that the set D of γ ∈ Γ (H) such that C∗ (γ) is a unital D2-absorbing Kirchberg C∗-algebra not

isomorphic to O2 is a Borel subset of Γ (H).
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Automorphisms of O2

Denote by Aut(O2) the Polish group of automorphisms of O2 with respect to the

topology of pointwise convergence. Given a positive integer n, the closed subspace Aut2(O2),

of automorphisms of O2 of order 2 can be identified with the space of actions of Z2 on O2.

Definition XII.6.8. An action α of Z2 on O2 is said to be approximately representable if for

every ε > 0 and for every finite subset F of O2, there exists a unitary u of O2 such that

1.
∥∥u2 − 1

∥∥ < ε,

2. ‖α(u)− u‖ < ε, and

3. ‖α(a)− uau∗‖ < ε for every a ∈ F .

It is clear that the set of approximately representable automorphisms of order 2 of O2 is a

Gδ subset of Aut2(O2).

We now recall a construction of a model action of Z2 on O2 from [132, page 262]. Fix a

projection e of Ost∞ such that [e] is a generator of K0 (Ost∞) and set u to be the order 2 unitary

u = 2e − 1 of Ost∞. Identifying O2 with the infinite tensor product
⊗

n∈ω Ost∞ one can define the

approximately representable action

ν =
⊗
n∈ω

Ad (u)

of Z2 on O2. In view of the classification results in [150] and [200], Lemma 4.7 of [132] asserts that

the crossed product

O2 oν Z2

is isomorphic to the algebra D2 = Ost∞ ⊗M2∞ .

For a simple nuclear unital C∗-algebra A, denote by α̃A the automorphism of A ⊗ O2

defined by idA ⊗ ν. By Kirchberg’s O2-isomorphism theorem [151, Theorem 3.8], there is an

isomorphism ϕ : A⊗O2 → O2. Denote by αA the automorphism of O2 given by

αA = ϕ ◦ α̃A ◦ ϕ−1.

It is immediate to check that αA is approximately representable, using that ν is approximately

representable.

449



Remark XII.6.9. If A is a simple nuclear unital C∗-algebra, then O2 oα Z2
∼= A⊗D.

Proof. By Kirchberg’s O2-isomorphism [151, Theorem 3.8], there are isomorphisms

O2 oα Z2
∼= (A⊗O2)oidA⊗ν Z2

∼= A⊗ (O2 oν Z2)

∼= A⊗D2.

Proposition XII.6.10. Let A and B be simple nuclear unital C∗-algebras. The following

statements are in decreasing order of strength:

1. A and B are isomorphic;

2. The actions αA and αB are conjugate;

3. The actions αA and αB are cocycle conjugate;

4. The crossed products O2 oαA Z2 and O2 oαB Z2 are isomorphic;

5. A⊗D2 and B ⊗D2 are isomorphic.

In particular if A and B are D2-absorbing unital Kirchberg algebras, then all the

statements above are equivalent.

Proof. If ψ : A → B is an isomorphism, then ψ ⊗ idO2 : A ⊗ O2 → B ⊗ O2 conjugates idA ⊗

νp and idB ⊗ νp, and hence αA,p and αB,p are conjugate. This shows that (1) implies (2). It is

well known that (2) implies (3) and (3) implies (4). Remark XII.6.9 shows immediately that (4)

implies (5).

We moreover have the following.

Proposition XII.6.11. Let A be a D2-absorbing unital Kirchberg algebra not isomorphic to O2.

The action αA of Z2 on O2 defined above has Rokhlin dimension 1 (see Definition IV.2.2).

Proof. Lemma 2.1 of [7] shows that the action ν of Z2 on O2 has Rokhlin dimension at most 1.

Since αA is conjugate to idA ⊗ ν, it follows from part (1) in Theorem IV.2.8 that αA has Rokhlin
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dimension at most 1. Assume now by contradiction that αA has Rokhlin dimension 0, that is, it

has the Rokhlin property. Corollary 3.4 in [122] asserts that the crossed product O2 oαA Z2 is

isomorphic to O2. At the same time O2 oα Z2 is isomorphic to A by Remark XII.6.9. Therefore

A ∼= O2, contradicting our assumption.

Isomorphism of p-divisible torsion free abelian groups

Definition XII.6.12. Let G be an abelian group and let n be a positive integer.

1. We say that G is n-divisible, if for every x in G there exists y in G such that x = ny.

2. We say that G is uniquely n-divisible, if for every x in G there exists a unique y in G such

that x = ny.

Given a set S of positive integers, we say that G is (uniquely) S-divisible, if G is (uniquely)

n-divisible for every n in S.

It is clear that if n is a positive integer, then any n-divisible torsion free abelian group is

uniquely n-divisible.

It is easily checked that the following classes of abelian groups are Borel subsets of the

standard Borel space of countable infinite groups G:

– Torsion free groups;

– n-divisible groups, for any positive integer n;

– Uniquely n-divisible groups.

The main result of [126] asserts that if C is any class of countable structures such that the

relation ∼=C of isomorphisms of elements of C is Borel, then ∼=C is Borel reducible to the relation

∼=TFA of isomorphism of torsion free abelian groups. Moreover, [52, Theorem 1.1] asserts that

∼=TFA is a complete analytic set and, in particular, not Borel.

Proposition XII.6.13. Suppose that P is a set of prime numbers which is coinfinite in the set

of all primes. If C is any class of countable structures such that the relation ∼=C of isomorphism of

elements of C is Borel, then C is Borel reducible to the relation of isomorphism of torsion free P-

divisible countable infinite groups. Moreover, the latter equivalence relation is a complete analytic

set and, in particular, not Borel.
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Proof. A variant of the argument used in the proof of the main result of [126] can be used to

prove the first assertion. Indeed, the only modification needed is in the definition of the group

eplag associated with an excellent prime labeled graph as in [126, Section 2] (we refer to [126] for

the definitions of these notions). Suppose that (V,E, f) is an excellent prime labeled graph such

that the range of f is disjoint from P. Denote by Q(V ) the direct sum

Q(V ) =
⊕
v∈V

Q

of copies of Q indexed by V , and identify an element v of V with the corresponding copy of Q

in Q(V ). We define the P-divisible group eplag GP (V,E, f) associated with (V,E, f), to be the

subgroup of Q(V ) generated by

{
v

pnf(v)m
,

v + w

pnf({v, w})
: v ∈ V, {v, w} ∈ E,n,m ∈ ω, p ∈ P

}
.

It is easy to check that GP (V,E, f) is indeed a torsion-free P-divisible abelian group. The group

eplag G (V,E, f) as defined in [126, Section 2], is the particular case of this definition with P = ∅.

The same argument as in [126], where

1. the group eplag G (V,E, f) is replaced everywhere by GP (V,E, f), and

2. all the primes are chosen from the complement of P,

gives a proof of the first claim of this proposition.

The second claim follows by modifying the argument in [52] and, in particular, the

construction of the torsion-free abelian group associated with a tree on ω as in [52, Theorem

2.1]. Choose injective enumerations (pn)n∈ω and (qn)n∈ω of disjoint subsets of the complement

of P in the set of all primes, and let T be a tree on ω. Define the excellent prime labeled graph

(VT , ET , fT ) as follows. The graph (VT , ET ) is just the tree T , and

f : VT ∪ ET → {pn, qn : n ∈ ω}

is defined by
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f(x) =

 qn if x is a vertex in the n-th level of T ;

pn if x is an edge between the n-th and n+ 1-th levels of T .

Define the P-divisible torsion free abelian group GP (T ) to be the group eplag GP (VT , ET , fT ).

The same proof as that of [52, Theorem 2.1] shows the following facts: If T and T ′ are isomorphic

trees, then the groups GP (T ) and GP (T ′) are isomorphic. On the other hand, if T is well-

founded and T ′ is ill-founded, then GP (T ) and GP (T ′) are not isomorphic. The second claim

of this proposition can now be proved as [52, Theorem 1.1].

Constructing Kirchberg algebras with a given K0-group

The following is the main result of this section.

Theorem XII.6.14. There is a Borel map from the Borel space G of countable infinite groups to

the Borel space ΓuKir(H) parametrizing unital Kirchberg algebras, which assigns to every infinite

countable abelian group G, a code γ for a unital Kirchberg algebra C∗(γ) that satisfies the UCT,

and with K-theory given by

(K0(C∗(γ)),
[
1C∗(γ)

]
,K1(C∗(γ))) ∼= (G, 0, {0}).

Moreover C∗(γ) is D2-absorbing if and only if G is uniquely 2-divisible.

Proof. Use Lemma XII.3.14 to choose, in a Borel way from G, a torsion free abelian group H and

an automorphism α of H such that

H/Im(idH − α) ∼= G.

Denote by L the dimension group given by

L = Z
[

1

2

]
⊕H

with positive cone

L+ = {(t, h) ∈ D : t > 0} ∪ {(0, 0)} ,
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and order unit (1, 0). Consider the endomorphism ρ of L defined by

β (t, h) =

(
t

2
, α (h)

)

for (t, h) in L. It is clear that L and β can be computed in a Borel way from H and α. By

Corollary XII.5.13, one can obtain in a Borel way from H and β, a code for a unital AF-algebra

B and a code for an injective corner endomorphism ρ of B such that the K0-group of B is

isomorphic to L, and the endomorphism of the K0-group of B induced by ρ is conjugate to β. By

Corollary XII.4.8, one can obtain in a Borel way a code γG ∈ Γ(H) for the crossed product B oρ N

of B by the endomorphism ρ. It can be shown, as in the proof of [233, Theorem 3.6], that C∗(γG)

is a unital Kirchberg algebra satisfying the UCT, with trivial K1-group, K0-group isomorphic

to G, and
[
1C∗(γG)

]
= 0 in K0 (C∗ (γ)). An easy application of the Pimsner-Voiculescu exact

sequence (see Theorem 10.2.1 in [13]) gives the computation of the K-theory; see [233, Corollary

2.2]. Pure infiniteness of C∗(γG) is proved in [233, Theorem 3.1]. The map

G → ΓuKir(H)

G 7→ γG

is Borel by construction.

Nonclassification of automorphisms of O2 of order 2

Denote as before by D the Borel set of all elements γ in Γ(H) such that C∗(γ) is a unital

D2-absorbing Kirchberg algebra not isomorphic to O2. (Recall that D2 is the C∗-algebra Ost∞ ⊗

M2∞ where M2∞ denote the UHF algebra of type 2∞.) One can regard D as the standard Borel

space parametrizing D2-absorbing unital Kirchberg algebras not isomorphic to O2. Thus, the

equivalence relation E on D defined by

γEγ′ if and only if C∗(γ) ∼= C∗ (γ′) ,

can be identified with the relation of isomorphism of unital D2-absorbing Kirchberg algebras not

isomorphic to O2.
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Theorem XII.6.15. There are Borel reductions:

1. From the relation of isomorphism of D2-absorbing unital Kirchberg algebras not isomorphic

to O2, to the relation of cocycle conjugacy of approximately representable actions of Z2 on

O2 that have Rokhlin dimension 1.

2. From the relation of isomorphism of D2-absorbing unital Kirchberg algebras, to the

relation of conjugacy of approximately representable actions of Z2 on O2 that have Rokhlin

dimension 1.

Proof. In view of Proposition XII.6.10, Proposition XII.6.11 and Elliott’s theorem O2 ⊗ O2
∼= O2,

it is enough to show that there is a Borel function from ΓuKir(H) to Aut2 (O2 ⊗O2) that assigns

to every γ ∈ ΓuKir(H), an automorphism αγ of O2 ⊗O2 which is conjugate to idC∗(γ) ⊗ ν.

We follow the notation of [71, Section 6.1], and denote by SA(O2) the space of C*-

subalgebras of O2. Then SA(O2) is a Borel subset of the Effros Borel space of closed subsets of

O2, as defined in [147, Section 12.C]. It follows from [71, Theorem 6.5] that the set SAuKir (O2) of

C*-subalgebras of O2 isomorphic to a unital Kirchberg algebra is Borel. Moreover, again by [71,

Theorem 6.5], there is a Borel function from ΓuKir(O2) to SAuKir (O2) that assigns to an element

γ of ΓuKir (O2) a subalgebra of O2 isomorphic to C∗(γ). It is therefore enough to show that there

is a Borel function from SAuKir(O2) to Aut2 (O2 ⊗O2) that assigns to A ∈ SAuKir(O2) an

automorphism αA of O2 ⊗O2 conjugate to idA ⊗ ν.

Denote by End (O2 ⊗O2) the space of endomorphism of O2 ⊗ O2. By [71, Theorem

7.6], there is a Borel map from SAuKir(O2) to End (O2 ⊗O2) that assigns to an element A in

SAuKir(O2) a unital injective endomorphism ηA of O2 ⊗O2 with range A ⊗O2. In particular, ηA

is an isomorphism between O2 ⊗O2 and A⊗O2. For A in SAuKir(O2), define

αA = η−1
A ◦ (idA ⊗ ν) ◦ ηA,

and note that the map A 7→ αA is Borel.

It is enough to show that for every x, y ∈ O2 and every ε > 0, the set of C∗-algebras A in

SAuKir (O2) such that

‖αA(x)− y‖ < ε,
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is Borel. Fix x and y in O2.

By [147, Theorem 12.13], there is a sequence

an : SAuKir(O2)→ O2,

with n ∈ ω, of Borel functions, such that for A in SAuKir(O2), the set {aAn : n ∈ ω} is an

enumeration of a dense subset of A.

Fix a countable dense subset {bn : n ∈ ω} of O2. Then

‖αA(x)− y‖ = ‖(idA ⊗ ν) (ηA(x))− ηA(y)‖ ,

and thus ‖αA(x)− y‖ < ε if and only if there are positive integers k ∈ ω and

n0, . . . , nk−1,m0, . . . ,mk−1 ∈ ω, and scalars λ0, . . . , λk−1 ∈ Q(i), such that

∥∥∥∥∥ηA(x)−
∑
i∈k

λia
G
ni ⊗ bmi

∥∥∥∥∥ < ε

2
and

∥∥∥∥∥∑
i∈k

λia
G
ni ⊗ ν (bmi)− ηA(y)

∥∥∥∥∥ < ε

2
.

Since the map A 7→ ηA is Borel, it follows that the set of all C∗-algebras A in SAuKir(O2) such

that ‖αA(x)− y‖ < ε is Borel. The result follows.

Theorem XII.6.16. There are Borel reductions:

1. From the relation of isomorphism of infinite countable abelian groups, to the relation of

isomorphism of Ost∞-absorbing unital Kirchberg algebras satisfying the UCT with infinite

K0-group and with trivial K1-group.

2. From the relation of isomorphism of uniquely 2-divisible infinite countable abelian groups,

to the relation of isomorphism of D2-absorbing unital Kirchberg algebras satisfying the UCT

with infinite K0-group and with trivial K1-group that are a crossed product of O2 by an

action of Z2 of Rokhlin dimension 1.

Proof. Both results follow from Remark XII.6.9, Proposition XII.6.11, Theorem XII.6.15, and

Theorem XII.6.14, together with the Kirchberg-Phillips classification theorem ([150] and [200]).
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Corollary XII.6.17. Let C be any class of countable structures such that the relation ∼=C

of isomorphism of elements of C is Borel. Assume that F be any of the following equivalence

relations:

– isomorphism of simple purely infinite crossed products O2 o Z2 (with infinite K0-group and

trivial K1-group);

– conjugacy of approximately representable actions of Z2 on O2 that have Rokhlin dimension

1,

– cocycle conjugacy of approximately representable actions of Z2 on O2 that have Rokhlin

dimension 1.

Then ∼=C is Borel reducible to F , and moreover F is a complete analytic set.

In the case when G is the group of integers Z, actions of Z on A naturally correspond to

single automorphisms of A. Similarly, if G is the group Zn, then actions of Zn on A correspond

to automorphisms of A whose order divides n. We show in Lemma XII.6.18 below that the

notions of conjugacy and cocycle conjugacy (Definition III.5.4) for finite cyclic group actions and

automorphisms are respected by this correspondence when A has trivial center.

Lemma XII.6.18. Suppose that α and β are automorphisms of a unital C∗-algebra A.

1. Then the following statements are equivalent:

(a) The actions n 7→ αn and n 7→ βn of Z on A are cocycle conjugate;

(b) There are an automorphism γ of A and a unitary u of A such that Ad(u) ◦ α = γ ◦ β ◦

γ−1.

2. Assume moreover that α and β have order k ≥ 2 and that A has trivial center (for example,

if A is simple). Then the following statements are equivalent:

(a) The actions n 7→ αn and n 7→ βn of Zk on A are cocycle conjugate;

(b) The actions n 7→ αn and n 7→ βn of Z on A are cocycle conjugate.
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Proof. (1). To show that (a) implies (b), simply take the unitary u = u1 coming from the α-

cocycle u : Z → U(A). Conversely, if u is a unitary in A as in the statement, we define an α-

cocycle as follows. Set u0 = 1 and u1 = u, and for n ≥ 2 define un inductively by un = u1α(un−1).

Set u−1 = α−1(u∗1), and for n ≤ −2, define un inductively by un = u−1α
−1(un+1). It is

straightforward to check that n 7→ un is an α-cocycle, and that the automorphism γ in the

statement implements the conjugacy between αu and β.

(2). To show that (a) implies (b), it is enough to note that if u : Zk → U(A) is an α-

cocycle, when we regard α as a Zk action, then the sequence (vm)m∈N of unitaries in A given

by vm = un if m = n mod k, is an α-cocycle, when we regard α as a Z action. Assume that α

and β are cocycle conjugate as automorphisms of A. Let (un)n∈N be an α-cocycle and let γ be

an automorphism implementing the conjugacy. Fix n in N, and write n = km + r for uniquely

determined k ∈ Z and r ∈ k. Since α and β have order k, we have

Ad(ukm+r) ◦ αr = Ad(ukm+r) ◦ αkm+r

= γ ◦ βkm+r ◦ γ−1

= γ ◦ βr ◦ γ−1

= Ad(ur) ◦ αr.

In particular, Ad(un+mk) = Ad(un), so un+mk and un differ by a central unitary. Since the

center of A is trivial, upon correcting by a scalar, we may assume that un+mk = un. Thus, the

assignment v : Zk → U(A) given by n 7→ un is an α-cocycle, when we regard α as a Zk action, and

γ implements an conjugacy between the Zk actions αv and β. This finishes the proof.

Corollary XII.6.19. The relations of isomorphism of simple purely infinite crossed products

O2 o Z2 satisfying the UCT, conjugacy of automorphisms of O2, and cocycle conjugacy of

automorphisms of O2 are complete analytic sets, and in particular, not Borel.

Recall that by Theorem 3.5 in [133], if G is a finite group, then any two actions of G

on O2 with the Rokhlin property are conjugate. On the other hand there are at the moment

no classification results for actions of Z2 on O2, even in the case of Rokhlin dimension 1.

Corollary XII.6.17 shows that such classification problem is rather complicate.
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Nonclassification of automorphisms of O2 of order p

Corollary XII.6.17 can be in fact generalized to automorphisms of order p for any prime

number p. This is the content of the following theorem.

Theorem XII.6.20. Fix a prime number p. Let C be any class of countable structures such

that the relation ∼=C of isomorphism of elements of C is Borel. Let F be any of the following

equivalence relations:

– isomorphism of simple purely infinite crossed products O2 o Zp (with infinite K0-group and

trivial K1-group);

– conjugacy of approximately representable actions of Zp on O2 that have Rokhlin dimension

1,

– cocycle conjugacy of approximately representable actions of Zp on O2 that have Rokhlin

dimension 1.

Then ∼=C is Borel reducible to F . Moreover, F is a complete analytic set.

We explain here how to adapt the arguments in Subsections XII.6,XII.6, and XII.6 to

obtain Theorem XII.6.20. In the rest of this subsection we suppose that p is a fixed prime

number.

Definition XII.6.8 easily generalizes to actions of Zp. (General approximately representable

actions of finite abelian groups on C∗-algebras have been defined in [132, Definition 3.6].)

An analog of the model action ν : Z2 → Aut(O2), for actions of Zp, has been obtained

in [8, Proposition 4.15]. We recall its construction in a form which is suitable for our purposes.

Denote by Dp the unique (up to isomorphism) unital Kirchberg algebra satisfying the UCT whose

K-theory is given by

(
K0(Dp),

[
1Dp

]
,K1(Dp)

) ∼= (Z [1

p

]
⊕ · · · ⊕ Z

[
1

p

]
, 0, {0}

)
.

where the non-trivial group on the right-hand side has p − 1 direct summands. Note that when

p = 2, the algebra Dp is isomorphic to the algebra D2 = M2∞ ⊗Ost∞ previously defined.
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Proposition XII.6.21. Let p be a prime number. Then there exists an approximately

representable action νp : Zp → Aut(O2) such that

O2 oνp Z2
∼= Dp.

Proof. The proof is essentially the same as that of [8, Proposition 4.15]. Set ζp to be a primitive

p-th rooth of unity. One may identify the group K0(Dp) with the additive group of the ring

Z
[

1
p , ζp

]
. Under this identification, the automorphism of K0(Dp) determined by multiplication

by ζp, can be lifted to an action µp : Zp → Aut(Dp) with the Rokhlin property, by [8, Theorem

2.10]. The crossed product of such action is easily seen to be a Kirchberg algebra with trivial K-

theory. Since it satisfies the UCT by [191, Proposition 3.7], it follows from the classification of

Kirchberg algebras ([150], [200]) that

Dp oµp Zp ∼= O2.

The desired action is then the dual action νp = µ̂p : Zp → Aut(O2).

If A is a simple nuclear unital C∗-algebra, then one can define the action αA,p of Zp on A

analogously as in Subsection XII.6, after replacing ν with νp. The proof of Proposition XII.4.2

goes through without change when αA is replaced with αA,p. Similarly, the proof of

Proposition XII.6.11 can be easily generalized to actions of Zp. (See [123, Definition 1.1] for the

definition of Rokhlin dimension of an action of an arbitrary finite group on a unital C∗-algebra.)

Theorem XII.6.15 is then generalized after replacing D2 with Dp and Z2 with Zp.

Let us say that a countable infinite group G is self-absorbing if G ⊕ G ∼= G. It follows from

the classification of Kirchberg algebras ([150], [200]) that, if A is a unital Kirchberg algebra with

K-theory (G, 0, {0}), and G is a self-absorbing torsion-free p-divisible abelian group, then A is Dp-

absorbing. Thus, Theorem XII.6.16 still holds after replacing D2 with Dp, and uniquely 2-divisible

infinite countable abelian groups with self-absorbing uniquely p-divisible infinite countable abelian

groups.

Finally, one needs to modify the construction in Proposition XII.6.13 to obtain self-

absorbing p-divisible torsion-free abelian groups. This is accomplished by considering the following

modification in the definition of the group eplag associated with an excellent prime labeled graph.
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Suppose that (V,E, f) is an excellent prime labeled graph such that the range of f is disjoint from

P. Denote by Q(V×ω) the direct sum

Q(V×ω) =
⊕

(v,n)∈V×ω

Q

of copies of Q indexed by V × ω, and identify an element (v, n) of V × ω with the corresponding

copy of Q in Q(V ). We define the p-divisible self-absorbing group eplag Gsap (V,E, f) associated

with (V,E, f), to be the subgroup of Q(V×ω) generated by

{
(v, k)

pnf(v)m
,

(v, k) + (w, k)

pnf({v, w})
: v, w ∈ V, {v, w} ∈ E,n,m, k ∈ ω, p ∈ P

}
.

It is easy to check that Gsap (V,E, f) is indeed a self-absorbing p-divisible torsion-free abelian

group. The proof of Theorem XII.6.20 is thus complete.

Actions of countable groups on O2

Let G be a countable (discrete) group. Denote by Act(G,A) the space of actions of G

on A endowed with the topology of pointwise convergence in norm. It is clear that Act(G,A) is

homeomorphic to a Gδ subspace of the product of countably many copies of A and, in particular,

is a Polish space.

Let G and H be countable groups, and let π : G → H be a surjective homomorphism from

G to H. Define the Borel map π∗ : Act(H,A)→ Act(G,A) by π∗(α) = α ◦ π for α in Act(H,A). It

is easy to check that π∗ is a Borel reduction from the relation of conjugacy of actions of H to the

relation of conjugacy of actions of G. The following proposition is then an immediate consequence

of this observation together with Theorem XII.6.20.

Proposition XII.6.22. Let G be a countable group with a nontrivial cyclic quotient. If C is any

class of countable structures such that the relation ∼=C of isomorphism of elements of C is Borel,

then ∼=C is Borel reducible to the relation of conjugacy of actions of G on O2.

Moreover, the latter equivalence relation is a complete analytic set as a subset of

Act(G,A)×Act(G,A) and, in particular, is not Borel.
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The situation for cocycle conjugacy is not as clear. It is not hard to verify that if G = H ×

N and π : G→ H is the canonical projection, then π∗, as defined before, is a Borel reduction from

the relation of cocycle conjugacy in Act(H,A) to the relation of cocycle conjugacy in Act(G,A).

Using this observation and the structure theorem for finitely generated abelian groups, one obtains

the following fact as a consequence of Theorem XII.6.20 :

Proposition XII.6.23. Let G be any finitely generated abelian group. If C is any class of

countable structures such that the relation ∼=C of isomorphism of elements of C is Borel, then

∼=C is Borel reducible to the relation of conjugacy of actions of G on O2.

Moreover, the latter equivalence relation is a complete analytic set as a subset of

Act(G,A)×Act(G,A) and, in particular, not Borel.

Final Comments and Remarks

Recall that an automorphism of a C∗-algebra A is said to be pointwise outer (or aperiodic)

if none of its nonzero powers is inner. By [187, Theorem 1], an automorphism of a Kirchberg

algebra is pointwise outer if and only if it has the Rokhlin property. Moreover, it follows from this

fact, together with [206, Corollary 5.14], that the set Rok(A) of pointwise outer automorphisms

of a Kirchberg algebra A is a dense Gδ subset of Aut(A), which is moreover easily seen to be

invariant by cocycle conjugacy.

It is an immediate consequence of [187, Theorem 9], that aperiodic automorphisms of O2

form a single cocycle conjugacy class. In particular, and despite the fact that the relation of

cocycle conjugacy of automorphisms of O2 is not Borel, its restriction to the comeager subset

APer(O2) of Aut(O2) consisting of aperiodic automorphisms, has only one class and, in particular,

is Borel. This can be compared with the analogous situation for the group of ergodic measure

preserving transformations of the Lebesgue space: The main result of [75] asserts that the relation

of conjugacy of ergodic measure preserving transformations of the Lebesgue space is a complete

analytic set. On the other hand, the restriction of such relation to the comeager set of ergodic

rank one measure preserving transformations is Borel.

It is conceivable that similar conclusions might hold for the relation of conjugacy of

automorphisms of O2. We therefore suggest the following problem:
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Question XII.7.1. Consider the relation of conjugacy of automorphisms of O2, and restrict it to

the invariant dense Gδ set of aperiodic automorphisms. Is this equivalence relation Borel?

By [149, Theorem 4.5], the automorphisms of O2 are not classifiable up to conjugacy by

countable structures. This means that if C is any class of countable structures, then the relation

of conjugacy of automorphisms of O2 is not Borel reducible to the relation of isomorphisms

of structures from C. It would be interesting to know if one can obtain a similar result for the

relation of cocycle conjugacy.

Question XII.7.2. Is the relation of cocycle conjugacy of automorphisms of O2 classifiable by

countable structures?

Theorem 4.5 of [149] shows that the relation of conjugacy of automorphisms is not

classifiable for a large class of C∗-algebras, including all C∗-algebras that are classifiable according

to the Elliott classification program [235, Section 2.2]. It would be interesting to know if the same

holds for the relation of cocycle conjugacy. More generally, it would be interesting to draw similar

conclusions about the complexity of the relation of cocycle conjugacy for automorphisms of other

simple C∗-algebras. This problem seems to be currently wide open.

Problem XII.7.3. Find an example of a simple unital nuclear separable C∗-algebra for which

the relation of cocycle conjugacy of automorphisms is not classifiable by countable structures.

Recall that an equivalence relation on a standard Borel space is said to be smooth,

or concretely classifiable, if it is Borel reducible to the relation of equality in some standard

Borel space. A smooth equivalence relation is in particular Borel and classifiable by countable

structures. Thus, it is a consequence of Corollary XII.6.19 that the relation of cocycle conjugacy

of automorphisms of O2 is not smooth.

If X is a compact Hausdorff space, we denote by C(X) the unital commutative C∗-algebra

of complex-valued continuous functions on X. It is a classical result of Gelfand and Naimark that

any unital commutative C∗-algebra is of this form; see [14, Theorem II.2.2.4]. Moreover, by [14,

II.2.2.5], the group Aut(C(X)) of automorphisms of C(X) is canonically isomorphic to the group

Homeo(X) of homeomorphisms of X. It is clear that in this case the relations of conjugacy and

cocycle conjugacy of automorphisms coincide. By [25, Theorem 5], if X is the Cantor set, then

the relation of (cocycle) conjugacy of automorphisms of C(X) is not smooth (but classifiable by
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countable structures). On the other hand, when X is the unit square [0, 1]2, then the relation of

cocycle conjugacy of automorphisms of C(X) is not classifiable by countable structures in view of

[125, Theorem 4.17]. This addresses Problem XII.7.3 in the case of abelian unital C∗-algebras. No

similar examples are currently known for simple unital C∗-algebras.

It is worth mentioning here that if one considers instead the relation of unitary conjugacy

of automorphisms, then there is a strong dichotomy in the complexity. Recall that two

automorphisms α, β of a unital C∗-algebra are unitarily conjugate if α ◦ β−1 is an inner

automorphism, that is, implemented by a unitary element of A. Theorem 1.2 in [177] shows that

whenever this relation is not smooth, then it is even not classifiable by countable structures. The

same phenomenon is shown to hold for unitary conjugacy of irreducible representations in [148,

Theorem 2.8.]; see also [197, Section 6.8]. It is possible that similar conclusions might hold for the

relation of conjugacy or cocycle conjugacy of automorphisms of simple C∗-algebras.

Question XII.7.4. Is it true that, whenever the relation of (cocycle) conjugacy of

automorphisms of a simple unital C∗-algebra A is not smooth, then it is not even classifiable

by countable structures?

The Kirchberg-Phillips classification theorem asserts that Kirchberg algebras satisfying the

UCT are classified up to isomorphism by their K-theory. By [70, Section 3.3], the K-theory of a

C∗-algebra can be computed in a Borel way. It follows that Kirchberg algebras satisfying the UCT

are classifiable up to isomorphism by countable structures. Conversely, by Corollary XII.6.17,

if C is any class of countable structure with Borel isomorphism relation, then the relation of

isomorphism of elements of C is Borel reducible to the relation of isomorphism of Kirchberg

algebras satisfying the UCT. It is natural to ask whether the same conclusion holds for any class

of countable structures C.

Question XII.7.5. Suppose that C is a class of countable structures. Is the relation of

isomorphism of elements of C Borel reducible to the relation of isomorphism of Kirchberg algebras

with the UCT?

A class D of countable structures is Borel complete if the following holds: For any class

of countable structures C the relation of isomorphism of elements of C is Borel reducible to the

relation of isomorphism of elements of D. Theorem 1, Theorem 3, and Theorem 10 of [78] assert
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that the classes of countable trees, countable linear orders, and countable fields of any fixed

characteristic are Borel complete. Theorem 7 of [78] shows that the relation of isomorphism of

countable groups is Borel complete. A long standing open problem –first suggested in [78]– asks

whether the class of (torsion-free) abelian groups is Borel complete. In view of Theorem XII.6.16,

a positive answer to such problem would settle Question XII.7.5 affirmatively.

For example, it would be interesting to determine for other “interesting” C∗-algebras

(maybe one should start with strongly self-absorbing C∗-algebras, or C∗-algebras in a class that

is well understood), whether the relation of cocycle conjugacy of their automorphisms is or not

complete analytic, Borel, countable, etc.

Getting partial results for Kirchberg algebras should not be hard, at least when they satisfy

the UCT. Indeed, cocycle conjugacy classes of aperiodic automorphisms of a Kirchberg algebra A

are in bijection with certain elements of KK(A,A). Now, KK(A,A) is a countable group. Thus,

if one is able to show that the assignment ϕ 7→ KK(ϕ) as a map Aut(A) → KK(A,A), is Borel,

then if would follow that its restriction to the Gδ subset of aperiodic automorphisms is a Borel

reduction, and hence said class of automorphisms would be classifiable by countable structures up

to cocycle conjugacy.
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CHAPTER XIII

INTRODUCTION

Associated to any locally compact group G, there are three fundamentally important

operator algebras: its reduced group C∗-algebra C∗λ(G), its full group C∗-algebra C∗(G), and

its group von Neumann algebra L(G). These are, respectively, the C∗-algebra generated by the

left regular representation of G in B(L2(G)); the universal C∗-algebra with respect to unitary

representations of G on Hilbert spaces; and the weak-∗ closure (also called ultraweak closure)

of C∗λ(G) in B(L2(G)). (We identify B(L2(G)) with the dual of the projective tensor product

L2(G)⊗̂L2(G) canonically.) Equivalently, L(G) is the double commutant of C∗λ(G) in B(L2(G)).

These operator algebras admit generalizations to representations of G on Lp-spaces, for

p ∈ [1,∞). The analog of C∗λ(G) is the the algebra PFp(G) of p-pseudofunctions on G, first

introduced by Herz in [116]. (Phillips also considered this algebra in [207], where he called it the

reduced group Lp-operator algebra of G, and denoted it F p∇. We will use the notation F pλ (G). )

The analog of C∗(G) is the full group Lp-operator algebra F p(G), defined by Phillips in [207].

Finally, the von Neumann algebra L(G) has two analogs: the algebra of p-pseudomeasures

PMp(G), which is the weak-∗ closure of F pλ (G) in B(Lp(G)) (where we identify B(Lp(G)) with

the dual of the projective tensor product Lp(G)⊗̂(Lp(G))∗ canonically); and the algebra of

p-convolvers CVp(G), which is the double commutant of PFp(G) in B(Lp(G)) (it is also the

commutant of the right regular representation). Both these algebras were also introduced by Herz

in [116]. The algebras F pλ (G), PMp(G) and CVp(G) are sometimes referred to as “convolution

algebras (acting on Lp-spaces)”.

The algebras F pλ (G), F p(G), PMp(G) and CVp(G) are examples of algebras of operators on

Lp-spaces (from now on, Lp-operator algebras). This second part of the dissertation is devoted to

the study of these algebras (with focus on F pλ (G) and F p(G)). In the last two chapters, we study

a generalization of these objects, where the group is replaced by a groupoid.

For a long time, Lp-operator algebras had mainly arisen in the context of harmonic

analysis. However, these objects have received more attention since Phillips introduced and

studied in [204], [208] and [209], certain Lp-analogs of Cuntz algebras (denoted Opd, for d ∈ N)

and of UHF-algebras. A more abstract study of Lp-operator algebras was initiated in [207]. The
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motivation for looking at Lp-operator algebras is, in retrospect, rather unexpected: the algebras

Opd were defined to show that the methods in [35] can be applied to them, to show that the

comparison map

K∗(Opd)→ Ktop
∗ (Opd),

from algebraic to topological K-theory, is an isomorphism in all degrees.

There is, by now, a decent collection of examples of Lp-operator algebras: Lp-Cuntz

algebras ([204], (full and reduced) group Lp-operator algebras (and the analogs of the von

Neumann algebra) ([116], [49], [207], [217], [98]), Lp-AF-algebras ([215]), groupoid Lp-operator

algebras ([89], crossed products of Lp-operator algebras ([207]), and Lp-analogs of the irrational

rotation algebras ([93])

On the other hand, and by comparison with the case p = 2, very little is know about

general Lp-operator algebras, although there seems to be an interesting theory to discover.

Despite the absence of an involution, much of the theory so far developed resembles and is

inspired by the theory of C∗-algebras. Nevertheless, it is becoming apparent that Lp-operator

algebras, for p different from 2, are far more rigid objects than C∗-algebras. The most clear

expression of this rigidity, at least so far, is studied in Chapter XVI, where we show that for

p ∈ [1,∞) \ {2}, a locally compact group G can be recovered from any of the algebras F pλ (G),

PMp(G), or CVp(G). This is in stark contrast with the case p = 2:

– The groups Z2 × Z2 and Z4 have isomorphic group C∗-algebras; and

– it is a long standing open problem whether the von Neumann algebras L(F2) and L(F3) of

the free groups F2 and F3 on two and three generators, are isomorphic. (The C∗-algebras

are known not to be isomorphic; they have different K0.)

Although we will not say much here, we mention that recent work, joint with Hannes Thiel

and Chris Phillips, seems to suggest that Lp-crossed products of minimal homeomorphisms, for

p 6= 2, may remember the dynamical system up to flip conjugacy.

The chapters in this second part of the dissertation are all based on joint works:

Chapters XIV through XIX are joint with Hannes Thiel, and Chapters XX and XXI are joint

with Martino Lupini. The main results are, quite possibly, the ones in Chapters XVI and XIX,

which we describe below.
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The main result of Chapter XVI is as follows: Let G and H be two locally compact groups,

let p, q ∈ [1,∞), and suppose that there exists a contractive isomorphism

F pλ (G) ∼= F qλ(H) or PMp(G) ∼= PMq(H) or CVp(G) ∼= CVq(H).

Then p and q are either equal or conjugate, and G is isomorphic to H. When p = q = 1, this

recovers, with a different proof, a classical result of Wendel from the 60’s.

The main result of Chapter XIX is an answer to a 20 year old question of Le Merdy and

Marius Junge: Lp-operator algebras are not closed under quotients. The algebra and the ideal are

not difficult to construct: the algebra is F pλ (Z), and the ideal is the one associated to the upper

open half-semicircle. However, proving that the quotient is not representable on an Lp-space is

rather involved, and it requires the full strength of the results in Chapter XVIII. (The relevant

quotient is in fact not representable on any Lq-space, for q ∈ [1,∞).)

Notation and Preliminaries

All locally compact groups will be endowed with their left Haar measure (see section II.1).

We write N for {1, 2, . . .}; we write N for N∪{∞}; we write Z≥0 for {0, 1, 2, . . .}; and we write Z≥0

for Z≥0 ∪ {∞}.

For n ∈ N, the finite cyclic group of order n will be denote by Zn. For n ∈ N and p ∈ [1,∞],

we write `pn in place of `p({1, . . . , n}), and we write `p in place of `p(Z).

Let E be a Banach space. We write E1 for the unit ball of E and E′ for its dual space. If F

is another Banach space, we denote by B(E,F ) the Banach space of all bounded linear operators

E → F , and write B(E) in place of B(E,E). For a bounded linear map ϕ : E → F , we will write

ϕ′ : F ′ → E′ for its dual map. For p ∈ (1,∞), we denote by p′ its conjugate (Hölder) exponent,

which satisfies 1
p + 1

p′ = 1.

Recall that a measure space (X,A, µ) is said to be complete if whenever Y ∈ A satisfies

µ(Y ) = 0 and Z is a subset of Y , then Z ∈ A. If (X,A, µ) is an arbitrary measure space, we

denote by (X,A, µ) its completion. It is easy to show that if p ∈ [1,∞), then there is a canonical

isometric isomorphism

Lp(X,A, µ) ∼= Lp(X,A, µ).
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We will usually omit the σ-algebra in the notation for Lp-spaces and measure spaces (unless they

are relevant, such as in Chapter XIV, and specifically in Theorem XIV.2.21).

We recall some standard definitions and facts about measure spaces. A measurable space

is called a standard Borel space when it is endowed with the σ-algebra of Borel sets with respect

to some Polish topology on the space. If (Z, λ) is a measure space for which Lp(Z, λ) is separable,

then there exists a complete σ-finite measure µ on a standard Borel space X such that Lp(Z, λ) is

isometrically isomorphic to Lp(X,µ).

Isometric Isomorphisms Between Lp-spaces.

In this section, we review Lamperti’s theorem characterizing isometries between Lp-spaces,

for p ∈ [1,∞) \ 2, and present it in a form that is convenient for our uses. The characterization

can be roughly described as follows: invertible isometries between Lp-spaces, for p 6= 2, are all

a combination of a bimeasurable bijective measure class preserving transformation (a suitable

flexibilization of the notion of measure preserving bimeasurable bijection; see Definition XIII.2.1)

on the underlying measure space, and a multiplication operator by a function from the space into

the scalars of modulus one.

For example, Lamperti’s theorem implies that for p 6= 2, the only invertible isometries

of Mn, when identified with B(`pn) (we will usually denote this Banach algebra by Mp
n), are the

complex permutation matrices; these are the matrices that have only one nonzero entry in each

column and row, and this entry is a complex number of modulus one. In particular, the group of

invertible isometries of Mp
n is not connected for p 6= 2, and it is much smaller than the group of

unitary matrices.

For most of what we do in this second part of the dissertation, Lamperti’s theorem is

extremely crucial, and many of our results ultimately depend on it. Roughly speaking, Lamperti’s

The basic reference is [161]. We point out that Lamperti’s result is more general than what

we reproduce here as Theorem XIII.2.4. Finally, it should be mentioned that the statement in

Theorem XIII.2.4 actually contains a mistake, and a corrected version can be found in [72].

If X is a set E and F are subsets of a set X, we denote by E4F their symmetric

difference, that is, E4F = (E ∩ F c) ∪ (Ec ∩ F ).
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Definition XIII.2.1. Let (X,µ) and (Y, ν) be measure spaces. A measure class preserving

transformation from X to Y is a measurable function T : X → Y satisfying

µ(T−1(F )) = 0 if and only if ν(F ) = 0

for every measurable set F ⊆ Y .

A measure class preserving transformation T : X → Y is said to be invertible, if it is

invertible as a function from X to Y and its inverse is measurable.

Note that we do not require measure class preserving transformations to preserve the

measure; just the null-sets. Also, the inverse of a measure class preserving transformation is

automatically a measure class preserving transformation.

Remark XIII.2.2. Let (X,A, µ) and (Y,B, ν) be measure spaces. Set

N (µ) = {E ∈ A : µ(E) = 0}

and let A/N (µ) be the quotient of A by the relation E ∼ F if E4F belongs to N (µ). Define

B/N (ν) analogously. If T : X → Y is a measure class preserving transformation, then T induces a

function

T ∗ : B/N (ν)→ A/N (µ)

given by T ∗(F + N (ν)) = T−1(F ) + N (µ) for all F in B. Moreover, if T is invertible then T ∗ is

invertible, and one has (T ∗)−1 = (T−1)∗.

The induced map T ∗ : B/N (ν) → A/N (µ) is an example of an order continuous Boolean

homomorphism. See Definition 313H in [77] and also Definition 4.9 in [204], where they are

called σ-homomorphisms. Under fairly general assumptions on the measure spaces (X,A, µ)

and (Y,B, ν), every such homomorphism B/N (ν) → A/N (µ) lifts to a measure class preserving

transformation X → Y . See Theorem 343B in [77].

We now present some examples of isometric isomorphisms between Lp-spaces.

Examples XIII.2.3. Let (X,µ) and (Y, ν) be measure spaces and let p ∈ [1,∞).
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1. For a measurable function h : Y → S1, the associated multiplication operator

mh : Lp(Y, ν)→ Lp(Y, ν), which is given by

mh(f)(y) = h(y)f(y)

for all f in Lp(Y, ν) and all y in Y , is an isometric isomorphism. Indeed, its inverse is easily

seen to be mh.

2. Let T : X → Y be an invertible measure class preserving transformation. Then the linear

map uT : Lp(X,µ)→ Lp(Y, ν) given by

uT (f)(y) =

([
d(µ ◦ T−1)

dν

]
(y)

) 1
p

f(T−1(y))

for all f in Lp(X,µ) and all y in Y , is an isometric isomorphism. Indeed, its inverse is uT−1 .

3. If h : Y → S1 and T : X → Y are as in (1) and (2), respectively, then

mh ◦ uT : Lp(X,µ)→ Lp(Y, ν)

is an isometric isomorphism with inverse uT−1 ◦mh.

The following result is a particular case of Lamperti’s Theorem (see the Theorem in [161];

see also Theorem 6.9 in [204]), and it can be regarded as a structure theorem for isometric

isomorphisms between Lp-spaces. It states that if (X,A, µ) and (Y,B, ν) are complete σ-finite

measure spaces, then the linear operators of the form mh ◦ uT are the only isometric isomorphisms

between Lp(X,µ) and Lp(Y, ν) for p ∈ [1,∞) \ {2}. (Although Lamperti’s Theorem was originally

stated and proved assuming (X,A, µ) = (Y,B, ν), this assumption was never actually used in his

proof.)

The version we exhibit here is not the most general possible, but it is enough for our

purposes.

Theorem XIII.2.4. Let p ∈ [1,∞) \ {2}. Let (X,A, µ) and (Y,B, ν) be complete σ-finite

standard Borel spaces, and let ϕ : Lp(X,µ) → Lp(Y, ν) be an isometric isomorphism. Then there

exist a measurable function h : Y → S1 and an invertible measure class preserving transformation
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T : X → Y such that

ϕ(f)(y) = h(y)

([
d(µ ◦ T−1)

dν

]
(y)

) 1
p

f(T−1(y))

for all f in Lp(X,µ) and all y in Y . In other words, ϕ = mh ◦ uT .

Moreover, the pair (h, T ) is unique in the following sense: if h̃ : Y → S1 and T̃ : X → Y

are, respectively, a measurable function and an invertible measure class preserving transformation

satisfying v = mh̃ ◦ uT̃ , then h(y) = h̃(y) for ν-almost every y in Y , and

ν
(
T (E)4T̃ (E)

)
= 0

for every measurable subset E ⊆ X.

Proof. We will use the language and notation from Sections 5 and 6 in [204], where Phillips

develops the material needed to make effective use of Lamperti’s Theorem (Theorem 3.1 in [161]).

By Theorem 6.9 in [204], the invertible isometry v is spatial (see Definition 6.4 in [204]).

Let (E,F, φ, h) be a spatial system for ϕ. By Lemma 6.12 in [204] together with the fact that ϕ is

bijective, we deduce that µ(X \ E) = 0 and ν(Y \ F ) = 0.

The assumptions on the measure spaces (X,A, µ) and (Y,B, ν) ensure that Theorem 343B

in [77] applies, so the order continuous Boolean homomorphisms φ and φ−1 can be lifted to

measure class preserving transformations fφ : X → Y and fφ−1 : Y → X. By Corollary 343G

in [77], the identities

fφ ◦ fφ−1 = idY and fφ−1 ◦ fφ = idX ,

hold up to ν- and µ-null sets, respectively. Upon redifining them on sets of measure zero (see, for

example, Theorem 344B and Corollary 344C in [77]), we may take T = fφ and T−1 = fφ−1 .

We now turn to uniqueness of the pair (h, T ). Denote by A and B the domains of µ and ν,

respectively, and by N (µ) and N (ν) the subsets of A and B consisting of the µ and ν-null sets,

respectively. Uniqueness of h up to null sets, and uniqueness of T ∗ : A/N (µ) → B/N (ν) (see

Remark XIII.2.2 for the definition of T ∗) were established in Lemma 6.6 in [204]. It follows from

Corollary 343G in [77] that T is unique up to changes on sets of measure zero, which is equivalent

to the formulation in the statement.
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Theorem XIII.2.4 will be crucial in our study of Lp-operator algebras generated by

invertible isometries. Since the invertible isometries of a given Lp-space are the main object

of study of this work, we take a closer look at their algebraic structure in the remainder of this

section.

Definition XIII.2.5. Let (X,µ) be a measure space.

1. We denote by L0(X,S1) the Abelian group (under pointwise multiplication) of all

measurable functions X → S1, where two such functions that agree µ-almost everywhere

on X are considered to be the same element in L0(X,S1).

2. We denote by Aut∗(X,µ) the group (under composition) of all invertible measure class

preserving transformations X → X.

3. For p ∈ [1,∞), we denote by Aut(Lp(X,µ)) the group (under composition) of isometric

automorphisms of Lp(X,µ). Equivalently, Aut(Lp(X,µ)) is the group of all invertible

isometries of Lp(X,µ).

We point out that similar definitions and notation were introduced in [198].

Remark XIII.2.6. Let (X,µ) be a measure space and let p ∈ [1,∞). Then the maps

m : L0(X,S1)→ Aut(Lp(X,µ) and u : Aut∗(X,µ)→ Aut(Lp(X,µ)

given by h 7→ mh and T 7→ uT , respectively, are injective group homomorphisms via which we may

identify L0(X,S1) and Aut∗(X,µ) with subgroups of Aut(Lp(X,µ).

Proposition XIII.2.7. Let (X,A, µ) be a complete σ-finite standard Borel space, and let p ∈

[1,∞). Then L0(X,S1) is a normal subgroup in Aut(Lp(X,µ)), and there is a canonical algebraic

isomorphism

Aut(Lp(X,µ)) ∼= Aut∗(X,µ)o L0(X,S1).

Proof. Since every element in Aut(Lp(X,µ)) is of the form mh ◦ uT for some h ∈ L0(X,S1) and

some T ∈ Aut∗(X,µ) by Theorem XIII.2.4, it is enough to check that conjugation by uT leaves

L0(X,S1) invariant.
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Given h ∈ L0(X,S1) and T ∈ Aut∗(X,µ), let f ∈ Lp(X,µ) and x in X. We have

(mh ◦ uT ) (f)(x) = h(x)

([
d(µ ◦ T−1)

dµ

]
(x)

) 1
p

f(T−1(x))

=

([
d(µ ◦ T−1)

dµ

]
(x)

) 1
p

(mh◦T f)(T−1(x))

= (uT ◦mh◦T ) (f)(x).

We conclude that uT−1 ◦ mh ◦ uT = mh◦T , which shows that L0(X,S1) is a normal subgroup in

Aut(Lp(X,µ)).

The algebraic isomorphism Aut(Lp(X,µ)) ∼= Aut∗(X,µ) o L0(X,S1) now follows from

Lamperti’s Theorem XIII.2.4.

Adopt the notation of the proposition above. Endow L0(X,S1) with the topology of

convergence in measure, endow Aut∗(X,µ) with the weak topology, and endow Aut(Lp(X,µ))

with the strong operator topology. It is shown in [198] that these topologies turn these groups into

Polish groups. Using this technical fact, it is shown in Corollary 3.3.46 of [198] that the algebraic

isomorphism of the above proposition is in fact an isomorphism of topological groups.
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CHAPTER XIV

GROUP ALGEBRAS ACTING ON LP -SPACES

This chapter is based on joint work with Hannes Thiel ([98]).

For p ∈ [1,∞) we study representations of a locally compact group G on Lp-spaces and

QSLp-spaces. The universal completions F p(G) and F pQS(G) of L1(G) with respect to these

classes of representations (which were first considered by Phillips and Runde, respectively), can

be regarded as analogs of the full group C∗-algebra of G (which is the case p = 2). We study

these completions of L1(G) in relation to the algebra F pλ (G) of p-pseudofunctions. We prove a

characterization of group amenability in terms of certain canonical maps between these universal

Banach algebras. In particular, G is amenable if and only if F pQS(G) = F p(G) = F pλ (G).

One of our main results is that for 1 ≤ p < q ≤ 2, there is a canonical map γp,q : F p(G) →

F q(G) which is contractive and has dense range. When G is amenable, γp,q is injective, and it is

never surjective unless G is finite. We use the maps γp,q to show that when G is discrete, all (or

one) of the universal completions of L1(G) are amenable as a Banach algebras if and only if G is

amenable.

Finally, we exhibit a family of examples showing that the characterizations of group

amenability mentioned above cannot be extended to Lp-operator crossed products of topological

spaces.

Introduction

In this chapter, which is based on [98], we study representations of a locally compact group

G on certain classes of Banach spaces, as well as the corresponding completions of the group

algebra L1(G). More specifically, for each p ∈ [1,∞), we consider the class Lp of Lp-spaces; the

class SLp of closed subspaces of Banach spaces in Lp; the class QLp of quotients of Banach spaces

in Lp by closed subspaces; and the class QSLp of quotients of Banach spaces in SLp by closed

subspaces (Definition XIV.2.5). We denote the corresponding universal completions of L1(G) by

F p(G), F pS (G), F pQ(G) and F pQS(G), respectively; see Notation XIV.2.8.
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We also study the algebra F pλ (G) of p-pseudofunctions on G. This is the Banach subalgebra

of B(Lp(G)) generated by all the operators of left convolution by functions in L1(G). Equivalently,

F pλ (G) is the closure of the image of the left regular representation λp : L1(G) → B(Lp(G)). This

algebra was introduced by Herz in [116], where F pλ (G) was denoted PFp(G) (see also [189]).

The fact that L1(G) has a contractive approximate identity implies that there exist

canonical isometric isomorphisms

L1(G) ∼= F 1
λ(G) ∼= F 1(G) ∼= F 1

S (G) ∼= F 1
Q(G) ∼= F 1

QS(G);

see Proposition XIV.2.11 and Remark XIV.2.12. However, for p 6= 1, the existence of a canonical

(not necessarily isometric) isomorphism between any of the algebras F p(G), F pS (G), F pQ(G) or

F pQS(G), and the algebra F pλ (G), is equivalent to amenability of G; see Theorem XIV.3.7. For

p = 2, the algebra F 2(G) is the full group C∗-algebra of G, usually denoted C∗(G).

Using an extension theorem of Hardin, we show that for p /∈ {4, 6, 8, . . .} and q /∈

{ 4
3 ,

6
5 ,

8
7 , . . .}, and regardless of G, there are canonical isometric isomorphisms

F pS (G) ∼= F p(G) and F qQ(G) ∼= F q(G).

A consequence of the existence of such isomorphisms is that, for 1 ≤ p ≤ q ≤ 2 and for

2 ≤ r ≤ s <∞, there are canonical, contractive homomorphisms

γp,q : F p(G)→ F q(G) and γs,r : F s(G)→ F r(G)

with dense range; see Theorem XIV.2.30. This can be interpreted as saying that the algebras

F p(G) form a ‘continuous interpolating family’ of Banach algebras between the group algebra

F 1(G) = L1(G) and the full group C∗-algebra F 2(G) = C∗(G).

When G is amenable, our results recover, using different methods, a result announced

by Herz as Theorem C in [115], and whose proof appears in the corollary on page 512 of [118].

Furthermore, in this case, we show that for 1 ≤ p < q ≤ 2 or 2 ≤ q < p < ∞, the

map γp,q : F p(G) → F q(G) is injective, and that it is never surjective unless G is finite; see

Corollary XIV.3.20.
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Another application of Theorem XIV.2.30 is as follows: when G is discrete, amenability of

any of the Banach algebras F p(G), F pS (G), F pQ(G) or F pQS(G), is equivalent to amenability of G;

see Theorem XIV.3.11. The cases p = 1 and p = 2 of this theorem are well-known, the first one

being due to B. Johnson [137], and holding even if G is not discrete.

A partial summary of our results on characterization of group amenability is as follows.

(The equivalence between (1) and (2) below, specifically for Lp-spaces, was independently

obtained by Phillips, whose methods are inspired in C∗-algebraic techniques.)

Theorem. Let G be a locally compact group and let p ∈ (1,∞). Consider the following

statements:

1. The group G is amenable.

2. The canonical map from each of the algebras F p(G), F pS (G), F pQ(G), or F pQS(G), to F pλ (G), is

an isometric isomorphism.

3. The canonical map from any of the algebras F p(G), F pS (G), F pQ(G), or F pQS(G), to F pλ (G), is

a (not necessarily isometric) isomorphism.

4. The algebras F p(G), F pS (G), F pQ(G), and F pQS(G), are amenable.

5. At least one of F p(G), F pS (G), F pQ(G), or F pQS(G), is amenable.

Then (1) ⇔ (2) ⇔ (3) ⇒ (4) ⇒ (5). If G is discrete, then all five statements are equivalent.

Finally, we show in Theorem XIV.4.3 that the theorem above, particularly the implications

‘(2) ⇒ (1)’ and ‘(4) ⇒ (1)’, cannot be generalized to Lp-crossed products of discrete groups acting

on algebras of the form C0(X), for some locally compact Hausdorff space X.

Further connections between G and F pλ (G) will be explored in Chapter XVI; functoriality

properties of F pλ (G) (and those of the universal completions of L1(G) discussed above) are studied

in Chapter XV; and applications of the results in this chapter are given in Chapters XVII and

XVIII.

We have made the effort of not adopting any cardinality assumptions (σ-finiteness of

measures, second-countability or σ-compactness of groups, or separability of Banach spaces)

whenever possible. This implies considerable additional work when showing the existence of the

maps γp,q : F p(G) → F q(G); see Theorem XIV.2.30. Indeed, some of the techniques for dealing
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with Lp-spaces require the involved measure spaces to be σ-finite (as is the case with Hardin’s

theorem). In order to directly apply such techniques, one has to restrict to second countable (or

sometimes σ-compact) locally compact groups. However, one can often reduce a problem about

a locally compact group G to second countable locally compact groups by applying the following

two steps: First, G is the union of open, σ-compact subgroups. Second, by the Kakutani-Kodaira

Theorem, every σ-compact, locally compact group H contains an arbitrarily small compact,

normal subgroup N such that H/N is second countable. This technique is for instance used to

prove Theorem XIV.2.26.

For a Banach space E, we denote by Isom(E) the subset of B(E) consisting of invertible

isometries. (In this dissertation, invertible isometries will always be assumed to be surjective.)

The group Isom(E) will be endowed with the strong operator topology. It is a standard fact

that Isom(E) is a Polish group whenever E is a separable Banach space. Moreover, it is easy

to check that if X is a topological (measurable) space, a function u : X → Isom(E) is continuous

(measurable) if and only if for every ξ ∈ E, the map X → E given by x 7→ u(x)ξ for x ∈ X, is

continuous (measurable).

Universal Completions of L1(G)

Let G be a locally compact group. We let L1(G) denote the Banach algebra of complex-

valued functions on G that are integrable (with respect to the left Haar measure), with product

given by convolution.

A representation of a Banach algebra A on a Banach space E is a contractive

homomorphism A→ B(E).

Definition XIV.2.1. Let E be a class of Banach spaces. We denote by RepE(G) the class of all

non-degenerate representations of L1(G) on Banach spaces in E . Given f in L1(G), set

‖f‖E = sup {‖π(f)‖ : π ∈ RepE(G)} .

(Note that the supremum exists, even if E is not a set.) Then ‖ · ‖E defines a seminorm on L1(G).

Set

IE =
{
f ∈ L1(G) : ‖f‖E = 0

}
=

⋂
π∈RepE(G)

ker(π),
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which is a closed ideal in L1(G). We write FE(G) for the completion of L1(G)/IE in the induced

norm.

Remark XIV.2.2. Let G be a locally compact group, and let E be a class of Banach spaces.

Then the canonical map L1(G) → FE(G) is contractive and has dense range. Moreover, it is

injective if and only if the elements of RepE(G) separate the points of L1(G), meaning that for

every f ∈ L1(G) with f 6= 0, there exists π ∈ RepE(G) such that π(f) 6= 0.

Definition XIV.2.3. Let G be a locally compact group. An isometric representation of G on a

Banach space E is a continuous group homomorphism of G into the group Isom(E) of invertible

isometries of E, where Isom(E) is equipped with the strong operator topology. Equivalently, an

isometric representation of G is a strongly continuous action of G on E via isometries.

The following result is folklore, and we omit its proof.

Proposition XIV.2.4. Let G be a locally compact group and let E be a Banach space. Then

there is a natural bijective correspondence between nondegenerate representations L1(G) → B(E)

and isometric representations of G on E.

If ρ : G → Isom(E) is an isometric representation, then the induced nondegenerate

representation πρ : L1(G)→ B(E) is given by

πρ(f)(ξ) =

∫
G

f(s)ρs(ξ) ds

for all f ∈ L1(G) and all ξ ∈ E, and it is called the integrated form of ρ.

The following are the classes of Banach spaces that we are mostly interested in.

Definition XIV.2.5. Let p ∈ [1,∞), and let E be a Banach space.

1. We say that E is an Lp-space if there exists a measure space (X,µ) such that E is

isometrically isomorphic to Lp(X,µ).

2. We say that E is an SLp-space if there is an Lp-space F such that E is isometrically

isomorphic to a closed subspace of F .

3. We say that E is a QLp-space if there is an Lp-space F such that E is isometrically

isomorphic to a quotient of F by a closed subspace.
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4. We say that E is a QSLp-space if there is an SLp-space F such that E is isometrically

isomorphic to a quotient of F by a closed subspace.

We let Lp (respectively, SLp, QLp, QSLp) denote the class of all Lp-spaces (respectively, SLp-

spaces, QLp-spaces, QSLp-spaces).

Remarks XIV.2.6. Let p ∈ [1,∞).

(1) If E is a separable Lp-space, then there exists a finite measure space (X,µ) such that

E is isometrically isomorphic to Lp(X,µ). One can also show that every separable SLp-space is a

subspace of a separable Lp-space, and analogously for separable QLp-spaces and QSLp-spaces. See

[100].

(2) It is a routine exercise to check that if F is a closed subspace of a quotient of an Lp-

space E, then F is (isometrically isomorphic to) a quotient of a subspace of E. It follows that the

class QSLp coincides with the class of Banach spaces that are isometrically isomorphic to a closed

subspace of a QLp-space. (The latter is the class that one would denote by SQLp.)

(3) Examples of Lp-spaces are Lp([0, 1]) with Lebesgue measure; `p with counting measure;

and `pn with counting measure, for n ∈ N. It is well-known that every separable Lp-space is

isometrically isomorphic to a countable p-direct sum of these. In particular, up to isometric

isomorphism, there are only countably many separable Banach space in the class Lp. The classes

SLp and QLp are much larger, as the following result shows.

Proposition XIV.2.7. Let p, q ∈ [1,∞).

1. If p ≤ q ≤ 2, then SLp ⊇ Lq.

2. If 2 ≤ r ≤ s, then Lr ⊆ QLs.

Proof. Let 1 ≤ p ≤ q ≤ 2. In Proposition 11.1.9 in [1] it is shown that the space Lp([0, 1])

isometrically embeds into Lq([0, 1]). Essentially the same argument can be used to prove part (1)

as follows: Given an Lq-space E, it is clear that E is finitely representable in `q. The assumptions

on p and q ensure that `q is finitely representable in `p. It follows that E is finitely representable

on `p. Therefore, E is isometrically isomorphic to a subspace of some ultrapower of `p. The result

follows since Lp is closed under ultrapowers. (See [112] and [100] for details.)

Part (2) can be deduced from part (1) using duality.
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Since we are mostly interested in the completions of L1(G) with respect to the classes from

Definition XIV.2.5, we will use special notation for these.

Notation XIV.2.8. Let p ∈ [1,∞), and let G be a locally compact group. We make the following

abbreviations:

F p(G) = FLp(G), F pQ(G) = FQLp(G),

F pS (G) = FSLp(G), F pQS(G) = FQSLp(G).

Remarks XIV.2.9. Let p ∈ [1,∞), and let G be a locally compact group.

(1) It is well known that every locally compact group G admits a faithful isometric

representation on an Lp-space (namely, the left regular representation). It follows that the natural

map from L1(G) to any of F p(G), F pS (G), F pQ(G) and F pQS(G) is injective.

(2) Let E denote any of the classes Lp, SLp, QLp or QSLp. Since E is closed under p-direct

sums, it follows that that FE(G) is an E-operator algebra by the results in [100]. This means that

there exists a Banach space E in E and an isometric representation FE(G) → B(E). Moreover,

E can be chosen such that the density character of E is dominated by that of A; see [100]. In

particular, if G is second countable, then L1(G) is a separable Banach algebra and consequently

FE(G) can be isometrically represented on a separable Banach space in E .

(3) Group representations on QSLp-spaces have been studied by Volker Runde in [242]. For

a locally compact group G, he defined the algebra UPFp(G) of universal p-pseudofunctions as

follows. With π : L1(G) → B(E) denoting a contractive, nondegenerate representation on a QSLp-

space E with the property that any other contractive, nondegenerate representation of L1(G) on

a QSLp-space is isometrically conjugate to a subrepresentation of π, the algebra UPFp(G) is the

closure of π(L1(G)) in B(E) (Definition 6.1 in [242]).

It is straightforward to check that there is a canonical isometric isomorphism UPFp(G) ∼=

F pQS(G).

Note that L2 is precisely the class of all Hilbert spaces. Since subspaces and quotients of

Hilbert spaces are again Hilbert spaces, we have QSL2 = QL2 = SL2 = L2. This easily implies the

following result.
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Lemma XIV.2.10. Let G be a locally compact group, and let f ∈ L1(G). Then

‖f‖QSL2 = ‖f‖QL2 = ‖f‖SL2 = ‖f‖L2 .

It follows that there are canonical, isometric isomorphisms

F 2
QS(G) ∼= F 2

Q(G) ∼= F 2
S (G) ∼= F 2(G).

The algebra F 2(G) is in fact a C∗-algebra, called the full group C∗-algebra of G, and it is

usually denoted C∗(G).

The universal completions from Notation XIV.3.10 also agree when p = 1, in which case

they are all equal to L1(G):

Proposition XIV.2.11. Let G be a locally compact group, and let f ∈ L1(G). Then

‖f‖QSL1 = ‖f‖QL1 = ‖f‖SL1 = ‖f‖L1 = ‖f‖1.

It follows that there are canonical, isometric isomorphisms

F 1
QS(G) ∼= F 1

Q(G) ∼= F 1
S (G) ∼= F 1(G) ∼= L1(G).

Proof. Let us denote by λ1 : L1(G) → B(L1(G)) the integrated form of the left regular

representation. Then λ1 is the action of L1(G) on itself by left convolution.

Given f in L1(G), it is clear that ‖f‖L1 ≤ ‖f‖1. For the reverse inequality, let (ed)d∈Λ be a

contractive approximate identity for L1(G). Then

‖λ1(f)‖ = sup
{
‖f∗ξ‖1
‖ξ‖1 : ξ ∈ L1(G), ξ 6= 0

}
≥ sup
d∈Λ
‖f ∗ ed‖1 = ‖f‖1,

so ‖f‖1 = ‖λ1(f)‖ ≤ ‖f‖L1 ≤ ‖f‖1. It follows that the norms ‖ · ‖1 and ‖ · ‖L1 agree, and thus

F 1(G) = L1(G).

Let E be any of the classes QSL1, SL1, or QL1. It follows from the paragraph above that

the composition L1(G) → FE(G) → F 1(G) equals the identity map on L1(G). The canonical map

FE(G)→ F 1(G) is therefore isometric, and the result follows.
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We will later show that for most values of p ∈ [1,∞), the algebras F pS (G), F pQ(G), and

F p(G) are canonically isometrically isomorphic, regardless of G; see Corollary XIV.2.27. When G

is amenable, we have F pQS(G) = F pS (G) = F pQ(G) = F p(G), regardless of p; see Theorem XIV.3.7.

Remark XIV.2.12. The proof of Proposition XIV.2.11 also shows that the algebra of 1-

pseudofunctions F 1
λ(G) on G (see Definition XIV.3.1) is canonically isometrically isomorphic to

L1(G) as well. However, for p > 1, the analogous result holds if and only if G is amenable; see

Theorem XIV.3.7.

The following observation will allow us to define natural maps between the different

universal completions.

Remark XIV.2.13. Let E1 and E2 be classes of Banach spaces, and suppose that E1 ⊆ E2. Then

‖f‖E1 ≤ ‖f‖E2

for all f ∈ L1(G), and hence the identity map on L1(G) induces a canonical contractive

homomorphism FE2(G)→ FE1(G).

Notation XIV.2.14. Let G be a locally compact group, and let p ∈ [1,∞). By

Remark XIV.2.13, the inclusions Lp ⊆ SLp ⊆ QSLp and Lp ⊆ QLp ⊆ QSLp induce canonical

contractive homomorphisms between the corresponding universal completions. We summarize the

induced maps in the following commutative diagram:

F pS (G)
κpS
&&

F pQS(G)

κpQS,S 88

κpQS,Q
&&

F p(G).

F pQ(G)
κpQ

99

We write κpQS for the composition κpS ◦ κ
p
QS,S, which also equals κpQ ◦ κ

p
QS,Q. Finally, when the

Hölder exponent p is clear from the context, we will drop it from the notation in the natural

maps.
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Notation XIV.2.15. Let G be a locally compact group, and let p, q ∈ [1,∞). If p ≤ q ≤ 2,

Proposition XIV.2.7 implies that there is a canonical contractive homomorphism

κSLp,Lq : F pS (G)→ F q(G)

with dense range. Likewise, for 2 ≤ r ≤ s, there is a canonical contractive homomorphism

κQLs,Lr : F sQ(G)→ F r(G)

with dense range.

Duality

Recall that if A is a complex algebra, its opposite algebra, denoted by Aop, is the complex

algebra whose underlying vector space structure is the same as for A, and the product of two

elements a and b in Aop is equal to ba. When A is moreover a Banach (∗-)algebra, we take Aop to

carry the same norm (and involution) as A.

An anti-homomorphism ϕ : A → B between algebras A and B is a linear map satisfying

ϕ(ab) = ϕ(b)ϕ(a) for all a and b in A. Equivalently, ϕ is a homomorphism A → Bop. Similar

terminology and definitions apply to other objects such as topological groups.

Lemma XIV.2.16. Let G be a locally compact group. Then there is a canonical isometric

isomorphism L1(Gop) ∼= L1(G)op. Furthermore, if E is a class of Banach spaces, then there is a

canonical isometric isomorphism FE(G
op) ∼= FE(G)op.

Proof. We fix a left Haar measure µ on G, and we denote by ν the right Haar measure on G

given by ν(E) = µ(E−1) for every Borel set E ⊆ G. Then ν is a left Haar measure for Gop.

It is immediate that inversion on G, when regarded as a map (G,µ) → (Gop, ν), is a measure-

preserving group isomorphism. We denote by ∗ the operation of convolution on L1(G), and by

∗op the operation of convolution on L1(Gop) (which is performed with respect to ν). Similarly, we

denote by · the product in G, and by ·op the product in Gop.
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Given f and g in L1(Gop), and given s ∈ Gop, we have

(f ∗op g)(s) =

∫
G

f(t)g(t−1 ·op s) dν(t)

=

∫
G

f(t)g(s · t−1) dν(t)

=

∫
G

f(t−1)g(s · t) dµ(t)

= (g ∗ f)(s).

It follows that the identity map on L1(G) induces a canonical isometric anti-isomorphism

L1(Gop)→ L1(G), and the result follows.

The last claim is straightforward.

Remark XIV.2.17. We mention, without proof, two easy facts that will be used in the proof of

Proposition XIV.2.18. First, if E is a class of Banach spaces, and G and H are locally compact

groups, then any isomorphism G → H induces an isometric isomorphism FE(H) → FE(G).

Second, with the same notation, inversion on G defines an isomorphism G → Gop, so there are

canonical isomorphisms

FE(G) ∼= FE(G
op) ∼= FE(G)op,

where the second isomorphism is the one given by Lemma XIV.2.16.

Proposition XIV.2.18. Let G be a locally compact group, let p ∈ (1,∞), and let p′ be its

conjugate exponent. Then there are canonical isometric isomorphisms

F pQS(G) ∼= F p
′

QS(G), F pQ(G) ∼= F p
′

S (G), and F p(G) ∼= F p
′
(G).

Proof. Let E be any class of Banach spaces, and denote by E ′ the class of those Banach spaces

that are dual to a Banach space in E . For π in RepE(G) and f in L1(G), we have

‖(π(f))′‖ = ‖π(f)‖.

Since taking adjoints reverses multiplication of operators, it follows that the identity map on

L1(G) induces a canonical isometric isomorphism FE(G) ∼= FE′(G)op. Upon composing this

485



isomorphism with the isomorphism FE′(G) ∼= FE′(G)op described in Remark XIV.2.17, we obtain a

canonical isometric isomorphism

FE(G) ∼= FE′(G).

To finish the proof, it is enough to observe that for p ∈ (1,∞), there are natural

identifications

(QSLp)′ = SQLp
′

= QSLp
′
, (QLp)′ = SLp

′
, (SLp)′ = QLp

′
, and (Lp)′ = Lp

′
.

Canonical maps F p(G)→ F q(G)

In this subsection, we will construct, for any locally compact group G, a natural map

F p(G)→ F q(G) whenever 1 ≤ p ≤ q ≤ 2 or 2 ≤ q ≤ p <∞.

The construction of these maps takes considerable work, since Lq-spaces are never Lp-

spaces, except in trivial cases. However, it is often the case that an Lq-space is a subspace of an

Lp-space (see Proposition XIV.2.7). To take advantage of this fact, we need to study extensions

of isometries from subspaces of Lp-spaces to Lp-spaces; see Theorem XIV.2.21. Our argument is

based on ideas used by Hardin ([110]).

The following definition is due to Hardin.

Definition XIV.2.19. Let (X,A, µ) be a σ-finite measure space, let p ∈ [1,∞) and let f0 ∈

Lp(X,µ). Define the support of f0 to be

supp(f0) = {x ∈ X : f0(x) 6= 0} .

Note that supp(f0) is well-defined up to null sets. If F is a closed subspace of Lp(X,µ), we say

that f0 has full support in F if

µ (supp(f) \ supp(f0)) = 0

for all f ∈ F .

The following terminology and notations will be convenient.
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Definition XIV.2.20. Let F be a Banach space. We denote by Isom(F ) the group of surjective,

linear isometries of F , and we equip it with the strong operator topology. In this topology, a net

(ud)d∈Λ in Isom(F ) converges to u ∈ Isom(F ) if and only if lim
d∈Λ
‖ud(ξ)− u(ξ)‖ = 0 for every ξ ∈ F .

We call Isom(F ) the isometry group of F .

If F is a closed subspace of another Banach space F̃ , we let Isom(F̃ , F ) denote the

subgroup of Isom(F̃ ) consisting of those isometries that leave F invariant.

The next result asserts that if p is not a multiple of 2 greater than 2, then for every

separable SLp-space F , there exists an Lp-space F̃ containing F , such that every invertible

isometry on F can be extended to an invertible isometry on F̃ . Note that this is stronger than

the statement that every isometry on a separable SLp-space can be extended to an isometry on

some Lp-space.

Theorem XIV.2.21. Let p ∈ [1,∞) \ {4, 6, . . .}, and let F be a separable SLp-space. Then there

exists a separable Lp-space F̃ such that F is isometrically isomorphic to a subspace of F̃ , and

such that every surjective, linear isometry on F can be extended to a surjective, linear isometry

on F̃ . Moreover, the restriction map

ϕ : Isom(F̃ , F )→ Isom(F ),

is a surjective homeomorphism.

Proof. The statement is trivial for p = 2, since a closed subspace of a Hilbert space is a Hilbert

space itself. We may therefore assume that p ∈ [1,∞) \ {2, 4, 6, . . .}.

The proof in this case is based on the proof of Theorem 4.2 in [110], and we use the same

notation when possible. Since σ-algebras will play an important role, they will not be omitted

from the notation.

Let (X,A, µ) be a σ-finite measure space such that F can be identified with a closed

subspace of Lp(X,A, µ). We let Full(F ) denote the set of elements in F that have full support

in F . It follows from Lemma 3.2 in [110] that Full(F ) is nonempty. Without loss of generality, we

may assume that supp(f0) = X for every f0 ∈ Full(F ).

Let f0 ∈ Full(F ). Set

Q(f0) =
{
f
f0

: f ∈ F
}
,
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and let σ(Q(f0)) denote the smallest σ-algebra on X such that every function in Q(f0) is

measurable with respect to σ(Q(f0)). Hardin showed in the proof of Lemma 3.4 in [110] that

σ(Q(f0)) does not depend on the choice of f0 in Full(F ). We will therefore write B for σ(Q(f0)),

which equals σ(Q(g0)) for any other g0 ∈ Full(F ). Since every element of Q(f0) is A-measurable,

we clearly have B ⊆ A.

It is not in general the case that the elements of Q(f0) are in Lp(X,B, µ). Instead, we shall

consider the measure |f0|pµ on (X,B). If f ∈ F , then

‖f‖p =

(∫
X

|f |p dµ
) 1
p

=

(∫
X

∣∣∣ ff0

∣∣∣p |f0|p dµ
) 1
p
<∞.

It follows that Q(f0) is a subset of Lp (X,B, |f0|pµ), and that the map

Df0
: F → Lp (X,B, |f0|pµ)

given by Df0
(f) = f

f0
for f ∈ F , is an isometry. Set

F̃ = {f0h : h ∈ Lp (X,B, |f0|pµ)} .

By the proof of Theorem 4.2 in [110], the space F̃ does not depend on the choice of the element

f0 of full support. Moreover, F is a subspace of F̃ and Df0 extends to an isometric isomorphism

F̃ → Lp (X,B, |f0|pµ), which we also denote by Df0
.

Let u ∈ Isom(F ). We claim that u can be canonically extended to a surjective, linear

isometry ũ on F̃ .

Set g0 = u(f0), which belongs to Full(F ) by Lemma 3.4 in [110]. Then u induces

a linear isometry v from the subspace Q(f0) of Lp (X,B, |f0|pµ) to the subspace Q(g0) of

Lp (X,B, |g0|pµ). The maps to be constructed are shown in the following commutative diagram:

488



F � u

((

//

u

��

Q(f0) � u

((
v

��

F̃
Df0
∼=

//

ũ

��

Lp(B, |f0|pµ)

ṽ

��

F � u

((

// Q(g0) � u

((
F̃

Dg0
∼=

// Lp(B, |g0|pµ)

The constant function 1 = f0

f0
belongs to Q(f0), and also to Q(g0). It is easy to see that v

satisfies v(1) = 1. Apply Theorem 2.2 in [110] to extend v uniquely to a surjective, linear isometry

ṽ on F̃ . The desired isometry ũ is then given by

ũ = D−1
g0
◦ ṽ ◦Df0

.

The claim is proved.

The assignment u 7→ ũ defines an inverse to the restriction map ϕ, so ϕ is surjective. It is

clear that ϕ is a group homomorphism, and it is easy to see that ϕ is continuous. It remains to

show that ϕ−1 is continuous.

We first describe the elements in F̃ . Let n ∈ N and let ξ : Cn → C be a measurable map. If

f1, . . . , fn are elements of F , then the function

h = ξ
(
f1

f0
, . . . , fnf0

)

is B-measurable. Therefore, f0h is an element of F̃ whenever

∫
|f0(x)h(x)|p dµ(x) <∞.

It is not hard to check that elements of this form are dense in F̃ . Finally, if u ∈ Isom(F ), then its

unique extension ũ to F̃ satisfies

ũ(f0h) = u(f0)ξ
(
u(f1)
u(f0) , . . . ,

u(fn)
u(f0)

)
.
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It follows that the assignment u 7→ ũ(f0h), as a map Isom(F ) → F̃ , is measurable, and

hence ϕ−1 is measurable.

Note that Isom(F ) and Isom(F̃ ) are Polish groups, since F and F̃ are separable Banach

spaces. It follows that Isom(F̃ , F ) is a Polish group, being a closed subgroup of Isom(F̃ ).

Since ϕ−1 is a measurable group homomorphism between Polish groups, it follows that ϕ−1 is

continuous (see, for example, Theorem 9.10 in [147]). The proof is finished.

Corollary XIV.2.22. Let p ∈ [1,∞) \ {4, 6, . . .}. Then, the isometry group of every separable

SLp-space is topologically isomorphic to a closed subgroup of the isometry group of a separable

Lp-space.

Question XIV.2.23. Does Corollary XIV.2.22 also hold in the nonseparable case? That is, is

the the isometry group of every SLp-space topologically isomorphic to a closed subgroup of the

isometry group of an Lp-space?

We now turn to the construction of the maps F p(G) → F q(G). When G is second

countable, their existence follows easily from the next corollary. For general G, however, said

corollary will be used as the base case of an induction argument, the inductive step being

Lemma XIV.2.25.

Corollary XIV.2.24. Let p ∈ [1,∞) \ {4, 6, . . .}, let G be a second countable, locally compact

group, and let f ∈ L1(G). Then ‖f‖SLp = ‖f‖Lp .

Proof. Since Lp ⊆ SLp, we have ‖f‖Lp ≤ ‖f‖SLp ; see also Remark XIV.2.13. By (2) in

Remarks XIV.2.9, there exist a separable SLp-space E and an isometric group representation

ρ : G→ Isom(E) such that, with π : L1(G)→ B(E) denoting the integrated form of ρ, we have

‖f‖SLp = ‖π(f)‖.

By Theorem XIV.2.21, there exist an Lp-space Ẽ containing E as a closed subspace, and a

topological group isomorphism

ϕ : Isom(E)→ Isom(Ẽ, E).
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Consider the isometric group representation of G on Ẽ given by

ρ̃ = ϕ ◦ ρ : G→ Isom(Ẽ, E) ⊆ Isom(Ẽ).

Let π̃ : L1(G)→ B(Ẽ) be the integrated form of ρ̃.

It is easy to see, using that ρ̃(s) leaves E invariant for every s ∈ G, that π̃(f) leaves E

invariant as well. Using this at the second step, we get

‖π(f)‖ = sup {‖π(f)ξ‖p : ξ ∈ E, ‖ξ‖p ≤ 1}

≤ sup
{
‖π̃(f)ξ‖p : ξ ∈ Ẽ, ‖ξ‖p ≤ 1

}
= ‖π̃(f)‖.

Therefore,

‖f‖SLp = ‖π(f)‖ ≤ ‖π̃(f)‖ ≤ sup {‖τ(f)‖ : τ ∈ RepG(Lp)} = ‖f‖Lp ,

as desired.

Lemma XIV.2.25. Let p ∈ [1,∞) \ {4, 6, . . .}, let G be a σ-compact, locally compact group, and

let f ∈ L1(G). Then ‖f‖SLp = ‖f‖Lp .

Proof. We may assume that ‖f‖1 ≤ 1. As in the proof of Corollary XIV.2.24, we have ‖f‖Lp ≤

‖f‖SLp . Let us show the reverse inequality. By (2) in Remarks XIV.2.9, there exists a SLp-space

E and an isometric group representation ρ : G → Isom(E) whose integrated form π : L1(G) →

B(E) satisfies

‖f‖SLp = ‖π(f)‖.

Let ε > 0. Choose ξ0 in E with ‖ξ0‖ = 1 such that

‖π(f)ξ0‖ ≥ ‖π(f)‖ − ε
2 . (XIV.1)

Since ρ is continuous, there exists an open neighborhood V of the identity element e in G such

that ‖ρ(s) − idE‖ < ε
2 for every s ∈ V . By the Kakutani-Kodaira Theorem (see e.g. [119,

Theorem 8.7, p.71]), there exists a compact, normal subgroup N of G such that N ⊆ V and

such that G/N is second countable.
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We consider the fixed point subspace of E for the (restricted) action of N on E:

EN = {ξ ∈ E : ρ(s)ξ = ξ for all s ∈ N}.

With µ denoting the normalized Haar measure on N , define an averaging map PN : E → EN by

PN (ξ) =

∫
N

ρ(s)ξ dµ(s)

for all ξ ∈ E. Then PN is contractive and linear.

For every η in E with ‖η‖ ≤ 1, we have

‖PN (η)− η‖ =

∥∥∥∥∫
N

(ρ(s)η − η) dµ(s)

∥∥∥∥ ≤ ∫
N

‖ρ(s)− idE‖ · ‖η‖ dµ(s) < ε
2 .

Since ‖π(f)ξ0‖ ≤ 1, we deduce that

‖PN (π(f)ξ0)‖ ≥ ‖π(f)ξ0‖ −
ε

2
. (XIV.2)

The isometric representation ρ : G → Isom(E) induces an isometric representation

ρN : G/N → Isom(EN ) given by

ρ(sN)ξ = ρ(s)ξ

for all s ∈ G and ξ ∈ E. Let πN : L1(G/N)→ B(EN ) denote the integrated form of ρN . Since EN

is a closed subspace of E, it follows that EN is a SLp-space.

The map PN induces a linear map QN : B(E) → B(EN ), which sends an operator a ∈ B(E)

to the operator QN (a) : EN → EN given by

QN (a)ξ = PN (aξ)

for ξ ∈ EN ⊆ E.

Consider the map TN : L1(G)→ L1(G/N) given by

TN (g)(sN) =

∫
N

g(sn) dµ(n).
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for s ∈ G. It is well-known that TN is a contractive homomorphism; see [224, Theorem 3.5.4,

p.106]. It is straightforward to check that the following diagram is commutative:

L1(G)
π //

TN

��

B(E)

QN

��
L1(G/N)

πN
// B(EN ).

In particular,

πN (TN (f))PN (ξ) = PN (π(f)ξ)

for all ξ ∈ E.

Using that ‖PN (ξ0)‖ ≤ 1 at the second step, using (XIV.2) at the fourth step, and using

(XIV.1) at the last step, we conclude that

‖TN (f)‖SLp ≥ ‖πN (TN (f))‖

≥ ‖πN (TN (f))PN (ξ0)‖

= ‖PN (π(f)ξ0)‖

≥ ‖π(f)ξ0‖ − ε
2

≥ ‖π(f)‖ − ε.

Since G/N is second countable, we may apply Corollary XIV.2.24 at the second step to

obtain

‖f‖Lp ≥ ‖TN (f)‖Lp = ‖TN (f)‖SLp ≥ ‖π(f)‖ − ε = ‖f‖SLp − ε.

Since this holds for all ε > 0, we have shown that ‖f‖SLp ≤ ‖f‖Lp , as desired.

Theorem XIV.2.26. Let p ∈ [1,∞) \ {4, 6, . . .}, let G be a locally compact group, and let

f ∈ L1(G). Then ‖f‖SLp = ‖f‖Lp .

Proof. It is enough to prove the statement under the additional assumption that f belongs to

Cc(G), the algebra of continuous functions G → C that have compact support. In this case, there
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exists an open (and hence closed) subgroup H of G such that H is σ-compact and such that the

support of f is contained in H.

Given a function g in L1(H), we extend g to a function in L1(G), also denoted by g, by

setting g(s) = 0 for all s ∈ G \ H. This defines an isometric homomorphism ι : L1(H) → L1(G).

Considering the universal completions for representations on SLp- and Lp-spaces, we obtain two

contractive homomorphisms

αS : F pS (H)→ F pS (G), α : F p(H)→ F p(G).

Together with the maps κHS and κGS from Notation XIV.2.14, we obtain the following commutative

diagram:

F pS (H)

αS

��

κHS // F p(H)

α

��
F pS (G)

κGS

// F p(G).

We can consider f as a function in L1(H) or in L1(G), and we will denote the norms in the

corresponding universal completions by ‖f‖HLp , ‖f‖HSLp , ‖f‖GLp and ‖f‖GSLp .

As in the proof of Corollary XIV.2.24, we have ‖f‖GLp ≤ ‖f‖GSLp . Using that αS is

contractive at the first step, and applying Lemma XIV.2.25 for H at the second step, we deduce

that

‖f‖GSLp ≤ ‖f‖HSLp = ‖f‖HLp .

Thus, in order to obtain the desired inequality ‖f‖GSLp ≤ ‖f‖GLp , it is enough to show that

‖f‖HLp ≤ ‖f‖GLp .

By (2) in Remarks XIV.2.9, there exist a Lp-space E and an isometric group representation

ρ : H → Isom(E) whose integrated form π : L1(H)→ B(E) satisfies

‖f‖HLp = ‖π(f)‖.
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We can induce ρ to an isometric representation of G as follows: Consider the space

IndGH(E) =

ω ∈ `∞(G,E) :
ρ(h)(ω(sh)) = ω(s) for all s ∈ G and h ∈ H

and (sH 7→ ‖ω(s)‖) is in `p(G/H)

 ,

with the norm of an element ω ∈ IndGH(E) given by

‖ω‖ =

 ∑
sH∈g/H

‖ω(s)‖p
1/p

.

(The covariance condition ρ(h)(ω(sh)) = ω(s) ensures that for each s in S the norm ‖ω(s)‖

depends only on the class of s in G/H.) Since G/H is discrete, we can choose a section

σ : G/H → G. By assigning to an element ω ∈ IndGH(E) ⊆ `∞(G,E) the function ω ◦σ : G/H → E,

we obtain an isometric isomorphism

IndGH(E)
∼=−→ `P (G/H,E) ∼=

p⊕
G/H

E,

which shows that IndGH(E) is an Lp-space.

The induced representation ρ̃ = IndGH(ρ) : G→ Isom(IndgH(E)) is given by

(ρ̃(s)ω)(t) = ω(s−1t),

for ω ∈ Ẽ, and s, t ∈ G. We let π̃ : L1(G)→ B(IndGH(E)) denote the integrated form of ρ̃.

Consider the map ε : E → IndGH(E) given by

ε(ξ)(s) =


ρ(s−1)ξ, s ∈ H

0, s /∈ H

for ξ ∈ E. Let e denote the unit element in G, and consider the evaluation map eve : IndGH(E) →

E. We have that ε and eve are linear and contractive, and that eve ◦ ε = idE . It follows in

particular that ε defines an isometric embedding of E into IndGH(E). We can use ε and eve to
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define an isometric homomorphism Q : B(E)→ B(IndGH(E)) by

Q(a)ω = ε(aeve(ω)) = ε(aω(e))

for a ∈ B(E) and ω ∈ IndGH(E). It is then straightforward to check that the following diagram is

commutative:

L1(H)
π //

ι

��

B(E)

Q

��
L1(G)

π̃ // B(Ẽ).

We a slight abuse of notation, we write f = ι(f). We conclude that

‖f‖GLp ≤ ‖π̃(f)‖ = ‖Q(π(f))‖ = ‖π(f)‖ = ‖f‖HLp ,

which is the desired inequality.

The above theorem can be used to show that, for some values of p ∈ [1,∞), the canonical

maps between certain universal completions are always isometric.

Corollary XIV.2.27. Let p ∈ [1,∞) and let G be a locally compact group.

1. If p /∈ {4, 6, 8, . . .}, then the canonical map

κS : F pS (G)→ F p(G),

is an isometric isomorphism.

2. If p /∈ { 4
3 ,

6
5 ,

8
7 , . . .}, then the canonical map

κQ : F pQ(G)→ F p(G),

is an isometric isomorphism.

Proof. The first statement is an immediate consequence of Theorem XIV.2.26. The second claim

follows from part (1), using duality. We omit the details.
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Remark XIV.2.28. It is known that the conclusion of Theorem XIV.2.21 fails for p ∈

{4, 6, 8, . . .}. Indeed, in [178], Lusky shows that the Hardin’s extension theorem (Theorem 4.2

in [110]) fails for all even integers greater than 2, providing concrete counterexamples that are

based on computations of Rudin in Example 3.6 of [240]. However, we do not know whether the

restrictions on the Hölder exponent are necessary in Theorem XIV.2.26 and Corollary XIV.2.27.

Corollary XIV.2.27 suggests the following:

Question XIV.2.29. Let G be a locally compact group and let

p ∈ [1,∞) \
{

2n,
2n

2n− 1
: n ≥ 2

}
.

Then there are canonical isometric isomorphisms F p(G) ∼= F pS (G) ∼= F pQ(G). Is the canonical map

F pQS(G)→ F p(G) an isometric isomorphism?

Again, the answer to the above question is yes if p = 1, 2, and also if G is amenable

(for arbitrary p). One would hope to be able to combine the facts that F p(G) ∼= F pS (G) and

F p(G) ∼= F pQ(G) to say something about F pQS(G) in relation to F p(G), but this is not clear.

Question XIV.2.29 may well have a negative answer.

The following is the main result of this subsection.

Theorem XIV.2.30. Let G be a locally compact group.

1. If 1 ≤ p ≤ q ≤ 2, then the identity map on L1(G) extends to a contractive homomorphism

γp,q : F p(G)→ F q(G)

with dense range.

2. If 2 ≤ r ≤ s, then the identity map on L1(G) extends to a contractive homomorphism

γs,r : F s(G)→ F r(G)

with dense range.
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Moreover, the following diagram is commutative:

F pS (G)

$$
κpS

∼=
��

F qS (G)

$$
κqS

∼=
��

F 2
S (G)

F p(G)
γp,q
// F q(G)

γq,2
// C∗(G) F r(G)

γr,2oo F s(G)
γs,roo

F 2
Q(G) F rQ(G)

dd

κrQ ∼=

OO

F sQ(G)

dd

κsQ ∼=

OO

Proof. We only prove the first part, since the second one follows from the first using duality. Let

f ∈ L1(G). We use Proposition XIV.2.7 at the first step and Corollary XIV.2.27 at the second to

get

‖f‖Lq ≤ ‖f‖SLp = ‖f‖Lp .

We conclude that the identity map on L1(G) extends to a contractive homomorphism

γp,q : F p(G) → F q(G) with dense range. Commutativity of the diagram depicted in the statement

follows from the fact that all the maps involved are the identity on the respective copies of

L1(G).

We point out that the statement analogous to Theorem XIV.2.30 is in general false for etale

groupoids. (Etale groupoid Lp-operator algebras are introduced and studied in Chapter XX.)

Indeed, the analogs of Cuntz algebras Opn on Lp-spaces (introduced by Phillips in [204]), are

groupoid Lp-operator algebras by Theorem XX.7.7. On the other hand, if p and q are different

Hölder exponents and n ≥ 2 is an integer, then there is no non-zero continuous homomorphism

Opn → Oqn by Corollary 9.3 in [204] (see also the comments after it), which rules out any

reasonable generalization of Theorem XIV.2.30 to groupoids. In particular, there seems to be

no analog of Hardin’s results (or our Theorem XIV.2.21) for groupoids.

Algebras of p-pseudofunctions and Amenability

In this section, we recall the construction of the algebra F pλ (G) of p-pseudofunctions on a

locally compact group G, for p ∈ [1,∞), as introduced by Herz in [116]. (Our notation differs from

the one used by Herz.) There are natural contractive homomorphisms with dense range from any

of the universal completions studied in the previous section, to the algebra of p-pseudofunctions.
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In Theorem XIV.3.7, we characterize amenability of a locally compact group G in terms of these

maps. As an application, we show in Corollary XIV.3.20 that for an amenable group G, and for

1 ≤ p ≤ q ≤ 2 or for 2 ≤ q ≤ p < ∞, the canonical map γp,q : F p(G) → F q(G) constructed in

Theorem XIV.2.30 is always injective, and that it is surjective if and only if G is finite.

Algebras of p-pseudofunctions

We denote by p a fixed Hölder exponent in [1,∞). For a locally compact group G, let

λp : L1(G) → B(Lp(G)) denote the (integrated form of the) left regular representation of G on

Lp(G). For f in L1(G), we have λp(f)ξ = f ∗ ξ for all ξ ∈ Lp(G).

Definition XIV.3.1. Let G be a locally compact group. The algebra of p-pseudofunctions on G,

here denoted by F pλ (G), is the completion of L1(G) with respect to the norm induced by the left

regular representation of L1(G) on Lp(G).

Remark XIV.3.2. Let G be a locally compact group. The left regular representation

λp : L1(G) → B(Lp(G)) induces an isometric embedding F pλ (G) → B(Lp(G)) under which we

regard F pλ (G) as represented on Lp(G). In particular, F pλ (G) is an Lp-operator algebra.

In the literature, the elements of F pλ (G) have been called p-pseudofunctions, and the

Banach algebra F pλ (G) is usually denoted by PFp(G). This terminology goes back to Herz; see

Section 8 in [116]. (We are thankful to Y. Choi and M. Daws for providing this reference.) Our

notation follows one of the standard conventions in C∗-algebra theory ([24]). We also warn

the reader that F pλ (G) has also been called the reduced group Lp-operator algebra of G, and is

sometimes denoted F pr (G), for example in [207].

It is immediate to check that when p = 2, the algebra F 2
λ(G) agrees with the reduced group

C∗-algebra of G, which is usually denoted C∗λ(G).

The proof of the following proposition is straightforward and is left to the reader.

Proposition XIV.3.3. Let G be a locally compact group. The left regular representation of

L1(G) on Lp(G) is a representation in RepG(Lp). Therefore, the identity map on L1(G) induces a

canonical contractive homomorphism

κ : F p(G)→ F pλ (G)
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with dense range.

We now turn to duality. Let G be a locally compact group, and denote by ∆: G → R its

modular function. For f ∈ L1(G), let f ] : G→ C be given by f ](s) = ∆(s−1)f(s−1) for all s in G.

Remark XIV.3.4. For f and g in L1(G), it is straightforward to check that

1. (f ])] = f ;

2. (f ∗ g)] = g] ∗ f ]; and

3. ‖f ]‖1 = ‖f‖1 for all f in L1(G).

In other words, the map f 7→ f ] defines an isometric anti-automorphism of L1(G). It is also

immediate to check that if G is unimodular, then f 7→ f ] also defines an isometric anti-

automorphism of Lp(G) for every p ∈ [1,∞].

Let p ∈ (1,∞), and denote by p′ its conjugate exponent. Consider the bilinear paring

Lp(G)× Lp′(G)→ C given by

〈ξ, η〉 =

∫
G

ξ(s)η(s)ds

for all ξ ∈ Lp(G) and all η ∈ Lp′(G). It is a standard fact that

‖ξ‖p = sup
{
|〈ξ, η〉| : η ∈ Lp

′
(G), ‖η‖p′ = 1

}

for every ξ ∈ Lp(G).

Proposition XIV.3.5. Let G be a locally compact group, let p ∈ (1,∞), and let p′ be its

conjugate exponent. Then there is a canonical isometric anti-isomorphism F pλ (G) ∼= F p
′

λ (G),

which is induced by the map ] : L1(G)→ L1(G).
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Proof. Given f in L1(G), we claim that λp(f
])′ = λp′(f). Fix ξ ∈ Lp(G) and η ∈ Lp′(G). Then

〈f ] ∗ ξ, η〉 =

∫
G

(f ] ∗ ξ)(s)η(s)ds

=

∫
G

(∫
G

∆(t−1)f ](st−1)ξ(t)dt

)
η(s)ds

=

∫
G

∫
G

∆(t−1)∆(ts−1)f(ts−1)ξ(t)η(s)dtds

=

∫
G

(∫
G

∆(s−1)f(ts−1)η(s)ds

)
ξ(t)dt

=

∫
G

(f ∗ η)(t)ξ(t)dt

= 〈ξ, f ∗ η〉,

so the claim follows.

It follows that ‖λp(f ])‖ = ‖λp′(f)‖, and hence the map ] : L1(G) → L1(G) induces a

canonical isometric anti-isomorphism F pλ (G)→ F p
′

λ (G), as desired.

With the notation of the proposition above, we point out that when p 6= 2, we do not

seem to get the existence of a canonical isometric isomorphism F pλ (G) ∼= F p
′

λ (G), since ‖λp(f)‖

and ‖λp(f ])‖ are not in general equal, unless G is abelian (see Proposition XIV.3.22). In fact,

Herz proved in Corollary 1 of [117], that for every finite non-abelian group G, and for every p ∈

(1,∞) \ {2}, there exists f ∈ `1(G) such that ‖λp(f)‖p 6= ‖λp′(f)‖p′ .

Group and Banach algebra amenability

Let us recall some facts from functional analysis. If E is a Banach space and ξ ∈ E, then

‖ξ‖ = sup {|f(ξ)| : f ∈ E′, ‖f‖ = 1} ,

This can be used to easily prove the following result.

Lemma XIV.3.6. Let E and F be two Banach spaces, and let ϕ : E → F be a bounded linear

map.

1. The map ϕ has dense image if and only if ϕ′ is injective.

2. The map ϕ is an isometric isomorphism if and only if ϕ′ is.
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The next theorem characterizes amenability of a locally compact group in terms of the

canonical maps between its enveloping operator algebras. The case p = 2 of the result below is a

standard fact in C∗-algebra theory; see Theorem 2.6.8 in [24].

When E = Lp, the equivalence between (1) and (2) in the theorem below was independently

obtained by Phillips, whose methods are inspired in C∗-algebraic techniques; see [211].

We denote by κu : F pQS(G)→ F pλ (G) the composition κ ◦ κQS.

Theorem XIV.3.7. Let G be a locally compact group, and let p ∈ (1,∞). Then the following

are equivalent:

1. The group G is amenable.

2. With E denoting any of the classes QSLp, SLp, QLp or Lp, the canonical map FE(G) →

F pλ (G) is an isometric isomorphism.

3. With E denoting any of the classes QSLp, SLp, QLp or Lp, the canonical map FE(G) →

F pλ (G) is a (not necessarily isometric) isomorphism.

Proof. We begin by introducing the notation that will be used to prove the equivalences.

Let p′ be the dual exponent of p. Let Bp′(G) be the p′-analog of the Fourier-Stieltjes

algebra, as introduced in [242]. By definition, Bp′(G) is the set of coefficient functions of

representations of G on QSLp-spaces. We may think of Bp′(G) as a subalgebra of the algebra

Cb(G) of bounded continuous functions on G, except that the norm of Bp′(G) is not induced by

the norm of Cb(G).

Under the canonical identification of UPFp(G) and F pQS(G) (see Remarks XIV.2.9),

Theorem 6.6 in [242] provides a canonical isometric isomorphism

F pQS(G)′ ∼= Bp′(G) ⊆ Cb(G).

We now turn to the equivalence between the statements.

(1) implies (2). It is enough to show that the map κu : F pQS(G) → F pλ (G) is isometric.

Under the assumption that G is amenable, it follows from Theorems 6.7 in [242] that the dual

map κ′ : F pλ (G)′ → F pQS(G)′ of κ, is an isometric isomorphism. Indeed, with the notation used
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there, and writing ∼= for isometric isomorphism, we have

F pλ (G)′ ∼= PFp(G)′
∼=−→ Bp′(G) ∼= F pQS(G)′.

It thus follows from Lemma XIV.3.6 that κu is an isometric isomorphism, as desired.

(2) implies (3). Clear.

(3) implies (1). It is enough to show the result assuming that κ : F p(G) → F pλ (G) is an

isomorphism.

We regard the dual of κu as a map κ′u : F pλ (G)′ → Bp′(G) ⊆ Cb(G). By Theorem 4.1 in

[189], a locally compact group G is amenable if and only if the constant function 1 on G belongs

to the image of F pλ (G)′ in Bp′(G) ⊆ Cb(G). Note that 1 always belongs to the image of F p(G)′

in Bp′(G), since it is a coefficient function of the trivial representation (on an Lp
′
-space). Now, if

κ : F p(G) → F pλ (G) is an isomorphism, then so is the dual map κ′ : F pλ (G)′ → F p(G)′. It follows

that 1 is in the image of F pλ (G)′ in Bp(G) ⊆ Cb(G), and hence G is amenable.

One must exclude p = 1 in Theorem XIV.3.7, since the canonical maps are always isometric

in this case, as was shown in Proposition XIV.2.11 and Remark XIV.2.12.

Theorem XIV.3.7 raises the following natural questions:

Question XIV.3.8. Let G be a locally compact group and let p ∈ (1,∞). Is the canonical map

κ : F p(G)→ F pλ (G) always surjective?

The question above has an affirmative answer if either p = 2 or G is amenable, and there

are no known counterexamples.

If Question XIV.3.8 has a negative answer, it would be interesting to explore the following:

Problem XIV.3.9. Let p ∈ (1,∞) \ {2}. Characterize those locally compact groups G for which

the canonical map κ : F p(G)→ F pλ (G) is injective.

If the answer to Question XIV.3.8 is ‘yes’, then the problem above would have the expected

solution: injectivity of the canonical map κ : F p(G) → F pλ (G) would be equivalent to amenability,

by the equivalence between (1) and (3) in Theorem XIV.3.7, by the Open Mapping Theorem.

Although unlikely, the answer to Problem XIV.3.9 could in principle depend on p.
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Notation XIV.3.10. If G is a locally compact amenable group and p ∈ (1,∞), or if G is any

locally compact group and p = 1, we will write F p(G) instead of any of F pQS(G), F pS (G), F pQ(G)

or F pλ (G), since they are isometrically isomorphic by Theorem XIV.3.7, Proposition XIV.2.11 and

Remark XIV.2.12.

In the discrete case, amenability of the group is characterized by amenability of any of its

associated universal enveloping algebras.

Theorem XIV.3.11. Let G be a locally compact group and let p ∈ [1,∞). Let E be any of the

classes QSLp, QLp, SLp, or Lp. If G is amenable, then so is FE(G). The converse is true if G is

discrete.

Proof. It is a well known result due to B. Johnson (see [137]) that G is amenable if and only if the

group algebra L1(G) is amenable (even if G is not discrete). If G is amenable, then so is L1(G),

and hence also FE(G) by Proposition 2.3.1 in [241], since the image of L1(G) in FE(G) is dense.

Conversely, suppose that FE(G) is amenable and that G is discrete. Then F p(G) is

amenable again by Proposition 2.3.1 in [241], because there is a contractive homomorphism

FE(G) → F p(G) with dense range. Another use of Proposition 2.3.1 in [241], this time with

the map γp,2 : F p(G) → F 2(G) = C∗(G) constructed in Theorem XIV.2.30, shows that C∗(G)

must be amenable in this case. Now Theorem 2.6.8 in [24] implies that G is amenable.

The following question naturally arises:

Question XIV.3.12. Does amenability of F p(G), for p 6= 2, characterize amenability of G in full

generality?

For p = 1, the answer is yes, by Johnson’s Theorem ([137]). The result is known to be

false for p = 2. Indeed, Connes proved in [29] that if G is a connected Lie group, then C∗(G)

(and hence C∗λ(G)) is amenable. However, there are non-amenable connected Lie groups, such as

SL2(R) (whose group C∗-algebra is even type I). We do not know, however, whether F p(SL2(R))

is amenable for p 6= 1, 2.

We close this subsection with the computation of the maximal ideal space of F p(G) when

G is an abelian locally compact group. This result, in this form, will be crucial in the proof of

Theorem XV.3.7. The result is almost certainly well-known, but we have not been able to find a

reference in the literature.
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Proposition XIV.3.13. Let G be an abelian locally compact group, and let p ∈ [1,∞). Then

there is a canonical homeomorphism φ : Max(F p(G))→ Ĝ. Moreover, the Gelfand transform

Γp : F p(G)→ C0(Ĝ)

is injective, contractive and has dense range.

Proof. It is well-known that Max(L1(G)) is canonically homeomorphic to Ĝ, and that the

following diagram is commutative:

L1(G) //

Γ1

��

C∗(G)

Γ2

��
C0(Ĝ) C0(Ĝ).

idC0(Ĝ)

oo

Set X = Max(F p(G)). The canonical map γp,2 : F p(G) → C∗(G) induces a continuous

function φ : Ĝ → X. We claim that φ is injective. Indeed, φ is the restriction of γ′p,2 : C∗(G)′ →

F p(G)′ to the multiplicative linear functionals of norm one. Since γ′p,2 is injective by part (1) of

Lemma XIV.3.6, the claim follows.

A similar argument shows that the canonical inclusion L1(G) → F p(G) induces an injective

continuous function ψ : X → Ĝ. By naturality of the Gelfand transform, we must have ψ◦φ = idĜ,

showing that Ĝ and X are homeomorphic.

For the last claim, it only remains to show that Γp is injective and has dense range.

Injectivity follows from Theorem 4 in Section 1.5 of [50]. Density of its range follows from the

facts that γp,2 has dense range by Theorem XIV.2.30, that Γ2 is an isometric isomorphism, and

that the diagram below commutes:

L1(G) //

Γ1

��

F p(G)
γp,2 //

Γp

��

C∗(G)

Γ2

��
C0(Ĝ) C0(Ĝ)∼=

oo C0(Ĝ).∼=
oo
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Canonical maps F p(G)→ F q(G) revisted

In this subsection, we will use Theorem XIV.3.7 to obtain further information about the

maps γp,q constructed in Theorem XIV.2.30, by regarding them as maps between the algebras of

p- and q-pseudofunctions; see Corollary XIV.3.20.

We begin with a general discussion (see also Section 8 in [116]).

Definition XIV.3.14. Let E be a reflexive Banach space. It is well-known that the Banach

algebra B(E) is the Banach space dual of the projective tensor product E⊗̂E′. The weak*-

topology inherited by B(E) from this identification is usually called the ultraweak topology on

B(E).

Given a Banach space E, we write 〈·, ·〉E,E′ for the canonical pairing E × E′ → C. Given

ξ ∈ E and given η ∈ E′, we write ξ ⊗ η for the simple tensor product in E⊗̂E′. Regarding an

operator a ∈ B(E) as a functional on E⊗̂E′, the action of a on ξ ⊗ η is given by

〈a, ξ ⊗ η〉(E⊗̂E′)′,E⊗̂E′ = 〈aξ, η〉E,E′ . (XIV.3)

Definition XIV.3.15. Let E be a Banach space. Let (aj)j∈J be a net of operators in B(E), and

let a ∈ B(E) be another operator. We say that (aj)j∈J converges ultraweakly to a, if for every

x ∈ E⊗̂E′ we have

lim
j∈J
|〈aj , x〉 − 〈a, x〉| = 0.

The ultraweak topology on B(E) should not be confused with its weak operator topology.

By definition, a net (aj)j∈J in B(E) converges in the weak operator topology to an operator a ∈

B(E) if for every ξ ∈ E and every η ∈ E′, we have

lim
j∈J
|〈ajξ, η〉 − 〈aξ, η〉| .

Remark XIV.3.16. Since a pair (ξ, η) ∈ E × E′ defines an element x = ξ ⊗ η in E⊗̂E′, it follows

from (XIV.3), that the ultraweak topology is stronger than the weak operator topology. On the

other hand, it is well-known that the ultraweak topology and the weak operator topology agree on

(norm) bounded subsets of B(E).

The following class of Banach algebras will be needed in the proof of Theorem XIV.3.18.
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Definition XIV.3.17. Let G be a locally compact group and let p ∈ [1,∞).

1. The algebra of p-pseudomeasures on G, denoted PMp(G), is the ultraweak closure of F pλ (G)

in B(Lp(G)).

2. The algebra of p-convolvers on G, denoted CVp(G), is the bicommutant of F pλ (G) in

B(Lp(G)).

Algebras of pseudomeasures and convolvers on groups have been thoroughly studied since

their introduction by Herz in Section 8 in [116]. It is clear that PMp(G) ⊆ CVp(G), and it is

conjectured that they are equal for every locally compact group and every Hölder exponent p ∈

[1,∞). The reader is referred to [49] for a more thorough description of the problem, as well as for

the available partial results.

Theorem XIV.3.18. Let G be a locally compact group, and let p, q ∈ [1,∞) with either p ≤ q ≤

2 or 2 ≤ q ≤ p. Assume that

‖λq(f)‖q ≤ ‖λp(f)‖p (XIV.4)

for every f ∈ L1(G). Then the identity map on L1(G) extends to a contractive map

γλp,q : F pλ (G)→ F qλ(G),

with dense range. Moreover,

1. The map γλp,q is injective.

2. Suppose that CVp(G) = PMp(G) and CVq(G) = PMq(G). If p 6= q, then γλp,q is not

surjective unless G is finite.

We emphasize that the assumptions CVp(G) = PMp(G) and CVq(G) = PMq(G) in part (2)

of this theorem, are conjecturally not a restriction; see [49].

Proof. We show first the existence of γλp,q. Let a be an operator in F pλ (G) and choose a sequence

(fn)n∈N in L1(G) such that lim
n→∞

‖a− λp(fn)‖ = 0. Then (λp(fn))n∈N is a Cauchy-sequence in
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B(Lp(G)), and hence (λq(fn))n∈N is a Cauchy-sequence in B(Lq(G)) as well, by the inequality in

(XIV.4). Set

γλp,q(a) = lim
n→∞

λq(fn).

It is straightforward to check that this definition is independent of the choice of the

sequence (fn)n∈N in L1(G). Moreover, it is clear that the resulting homomorphism γλp,q : F pλ (G) →

F qλ(G) is contractive and has dense range.

(1). Let us show that γλp,q is injective. Fix a ∈ F pλ (G) and choose a sequence (fn)n∈N in

L1(G) such that λp(fn) converges to a in B(Lp(G)). Assume that γλp,q(a) = 0, so that (λq(fn))n∈N

converges to the zero operator on Lq(G). In order to arrive at a contradiction, suppose that a 6= 0.

Choose ξ ∈ Cc(G) such that aξ 6= 0. Set η = aξ. Since

lim
n→∞

‖fn ∗ ξ − η‖p = 0,

upon passing to a subsequence, we may assume that (fn ∗ ξ)n∈N converges pointwise almost

everywhere to η.

Since (λq(fn))n∈N converges to zero in B(Lq(G)), it follows that (λq(fn)ξ)n∈N converges

to zero in Lq(G). Again, upon passing to a subsequence, we may assume that fn ∗ ξ converges

pointwise almost everywhere to zero. This clearly implies that η = 0 almost everywhere on G,

which is a contradiction. This implies that a = 0, and hence γλp,q is injective.

Before proving part (2), let us show that γλp,q extends to a map

δp,q : PMp(G)→ PMq(G)

between the ultraweak closures of F pλ (G) and F qλ(G) in B(Lp(G)) and B(Lq(G)), respectively. The

existence of such a map is well-known to the experts, so we only sketch its construction.

Let a be an operator in PMp(G), and choose a net (fj)j∈J in Cc(G) such that (λp(fj))j∈J

converges to a in the ultraweak topology. Since the sequence (λp(fj))j∈J converges ultraweakly, it

follows that it is norm-bounded. Since Lp(G) is a separable Banach space, the ultraweak topology

is metrizable on bounded subsets of B(Lp(G)), and hence there is a sequence (fn)n∈N in Cc(G)

such that λp(fn) converges ultraweakly to a.
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By the inquality in (XIV.4), the sequence (λq(fn))n∈N is norm-bounded in B(Lq(G)). By

the Banach-Alaoglu Theorem, the sequence (λq(fn))n∈N has an ultraweak limit point, so there

is a subsequence (λq(fnk))k∈N that converges ultraweakly to an operator b ∈ B(Lq(G)). By

construction, b belongs to PMq(G). One can show that b does not depend on the choices made, so

we set δp,q(a) = b.

The resulting homomorphism δp,q : PMp(G) → PMq(G) is easily seen to be contractive and

to have dense range.

(2). If G is finite, then γλp,q is clearly surjective, since it has dense range and F qλ(G) is finite

dimensional. Conversely, assume that G is infinite. We will show that γλp,q is not surjective using

results from [37].

To reach a contradiction, assume that γλp,q is surjective. It follows from the Open Mapping

Theorem and part (1) of this theorem, that γλp,q is an isomorphism (although not necessarily

isometric). This means that there is a constant K > 0 such that

‖λp(f)‖p ≤ K‖λq(f)‖q,

for every f ∈ L1(G).

We claim that δp,q is also surjective. Given b ∈ PMq(G), choose a sequence (fn)n∈N in

Cc(G) such that the sequence of operators (λq(fn))n∈N in B(Lq(G)) converges ultraweakly to b.

Then the sequence (λq(fn))n∈N is norm-bounded in B(Lq(G)). It follows that

sup
n∈N
‖λp(fn)‖ ≤ K sup

n∈N
‖λq(fn)‖ <∞,

so (λp(fn))n∈N is norm-bounded in B(Lp(G)) as well. By the Banach-Alaoglu Theorem, there

exists a subsequence (λp(fnk))k∈N that converges ultraweakly to an operator a ∈ B(Lp(G)). By

construction, a belongs to PMp(G).

We claim that δp,q(a) = b. For ξ, η, f ∈ Cc(G), we have

〈λp(f)ξ, η〉Lp(G),Lp′ (G) =

∫
G

∫
G

f(st−1)ξ(t)η(s) dsdt = 〈λq(f)ξ, η〉Lq(G),Lq′ (G).
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We deduce that

〈aξ, η〉 = lim
k→∞

〈λp(fnk)ξ, η〉 = lim
k→∞

〈λq(fnk)ξ, η〉 = lim
n→∞

〈λq(fn)ξ, η〉 = 〈bξ, η〉.

Using that on bounded sets the weak operator topology agrees with the ultraweak topology, it

follows from the definition that δp,q(a) = b, as desired.

By our assumption PMp(G) = CVp(G) and PMq(G) = CVq(G), we can regard δp,q as a

map between the respective p- and q-convolvers on G. Now, the fact that δp,q : CVp(G)→ CVq(G)

is surjective contradicts Theorem 2 in [37] (where CVp(G) and CVq(G) are denoted by Lpp(G) and

Lqq(G), respectively). This contradiction implies that γλp,q is not surjective, as desired.

Remark XIV.3.19. Let G be a locally compact group and let p, q ∈ [1,∞) satisfy
∣∣∣ 1q − 1

2

∣∣∣ <∣∣∣ 1p − 1
2

∣∣∣. We point out that even though the map γp,q : F p(G) → F q(G) constructed in

Theorem XIV.2.30 exists in full generality, the map γλp,q : F pλ (G) → F qλ(G) may fail to exist for

some groups and some exponents p and q, since there may be no constant M > 0 such that

‖λq(f)‖q ≤M‖λp(f)‖p

holds for all f ∈ L1(G). Indeed, as it is shown in [219] and [220], this is the case for any

noncommutative free group, and for any exponents p, q ∈ (1,∞) with p 6= q.

In contrast to what was pointed out in Remark XIV.3.19, we have that the assumptions

of Theorem XIV.3.18 are satisfied in a number of situations, particularly (but not only) if G is

amenable. We state this explicit in the following corollary.

Corollary XIV.3.20. Let G be an amenable locally compact group, and let p, q ∈ [1,∞).

Denote by λp : L1(G) → B(Lp(G)) and λq : L1(G) → B(Lq(G)) the corresponding left regular

representations of G. If either p ≤ q ≤ 2 or 2 ≤ q ≤ p, then

‖λq(f)‖q ≤ ‖λp(f)‖p

for every f in L1(G). Moreover,

1. The map γp,q constructed in Theorem XIV.2.30 is injective.
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2. If p 6= q, then γp,q is surjective if and only if G is finite.

Proof. It is enough to assume that 1 ≤ p ≤ q ≤ 2, since the other case can then be deduced

by using duality. Given f ∈ L1(G), we use Theorem XIV.3.7 at the first and third step, and

Proposition XIV.2.7 at the second step, to get

‖λq(f)‖q = ‖f‖Lq ≤ ‖f‖Lp = ‖λp(f)‖p,

as desired.

Part (1) follows immediately from part (1) of Theorem XIV.3.18, since γp,q = γλp,q by

amenability of G. Likewise, part (2) follows from part (2) of Theorem XIV.3.18, together with

Herz’s result (Theorem 5 in [116]) that PMr(G) = CVr(G) for all r ∈ [1,∞) whenever G is

amenable.

Remark XIV.3.21. Adopt the notation from the statement of Corollary XIV.3.20. The fact that

‖λq(f)‖q ≤ ‖λp(f)‖p was announced as Theorem C in [115] (see the corollary on page 512 of [118]

for a proof).

It is a consequence of Corollary XIV.3.20 that the Banach algebras F p(Z) for p ∈ [1, 2],

are pairwise not canonically isometrically isomorphic. (Here ‘canonical’ means via a map which is

the identity on `1(Z).) In Theorem XV.3.7, we show that for p, q ∈ [1, 2], the algebras F p(Z) and

F q(Z) are not even abstractly isometrically isomorphic.

We point out that when G is abelian, the unnumbered claim in Corollary XIV.3.20 (see also

Remark XIV.3.21) can be proved much more directly. We do so in the proposition below, which is

well-known to the experts and appears implicitly in the literature.

Proposition XIV.3.22. Let G be an abelian locally compact group, and let f ∈ L1(G).

1. Let p ∈ (1,∞). Then ‖λp(f)‖p = ‖λp′(f)‖p′ .

2. Let p, q ∈ [1,∞), and suppose that either p ≤ q ≤ 2 or 2 ≤ q ≤ p. Then ‖λq(f)‖q ≤

‖λp(f)‖p.

Proof. (1). Let f ∈ L1(G). It was shown in the proof of Proposition XIV.3.5 that ‖λp(f ])‖p =

‖λp′(f)‖p′ . Since G is unimodular, we have ‖ξ]‖p = ‖ξ‖p for all ξ ∈ Lp(G). Using this fact at the
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third step, we get

‖λp(f ])‖p = sup
ξ∈Lp(G),ξ 6=0

‖f]∗ξ‖p
‖ξ‖p

= sup
ξ∈Lp(G),ξ 6=0

‖(ξ]∗f)]‖p
‖ξ‖p

= sup
ξ∈Lp(G),ξ 6=0

‖ξ∗f‖p
‖ξ‖p .

Since G is abelian, we have ξ ∗ f = f ∗ ξ for all ξ ∈ Lp(G), and the result follows.

(2). Denote by γ : (1,∞) → R the function given by γ(r) = ‖λr(f)‖r for all r ∈ (1,∞).

Then γ(r) = γ(r′) for all r ∈ (1,∞) by part (1), and γ is log-convex by the Riesz-Thorin

Interpolation Theorem. It follows that γ has a minimum at r = 2, and that it is decreasing on

[1, 2] and increasing on [2,∞). This finishes the proof.

Lp-crossed Products and Amenability

N. C. Phillips has announced that for p ∈ [1,∞), if G is an amenable discrete group and

α : G → Aut(A) is an isometric action of G on an Lp-operator algebra A, then the canonical

contractive map κ : F p(G,A, α) → F pλ (G,A, α) is an isometric isomorphism. (The reader is

referred to [207] for the construction of full and reduced crossed products, as well as for the

definition of the canonical map.) The proof is analogous to the C∗-algebra case, and is likely to

appear in a second version of the preprint [207].

In analogy with Theorem XIV.3.7 and Theorem XIV.3.11, one may be tempted to

conjecture that for p > 1, amenability of a discrete group G may be equivalent to the

canonical κ : F p(G,X) → F pλ (G,X) being an isometric isomorphism for every locally compact

Hausdorff G-space X, and that this in turn should be equivalent to amenability of F p(G,X).

(Theorem XIV.3.7 and Theorem XIV.3.11 are the case X = ∗ of this statement.) There are many

examples that show that this is not true when p = 2, but one may hope that this holds in all other

cases, because of the extra rigidity of Lp-operator crossed (see also Question XIV.3.12).

However, the statement fails for every p ∈ (1,∞) \ {2}, and we will devote this subsection to

the construction of a family of counterexamples.

A crucial notion in our proof of Theorem XIV.4.3 is that of incompressible Banach

algebras, which is due to Phillips ([210]).
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Definition XIV.4.1. Let p ∈ [1,∞) and let A be a Banach algebra. We say that A is p-

incompressible if for every Lp-space E, every contractive, injective homomorphism ρ : A→ B(E) is

isometric.

If the Hölder exponent p is clear from the context, we will just say that A is incompressible.

Examples of p-incompressible Banach algebras include B(`pn) for n ∈ N (see Theorem 7.2 in

[204], where B(`pn) is denoted Mp
n), the analogs Opd of Cuntz algebras on Lp-spaces (see Corollary

8.10 in [204]), and C∗-algebras.

The next lemma asserts that a direct limit of p-incompressible Banach algebras is again

p-incompressible.

Lemma XIV.4.2. Let ((Aµ)µ∈Λ, (ϕµ,ν)µ,ν∈Λ) be a direct limit of Banach algebras with injective,

contractive maps ϕµ,ν : Aµ → Aν for all µ and ν in Λ with µ ≤ ν, and denote by A its direct limit.

Let p ∈ [1,∞). If Aµ is p-incompressible for all µ in Λ, then so is A.

Proof. For µ in Λ, denote by ϕµ,∞ : Aµ → A the canonical contractive homomorphism into

the direct limit algebra. Let E be a separable Lp-space, and let ρ : A → B(E) be a contractive

injective representation. Given µ in Λ, the representation ρ ◦ ϕλ,∞ : Aµ → B(E) is injective and

contractive. Since Aµ is incompressible, it follows that ρ ◦ ϕµ,∞ is isometric. Hence, for a in Aµ,

we have

‖ϕµ,∞(a)‖ ≤ ‖a‖Aµ = ‖(ρ ◦ ϕµ,∞)(a)‖ ≤ ‖ϕµ,∞(a)‖,

ant thus ‖(ρ ◦ ϕµ,∞)(a)‖ = ‖ϕµ,∞(a)‖. We conclude that ρ|ϕµ,∞(Aµ) is isometric for all µ in Λ.

Hence ρ is isometric, and A is incompressible.

We are now ready to show that for any discrete group G (amenable or not) and for any

p ∈ [1,∞), there exists a locally compact Hausdorff G-space X such that the canonical map

κ : F p(G,X) → F pλ (G,X) is isometric and such that F p(G,X) is amenable. In particular, the

analog of Theorem XIV.3.7, where one considers actions of G on arbitrary topological spaces other

than the one point space, is false.

Recall (see, for example, [10]) that if A is a Banach algebra, an element a ∈ A is said to

be hermitian if ‖eita‖ = 1 for all t ∈ R. If X is a locally compact Hausdorff space, then every

idempotent in C0(X) is hermitian.
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The terminology “spatial partial isometry” and the notion of spatial system are borrowed

from Definition 6.4 in [204], and the notation M
p

G is taken from Example 1.6 in [204].

Theorem XIV.4.3. Let G be a discrete group, and let α : G → Aut(C0(G)) be the isometric

action induced by left translation of G on itself. Let p ∈ [1,∞). Then there are natural isometric

isomorphisms

F p(G,C0(G), α)
κ // F pλ (G,C0(G), α) // M

p

G .

Moreover, the right-hand side equals K(`p(G)) when p > 1, and is strictly smaller than K(`1(G))

when p = 1.

Note that M
p

G, being the direct limit of matrix algebras, is amenable even if G is not.

Proof. The last claim follows from Corollary 1.9 and Example 1.10 in [207].

We begin by showing that there is a natural isometric isomorphism

F p(G,C0(G), α) ∼= M
p

G.

For s ∈ G, let us be the standard invertible isometry implementing αs in the crossed product, and

let δs ∈ C0(G) be the function χ{s}. Then αs(δt) = δst for all s, t ∈ G, and span ({δs : s ∈ G}) is

dense in C0(G).

For s, t ∈ G, set as,t = δsust−1 ∈ `1(G,C0(G), α). For s1, s2, t1, t2 ∈ G, we have

as1,t1as2,t2 = δs1us1t−1
1
δs2us2t−1

2

= δs1αs1t−1
1

(δs2)us1t−1
1
us2t−1

2

= δs1δs1t−1
1 s2

us1t−1
1 s2t

−1
2
.

Thus, if s2 6= t1, then as1,t1as2,t2 = 0, because in this case δs1δs1t−1
1 s2

= 0. Taking s2 = t1, we

get as1,t1at1,t2 = as1,t2 . Hence the elements {as,t : s, t ∈ G} satisfy the relations for a system of

matrix units indexed by G. Also, span ({as,t : s, t ∈ G}) is dense in `1(G,C0(G), α), and hence also

in F p(G,C0(G), α).

Let S be a finite subset of G. Then {as,t : s, t ∈ S} is a standard system of matrix units

for M|S|, so the subalgebra MS of F p(G,C0(G), α) they generate is canonically isomorphic, as a

514



Banach algebra, to Mp
|S|. We claim that this isomorphism is isometric, that is, that the norm that

MS inherits as a subalgebra of F p(G,C0(G), α) is the standard norm of Mp
|S|. To check this, it

will be enough to show that if

ρ : `1(G,C0(G), α)→ B(Lp(X,µ))

is a nondegenerate contractive representation on a σ-finite measure space (X,µ), then the

restriction

ρ|MS
: MS → B(Lp(X,µ))

is spatial in the sense of Definition 7.1 in [204].

Given such a representation ρ : `1(G,C0(G), α)→ B(Lp(X,µ)), let π : C0(G)→ B(Lp(X,µ))

be the nondegenerate contractive representation, and let v : G → Isom(Lp(X,µ)) be the isometric

group representation such that (π, v) is the covariant representation of (G,C0(G), α) whose

integrated form is ρ. For s and t in S, one has

ρ(as,t) = π(χ{s})vst−1 .

Since χ{s} is a hermitian idempotent in C0(G), it follows that π(χ{s}) is also hermitian.

Use Example 1.1 in [10] to choose a measurable subset F of X such that π(χ{s}) = χF . Since

vst−1 is a bijective isometry, it is spatial. If (X,X, T, g) is a spatial system for vst−1 (see Definition

6.1 in [204]), then it is easy to check that (F,X, T, g) is a spatial system for ρ(as,t). This shows

that ρ(as,t) is a spatial partial isometry, and hence ρ|MS
is a spatial representation.

Denote by F the upward directed family of all finite subsets S of G. For each S in F , let

ϕS : Mp
|S| → F p(G,C0(G), α) be the canonical isometric isomorphism that sends the standard

matrix units of M|S| to the set of matrix units {as,t : s, t ∈ S}. It is clear that there is an isometric

homomorphism

ϕ0 :
⋃
S∈F

Mp
|S| → F p(G,C0(G), α)
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whose range contains {as,t : s, t ∈ G}. Note that
⋃
S∈F

Mp
|S| is a subalgebra of K(`p(G)). Since ϕ0 is

isometric, it extends by continuity to an isometric homomorphism

ϕ :
⋃
S∈F

Mp
|S| → F p(G,C0(G), α),

which must be surjective since its range is dense. This is the desired isometric isomorphism.

We will now show that the canonical map

κ : F p(G,C0(G), α)→ F pλ (G,C0(G), α)

is an isometric isomorphism. The usual argument for C∗-algebras is that κ is surjective, and since

F 2(G,C0(G), α) ∼= K(`2(G)) is simple, κ must be an isomorphism. However, when p 6= 2, we do

not know whether κ has closed range. Here is where incompressibility comes into play.

The full crossed product F p(G,C0(G), α) is p-incompressible by Lemma XIV.4.2, because

it is the direct limit of the p-incompressible Banach algebras Mp
S (see Theorem 7.2 in [204]).

Since F pλ (G,C0(G), α) can be isometrically represented on an Lp-space, it follows that κ must be

isometric. Finally, having dense range, κ is an isometric isomorphism. This finishes the proof.
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CHAPTER XV

FUNCTORIALITY OF GROUP ALGEBRAS ACTING ON LP -SPACES

This chapter is based on joint work with Hannes Thiel ([94]).

We continue our study of group algebras acting on Lp-spaces, particularly of algebras of

p-pseudofunctions of locally compact groups. We focus on the functoriality properties of these

objects. We show that p-pseudofunctions are functorial with respect to homomorphisms that are

either injective, or whose kernel is amenable and has finite index. We also show that the universal

completion of the group algebra with respect to representations on Lp-spaces, is functorial with

respect to quotient maps.

As an application, we show that the algebras of p- and q-pseudofunctions on Z are

isometrically isomorphic as Banach algebras if and only if p and q are either equal or conjugate.

Introduction

Associated to a locally compact group, there are several Banach algebras that capture

different aspects of its structure and representation theory. For instance, in [116], Herz introduced

the Banach algebra of p-pseudofunctions of a locally compact group G, for a fixed Hölder

exponent p ∈ [1,∞). (We are thankful to Yemon Choi and Matthew Daws for providing this

reference.) This Banach algebra is defined as the completion of the group algebra L1(G) with

respect to the norm induced by the left regular representation λp of G on Lp(G). We denote this

algebra by F pλ (G), so that

F pλ (G) = λp(L1(G)) ⊆ B(Lp(G)).

In Chapter XIV, we studied the universal completion of L1(G) for representations of G on

Lp-spaces, which we denote by F p(G) (this algebra first appeared in [207], as the crossed product

of G on the Lp-operator algebra C).

For p = 2, the Banach algebra F 2(G) is the full group C∗-algebra of G, usually

denoted C∗(G), and F 2
λ(G) is the reduced group C∗-algebra of G, usually denoted C∗λ(G). The

functoriality properties of the full and reduced group C∗-algebras are well-understood. Given a
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locally compact group G, a normal subgroup N of G, and a closed subgroup H of G, the following

results can be found in [24]:

(a) If G is discrete, then the inclusion map H → G induces natural isometric, unital

homomorphism C∗λ(H)→ C∗λ(G);

(b) The quotient map G→ G/N induces a natural quotient homomorphism C∗(G)→ C∗(G/N);

(c) If N is amenable, then the quotient map G → G/N induces a natural homomorphism

C∗λ(G)→ C∗λ(G/N).

In this chapter, which is based on [94], we explore the extent to which these results

generalize to the case p 6= 2. Many techniques from C∗-algebra theory, such as positivity, are

no longer available for Banach algebras acting on Lp-spaces. In particular, some standard facts

in C∗-algebras fail for the classes of Banach algebras here considered. For example, a contractive

homomorphism with dense range is not necessarily surjective, and an injective homomorphism

need not be isometric.

The results in Section XV.2 are as follows (the second one is proved in greater generality

than what is reproduced below):

1. If H is a subgroup of a discrete group G, then there is a natural isometric unital map

F pλ (H)→ F pλ (G) (Proposition XV.2.1);

2. If N is a closed normal subgroup of a locally compact group G, then there is a natural

contractive map F p(G)→ F p(G/N) with dense range (Proposition XV.2.2);

3. If N is an amenable normal subgroup of a discrete group G, and G/N is finite, then the

natural map F p(G)→ F p(G/N) is a quotient map (Theorem XV.2.3).

We point out that the assumption that G/N be finite in (3) above is likely to be

unnecessary. On the other hand, we show in Example XV.2.4, using a result of Pooya-Hejazian

in [217], that amenability of N is necessary.

In Section XV.3, we apply the above results to study the isomorphism type of the Banach

algebras F pλ (Z), with focus on its dependence on the Hölder exponent p. We show that for p, q ∈

[1, 2], there is an isometric isomorphism between F pλ (Z) and F qλ(Z) if and only if p = q.

Further applications of the results in this chapter appear in Chapers XVII and XVIII .
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Throughout, we will assume that all measure spaces are σ-finite, and that all Banach spaces

are separable. Consistently, all locally compact groups will be assumed to be second countable,

and will be endowed with a left Haar measure.

Functoriality Properties

In this section, we study the extent to which group homomorphisms induce Banach algebra

homomorphisms between the respective group operator algebras we studied in Chapter XIV. As

in the case of group C∗-algebras, these completions are not functorial with respect to arbitrary

group homomorphisms. Section XV.3 contains an application of these results, particularly of

Theorem XV.2.3: the Banach algebras F pλ (Z) and F qλ(Z) are isometrically isomorphic if and only

if either p = q or p = q′; see Theorem XV.3.7.

The case p = 2 of the following result is proved, for example, as Proposition 2.5.9 in [24].

Proposition XV.2.1. Let p ∈ [1,∞), let G be a discrete group and let H be a subgroup of G.

Then the canonical inclusion ι : H ↪→ G induces an isometric embedding F pλ (H)→ F pλ (G).

Proof. We denote also by ι : C[H] → C[G] the induced algebra homomorphism. Let λGp : C[G] →

B(`p(G)) and λHp : C[H] → B(`p(H)) denote the left regular representations of G and H,

respectively. Then λGp ◦ ι is conjugate, via an invertible isometry, to a multiple of λHp . More

precisely, let Q be a subset of G containing exactly one element from each coset in G/H. Then

there is a canonical isometric isomorphism

`p(G) ∼=
⊕
x∈Q

`p(xH).

The representation λGp ◦ ι : C[H] → B(`p(G)) leaves each of the subspaces `p(xH) ⊆ `p(G)

invariant, and hence

λGp ◦ ι ∼=
⊕
x∈Q

λHp .

It follows that

‖ι(f)‖Fpλ (G) = ‖(λGp ◦ ι)(f)‖ =

∥∥∥∥∥∥
⊕
x∈Q

λHp (f)

∥∥∥∥∥∥ = max
x∈Q
‖λHp (f)‖ = ‖f‖Fpλ (H)

for every f ∈ C[H]. Thus, the canonical map ι : F pλ (H)→ F pλ (G) is isometric, as desired.
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We need some notation for the next result. If G is a locally compact group and N is

a closed normal subgroup, then there is a canonical surjective contractive homomorphism

ψN : L1(G)→ L1(G/N) which satisfies

∫
G/N

ψN (f)(sN) d(sN) =

∫
G

f(s) ds

for all f in L1(G); see Theorem 3.5.4 in [224].

Proposition XV.2.2. Let p ∈ [1,∞), let G be a locally compact group, let N be a closed normal

subgroup of G, and let π : G → G/N be the canonical quotient map. If E denotes any of the

classes QSLp, SLp, QLp, or Lp, then π induces a natural contractive map FE(G) → FE(G/N)

with dense range.

Proof. Let E denote any of the classes QSLp, SLp, QLp, or Lp. Denote by ψN : L1(G) →

L1(G/N) the surjective contractive homomorphism described in the comments above. Given

f ∈ L1(G), we have

‖ψN (f)‖E = sup{‖(ω ◦ ψN )(f)‖ : ω ∈ RepH(E)}

≤ sup{‖ρ(f)‖ : ρ ∈ RepG(E)}

= ‖f‖E .

It follows that ψN extends to a contractive homomorphism FE(G) → FE(G/N) with dense range.

The above proposition shows that the universal completions of L1(G) are functorial with

respect to surjective group homomorphisms. When p is not equal to 1 or 2, it is not clear whether

the resulting homomorphism F p(G) → F p(G/N) is a quotient map, or even if it is surjective. In

the following theorem, we prove that this is indeed the case whenever N is amenable and G/N is

finite.

Theorem XV.2.3. Let G be a discrete group, let p ∈ [1,∞), and let N be an amenable normal

subgroup of G such that G/N is finite. Then the canonical map G → G/N induces a natural

quotient homomorphism F pλ (G)→ F pλ (G/N).
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Proof. We establish some notation first:

– For s ∈ G, we write us for the corresponding element in C[G], and δs ∈ `p(G) for the

corresponding basis element;

– For s ∈ G, we write vsN for the corresponding element in C[G/N ], and δsN ∈ `p(G/N) for

the corresponding basis element;

– For n ∈ N , we write wn for the corresponding element in C[N ], and δn ∈ `p(N) for the

corresponding basis element;

– We write π : C[G]→ C[G/N ] for the map given by us 7→ vsN for s ∈ G.

Fix a section σ : G/N → G, and define an isometric isomorphism

ϕ : `p(G/N)⊗ `p(N)→ `p(G)

by ϕ(δsN ⊗ δn) = δσ(sN)n for s ∈ G and n ∈ N . Let

Φ: B(`p(G/N))⊗ B(`p(N))→ B(`p(G))

be the isometric isomorphism given by Φ(x) = ϕ ◦ x ◦ ϕ−1 for x ∈ B(`p(G/N))⊗ B(`p(N)). It is a

routine exercise to check that

Φ(vsN ⊗ wn)(δσ(tN)m) = δσ(stN)nm

for all s, t ∈ G and all n,m ∈ N .

Let f be an element in C[G/N ]. We want to show that

‖f‖ = inf{‖f̃‖ : f̃ ∈ C[G], π(f̃) = f}.

For this, it is enough to find sequences (fk)k∈N in B(`p(G)) (but not necessarily in C[G]) and

(f̃k)k∈N in C[G] ⊆ B(`p(G)), such that

1. ‖fk‖ ≤ ‖f‖ for all k ∈ N;

2. π(f̃k) = f for all k ∈ N; and
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3. lim
k→∞

‖f̃k − fk‖ = 0.

Let S ⊆ G be a finite set such that f can be written as a finite linear combination f =∑
s∈S

asNvsN , where asN is a complex number for s ∈ S. Using amenability of N , choose a Følner

sequence (Fk)k∈N of finite subsets of N satisfying

lim
k→∞

|Fk4Fkx|
|Fk|

= 0

for all x ∈ N . For k ∈ N, set Tk = 1
|Fk|

∑
n∈Fk

wn, which is an element in C[N ].

Let k ∈ N. We claim that ‖Tk‖Fp(N) = 1.

Note that Tk is a linear combination of the canonical generating invertible isometries with

positive coefficients (the coefficients are all either 1
|Fk| or 0). It follows from Theorem 4.19 in [195]

that ‖Tk‖p = ‖Tk‖2. Furthermore, the equivalence between (1) and (8) in Theorem 2.6.8 in [24]

shows that ‖Tk‖2 = 1. The claim is proved.

Fix k ∈ N, and set

fk = Tk ◦ Φ(f ⊗ 1),

which is an element in B(`p(G)). (Note that fk will not in general belong to the group algebra

C[G].) Basic properties of p-tensor products give ‖Φ(f ⊗ 1)‖ = ‖f‖, and hence ‖fk‖ ≤ ‖Tk‖ · ‖f‖ =

‖f‖, so condition (1) above is satisfied. Set

f̃k =
1

|Fk|
∑
s∈S

∑
n∈Fk

asNunσ(sN),

which is an element in C[G] ⊆ B(`p(G)). It is clear that π(f̃k) = f , so condition (2) above is also

satisfied. We need to check (3). With M = max
s∈S
|asN |, we have

‖f̃k − fk‖p =
1

|Fk|

∥∥∥∥∥∑
s∈S

asN
∑
n∈Fk

unσ(sN) − unΦ(vsN ⊗ 1)

∥∥∥∥∥
p

≤M

 1

|Fk|

∥∥∥∥∥∑
n∈Fk

unσ(sN) − unΦ(vsN ⊗ 1)

∥∥∥∥∥
p

 .
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Given s in G, it is therefore enough to show that

lim
k→∞

1

|Fk|

∥∥∥∥∥∑
n∈Fk

unσ(sN) − unΦ(vsN ⊗ 1)

∥∥∥∥∥
p

= 0.

Fix s in G and set

θk =
1

|Fk|
∑
n∈Fk

unσ(sN) − unΦ(vsN ⊗ 1),

regarded as an operator on cc(G). It is immediate that for q ∈ [1,∞], the operator θ extends to

a bounded operator θ
(q)
k on `q(G) with

∥∥∥θ(q)
k

∥∥∥
q
≤ 2, and the Riesz-Thorin Interpolation Theorem

gives ∥∥∥θ(p)
k

∥∥∥
p
≤
∥∥∥θ(1)
k

∥∥∥ 1
p

1

∥∥∥θ(∞)
k

∥∥∥ 1
p′

∞
≤ 2

∥∥∥θ(1)
k

∥∥∥ 1
p

1
.

It therefore suffices to show that lim
k→∞

∥∥∥θ(1)
k

∥∥∥
1

= 0.

Let c : G×G→ N be the 2-cocycle given by

c(t, r)σ(tN)σ(rN) = σ(trN)

for all t and r in G. Since G/N is finite, the image Im(c) of the 2-cocycle c is a finite subset of N .

Given t ∈ G and m ∈ N , we have

θ
(1)
k (δσ(tN)m) =

1

|Fk|
∑
n∈Fk

(
δnσ(sN)σ(tN)m − δnσ(stN)m

)
=

1

|Fk|
∑
n∈Fk

(
δnσ(sN)σ(tN)m − δnc(s,t)σ(sN)σ(tN)m

)
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Thus,

∥∥∥θ(1)
k

∥∥∥
1

= sup
t∈G

sup
m∈N

∥∥∥θ(1)
k (δσ(tN)m)

∥∥∥
1

= sup
x∈Im(c)

sup
t∈G :
c(s,t)=x

sup
m∈N

1

|Fk|

∥∥∥∥∥∑
n∈Fk

δnσ(sN)σ(tN)m − δnxσ(sN)σ(tN)m

∥∥∥∥∥
1

= sup
x∈Im(c)

sup
t∈G :
c(s,t)=x

sup
m∈N

|Fkσ(sN)σ(tN)m 4 Fkxσ(sN)σ(tN)m|
|Fk|

= sup
x∈Im(c)

sup
t∈G :
c(s,t)=x

sup
m∈N

|Fk4Fkx|
|Fk|

= sup
x∈Im(c)

|Fk4Fkx|
|Fk|

Since (Fk)k is a Følner sequence and Im(c) is finite, the above computation implies that

lim
k→∞

∥∥∥θ(1)
k

∥∥∥
1

= 0, as desired. This finishes the proof.

We point out that the assumption that N be amenable is necessary in the theorem above,

at least when p 6= 1, as the next example shows.

Example XV.2.4. Fix p ∈ (1,∞). Let F2 denote the free group on two generators, and let N be

a normal subgroup of F2 such that F2/N is isomorphic to Z2. The quotient map π : F2 → Z2 does

not induce a quotient map F pλ (F2)→ F pλ (Z2), since F pλ (F2) is simple by Corollary 3.11 in [217].

On the other hand, we suspect that no condition on G/N is needed for the conclusion of

Theorem XV.2.3 to hold (and that, in particular, the group G need not be amenable), but we

have not been able to prove the more general statement. For p = 2, this can be proved as follows.

Since N is amenable, its trivial representation is weakly contained in its left regular representation

(see Theorem 2.6.8 in [24]). Using the fact that the induction functor preserves weak containment

of representations, this shows that the left regular representation of G/N is weakly contained in

the left regular representation of G. By the comments at the beginning of Appendix D in [24],

this implies that there is a homomorphism C∗λ(G) → C∗λ(G/N) with dense range. Finally, basic

C∗-algebra theory (for example, the fact that homomorphisms have closed range) shows that this

map is indeed a quotient map.
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There is an alternative proof of this fact using Følner sets, similarly to what we did in the

proof of Theorem XV.2.3, but the argument also involves the GNS construction, which so far has

no analog in the context of Lp-operator algebras.

An Application: When is F p(Z) Isomorphic to F q(Z)?

The goal of this section is to show that for p and q in [1,∞), there is an isometric

isomorphism between F p(Z) and F q(Z) if and only if either p = q or 1
p + 1

q = 1. The strategy

will be to use Theorem XV.2.3, Proposition XIV.3.13, and the fact that every homeomorphism of

S1 must map a pair of antipodal points to antipodal points, to reduce this to the case when the

group is Z2, where things can be proved more directly. The fact that the spectrum of F p(Z) is the

circle is crucial in our proof, and we do not know how to generalize these methods to deal with,

for example, Z2.

We begin by looking at the group Lp-operator algebra of a finite cyclic group.

Example XV.3.1. Let n in N and let p ∈ [1,∞). Consider the group Lp-operator algebra

F p(Zn) of Zn. Then F p(Zn) is the Banach subalgebra of B(`pn) generated by the cyclic shift of

order n

sn =



0 1

1 0

. . .
. . .

. . . 0

1 0


.

(The algebra B(`pn) is Mn with the Lp-operator norm.) It is easy to check that F p(Zn) is

isomorphic, as a complex algebra, to Cn, but the canonical embedding F p(Zn) ↪→ Mn is not as

diagonal matrices.

It turns out that computing the norm of a vector in Cn ∼= F p(Zn) is challenging for p

different from 1 and 2, essentially because computing p-norms of matrices that are not diagonal is
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difficult. Indeed, set ωn = e
2πi
n , and set

un =
1√
n



1 1 1 · · · 1

1 ωn ω2
n · · · ωn−1

n

1 ω2
n ω4

n · · · ω
2(n−1)
n

...
...

...
. . .

...

1 ωn−1
n ω

2(n−1)
n · · · ω

(n−1)2

n


.

If ξ = (ξ1, . . . , ξn) ∈ Cn, then its norm as an element in F p(Zn) is

‖ξ‖Fp(Zn) =

∥∥∥∥∥∥∥∥∥∥∥∥∥
un



ξ1

ξ2

. . .

ξn


u−1
n

∥∥∥∥∥∥∥∥∥∥∥∥∥
p

.

The matrix un is a unitary (in the sense that its conjugate transpose is its inverse), and

hence ‖ξ‖F 2(Zn) = ‖ξ‖∞. The norm on F 2(Zn) is therefore well-understood and easy to compute.

On the other hand, if 1 ≤ p ≤ q ≤ 2, then ‖ · ‖F q(Zn) ≤ ‖ · ‖Fp(Zn) by Corollary XIV.3.20. In

particular, the norm ‖ · ‖Fp(Zn) always dominates the norm ‖ · ‖∞.

Computing the automorphism group of F p(Zn) is not easy when p 6= 2, since not every

permutation of the coordinates of Cn ∼= F p(Zn) induces an isometric isomorphism. Our next

result asserts that the cyclic shift on Cn is isometric.

Proposition XV.3.2. Let n in N and let p in [1,∞). Denote by τ : Cn → Cn the cyclic forward

shift, that is,

τ(x0, . . . , xn−1) = (xn−1, x0, . . . , xn−2)

for all (x0, . . . , xn−1) ∈ Cn. Then τ : F p(Zn)→ F p(Zn) is an isometric isomorphism.

Proof. We follow the notation from Example XV.3.1, except that we drop the subscript n

everywhere, so we write u in place of un, and we write s in place of sn. (We still denote

ωn = e
2πi
n .)

For x in Cn, let d(x) denote the diagonal n × n matrix with d(x)j,k = δj,kxj for 0 ≤ j, k ≤

n − 1. Denote by ρ : Cn → Mn the algebra homomorphism given by ρ(x) = ud(x)u−1 for x ∈ Cn.
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Then

‖x‖Fp(Zn) = ‖ρ(x)‖p = ‖ud(x)u−1‖p

for all x ∈ Cn.

Set ω = (1, ω1
n, . . . , ω

n−1
n ) ∈ Cn, and denote by ω its (coordinatewise) conjugate. Given

x ∈ Cn, it is easy to check that

d(τ(x)) = sd(x)s−1, us = d(ω)u, and s−1u−1 = u−1d(ω).

It follows that

‖τ(x)‖Fp(Zn) = ‖ud(τ(x))u−1‖p = ‖usd(x)s−1u−1‖p = ‖d(ω)ud(x)u−1d(ω)‖p.

Since d(ω) and d(ω) are isometries in B(`pn), we conclude that

‖τ(x)‖Fp(Zn) = ‖d(ω)uτ(x)u−1d(ω)‖p = ‖ud(x)u−1‖p = ‖x‖Fp(Zn),

as desired.

Let k and n be positive integers. For each r in {0, . . . , k − 1}, we define a restriction map

ρ(nk→n)
r : Cnk → Cn

by sending a nk-tuple β to the n-tuple

ρ(nk→n)
r (β)q = βqk+r, q = 0, . . . , n− 1.

The following lemma asserts that ρ
(nk→n)
r is contractive when regarded as a map F p(Znk) →

F p(Zn).

Lemma XV.3.3. Let k, n ∈ N, and let p ∈ [1,∞). For each r ∈ {0, . . . , k−1}, the restriction map

ρ
(nk→n)
r is a contractive, unital homomorphism F p(Znk)→ F p(Zn).

Proof. Let τ : F p(Znk) → F p(Znk) be the cyclic shift. Then τ is an isometric isomorphism by

Proposition XV.3.2. Note that ρ
(nk→n)
r = ρ

(nk→n)
0 ◦ τ r. Thus, it is enough to show that ρ

(nk→n)
0
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is a contractive, unital homomorphism. This follows immediately from Proposition XV.3.2, so the

proof is finished.

It is a well-known fact that for p ∈ [1,∞) \ {2}, the only n by n matrices that are isometries

when regarded as linear maps `pn → `pn, are precisely the complex permutation matrices. These are

the matrices all of whose entries are either zero or a complex number of modulus one, that have

exactly one non-zero entry on each column and each row.

Using the above mentioned fact, the proof of the following proposition is straightforward,

using the description of the norm on F p(Zn) given in Example XV.3.1.

Proposition XV.3.4. Let n ∈ N, let p ∈ [1,∞) \ {2}. Set ωn = e
2πi
n . If x ∈ F p(Zn) is invertible

and satisfies ‖x‖ = ‖x−1‖ = 1, then there exist ζ ∈ S1 and k ∈ {0, . . . , n− 1} such that

x = ζ ·
(

1, ωkn, . . . , ω
(n−1)k
n

)
.

The converse also holds.

Next, we prove an easy fact that will be crucial in our proof of Theorem XVIII.2.12.

Proposition XV.3.5. Let n, d ∈ N with d|n and d < n, and let p ∈ [1,∞) \ {2}. There exists

α ∈ F p(Zn) such that

‖α‖Fp(Zn) > sup
b=0,...,nd−1

∥∥∥ρ(n→d)
b (α)

∥∥∥
Fp(Zd)

.

Proof. Let ω = e
2πi
n and set

β =
(
1, . . . , 1, ωd, . . . , ωd, . . . , ωnd−d, . . . , ωnd−d

)
,

regarded as an element in F p(Zn). (There are n
d repetitions of each power of ω.) Then β is

invertible (the inverse being its coordinate-wise complex conjugate).

We claim that

sup
b=0,...,nd−1

∥∥∥ρ(n→d)
b (β)

∥∥∥
Fp(Zd)

= sup
b=0,...,nd−1

∥∥∥ρ(n→d)
b (β−1)

∥∥∥
Fp(Zd)

= 1.

First, note that ρ
(n→d)
b (β) = ρ

(n→d)
a (β) and ρ

(n→d)
b (β−1) = ρ

(n→d)
a (β−1) for all a, b =

0, . . . , nd − 1. Since ρ
(n→d)
0 (β) =

(
1, ωd, . . . , ωnd−d

)
is the canonical invertible isometry generating
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F p(Zd), and ρ
(n→d)
0 (β−1) is its inverse, we conclude that

∥∥∥ρ(n→d)
0 (β)

∥∥∥
Fp(Zd)

=
∥∥∥ρ(n→d)

0 (β)
∥∥∥
Fp(Zd)

= 1,

and the claim follows.

We claim that either ‖β‖Fp(Zn) > 1 or ‖β−1‖Fp(Zn) > 1.

Based on the description of the invertible isometries of F p(Zn) given in Proposition XV.3.4,

it is clear that β is not an invertible isometry, so not both β and β−1 have norm one. Since ‖ ·

‖Fp(Zn) ≥ ‖ · ‖∞ (see Example XV.3.1) and ‖β‖∞ = ‖β−1‖∞ = 1, the claim follows.

The result now follows by setting α equal to either β or β−1, as appropriate.

The fact that F p(Z2) is isometrically isomorphic to F q(Z2) only in the trivial cases can be

shown directly by computing the norm of a specific element. We do not know whether a similar

computation can be done for other cyclic groups. However, knowing this for just Z2 is enough to

prove Theorem XV.3.7.

Proposition XV.3.6. Let p and q be in [1,∞). Then F p(Z2) is isometrically isomorphic to

F q(Z2) if and only if either p = q of 1
p + 1

q = 1.

Proof. The “if” implication follows from Proposition XIV.2.18. We proceed to show the “only if”

implication.

Given r in [1,∞), we claim that

‖(1, i)‖F r(Z2) = 2|
1
r−

1
2 |.

By Proposition XIV.2.18, the quantity on the left-hand side remains unchanged if one

replaces r with its conjugate exponent. Since the same holds for the quantity on the right-hand

side, it follows that it is enough to prove the claim for r in [1, 2].

Define a continuous function γ : [1, 2] → R by γ(r) = ‖(1, i)‖F r(Z2) for r in [1, 2]. Let a be

the matrix

a =
1

2

1 + i 1− i

1− i 1 + i

 .
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Then γ(r) = ‖a‖r for all r ∈ [1, 2]. The values of γ at r = 1 and r = 2 are easy to compute, and

we have γ(1) = ‖a‖1 = 2
1
2 and γ(2) = ‖a‖2 = 1. Fix r ∈ [1, 2] and let θ in (0, 1) satisfy

1

r
=

1− θ
1

+
θ

2
.

Using the Riesz-Thorin Interpolation Theorem between r0 = 1 and r1 = 2, we conclude that

γ(r) ≤ γ(1)1−θ · γ(2)θ = 2
1
2 ( 2
r−1) · 1 = 2

1
r−

1
2 .

For the converse inequality, fix r in [1, 2] and consider the vector x = ( 1
0 ) in `r2. Then

‖x‖r = 1 and ax = 1
2 ( 1+i

1−i ). We compute:

∥∥∥∥∥∥∥
1

2

1 + i

1− i


∥∥∥∥∥∥∥
r

=
1

2
(|1 + i|r + |1− i|r) 1

r = 2( 1
r−

1
2 ).

We conclude that

γ(r) = ‖a‖r ≥
‖ax‖r
‖x‖r

= 2( 1
r−

1
2 ).

This shows that γ(r) = 2( 1
r−

1
2 ) for r ∈ [1, 2], and the claim follows.

Now let p and q be in [1,∞) and let ϕ : F p(Z2) → F q(Z2) be an isometric isomorphism.

Since ϕ is an algebra isomorphism, we must have either ϕ(x, y) = (x, y) or ϕ(x, y) = (y, x) for all

(x, y) ∈ C2. By Proposition XV.3.2, the flip (x, y) 7→ (y, x) is an isometric isomorphism of F q(Z2),

so we may assume that ϕ is the identity map on C2. It follows that ‖(1, i)‖Fp(Z2) = ‖(1, i)‖F q(Z2),

so
∣∣∣ 1p − 1

2

∣∣∣ =
∣∣∣ 1q − 1

2

∣∣∣. We conclude that either p = q or 1
p + 1

q = 1, so the proof is complete.

We are now ready to show that for p and q in [1,∞), the algebras F p(Z) and F q(Z) are

(abstractly) isometrically isomorphic only in the trivial cases p = q and 1
p + 1

q = 1. (Compare this

with part (2) of Corollary XIV.3.20, where only the canonical homomorphism is considered.)

Theorem XV.3.7. Let p and q be in [1,∞). Then F p(Z) is isometrically isomorphic to F q(Z) if

and only if either p = q or 1
q + 1

q = 1.

Proof. The “if” implication follows from Proposition XIV.2.18. Let us show the converse.
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Recall that the maximal ideal spaces of F p(Z) and F q(Z) are canonically homeomorphic

to S1 by Proposition XIV.3.13. We let Γp : F p(Z) → C(S1) denote the Gelfand transform, which

sends the generator u ∈ F p(Z) to the canonical inclusion ι of S1 into C.

Let ϕ : F p(Z) → F q(Z) be an isometric isomorphism. Then ϕ induces a homeomorphism

f : S1 → S1 that maps z in S1 to the unique point f(z) in S1 that satisfies

evz ◦ ϕ = evf(z) : F p(Z)→ C.

It is a classical result in point-set topology that there must exist ζ in S1 such that f(−ζ) =

−f(ζ). Denote by πp : F p(Z) → F p(Z2) and πq : F p(Z) → F q(Z2) the canonical

homomorphisms associated with the surjective map Z → Z2. Then πp and πq are quotient

maps by Theorem XV.2.3. Let ωζ : F p(Z) → F p(Z) be the isometric isomorphism induced by

multiplying by ζ the canonical generator in F p(Z) corresponding to 1 ∈ Z. Analogously, let

ωf(ζ) : F q(Z)→ F q(Z) be the isometric isomorphism induced by multiplying by f(ζ) the canonical

generator in F q(Z). Then the following diagram is commutative:

C(S1)
f∗ // C(S1)

F p(Z)

πp

��

F p(Z)
ωζoo

ϕ
//

Γp

OO

F q(Z)

Γq

OO

ωf(ζ) // F q(Z)

πq

��
F p(Z2)

ψ̂

// F q(Z2).

Define a homomorphism ψ : F p(Z)→ F q(Z) by

ψ = ωf(ζ) ◦ ϕ ◦ ω−1
ζ .

Then ψ is an isometric isomorphism. One checks that ψ maps the kernel of πp onto the

kernel of πq. It follows that ψ induces an isometric isomorphism ψ̂ : F p(Z2) → F q(Z2). By

Proposition XV.3.6, this implies that p and q are either equal or conjugate, as desired.
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CHAPTER XVI

THE ISOMORPHISM PROBLEM FOR ALGEBRAS OF

CONVOLUTION OPERATORS

This chapter is based on joint work with Hannes Thiel ([99]).

In this short chapter, which is based on [99], we study the structure of contractive, unital

homomorphisms between algebras of convolution operators on groups. We focus on discrete

groups, but this assumption is not necessary. The results presented here are not the most general

possible, but they are interesting enough not to be omitted. We reproduce below the most general

form of our results.

Theorem. Let G and H be locally compact groups, let p ∈ [1,∞) with p 6= 2. Let ϕ : F pλ (G) →

F pλ (H), or ϕ : PMp(G) → PMp(H), or ϕ : CVp(G) → CVp(H), be a contractive, nondegenerate

homomorphism. Then

1. There exist a group homomorphism θ : G → H with amenable kernel and a group

homomorphism γ : G → T such that ϕ (or its extension to PMp(G) → PMp(H)) is

determined by

ϕ(us) = γ(s)uθ(s)

for all s ∈ G.

2. The range of ϕ is closed.

3. The homomorphism ϕ is isometric if and only if it is injective.

Moreover, ϕ is surjective if and only if θ is surjective.

Our results generalize Wendel’s Theorem from the 60’s, that asserts that there is a

contractive isomorphism L1(G) ∼= L1(H) if and only if G ∼= H. Our techniques differ from those

used by Wendel: while he used extreme points of the unit ball, we use invertible isometries. Our

main technical device is Lampert’is theorem.

Contractive Homomorphisms Between Algebras of Convolution
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Operators

We begin by recalling a particular case of Lamperti’s theorem. Observe that no σ-finiteness

assumption is needed.

Theorem XVI.1.1. (See Theorem XIII.2.4). Let X be a set endowed with the counting measure,

let p ∈ [1,∞) with p 6= 2, and let u : `p(X) → `p(X) be an invertible isometry. Then there exist a

function h : X → T and a bijective map T : X → X such that u = mh · uT , that is,

u(ξ)(x) = h(x)ξ(T−1(x))

for ξ ∈ `p(X) and x ∈ X.

Moreover, this presentation of u is unique in the following sense: Given functions

h1, h2 : X → T and bijective maps T1, T2 : X → X, we have mh1 · uT1 = mh2 · uT2 if and only

if h1 = h2 and T1 = T2.

We now specialize to invertible isometries on `p(G) for a discrete group G. If one moreover

assumes that the invertible isometry in question commutes with the right regular representation,

then the conclusion of Lamperti’s theorem can be improved significantly, as we show below.

Proposition XVI.1.2. Let G be a discrete group, let p ∈ [1,∞) with p 6= 2, and let u be an

invertible isometry in CVp(G). Then there exist α ∈ T and s ∈ G such that u = α · us.

Proof. By Theorem XVI.1.1, there exist a bijection T : G → G and a function h : G → T such

that u = mh ◦ uT For s ∈ G, set us = λp(s) and vs = ρp(s), which are invertible isometries

on `p(G). Observe that vs ∈ CVp(G). For s ∈ G, we define the left and right translation maps

Lts, Rts : G→ G on G by

Lts(x) = s−1x, and Rts(x) = xs

for x ∈ G. For ξ ∈ `p(G) and t ∈ G, we have

vs(ξ)(t) = ξ(ts) = ξ(Rts(t)) = uRt−1
s

(ξ)(t),

which implies vs = uRt−1
s

. Similarly, we have us = uLt−1
s

.
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Using the assumption that u and vs commute at the third step, we get

mh ◦ uT◦Rt−1
s

= mh ◦ uT ◦ uRt−1
s

= u ◦ vs = vs ◦ u = uRt−1
s
◦mh ◦ uT = mh◦Rts ◦ uRt−1

s ◦T .

This implies that h = h ◦ Rts and T ◦ Rt−1
s = Rt−1

s ◦ T . Since this holds for all s ∈ G, we

immediately deduce that h is constant. Let α ∈ T be the constant value of h. Denote by e ∈ G the

unit of the group, and set y = T (e)−1. For x ∈ G, we compute

T (x) = T (ex) = (T ◦ Rtx)(e) = (Rtx ◦ T )(e) = T (e)x = Lt−1
y (x)

which implies that T = Lt−1
y . Thus, uT = uy and consequently u = mh ◦ uT = α · uy, as desired.

This finishes the proof.

The next result does not require that p be different from 2. It is surely well known, and we

include its proof here for the sake of completeness.

Lemma XVI.1.3. Let G be a discrete group, let p ∈ [1,∞), let g, h : G → T, and let S, T : G →

G be bijective maps.

1. If S 6= T , then ‖mg ◦ uS −mh ◦ uT ‖ = 2.

2. If S = T , then ‖mg ◦ uS −mh ◦ uT ‖ = ‖g − h‖∞.

Proof. (1) Using that mg ◦ uS is an invertible isometry at the first step, we have

‖mh ◦ uS −mh ◦ uT ‖ = ‖1− u−1
S ◦m

−1
g ◦mh ◦ uT ‖ = ‖1−m(gh)◦S−1uS−1T ‖.

Thus, it is enough to verify (1) under the additional assumption that g = 1 and S = id. Put

differently, let f ∈ `∞(G,T), and let Q : G → G be a bijective map with Q 6= id. We need to show

that

‖1−mf ◦ uQ‖ = 2.

Since Q 6= id, there exists s in G such that Q(s) 6= s. Set ξ = δs, the Dirac function at the point

s. Then ξ ∈ `p(G) and ‖ξ‖p = 1. By construction, the functions ξ and (mf ◦ uQ)(ξ) have disjoint
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support, which implies

‖1−mf ◦ uQ‖ ≥ ‖(1−mf ◦ uQ)(ξ)‖p = ‖ξ‖p + ‖(mf ◦ uQ)(ξ)‖p = 2.

Conversely, we clearly have ‖1−mf ◦ uQ‖ ≤ ‖1‖+ ‖mf ◦ uQ‖ = 2.

(2) Using that uS is an invertible isometry at the last step, we have

‖mh ◦ uS −mh ◦ uT ‖ = ‖(mg −mh) ◦ uS‖ = ‖mg −mh‖.

Given ξ ∈ `p(G), we have

‖(mg −mh)(ξ)‖pp =
∑
s∈G
|g(s)− h(s)|p · |ξ(s)|p

≤
∑
s∈G
‖g − h‖p∞ · |ξ(s)|p

= ‖g − h‖p∞‖ξ‖pp,

which implies that ‖mg −mh‖ ≤ ‖g − h‖∞.

For the converse inequality, let ε > 0 be given. Choose s in G such that |g(s) − h(s)| ≥

‖g − h‖∞ − ε. Again, we consider the Dirac function δs. Then ‖δs‖p = 1 and we compute

‖mg −mh‖ ≥ ‖(mg −mh)(δs)‖p

=

(∑
x∈G
|g(x)− h(x)|p · |δs(x)|p

)1/p

= (|g(s)− h(s)|p·)1/p ≥ ‖g − h‖∞ − ε.

Since this holds for every ε > 0, we conclude that ‖mg −mh‖ ≥ ‖g − h‖∞, as desired.

Notation XVI.1.4. Let A be a unital Banach algebra. We let U(A) denote the group of

invertible isometries in A. We let U(A)0 denote the connected component of U(A) in the norm

topology that contains the unit of A. Then U(A)0 is a normal subgroup of U(A) and we set

π
‖·‖
0 (U(A)) = U(A)/U(A)0,
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the group of connected components of U(A) for the norm topology. We denote by κ : U(A) →

π
‖·‖
0 (U(A)) the canonical quotient map, which is a group homomorphism.

Theorem XVI.1.5. Let G be a discrete group, and let p ∈ [1,∞) with p 6= 2. Then the map

∆: T×G→ U(CVp(G)),

given by ∆(α, s) = α · us for α ∈ T and s ∈ G, is a group isomorphism.

Given (αk, sk) ∈ T × G for k = 1, 2, the elements ∆(α1, s1) and ∆(α2, s2) lie in the

same connected component of U(CVp(G)) for the norm topology if and only if s1 = s2. Thus, ∆

induces a group isomorphism ∆′ between G and π
‖·‖
0 (U(CVp(G))) such that the following diagram

commutes:

T×G ∆ //

��

U(CVp(G))

κ
��

G
∆′

// π‖·‖0 (U(CVp(G))).

Proof. It follows from Proposition XVI.1.2 that the map ∆ is a bijection. Since it is clearly a

group homomorphism, the first part of the theorem follows. Finally, Lemma XVI.1.3 implies the

rest of the statement.

Corollary XVI.1.6. Let G be a discrete group, and let p ∈ [1,∞) with p 6= 2. Let A be a closed,

unital subalgebra of B(`p(G) such that F pλ (G) ⊆ A ⊆ CVp(G). Then there is a natural group

isomorphism:

G ∼= π
‖·‖
0 (U(A)).

This, in particular, applies when A is one of F pλ (G), PMp(G), or CVp(G).

The following is our main result.

Theorem XVI.1.7. Let G and H be discrete groups, and let p ∈ [1,∞) with p 6= 2. Let

ϕ : F pλ (G)→ F pλ (H) be a contractive, unital homomorphism. Then:

1. There exist an injective group homomorphism θ : G → H and a group homomorphism

γ : G→ T such that ϕ is determined by

ϕ(us) = γ(s)uθ(s)
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for all s ∈ G.

2. The homomorphism ϕ is isometric.

Moreover, ϕ is surjective if and only if θ is surjective.

Proof. Since ϕ is contractive, we have ϕ(U(F pλ (G))) ⊆ U(F pλ (H)). Using Theorem XVI.1.5, it is

easy to see that ϕ induces a group homomorphism θ : G → H, which is clearly injective. There is

a group isomorphism

σ : T×G→ T×H,

whose coordinates are denoted by σT and σH . It is clear that σH(ζ, g) = ζuθ(g) for all (ζ, g) ∈

T × G. On the other hand, σT(ζ, g) must agree with ζσ(1, g), and the map γ : G → T, given by

γ(g) = σ(1, g) for g ∈ G, is easily seen to be a group homomorphism.

One readily checks that γ induces an isometric isomorphism Γ: F pλ (G) → F pλ (G) given by

Γ(ug) = γ(g)ug for g ∈ G. Denote by ψ : F pλ (G) → F pλ (H) the isometric homomorphism induced

by ι as in Proposition XV.2.1. Since ϕ and ψ ◦ Γ agree on U(F pλ (G)), they must be equal, so the

formula given in the statement holds. Finally, since ψ and Γ are both isometric, it follows that so

is ϕ.

If ϕ is surjective, we must have ϕ(U(F pλ (G))) = U(F pλ (H)), so we deduce that θ is also

surjective. The converse implication is immediate.

Similar conclusions can be obtained for contractive unital homomorphisms between the

algebras of pseudomeasures, or the algebras of convolvers.

We close this chapter with an interesting application, which is connected to the Kadison-

Kaplansky conjecture for reduced group C∗-algebras.

Theorem XVI.1.8. Let G be a torsion free discrete group, and let p ∈ [1,∞) with p 6= 2. Then

F pλ (G) does not contain a nontrivial bicontractive idempotent.

Proof. Let e ∈ F pλ (G) be a bicontractive idempotent e. By Theorem 1 in [11], the element

v = 2e − 1 is an invertible isometry, which clearly has order two. Since F pλ (Z2) is universal

with respect to isometric representations of Z2, we deduce that there exists a contractive, unital

homomorphism ϕ : F pλ (Z2)→ F pλ (G) given by sending the nontrivial generating invertible isometry

in F pλ (Z2) to v. Observe that ϕ is injective if and only if e 6= 1, 0. By Theorem XVI.1.7, if ϕ were
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injective, then there is an injective group homomorphism Z2 → G, which would contradict the

fact that G is torsion free. Hence ϕ is not injective, and thus e is either 0 or 1. We conclude that

F pλ (G) has no nontrivial bicontractive idempotents.

It is a long standing open problem to decide whether for a torsion free group G, the C∗-

algebra C∗λ(G) contains a nontrivial bicontractive idempotent.
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CHAPTER XVII

CONVOLUTION ALGEBRAS ON LP -SPACES DO NOT ACT ON

LQ-SPACES

This chapter is based on joint work with Hannes Thiel ([97]).

Let G be a non-trivial locally compact group, and let p ∈ [1,∞). Consider the following

Banach algebras: p-pseudofunctions PFp(G), p-pseudomeasures PMp(G), p-convolvers CVp(G),

and full group Lp-operator algebra F p(G). We show that none of these Banach algebras are

isometrically operator algebras unless p = 2. When G is amenable, these Banach algebras are

representable on an Lq-space if and only if p and q are either equal or conjugate.

Introduction

Associated to any locally compact group G, there are three fundamentally important

operator algebras: its reduced group C∗-algebra C∗λ(G), its full group C∗-algebra C∗(G), and

its group von Neumann algebra L(G). These are, respectively, the Banach algebra generated by

the left regular representation of G in B(L2(G)); the universal C∗-algebra with respect to unitary

representations of G on Hilbert spaces; and the weak-∗ closure (also called ultraweak closure)

of C∗λ(G) in B(L2(G)). (We identify B(L2(G)) with the dual of the projective tensor product

L2(G)⊗̂L2(G) canonically.) Equivalently, L(G) is the double commutant of C∗λ(G) in B(L2(G)).

These operator algebras admit generalizations to representations of G on Lp-spaces,

for p ∈ [1,∞). The analog of C∗λ(G) is the the algebra PFp(G) of p-pseudofunctions on G,

first introduced by Herz in [116] (Phillips also considered this algebra in [207], where he called

it the reduced group Lp-operator algebra of G). The analog of C∗(G) is the full group Lp-

operator algebra F p(G), defined by Phillips in [207]. Finally, the von Neumann algebra L(G)

has two analogs: the algebra of p-pseudomeasures PMp(G), which is the weak-∗ closure of

F pλ (G) in B(Lp(G)) (where we identify B(Lp(G)) with the dual of the projective tensor product

Lp(G)⊗̂(Lp(G))∗ canonically); and the algebra of p-convolvers CVp(G), which is the double

commutant of PFp(G) in B(Lp(G)) (it is also the commutant of the right regular representation).

Both these algebras were introduced by Herz in [116].
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These objects, and related ones, have been studied by a number of authors in the last three

decades. For instance, see [38], [189], [242], [49], and the more recent papers [207], [211], [98], and

[94].

Despite the advances in the area, some basic questions remain open. One important open

problem is whether PMp(G) = CVp(G) for all p ∈ [1,∞) and for all locally compact groups

G. Herz showed in [116] that this is the case for all p if G is amenable, a result that was later

generalized by Cowling in [38] to groups with the approximation property.

A less studied problem is the following. By universality of F p(G), there is a contractive

homomorphism κp : F p(G) → PFp(G) with dense range. For p = 2, this map is known to be a

quotient map, and for p = 1 it is an isomorphism regardless of G. On the other hand, we do not

know if κp is also a quotient map for all other values of p. In fact, we do not even know whether

κp is surjective. If this map is not necessarily surjective, can it be injective without the group

being amenable? (By Theorem XIV.3.7, G is amenable if and only if κp is bijective for some

(equivalently, for all) p ∈ (1,∞). This result was independently obtained by Phillips in [207] and

[211], using different methods.) In this case, it would be interesting to describe precisely for what

groups (and Hölder exponents) the map κp is injective (and not surjective).

Questions of the nature described above would in principle be easier to attack if the

objects considered had a more rigid structure (or at least, better understood), as it is the case

for operator algebras. Despite the fact that the Banach algebras PFp(G), F p(G), PMp(G)

and CVp(G) have a natural representation as operators on an Lp-space, this by itself does not

rule out having an isometric representation on a Hilbert space as well; see, for example, [16].

ISince every C∗-algebra can be (isometrically) represented on a non-commutative Lp-space by

Proposition XVII.2.6, it is not a priori clear whether the Lp-analogs of group operator algebras

can be represented on Hilbert spaces.

In this chapter, which is based on [97], we settle this question negatively. Indeed, we show

in Theorem XVII.2.7 that for a non-trivial locally compact group G, and for p ∈ [1,∞) \ {2},

none of the algebras PFp(G), F p(G), PMp(G), or CVp(G), can be represented on a Hilbert space.

(This result generalizes an unpublished result of Neufang and Runde; Theorem 2.2 in [189], where

the authors assume that G is abelian and has an infinite subgroup.) When G is amenable and for

p, q ∈ [1,∞), we show that one (equivalently, all) of the algebras PFp(G), F p(G), PMp(G), or
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CVp(G), can be represented on an Lq-space if and only if either p = q or 1
p + 1

q = 1. Our main tool

to prove both these theorems, is that for 1 ≤ p ≤ q ≤ 2, there exists a canonical, contractive map

γp,q : F p(G)→ F q(G) with dense range; see Theorem XIV.2.30.

As an intermediate result of independent interest, we show that the only C∗-algebras that

can be isometrically represented on some Lp-space, for p ∈ [1,∞) \ {2}, are the commutative

ones. This result is somewhat surprising at first sight, and it should be compared with the fact

that every C∗-algebra can be represented on a noncommutative Lp-space, for any p ∈ [1,∞); see

Proposition XVII.2.6.

Convolution Algebras on Lp-spaces are not Operator Algebras

Proposition XVII.2.1 is our first preparatory result on representability of full group Lp-

operator algebras on Lq-spaces. We need some notation first. Let G be a locally compact group,

and denote by ∆: G → R its modular function. For f ∈ L1(G), let f ] : G → C be given by

f ](s) = ∆(s−1)f(s−1) for all s in G. It is easy to check that the map ] : L1(G) → L1(G) is an

isometric anti-isomorphism of order two.

Proposition XVII.2.1. Let G be a locally compact group, and let p, q ∈ [1,∞). Suppose that

F p(G) is isometrically representable on an Lq-space.

1. If p, q ∈ [1, 2] with p ≤ q, or p, q ∈ [2,∞) with p ≥ q, then the identity map on L1(G)

extends to an isometric isomorphism F p(G) ∼= F q(G).

2. If p ∈ [1, 2] and q ∈ [2,∞) with p ≤ q′, or if q ∈ [1, 2] and p ∈ [2,∞) with p′ ≤ q, then the

map ] on L1(G) extends to an isometric isomorphism F p(G) ∼= F q(G).

Proof. (1). Since the result is trivial when p = q, we may suppose, without loss of generality,

that 1 ≤ p < q ≤ 2. Given f ∈ L1(G), we have ‖f‖F q(G) ≤ ‖f‖Fp(G) by Theorem XIV.2.30.

Suppose that there exist an Lq-space E and an isometric representation ϕ : F p(G) → B(E). Let

ιp : L1(G)→ F p(G) be the canonical contractive inclusion with dense range. Then

ψ = ϕ ◦ ιp : L1(G)→ B(E)

is a contractive representation of L1(G) on an Lq-space. Note, however, that this representation

is not necessarily non-degenerate, so it does not necessarily induce a representation of F q(G). In
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order to circumvent this, we consider the Banach space

F = {π(f)ξ : f ∈ L1(G), ξ ∈ E}.

Then F is a closed subspace of an Lq-space, and the compression ψ : L1(G) → B(F ) is non-

degenerate. It is a standard fact that there exists a strongly continuous group representation

ρ : G → Isom(F ) of G by invertible isometries of F whose integrated form is ψ (see, for example,

Proposition XIV.2.4).

Using the definition of the norm on F qS (G) (see Definition XIV.2.1 and Definition XIV.2.5)

at the last step, we deduce that

‖f‖Fp(G) ≤ ‖f‖Fp(G) = ‖ψ(f)‖B(F ) ≤ ‖f‖F qS (G).

Finally, since ‖f‖F q(G) = ‖f‖F qS (G) by Theorem XIV.2.26, we deduce that ‖f‖F q(G) =

‖f‖Fp(G). Since f ∈ L1(G) is arbitrary, it follows that the identity on L1(G) extends to an

isometric isomorphism F p(G)→ F q(G).

(2). We can assume, without loss of generality, that 1 ≤ p ≤ 2 ≤ q < ∞. Denote by

q′ ∈ [1, 2] Hölder conjugate exponent of q. By Proposition XIV.2.18, the map ] : L1(G) → L1(G)

extends to an isometric isomorphism F q(G) → F q
′
(G). (The details are in the proof of

Lemma XIV.2.16, the main point being that given a representation of G on an Lq-space, its

dual representation, is a representation of Gop on Lq
′
, which induces the same norm on L1(G).

One composes this isometric anti-isomorphism with the map ] to get an honest (isometric)

isomorphism.)

Since the identity map on L1(G) extends to an isometric isomorphism F p(G) → F q
′
(G) by

part (1), the result follows.

Besides F p(G) and PFp(G), the other two Banach algebras we will be concerned with are

the algebra PMp(G) of p-pseudomeasures, and the algebra CVp(G) of p-convolvers. These are

respectively defined as the ultraweak closure, and the bicommutant, of PFp(G) in B(Lp(G)).

Algebras of pseudomeasures and of convolvers on groups have been thoroughly studied

since their inception by Herz in the early 70’s; see [116]. It is clear that PMp(G) ⊆ CVp(G), and
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it is conjectured that they are equal for every locally compact group G and every Hölder exponent

p ∈ [1,∞). The conjecture is known to be true if p = 2, or if G is amenable ([116]), or, more

generally, if G has the approximation property ([38]).

We recall a result from [99] about multiplier algebras of Lp-operator algebras.

Theorem XVII.2.2. (Corollary 2.5 in [99].) Let p ∈ [1,∞) and let A be an Lp-operator algebra

with a contractive approximate identity. Assume that A can be non-degenerately represented on

an Lp-space. Then the multiplier algebra M(A) is an Lp-operator algebra. Indeed, if A is non-

degenerately representable on an Lp-space E, then M(A) is unitally representable on E.

Proposition XVII.2.3. Let A be a C∗-algebra and let p ∈ [1,∞) \ {2}. Then A can be non-

degenerately, isometrically represented on an Lp-space if and only if A is commutative.

Proof. It is a well-known fact that C∗-algebras have contractive approximate identities (one can,

for example, take the set of all positive contractions with the canonical order).

Let E be an Lp-space and let A → B(E) be a non-degenerate isometric homomorphism.

Then there is a unital isometric homomorphism M(A) → B(E) by Theorem XVII.2.2. Since A is

commutative if and only if M(A) is commutative, we can assume that A is unital.

Since any element in a C∗-algebra is a linear combination of four positive elements, it is

enough to show that such elements commute with each other.

Let a, b ∈ A with a, b ≥ 0. We claim that ab = ba. For this, it is enough to show that the

unitaries v = eia and w = eib commute. Since C∗(1, v, w) is a separable unital C∗-algebra, we may

assume that A itself is separable. In this case, by Proposition 1.25 in [207] (see also Remark 1.18

there), there exist a σ-finite measure space (X,A, µ) and an isometric, unital representation

π : A→ B(Lp(X,µ)). Without loss of generality, we may assume that (X,A, µ) is complete.

The operators π(v) and π(w) are invertible isometries of Lp(X,µ). Since v and w are

homotopic to the unit of A within the unitaries in A, it follows that π(v) and π(w) can be

connected, by norm-continuous paths of invertible isometries in B(Lp(X,µ)), to the unit of

B(Lp(X,µ)).

By Lamperti’s theorem (in the form given in Theorem XIII.2.4; see also [161] for the

original statement), there exist measurable functions hv, hw : X → S1 and measure class

preserving automorphisms Tv, Tw : X → X (see Definition XIII.2.1) such that
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(vξ)(x) = hv(x)

(
d(µ ◦ T−1

v )

dµ
(x)

) 1
p

ξ(T−1
v (x))

(wξ)(x) = hw(x)

(
d(µ ◦ T−1

w )

dµ
(x)

) 1
p

ξ(T−1
w (x))

for all ξ ∈ Lp(X,µ) and µ-almost every x ∈ X. (The transformation Tv is called the spatial

realization of v in [204].) With the notation from Section XIII.2, we have v = mhv ◦ uTv and

w = mhw ◦ uTw . On the other hand, it is clear that idE = uidX .

By Lemma 6.22 in [204], we must have Tv(x) = Tw(x) = x for µ-almost every x ∈ X. It

follows that v and w are, respectively, the operators of multiplication by the functions hv and hw.

We conclude that v and w commute, and the proof of the proposition is complete.

Remark XVII.2.4. We do not know whether the assumption that the representation of A on an

Lp-space can be chosen to be non-degenerate is necessary in Proposition XVII.2.3. On the other

hand, we point out that any unital Banach algebra that can be represented on an Lp-space, can

also be unitally represented on an Lp-space, by Lemma XIX.2.3.

It is conceivable that a similar result holds for C∗-algebras that have an approximate

identity consisting of projections.

For the sake of comparison, we will show in Proposition XVII.2.6 that for any p ∈ [1,∞),

any C∗-algebra can be isometrically represented on a noncommutative Lp-space (see [107] for the

definition of a noncommutative Lp-space associated to a semifinite von Neumann algebra). This

result is probably known to the experts, but we were not able to find a reference.

We need first a result about C∗-algebras which is interesting in its own right. The proof is

due to Garth Dales, and it was provided to us by Chris Phillips. We are thankful to both of them

for allowing us to include it here. This result will be used in the proofs of Proposition XVII.2.6

and also Theorem XVII.2.7.

Theorem XVII.2.5. Let A be a C∗-algebra, let B be a Banach algebra, and let ϕ : A → B be a

contractive, injective homomorphism. Then ϕ is isometric.

If ϕ is not assumed to be injective, then the conclusion is that it is a quotient map. On

the other hand, we must assume that ϕ is contractive, and not merely continuous, for the result
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to hold (Phillips – private communication). The result also fails for not necessarily self-adjoint

operator algebras, even for uniform algebras.

Proof. Fix a ∈ A. We want to show that ‖ϕ(a)‖ = ‖a‖. Since ϕ is contractive, it is enough to

show that ‖ϕ(a)‖ ≥ ‖a‖. Since this is immediate for a = 0, we will assume that a 6= 0.

We claim that

‖a‖2 ≤ ‖ϕ(a)‖‖ϕ(a∗)‖.

(This is true even if ϕ is not continuous.) By Gelfand’s theorem, the C∗-subalgebra C∗(a∗a) of A

generated by a∗a is isometrically isomorphic to C0(X) for X = sp(a∗a). Since the restriction of

ϕ to C∗(a∗a) is obviously an injective homomorphism, it follows from part (2) of Theorem 4.2.3

in [46] that

‖ϕ(a∗a)‖ ≥ ‖a∗a‖.

Now, ‖a∗a‖ = ‖a‖2 because A is a C∗-algebra, and ‖ϕ(a∗a)‖ ≤ ‖ϕ(a∗)‖‖ϕ(a)‖ because ϕ is

multiplicative and B is a Banach algebra. The claim follows.

We use the claim at the third step to deduce that

‖a‖‖ϕ(a∗)‖ ≤ ‖a‖‖a∗‖ = ‖a‖2 ≤ ‖ϕ(a)‖‖ϕ(a∗)‖.

Now, ϕ(a∗) 6= 0 because ϕ is injective. Dividing the inequality above by ‖ϕ(a∗)‖ gives

‖a‖ ≤ ‖ϕ(a)‖, and concludes the proof.

Recall that if H is a Hilbert space, an operator T ∈ B(H) belongs to the Schatten-p class if

and only if Tr(|T |p) is finite (here, |T | = (T ∗T )
1
2 ). Moreover, the Schatten-p norm of T is given by

‖T‖p = (Tr(|T |p))
1
p .

Noncommutative Lp-spaces were introduced by Haagerup in [107], where the reader will

find the definition and basic facts. Here, all we will use is that for a Hilbert space H and p ∈

[1,∞), the Schatten-p class Sp(H) is a noncommutative Lp-space.

Proposition XVII.2.6. Let A be a C∗-algebra, and let p ∈ [1,∞). Then there exist a

noncommutative Lp-space E and an isometric representation ϕ : A→ B(E).
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Proof. Since every C∗-algebra can be isometrically represented on a Hilbert space, it is enough to

show that if H is a Hilbert space, then B(H) can be represented on a noncommutative Lp-space.

Consider the Schatten-p class Sp(H) ⊆ B(H); this is the noncommutative Lp-space

associated to B(H) with its usual trace Tr. Denote the norm on Sp(H) by ‖ · ‖p, and by ‖ · ‖

the operator norm on B(H). Define an algebra homomorphism ϕp : B(H) → B(Sp(H)) by

ϕp(T )(S) = ST for T ∈ B(H) and S ∈ Sp(H). We claim that ϕp is an isometric representation.

Suppose first that p ∈ [1, 2]. Fix T ∈ B(H) and S ∈ Sp(H). It is clear that S∗T ∗TS ≤

‖T‖2S∗S. Since 0 < p
2 ≤ 1, we use Proposition 6.3 in [258] at the second step to get

|TS|p = (S∗T ∗TS)
p
2 ≤ ‖T‖p(S∗S)

p
2 = ‖T‖p|S|p.

It follows that Tr(|TS|p) ≤ ‖T‖pTr(|S|p), and thus ‖TS‖p ≤ ‖T‖‖S‖p. Since S is arbitrary, we

conclude that ϕp is a contractive representation.

Since Sp(H) contains all finite rank operators (in particular, all rank one projections),

it is clear that ϕp is injective. That ϕp is isometric now follows from Theorem XVII.2.5.

(Alternatively, and in order to conclude that ϕp is isometric, one could show directly that

‖ϕp‖ ≥ 1.)

Suppose now that p ∈ (2,∞). Denote by p′ ∈ [1, 2] the Hölder conjugate exponent of p.

It is a standard fact that the dual space Sp(H)∗ of Sp(H) is isometrically isomorphic to Sp′(H).

Moreover, under this canonical identification, we have

ϕp(T ) = ϕp′(T
∗)

for all T ∈ B(H). Since ϕp′ is isometric by the first part of this proof, it follows that ϕp is also

isometric. This concludes the proof.

The following is one of the main results of this chapter. In its proof, for a locally compact

group G and p ∈ [1,∞), and to emphasize the role played by G, we will denote by γGp,2 : F p(G) →

C∗(G) the map constructed in Theorem XIV.2.30.

Theorem XVII.2.7. Let G be a locally compact group and let p ∈ [1,∞). Then one of F p(G),

PFp(G), PMp(G) or CVp(G) is isometrically an operator algebra if and only if either p = 2 or G

is the trivial group.
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Proof. The “if” implication is obvious if G is the trivial group, since the associated Banach

algebras are all C, while the statement is true if p = 2, essentially by definition.

For the “only if” implication, it is clear that if either PMp(G) or CVp(G) is an operator

algebra, then so is PFp(G), since there are isometric inclusions

PFp(G) ⊆ PMp(G) ⊆ CVp(G).

Assume now that F p(G) is an operator algebra and that p 6= 2. By Proposition XVII.2.1,

there is a canonical identification of F p(G) with C∗(G) = F 2(G). Let κp : F p(G) = C∗(G) →

PFp(G) denote the canonical contractive homomorphism with dense range. It is well-known that

the quotient C∗(G)/ ker(κp) is a C∗-algebra. The induced map

κ̂p : C∗(G)/ ker(κp)→ PFp(G)

is an injective, contractive homomorphism. Now, Theorem XVII.2.5 shows that κ̂p is isometric. In

particular, PFp(G) is a C∗-algebra, and hence an operator algebra itself.

It is therefore enough to show the statement assuming that PFp(G) is an operator algebra.

Let H be a Hilbert space and let ϕ : PFp(G)→ B(H) be an isometric representation.

Claim: PFp(G) is a C∗-algebra. Note that A has a contractive approximate identity, since

so does L1(G), and there is a contractive homomorphism ι : L1(G) → PFp(G) with dense range.

Moreover, since

{ϕ(a)η : a ∈ PFp(G), η ∈ H}

is itself a Hilbert space, we may assume that the representation ϕ is non-degenerate. It follows

from Theorem XVII.2.2 that the algebra M(PFp(G)) ⊆ B(PFp(G)) of multipliers on PFp(G), is

unitally representable on H.

By Corollary 2.5 in [99], there is a canonical isometric identification of the multiplier

algebra M(PFp(G)) ⊆ B(PFp(G)), with the Banach algebra

C(PFp(G)) = {x ∈ B(Lp(G)) : xa, ax ∈ PFp(G) for all a ∈ PFp(G)} ⊆ B(Lp(G))
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of centralizers of PFp(G). Denote by ψ : C(PFp(G)) → B(H) the resulting unital, isometric

representation.

There is an obvious identification of G with a subgroup of the invertible isometries of

C(PFp(G)), given by letting a group element g ∈ G act on Lp(G) as the convolution operator

with respect to the point mass measure δg. Now, for g ∈ G, set ug = ψ(δg). Then ug is an

invertible isometry on H, that is, a unitary operator. Moreover, the map u : G → U(H) given

by g 7→ ug, is easily seen to be a strongly-continuous unitary representation of G on H. The

integrated form ρu : L1(G)→ B(H) of u is therefore a contractive, non-degenerate homomorphism.

Whence ρu(L1(G)) ⊆ B(H) is a ∗-subalgebra. Moreover, it is clear that the following diagram

commutes:

L1(G)

ι

��

ρu

$$
PFp(G)

ϕ
// B(H).

We conclude that ϕ(PFp(G)) = ρu(L1(G)) is a closed ∗-subalgebra of B(H), that is, a

C∗-algebra. The claim is proved.

It follows from Proposition XVII.2.3 that PFp(G) is commutative. Thus G is itself

commutative, and in particular PFq(G) = F q(G) for all q ∈ [1,∞), by Theorem XIV.3.7.

The map γGp,2 : PFp(G) → C∗λ(G) is an isometric isomorphism by Proposition XVII.2.1.

The fact that γGp,2 is surjective implies that G is finite, by Corollary XIV.3.20. Using that γGp,2 is

isometric, we will show that G must be the trivial group.

Using finiteness of G, let g ∈ G be an element with maximum order. Set n = ord(g) ≥ 1,

and let j : Zn ↪→ G be the group homomorphism determined by j(1) = g. By Proposition XV.2.1,

there are natural isometric embeddings jp : PFp(Zn) ↪→ PFp(G) and j2 : C∗λ(Zn) ↪→ C∗λ(G).

(Existence of j2 is well known; see [24].) Naturality of the maps involved implies that the

following diagram is commutative:

PFp(Zn)
jp //

γZn
p,2

��

PFp(G)

γGp,2
��

C∗λ(Zn)
j2
// C∗λ(G).
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In particular, γZnp,2 : PFp(Zn) → C∗λ(Zn) is an isometric isomorphism. (This map is really just the

identity on Cn.)

Set ω = e
2πi
n ∈ S1. Using that p 6= 2 together with Proposition XV.3.4 (see also the

comments above it), we conclude that if x ∈ PFp(Zn) is an invertible isometry, then there exist

ζ ∈ S1 and k ∈ {0, . . . , n− 1} such that, under the algebraic identification of PFp(Zn) with Cn, we

have

x =
(
ζ, ζωk, . . . , ζωk(n−1)

)
.

In particular, if n > 1, then not every element in (S1)n ⊆ Cn has norm one in PFp(Zn). Since this

certainly is the case in C∗λ(Zn), we must have n = 1. By the choice of n, we conclude that G must

be the trivial group, and the proof of the theorem is finished.

In contrast with Theorem XVII.2.7, we point out that some Lp-operator group algebras

are contractively and isomorphically representable on Hilbert spaces. For example, for any finite

group G, abelian or not, and for any p ∈ [1,∞), the map γp,2 : F p(G) → C∗(G) constructed in

Theorem XIV.2.30, is a (non-degenerate) contractive isomorphism.

PFp(G), PMp(G) and CVp(G) do not Act on Lq-spaces

Recall (Theorem 5 in [116]) that if G is an amenable locally compact group, then

PMp(G) = CVp(G) for all p ∈ [1,∞).

Theorem XVII.3.1. Let G be a locally compact, amenable group, and let p, q ∈ [1,∞). Then

one of PFp(G) or PMp(G) is isometrically representable on an Lq-space if and only if either

∣∣∣∣12 − 1

p

∣∣∣∣ =

∣∣∣∣12 − 1

q

∣∣∣∣ ,
or G is the trivial group.

Proof. We begin with the “if” implication. When G is the trivial group, we have PFp(G) =

PMp(G) = C, which is clearly representable on an Lq-space. On the other hand, the identity∣∣∣ 12 − 1
p

∣∣∣ =
∣∣∣ 12 − 1

q

∣∣∣ is equivalent to p and q being either equal or conjugate (in the sense that

1
p + 1

q = 1). The case p = q is trivial. If p and q are conjugate, then there the inversion map

G → G, given by g 7→ g−1 for g ∈ G, induces an isometric anti-isomorphism ] : L1(G) →
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L1(G) (see, for example, Remark 3.4 in [98]), and an isomorphism ψ : PFp(G) ∼= PFq(G) by

Proposition 2.18 in [98] and Theorem XIV.3.7. In particular, PFp(G) acts on Lq(G). For the

algebra of p-pseudomeasures, recall that PMp(G) is the closure of PFp(G) in B(Lp(G)) with

respect to the weak*-topology (also called the ultraweak topology) induced by the (canonical)

identification of B(Lp(G)) with the dual of Lp(G)⊗̂Lq(G) given by the pairing

〈a, ξ ⊗ η〉B(Lp(G)),Lp(G)⊗̂Lq(G) = 〈aξ, η〉Lp(G),Lq(G)

for all a ∈ B(Lp(G)), all ξ ∈ Lp(G) and all η ∈ Lq(G). The canonical identification of

Lp(G)⊗̂Lq(G) with Lq(G)⊗̂Lp(G) induces an isomorphism κ : B(Lp(G)) → B(Lq(G)) as Banach

spaces, and there is a commutative diagram

L1(G) �
�

ιp
//

]

��

PFp(G)

ψ

��

� � // PMp(G) �
� // B(Lp(G))

κ

��
L1(G) �

�

ιq
// PFq(G) �

� // PMq(G) �
� // B(Lq(G)).

One checks that ψ extends to an isometric isomorphism PMp(G) ∼= PMq(G), so PMp(G) is

representable on an Lq-space.

We turn to the “only if” implication. It is enough to prove the result for PFp(G), since

we have PFp(G) ⊆ PMp(G). Moreover, if either p = 2 or q = 2, then the result follows

from Theorem XVII.2.7. Thus, without loss of generality, we may assume that p, q ∈ [1, 2) and

p 6= q. It follows that there is a canonical isometric identification of PFp(G) with PFq(G), by

Proposition XVII.2.1 and Theorem XIV.3.7.

Consider first the case p < q.

We claim that the map γp,2 : F p(G) → C∗(G) constructed in Theorem XIV.2.30 is an

isometric isomorphism. In view of Theorem XIV.3.7, this is equivalent to showing that

‖λp(f)‖B(Lp(G)) = ‖λ2(f)‖B(L2(G))

for all f ∈ L1(G).

550



Let f ∈ L1(G). Then ‖λ2(f)‖B(L2(G)) ≤ ‖λp(f)‖B(Lp(G)) by Corollary XIV.3.20. Let

θ ∈ (0, 1) satisfy 1
q = θ

p + 1−θ
2 . By the Riesz-Thorin interpolation theorem, we have

‖λq(f)‖B(Lq(G)) ≤ ‖λ2(f)‖θB(L2(G))‖λp(f)‖1−θB(Lp(G)).

Since ‖λp(f)‖B(Lp(G)) = ‖λq(f)‖B(Lq(G)), we conclude that

‖λp(f)‖θB(Lp(G)) ≤ ‖λ2(f)‖θB(L2(G)),

and hence ‖λp(f)‖B(Lp(G)) ≤ ‖λ2(f)‖B(L2(G)), as desired. This proves the claim.

Since γp,2 is an isometric isomorphism, F p(G) is an operator algebra. The result now

follows from Theorem XVII.2.7.

The case q < p is analogous: the same argument shows that γq,p is an isometric

isomorphism, and the Riesz-Thorin interpolation theorem has to be applied to p ∈ (q, 2). We

omit the details.

Corollary XVII.3.2. Let G be a locally compact group, and let p, q ∈ [1,∞). There is an

isometric isomorphism PFp(G) ∼= PFq(G) or PMp(G) ∼= PMq(G) if and only if p and q are either

conjugate or conjugate, in which case both isomorphisms exist and can be chosen to be natural.

The proof of Theorem XVII.3.1 breaks down both for F p(G) and PFp(G) if G is not

amenable. Indeed, for the full group algebra, it follows from Proposition XVII.2.3 that if F p(G)

is representable on an Lq-space (with 1 ≤ p < q ≤ 2), then γp,q : F p(G) → F q(G) is an

isometric isomorphism. However, with our current knowledge, this by itself does not give us much

information, since Theorem 3.18 in [98] requires the reduced group algebras to be canonically

isomorphic. Moreover, we do not know how to conclude from the isomorphism F p(G) ∼= F q(G)

that PFp(G) is canonically isometrically isomorphic to PFq(G), although we suspect that this is

the case.

If one tries to show that PFp(G) is not representable on an Lq-space, one runs into similar

difficulties, since this by itself does not seem to imply that PFp(G) ∼= PFq(G) canonically. In

this context, the fact that there in general are no maps γλp,q : PFp(G) → PFq(G) represents an

additional difficulty.

We therefore suggest:
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Problem XVII.3.3. Generalize Theorem XVII.3.1 to not necessarily amenable groups, including

full group Lp-operator algebras as well.

One possible strategy is to look more closely at those Banach algebras that are Lp- and

Lq-operator algebras for two different, non conjugate, Hölder exponents p and q.

Question XVII.3.4. Let A be a unital Banach algebra, and suppose that the set

{v ∈ A : v is invertible and ‖v‖ = ‖v−1‖ = 1}

has dense linear span in A. Let p, q ∈ [1, 2] with p 6= q. Suppose that A can be isometrically

represented on an Lp-space and on an Lq-space. Does it follow that A is commutative? Does it

follow that A ∼= C(X) for some compact Hausdorff space X?

A positive answer to Question XVII.3.4 would likely lead to the desired generalization of

Theorem XVII.3.1.
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CHAPTER XVIII

. BANACH ALGEBRAS GENERATED BY AN INVERTIBLE

ISOMETRY OF AN LP -SPACE

This chapter is based on joint work with Hannes Thiel ([96]).

We provide a complete description of those Banach algebras that are generated by an

invertible isometry of an Lp-space together with its inverse. Examples include the algebra PFp(Z)

of p-pseudofunctions on Z, the commutative C∗-algebra C(S1) and all of its quotients, as well as

uncountably many ‘exotic’ Banach algebras.

We associate to each isometry of an Lp-space, a spectral invariant called ‘spectral

configuration’, which contains considerably more information than its spectrum as an operator.

It is shown that the spectral configuration describes the isometric isomorphism type of the Banach

algebra that the isometry generates together with its inverse.

It follows from our analysis that these algebras are semisimple. With the exception of

PFp(Z), they are all closed under continuous functional calculus, and their Gelfand transform

is an isomorphism.

As an application of our results, we show that Banach algebras that act on L1-spaces are

not closed under quotients. This answers the case p = 1 of a question asked by Le Merdy 20 years

ago.

Introduction

Associated to any commutative Banach algebra A is its maximal ideal space Max(A), which

is a locally compact Hausdorff space when endowed with the hull-kernel topology. Gelfand proved

in the 1940’s that there is a norm-decreasing homomorphism ΓA : A → C0(Max(A)), now called

the Gelfand transform. This representation of A as an algebra of functions on a locally compact

Hausdorff space is fundamental to any study of commutative Banach algebras. It is well known

that ΓA is injective if and only if A is semisimple, and that it is an isometric isomorphism if and

only if A is a C∗-algebra. The reader is referred to [142] for a extensive treatment of the theory of

commutative Banach algebras.
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Despite the usefulness of the Gelfand transform, we are still far from understanding the

isometric structure of (unital, semisimple) commutative Banach algebras, since the Gelfand

transform is almost never isometric. Commutative Banach algebras for which their Gelfand

transform is isometric are called uniform algebras, an example of which is the disk algebra.

In this chapter, which is based on [96], we study those Banach algebras that are generated

by an invertible isometry of an Lp-space together with its inverse, for p ∈ [1,∞). These are basic

examples of what Phillips calls Lp-operator algebras in [207], which are by definition Banach

algebras that can be isometrically represented as operators on some Lp-space. Lp-operator

algebras constitute a large class of Banach algebras, which contains all not-necessarily selfadjoint

operator algebras (and in particular, all C∗-algebras), as well as many other naturally ocurring

examples of Banach algebras. A class worth mentioning is that of the (reduced) Lp-operator group

algebras, here denoted F pλ (G), associated to a locally compact group G. These are introduced

in Section 8 of [116] with the name p-pseudofunctions. (We warn the reader that these algebras

are most commonly denoted be PFp(G), for example in [116] and [189].) The notation F pλ (G)

first appeared in [207], following conventions used in [51], and was chosen to match the already

established notation in C∗-algebra theory.) The Banach algebra F pλ (G) is the Banach subalgebra

of B(Lp(G)) generated by the image of the integrated form L1(G) → B(Lp(G)) of the left regular

representation of G on Lp(G). It is commutative if and only if the group G is commutative, and

together with the universal group Lp-operator algebra F p(G), contains a great deal of information

about the group. For example, it is a result in [98] (also proved independently by Phillips), that

a locally compact group G is amenable if and only if the canonical map F p(G) → F pλ (G) is

an isometric isomorphism, and when G is discrete, this is moreover equivalent to F p(G) being

amenable as a Banach algebra.

Of particular interest in our development are the algebras F p(Z) for p ∈ [1,∞). When

p = 2, this is a commutative C∗-algebra which is canonically identified with C(S1) under the

Gelfand transform. However, F p(Z) is never a C∗-algebra when p is not equal to 2, although it

can be identified with a dense subalgebra of C(S1). As one may expect, it turns out that the

norm on F p(Z) is particularly hard to compute.

Another important example of a commutative Lp-operator algebra is the group Lp-operator

algebra F p(Zn) associated with the finite cyclic group of order n. For a fixed n, this is the
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subalgebra of the algebra of n by n matrices with complex entries generated by the cyclic shift

of the basis, and hence is (algebraically) isomorphic to Cn. It should come as no surprise that the

norm on Cn inherited via this identification is also very difficult to compute (except in the cases

p = 2, where the norm is simply the supremum norm, and the case p = 1, since the 1-norm of a

matrix is easily calculated).

Studying the group of symmetries is critical in the understanding of any given

mathematical structure. In the case of classical Banach spaces, this was started by Banach in

his 1932 book. There is now a great deal of literature concerning isometries of Banach spaces. See

[72], just to mention one example. For Lp-spaces, it was Banach who first described the structure

of invertible isometries of Lp([0, 1]) for p 6= 2, although a complete proof was not available until

Lamperti’s 1958 paper [161], where he generalized Banach’s Theorem to Lp(X,µ) for an arbitrary

σ-finite measure space (X,µ) and p 6= 2. The same proof works for invertible isometries between

different Lp-spaces, yielding a structure theorem for isometric isomorphisms between any two of

them. Roughly speaking, an isometric isomorphism from Lp(X,µ) to Lp(Y, ν), for p 6= 2, is a

combination of a multiplication operator by a measurable function h : Y → S1, together with an

invertible measurable transformation T : X → Y which preserves null-sets. While this is slighly

inaccurate for general σ-finite spaces, it is true under relatively mild assumptions. (In the general

case one has to replace T : X → Y with a Boolean homomorphism between their σ-algebras, going

in the opposite direction.) In the case p = 2, the maps described above are also isometries, but

they are not the only ones, and we say little about these.

Starting from Lamperti’s result, we study the Banach algebra generated by an invertible

isometry of an Lp-space together with its inverse. It turns out that the multiplication operator

and the measurable transformation of the space have rather different contributions to the resulting

Banach algebra (more precisely, to its norm). While the multiplication operator gives rise to the

supremum norm on its spectrum, the measurable transformation induces a somewhat more exotic

norm, which, interestingly enough, is very closely related to the norms on F p(Z) and F p(Zn) for n

in N.

This chapter is organized as follows. In the remainder of this section we introduce the

necessary notation and terminology.
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In Section XVIII.2, we introduce the notion of spectral configuration; see

Definition XVIII.2.3. For p in [1,∞), we associate to each spectral configuration an Lp-

operator algebra which is generated by an invertible isometry together with its inverse in

Definition XVIII.2.4. We also show that there is a strong dichotomy with respect to the

isomorphism type of these algebras: they are isomorphic to either F p(Z) or to the space of all

continuous functions on its maximal ideal space; see Theorem XVIII.2.5. We point out that the

isomorphism cannot in general be chosen to be isometric in the second case. The saturation of

a spectral configuration (Definition XVIII.2.6) is introduced with the goal of showing that for

p ∈ [1,∞) \ {2}, two spectral configurations have canonically isometrically isomorphic associated

Lp-operator algebras if and only if their saturations are equal; see Corollary XVIII.2.13.

Section XVIII.3 contains our main results. Theorem XVIII.3.18 describes the isometric

isomorphism type of the Banach algebra F p(v, v−1) generated by an invertible isometry v of

an Lp-space together with its inverse, for p 6= 2. It turns out that this description is very

closely related to the dynamic properties of the measurable transformation of the space, and

we get very different outcomes depending on whether or not it has arbitrarily long strings

(Definition XVIII.3.11). A special feature of algebras of the form F p(v, v−1) is that they are

always simisimple, and, except in the case when F p(v, v−1) ∼= F p(Z), their Gelfand transform

is always an isomorphism (although not necessarily isometric); see Corollary XVIII.3.21.

Additionally, we show that algebras of the form F p(v, v−1) are closed by functional calculus of

a fairly big class of functions, which includes all continuous functions on the spectrum of v except

when F p(v, v−1) ∼= F p(Z), in which case only bounded variation functional calculus is available.

Finally, in Section XVIII.5, we apply our results to answer the case p = 1 of a question

posed by Le Merdy 20 years ago (Problem 3.8 in [165]). We show that the class of Banach

algebras that act on L1-spaces is not closed under quotients. In the following chapter, we use the

main results of the present work to give a negative answer to the remaining cases of Le Merdy’s

question.

Further applications of the results contained in this chapter will appear in [93], where we

study Banach algebras generated by two invertible isometries u and v of an Lp-space, subject to

the relation uv = e2πiθvu for some θ ∈ R \Q.
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We mention that, unlike in the case of C∗-algebras, the Banach algebra generated by an

invertible isometry of an Lp-space does not necessarily contain its inverse, even for p = 2, as the

following example shows. For a function f , we denote by mf the operator of multiplication by f .

Example XVIII.1.1. Denote by D the open disk in C, and consider the disk algebra

A(D) = {f ∈ C(D) : f |D is holomorphic}.

Then A(D) is a Banach algebra when endowed with the supremum norm. Denote by µ the

Lebesgue measure on S1 and define a homomorphism ρ : A(D) → B(L2(S1, µ)) by ρ(f) = mf |S1

for f in A(D). Then ρ is isometric by the Maximum Modulus Principle.

Denote by ι : D → C the canonical inclusion. Then ι generates A(D) because every

holomorphic function on D is the uniform limit of polynomials. Moreover, ρ(ι) is an invertible

isometry of L2(S1, µ), but ι is clearly not invertible in A(D). We conclude that A(D) is an L2-

operator algebra generated by an invertible isometry, but it does not contain its inverse.

For n in N, we denote ωn = e
2πi
n . If A is a unital Banach algebra and a ∈ A, we denote

its spectrum in A by spA(a), or just sp(a) if no confusion as to where the spectrum is being

computed is likely to arise.

If (X,A, µ) is a measure space and Y is a measurable subset of X, we write AY for the

restricted σ-algebra

AY = {E ∩ Y : E ∈ A},

and we write µ|Y for the restriction of µ to AY . Note that if {Xn}n∈N is a partition of X

consisting of measurable subsets, then there is a canonical isometric isomorphism

Lp(X,µ) ∼=
⊕
n∈N

Lp(Xn, µ|Xn).

(The direct sum on the right-hand side is the p-direct sum.)

We will usually not include the σ-algebras in our notation for measure spaces, except when

they are necessary (particularly in Section XVIII.2). The characteristic function of a measurable

set E will be denoted 1E .

557



Spectral Configurations

In this section, we study a particular class of commutative Banach algebras. They are

naturally associated to certain sequences of subsets of S1 that we call spectral configurations;

see Definition XVIII.2.3. We show that all such Banach algebras are generated by an invertible

isometry of an Lp-space together with its inverse. (In fact, the invertible isometry can be chosen

to act on `p.) We also show that there is a strong dichotomy with respect to the isomorphism

type of these algebras: they are isomorphic to either F p(Z), or to the space of all continuous

functions on its maximal ideal space; see Theorem XVIII.2.5. In the last part of the section, we

study when two spectral configurations give rise to isometrically isomorphic Banach algebras.

We mention here that one of the main results in Section 5, Theorem XVIII.3.18, states that

the Banach algebra generated by an invertible isometry of an Lp-space together with its inverse, is

isometrically isomorphic to the Lp-operator algebra associated to a spectral configuration which is

naturally associated to the isometry.

We begin by defining a family of norms on algebras of the form C(σ), where σ is a certain

closed subset of S1. We will later see that these norms are exactly those that arise from spectral

configurations consisting of exactly one nonempty set. Recall that if n is a positive integer, we

denote ωn = e
2πi
n ∈ S1.

Definition XVIII.2.1. Let p ∈ [1,∞) and let n in N. Let σ be a nonempty closed subset of S1

which is invariant under rotation by ωn. For f in C(σ), we define

‖f‖σ,n,p = sup
t∈σ

∥∥(f(t), f(ωnt), . . . , f(ωn−1
n t)

)∥∥
Fp(Zn)

.

We will see in Proposition XVIII.2.2 that, as its notation suggests, the function ‖ · ‖σ,n,p is

indeed a norm on C(σ).

When p = 2, we have ‖ · ‖Fp(Zn) = ‖ · ‖∞ and hence the norm ‖ · ‖σ,n,2 is the supremum

norm ‖ · ‖∞ for all n in N and every closed subset σ ⊆ S1. On the other hand, if n = 1 then

F p(Z1) ∼= C with the usual norm, so ‖ · ‖σ,1,p is the supremum norm for every p in [1,∞) and

every closed subset σ ⊆ S1. However, the algebra (C(σ), ‖·‖σ,n,p) is never isometrically isomorphic

to (C(σ), ‖ · ‖∞) when p 6= 2 and n > 1; see part (5) of Theorem XVIII.2.5.
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Proposition XVIII.2.2. Let p ∈ [1,∞), let n in N, and let σ be a nonempty closed subset of S1

which is invariant under rotation by ωn.

1. The function ‖ · ‖σ,n,p is a norm on C(σ).

2. The norm ‖ · ‖σ,n,p is equivalent to ‖ · ‖∞.

3. The Banach algebra (C(σ), ‖ · ‖σ,n,p) is isometrically representable on `p, and hence it is an

Lp-operator algebra.

Proof. (1). This follows immediately from the fact that ‖ · ‖Fp(Zn) is a norm.

(2). Since ‖ · ‖∞ ≤ ‖ · ‖Fp(Zn), one has ‖ · ‖∞ ≤ ‖ · ‖σ,n,p. On the other hand, since F p(Zn)

is finite dimensional, there exists a (finite) constant C = C(n, p) such that ‖ · ‖Fp(Zn) ≤ C‖ · ‖∞.

Thus, for f ∈ C(σ), we have

‖f‖σ,n,p = sup
t∈σ

∥∥(f(t), f(ωnt), . . . , f(ωn−1
n t)

)∥∥
Fp(Zn)

≤ C sup
t∈σ

∥∥(f(t), f(ωnt), . . . , f(ωn−1
n t)

)∥∥
∞

= C‖f‖∞.

We conclude that ‖ · ‖∞ ≤ ‖ · ‖σ,n,p ≤ C‖ · ‖∞, as desired.

(3). Denote by un ∈ Mn the matrix displayed in Example XV.3.1. Let (tk)k∈N be a dense

sequence in σ, and consider the linear map

ρ : C(σ)→ B

(⊕
k∈N

`pn

)

given by

ρ(f) =
⊕
k∈N

un



f(tk)

f(ωntk)

. . .

n f(ωn−1
n tk)


u−1
n

for f ∈ C(σ). It is easy to verify that ρ is a homomorphism. Moreover, given f in C(σ), we use

the description of the norm ‖ · ‖Fp(Zn) from Example XV.3.1 at the second step, and continuity of
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f at the last step, to get

‖ρ(f)‖ = sup
k∈N

∥∥undiag(f(tk), f(ωntk), . . . , f(ωn−1
n tk))u−1

n

∥∥
= sup

k∈N

∥∥(f(tk), f(ωntk), . . . , f(ωn−1
n t)

)∥∥
Fp(Zn)

= ‖f‖σ,n,p.

We conclude that ρ is isometric, as desired.

Now that we have analyzed the basic example of a spectral configuration, we proceed to

study the general case.

Definition XVIII.2.3. A spectral configuration is a sequence σ = (σn)n∈N of closed subsets of S1

such that

1. For every n ∈ N, the set σn is invariant under rotation by ωn;

2. The set σ∞ is either empty or all of S1; and

3. We have σn 6= ∅ for at least one n in N.

The order of the spectral configuration σ is defined as

ord(σ) = sup {n ∈ N : σn 6= ∅}.

Note that a spectral configuration may have infinite order and yet consist of only finitely

many nonempty sets.

We adopt the convention that for p ∈ [1,∞), the function ‖ · ‖σ∞,∞,p is the zero function if

σ∞ = ∅, and the norm of F p(Z) otherwise.

Definition XVIII.2.4. Let σ = (σn)n∈N be a spectral configuration and let p ∈ [1,∞). Set

σ =
⋃
n∈N

σn ⊆ S1,

and for f in C(σ), define

‖f‖σ,p = sup
n∈N
‖f |σn‖σn,n,p.
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The normed algebra associated to σ and p is

F p(σ) = {f ∈ C(σ) : ‖f‖σ,p <∞} ,

endowed with the norm ‖ · ‖σ,p.

Since the Hölder exponent p ∈ [1,∞) will be clear from the context (in particular, it is

included in the notation for F p(σ)), we will most of the times from it from the notation for the

norm ‖ · ‖σ,p, and write ‖ · ‖σ instead, except when confusion is likely to arise.

Theorem XVIII.2.5. Let σ = (σn)n∈N be a spectral configuration and let p ∈ [1,∞).

1. The Banach algebra F p(σ) is an Lp-operator algebra that can be represented on `p.

2. The Banach algebra F p(σ) is generated by an invertible isometry together with its inverse.

3. If ord(σ) =∞, then there is a canonical isometric isomorphism

F p(σ) ∼= F p(Z).

In particular, if p 6= 2, then not every continuous function on σ has finite ‖ · ‖σ,p-norm.

4. If ord(σ) = N < ∞, then ‖ · ‖σ = max
n=1,...,N

‖ · ‖σn,n. Moreover, the identity map on C(σ) is a

canonical Banach algebra isomorphism

(F p(σ), ‖ · ‖σ) ∼= (C(σ), ‖ · ‖∞) ,

and thus every continuous function on σ has finite ‖ · ‖σ-norm.

5. For p ∈ [1,∞) \ {2}, there is a canonical isometric isomorphism

(F p(σ), ‖ · ‖σ) ∼= (C(σ), ‖ · ‖∞) ,

if and only if ord(σ) = 1. When p = 2, such an isometric isomorphism always exists.

Proof. (1). For every n in N, use part (3) in Proposition XVIII.2.2 to find an isometric

representation ρn : C(σn) → B(`p), and let ρ∞ : F p(Z) → B(`p) be the canonical isometric
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representation. Define

ρ : F p(σ)→ B

⊕
n∈N

`p

 by ρ(f) =
⊕
n∈N

ρn(f |σn)

for all f in F p(σ). It is immediate to check that ρ is isometric. Since
⊕
n∈N

`p is isometrically

isomorphic to `p, the result follows.

(2). Let ι : σ → C be the inclusion map, and let ι−1 : σ → C be its (pointwise) inverse. It is

clear that ‖ι‖σ = ‖ι−1‖σ = 1. Thus, ι and ι−1 are invertible isometries, and they clearly generate

F p(σ).

(3). It is enough to show that for every f in C[Z], one has

‖f(ι)‖Fp(σ) = ‖λp(f)‖B(`p).

Since ι is an invertible isometry, the universal property of F p(Z) implies that ‖λp(f)‖ ≥ ‖f(ι)‖.

If σ∞ 6= ∅, then

‖f(ι)‖σ ≥ ‖f(ι)‖σ∞,∞ = ‖f‖Fp(Z),

and the result follows. We may therefore assume that σ∞ = ∅.

In order to show the opposite inequality, let ε > 0 and choose an element ξ = (ξk)k∈Z in `p

of finite support with ‖ξ‖pp = 1 and such that

‖λp(f)ξ‖p > ‖λp(f)‖ − ε.

Choose K in N such that ξk = 0 whenever |k| > K. Find a positive integer M in N and complex

coefficients am with −M ≤ m ≤ M such that f(x, x−1) =
M∑

m=−M
amx

m. Since ord(σ) = ∞, there

exists n > 2(K + M) such that σn 6= ∅. Fix t in σn and define a representation ρ : F p(σ) → B(`pn)

by

ρ(h) =



0 h(ωn−1
n t)

h(t) 0

. . .
. . .

. . . 0

h(ωn−2
n t) 0
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for all h in F p(σ). It is clear that

‖ρ(h)‖ = ‖(h(t), h(ωnt), . . . , h(ωn−1
n t))‖Fp(Zn) ≤ ‖h|σn‖σn,n ≤ ‖h‖σ,

so ρ is contractive. Denote by e0 the basis vector (1, 0, . . . , 0) ∈ `pn. Set v = ρ(ι), and note that

vk(e0) = en−kω
n−k
n t for all k = 0, . . . , n− 1, where indices are taken modulo n.

Let η ∈ `pn be given by η =
K∑

k=−K
ξken−kω

n−k
n t. Then ‖η‖p = ‖ξ‖p = 1. Moreover,

ρ(f(ι))η =

M∑
m=−M

amv
m

(
K∑

k=−K

ξken−kω
n−k
n

)

=

M∑
m=−M

K∑
k=−K

amξken−m−kω
n−m−k
n t

=

N+K∑
j=−M−K

(λp(f)ξ)jv
j(e0)

The elements en−m−k for −M ≤ m ≤ M and −K ≤ k ≤ K are pairwise distinct, by the

choice of n. We use this at the first step to get

‖ρ(f(ι))η‖pp =

N+K∑
j=−N−K

∣∣∣[λp(f)ξ]j

∣∣∣p ∥∥vj(e0)
∥∥ = ‖λp(f)ξ‖pp .

We deduce that

‖f(ι)‖ ≥ ‖ρ(f(ι))‖ ≥ ‖ρ(f(ι))η‖p = ‖λp(f)ξ‖p > ‖λp(f)‖ − ε.

Since ε > 0 is arbitrary, we conclude that ‖f(ι)‖Fp(σ) ≥ ‖λp(f)‖Fp(Z), as desired.

(4). Let N = ord(σ). It is immediate from the definition that ‖ · ‖σ = max
n=1,...,N

‖ · ‖σn,n.

Moreover, for each n = 1, . . . , N , use part (2) in Proposition XVIII.2.2 to find a constant C(n) > 0

satisfying

‖ · ‖∞ ≤ ‖ · ‖σn,n ≤ C(n)‖ · ‖∞.

Set C = max{C(1), . . . , C(N)}. Then ‖ · ‖∞ ≤ ‖ · ‖σ ≤ C‖ · ‖∞, and thus ‖ · ‖σ is equivalent to

‖ · ‖∞, as desired.
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(5). It is clear from the comments after Definition XVIII.2.1 that ‖ · ‖σ = ‖ · ‖∞ if either

p = 2 or ord(σ) = 1. Conversely, suppose that p 6= 2 and that ord(σ) > 1. Choose n in N with

n > 1 such that σn 6= ∅. If n = ∞, then F p(σ) is isometrically isomorphic to F p(Z) by part (3)

of this theorem. The result in this case follows from part (2) of Corollary XIV.3.20 for G = Z and

p′ = 2. We may therefore assume that n <∞.

Let t in σn and choose a continuous function f on σ with ‖f‖∞ = 1 such that

∥∥(f(t), f(ωnt), . . . , f(ωn−1
n )

)∥∥
Fp(Zn)

> 1.

(See, for example, the proof of Proposition XV.3.5.) We get

‖f‖σ ≥ ‖f |σn‖σn,n

≥ ‖(f(t), f(ωnt), . . . , f(ωn−1
n t))‖Fp(Zn)

> 1 = ‖f‖∞.

It follows that ‖ · ‖σ is not the supremum norm, and the claim is proved.

We now turn to the question of when two spectral configurations determine the same Lp-

operator algebra.

It turns out that F p(σ) does not in general determine σ, and thus there are several spectral

configurations whose associated Lp-operator algebras are pairwise isometrically isomorphic. For

example, let σ be the spectral configuration given by σn = S1 for all n in N, and let τ be given by

τn = Zn for n in N and σ∞ = ∅. Then F p(σ) ∼= F p(τ) ∼= F p(Z) by part (3) of Theorem XVIII.2.5.

However, as we will see later, given F p(σ) one can recover what we call the saturation of σ.

See Corollary XVIII.2.13.

Definition XVIII.2.6. Let σ be a spectral configuration. We define what it means for σ to be

saturated in two cases, depending on whether its order is infinite or not.

– If ord(σ) =∞, we say that σ is saturated if σn = S1 for all n in N.

– If ord(σ) <∞, we say that σ is saturated if σm ⊆ σn whenever n divides m.

Remarks XVIII.2.7. Let σ be a saturated spectral configuration.
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(1) The set σ∞ is nonempty (in which case it equals S1) if and only if ord(σ) = ∞. Since

the order of σ is determined by the spectral sets σn for n finite, we conclude that the spectral set

σ∞ is redundant.

(2) For every n in N, we have σn ⊆ σ1: for n < ∞, this is true since 1 divides n, and for

n =∞ it is true by definition. In particular, since σ1 is closed, we must have σ1 = σ.

Denote by Σ the family of all saturated spectral configurations. We define a partial order

on Σ by setting σ ≤ τ if σn ⊆ τn for every n in N.

Lemma XVIII.2.8. The partial order defined above turns Σ into a complete lattice. Moreover,

Σ has a unique maximal element, and its minimal elements are in bijection with S1.

Proof. Let Ω be a nonempty subset of Σ. For each n ∈ N, set

(sup Ω)n =
⋃
σ∈Ω

σn and (inf Ω)n =
⋂
σ∈Ω

σn.

It is readily verified that this defines elements sup Ω and inf Ω of Σ that are the supremum and

infimum of Ω, respectively.

The unique maximal element σ∞ is given by σ∞n = S1 for all n ∈ N. For each element

ζ in S1, there is a minimal configuration σ(ζ) given by σ(ζ)1 = {ζ} and σn(ζ) = ∅ for n ≥ 2.

Conversely, if σ is a saturated configuration, then σ1 is not empty, so we may choose ζ ∈ σ1. Then

σ(ζ) is a minimal configuration and σ(ζ) ≤ σ.

Definition XVIII.2.9. Let σ be a spectral configuration. The saturation of σ, denoted by σ̃, is

the minimum of all saturated spectral configurations that contain σ.

Note that any spectral configuration (saturated or not) is contained in the maximal

configuration σ∞. It follows that the saturation of a spectral configuration is well defined.

The proof of the following lemma is a routine exercise and is left to the reader.

Lemma XVIII.2.10. Let σ be a spectral configuration and let σ̃ be its saturation. Then:

1. We have σ = σ̃ = σ̃1.

2. We have ord(σ) = ord(σ̃).

3. If ord(σ) <∞, then σ̃n =
∞⋃
k=1

σkn for every n in N.
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If σ is a spectral configuration, we denote by ισ ∈ F p(σ) ⊆ C(σ) the canonical inclusion of

σ into C.

Proposition XVIII.2.11. Let σ be a spectral configuration and let σ̃ be its saturation. Then

there is a canonical isometric isomorphism

F p(σ) ∼= F p(σ̃),

which sends ισ to ισ̃.

Proof. If σ has infinite order, then the result follows from part (3) of Theorem XVIII.2.5.

Assume now that σ has finite order. Then the underlying complex algebra of both F p(σ)

and F p(σ̃) is C(σ). We need to show that the norms ‖ · ‖σ and ‖ · ‖σ̃ coincide. Let f ∈ C(σ). We

claim that ‖f‖σ = ‖f‖σ̃. Since σn ⊆ σ̃n, it is immediate that ‖f‖σ ≤ ‖f‖σ̃.

For the reverse inequality, let n ∈ N. By Lemma XV.3.3, for every k ∈ N the restriction

map ρ
(nk→k)
0 : F p(Znk)→ F p(Zn) is contractive. Using this at the fourth step, we obtain

‖f‖σ̃n,n = sup
t∈σ̃n
‖(f(t), f(ωnt), . . . , f(ωn−1

n t))‖Fp(Zn)

= sup
k∈N

sup
t∈σnk

‖(f(t), f(ωnt), . . . , f(ωn−1
n t))‖Fp(Zn)

= sup
k∈N

sup
t∈σnk

∥∥∥ρ(nk→k)
0 (f(t), f(ωnkt), . . . , f(ωnk−1

nk t))
∥∥∥
Fp(Znk)

≤ sup
k∈N

sup
t∈σnk

‖(f(t), f(ωnkt), . . . , f(ωnk−1
nk t))‖Fp(Znk)

≤ sup
m∈N
‖f‖σm,m = ‖f‖σ.

It follows that ‖f‖σ̃ = sup
n∈N
‖f‖σ̃n,n ≤ ‖f‖σ, as desired.

Theorem XVIII.2.12. Let σ and τ be two saturated spectral configurations and let p ∈ [1,∞) \

{2}. Then the following conditions are equivalent:

1. We have τ ≤ σ, that is, τn ⊆ σn for every n in N.

2. We have τ1 ⊆ σ1, and

‖g|τ1‖τ ≤ ‖g‖σ

for every g ∈ C(σ).
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3. There is a contractive, unital homomorphism

ϕ : F p(σ)→ F p(τ)

such that ϕ(ισ) = ιτ .

Proof. The implications ‘(1) ⇒ (2) ⇒ (3)’ are clear. For the implication ‘(3) ⇒ (2)’, notice that

the sets σ1 and τ1 can be canonically identified with the character spaces of F p(σ) and F p(τ),

respectively, so that σ1 ⊇ τ1. Then (2) follows immediately from (3).

Let us show ‘(2) ⇒ (1)’. For k ∈ N, define a function µ(k) : R→ [0, 1] as

µ(k)(x) = max(0, 1− 2kx).

These are bump-functions around 0, with support
[
− 1

2k ,
1
2k

]
.

Given n ∈ N, given α = (α0, . . . , αn−1) ∈ Cn, and given t ∈ S1, let us define continuous

functions f
(k)
α,t : S1 → C for k ∈ N as follows:

f
(k)
α,t (x) =

n−1∑
l=0

αl · µ(kn)(dist(x, ωlnt)).

This is a function with n bumps around the points t, ωnt, . . . , ω
n−1
n t taking the values f

(k)
α,t (ω

l
nt) =

αl for l = 0, 1, . . . , n− 1.

Let s ∈ σm and fix k ∈ N such that 1
km < 1

n . We compute
∥∥∥f (k)
α,t

∥∥∥
m,s

. The support of

f
(k)
α,t is the 1

2kn -neighborhood of {t, tωn, . . . , tωn−1
n }. Assume there are a ∈ {0, . . . ,m − 1} and

b ∈ {0, . . . , n− 1} such that ωams belongs to the 1
2kn -neighborhood of ωbnt.

Let α′ be the n-tuple obtained from α by cyclically rotating by −b, that is

α′ = (αb, αb+1, . . . , αn−1, α0, . . . , αb−1).

Set t′ = ωbnt. Then f
(k)
α,t = f

(k)
α′,t′ . Set s′ = ωams. Since the norm on F p(Zm) is rotation-

invariant, we have ‖ · ‖m,s = ‖ · ‖m,s′ . Thus

∥∥∥f (k)
α,t

∥∥∥
m,s

=
∥∥∥f (k)
α′,t′

∥∥∥
m,s′

.
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We have reduced to the case that s′ is in the 1
2kn -neighborhood of t′. Let d = gcd(n,m).

Then ωlds
′ is in the 1

2kn -neighborhood of ωldt
′ for each l = 0, . . . , d − 1. Since 1

kn < 1
m , the

value f
(k)
α′,t′(ω

r
ms
′) is zero unless r is a multiple of m

d . Let δ = dist(s′, t′). Let r = imd + j for

i ∈ {0, . . . , d− 1} and j ∈ {0, . . . , md − 1}. Then

f
(k)
α′,t′(ω

r
ms
′) =


0, if j 6= 0

µ(kn)(δ)α′ind
, if j = 0

.

We define an inclusion map ι(d→m) : Cd → Cm as follows. The tuple β ∈ Cd is sent to the

tuple ι(d→m)(β) which for r = imd + j with i ∈ {0, . . . , d− 1} and j ∈ {0, . . . , md − 1} is given by

ι(d→m)(β)r =


0, if j 6= 0

βi, if j = 0

.

As shown in Proposition XV.2.1, the map ι(d→m) induces an isometric embedding F p(Zd) →

F p(Zm).

We define restriction maps ρ
(n→d)
j : Cn → Cd for j ∈ {0, . . . , nd − 1} by sending an n-tuple β

to the d-tuple ρ
(n→d)
r (β) given by

ρ(n→d)(β)i = βind+j .

It follows that

∥∥∥f (k)
α′,t′

∥∥∥
s′,m

=
∥∥∥µ(kn)(δ)

(
ι(d→m) ◦ ρ(n→d)

0 (α′)
)∥∥∥

Fp(Zm)

= µ(kn)(δ)
∥∥∥ρ(n→d)

0 (α′)
∥∥∥
Fp(Zd)

.

Let b(t, s) ∈ {0, . . . , nd − 1} be the unique number such that ωbmt is in the 1
2kn -neighborhood

of {s, ωms, . . . , ωm−1
m s}. Then

∥∥∥f (k)
α,t

∥∥∥
s,m

= µ(kn)(δ)
∥∥∥ρ(n→d)

b(t) (α)
∥∥∥
Fp(Zd)

.
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Therefore

∥∥∥f (k)
α,t

∥∥∥
m

= sup
s∈σm

∥∥∥f (k)
α,t

∥∥∥
m,s

= max
b=0,...,md −1

sup
s∈σm,b(s,t)=b

µ(kn)(dist(s, t))
∥∥∥ρ(n→d)

b (α)
∥∥∥
Fp(Zd)

= max
b=0,...,md −1

µ(kn)(dist(ωbmt, {s, ωms, . . . , ωm−1
m s}))

∥∥∥ρ(n→d)
b (α)

∥∥∥
Fp(Zd)

Thus

lim
k→∞

∥∥∥f (k)
α,t

∥∥∥
σm,m

= max
b=0,...,md −1

lim
k→∞

µ(kn)(dist(tωbm, {s, ωms, . . . , ωm−1
m s}))

∥∥∥ρ(n→d)
b (α)

∥∥∥
Fp(Zd)

= max
b=0,...,md −1

1σm(ωbmt)
∥∥∥ρ(n→d)

b (α)
∥∥∥
Fp(Zd)

.

With this computation at hand, we can ‘test’ whether some t ∈ S1 belongs to σn. To that

end, let m ∈ N and set d = gcd(m,n).

Assume first that d < n. Let α ∈ F p(Zn) be as in the conclusion of Proposition XV.3.5, and

normalize it so that max
b=0,...,md −1

∥∥∥ρ(n→d)
b (α)

∥∥∥
Fp(Zd)

= 1. Then

lim
k→∞

∥∥∥f (k)
α,t

∥∥∥
σm,m

= max
b=0,...,md −1

1σm(ωbmt)
∥∥∥ρ(n→d)

b (α)
∥∥∥
Fp(Zd)

≤ 1.

On the other hand, if d = n (so that n divides m) then

lim
k→∞

∥∥∥f (k)
α,t

∥∥∥
σm,m

= 1σm(t)‖α‖Fp(Zn).

Thus, when n divides m, then lim
k→∞

∥∥∥f (k)
α,t

∥∥∥
σm,m

> 1 if and only if t ∈ σm. Again, since n divides

m, this implies t ∈ σm.

In conclusion, we have

lim
k→∞

∥∥∥f (k)
α,t

∥∥∥
σ
> 1 if and only if t ∈ σn.
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The same computations hold for τ , so that we have

lim
k→∞

∥∥∥f (k)
α,t

∥∥∥
τ
> 1 if and only if t ∈ τn.

By assumption, we have
∥∥∥f (k)
β,t

∥∥∥
τ
≤
∥∥∥f (k)
β,t

∥∥∥
σ

for every β, t and k. Thus, if t ∈ τn, then

1 < lim
k→∞

∥∥∥f (k)
α,t

∥∥∥
τ
≤ lim
k→∞

∥∥∥f (k)
α,t

∥∥∥
σ
,

which implies that t ∈ σn. Hence, τn ⊆ σn. Since this holds for every n, we have shown τ ≤ σ, as

desired.

Corollary XVIII.2.13. Let σ and τ be two spectral configurations. The following conditions are

equivalent:

1. There is an isometric isomorphism ϕ : F p(σ)→ F p(τ) such that ϕ(ισ) = ιτ .

2. We have σ̃ = τ̃ .

Lp-operator Algebras Generated by an Invertible Isometry

We fix p ∈ [1,∞) \ {2}, and a complete σ-finite standard Borel space (X,A, µ). We also fix

an invertible isometry v : Lp(X,µ) → Lp(X,µ). We will introduce some notation that will be used

in most the results of this section. We will recall the standing assumptions in the statements of

the main results, but not necessarily in the intermediate lemmas and propositions.

Using Theorem XIII.2.4, we choose and fix a measurable function h : X → S1 and an

invertible measure class preserving transformation T : X → X such that v = mh ◦ uT .

Let n in N. Recall that a point x in X is said to have period n, denoted P(x) = n, if n

is the least positive integer for which Tn(x) = x. If no such n exists, we say that x has infinite

period, and denote this by P(x) =∞.

For each n in N, set

Xn = {x ∈ X : P(x) = n}.
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Then Xn is measurable, and T (Xn) ⊆ Xn and T−1(Xn) ⊆ Xn for all n in N. For each n in N,

denote by hn : Xn → S1, by Tn : Xn → Xn, and by T−1
n : Xn → Xn, the restrictions of h, of T , and

of T−1 to Xn. Furthermore, we denote by µ|Xn the restriction of µ to the σ-algebra of Xn.

Set vn = mhn ◦ uTn . Then vn is an isometric bijection of Lp(Xn, µ). Since X is the disjoint

union of the sets Xn for n ∈ N, there is an isometric isomorphism

Lp(X,µ) ∼=
⊕
n∈N

Lp(Xn, µ|Xn )

under which v is identified with the invertible isometry

⊕
n∈N

vn :
⊕
n∈N

Lp(Xn, µ|Xn )→
⊕
n∈N

Lp(Xn, µ|Xn ).

The next lemma shows that each of the transformations Tn acts as essentially a shift of

order n on Xn, at least when n <∞.

Lemma XVIII.3.1. Let n in N. Then there exists a partition {Xn,j}n−1
j=0 of Xn consisting of

measurable subsets such that

T−1(Xn,j) = Xn,j+1

for all j ∈ N, with indices taken modulo n.

Proof. Note that every point of Xn is periodic. It follows from Theorem 1.2 in [101] that there

is a Borel cross-section, that is, a Borel set Xn,0 ⊆ Xn such that each orbit of T intersects Xn,0

exactly once. The result follows by setting Xn,j = T−j(Xn,0) for j = 1, . . . , n− 1.

The following lemma allows us to assume that h is identically equal to 1 on the sets Xn,j

with n < ∞ and j > 0. The idea of the proof is to “undo” a certain shift on the space, which is

reflected on the construction of the functions gn. One cannot undo the shift completely, and there

is a remainder left over which is concentrated on the first set Xn,0.

Lemma XVIII.3.2. There exists a measurable function g : X → S1 such that the function

g · (g ◦ T−1) · h : X → S1

is identically equal to 1 on Xn,j whenever n <∞ and j > 0.
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Proof. Let n < ∞. Adopt the convention that h ◦ T 0 is the function identically equal to 1 (this

unusual convention is adopted so that the formula below comes out nicer). Using indices modulo

n, we define gn : Xn → S1 by

gn =

n−1∑
j=0

1Xn,j · (h ◦ T 0) · (h ◦ T ) · · · (h ◦ T j−1).

We point out that the term corresponding to j = 0 is

1Xn,0 · (h ◦ T 0) · (h ◦ T ) · · · (h ◦ Tn−1).

Note that gn is well defined because the sets Xn,j are pairwise disjoint for j = 0, . . . , n − 1. For

n =∞, set g∞ = 1X∞ .

Finally, we set

g =

∞∑
n=1

1Xn · gn,

which is well defined because the sets Xn are pairwise disjoint for n ∈ N. It is a routine exercise to

check that g has the desired properties.

Remark XVIII.3.3. Let g : X → S1 be as in Lemma XVIII.3.2. A straightforward computation

shows that

mg ◦ v ◦mg = mg·(g◦T−1)·h ◦ uT .

In particular, v is conjugate, via the invertible isometry mg, to another invertible isometry whose

multiplication component is identically equal to 1 on Xn,j whenever n < ∞ and j > 0. Since v

and mg ◦ v ◦ mg generate isometrically isomorphic Banach subalgebras of B(Lp(X,µ)), we may

shift our attention to the latter isometry. Upon relabeling its multiplication component, we may

and will assume that h itself is identically equal to 1 on Xn,j whenever n <∞ and j > 0.

Our next reduction refers to the set transformation T : we show that we can assume that T

preserves the measure of the measurable subsets of X \X∞. Recall that A denotes the domain of

µ.

Lemma XVIII.3.4. There is a measure ν on (X,A) such that

1. For every measurable set E ⊆ X \X∞, we have ν(T (E)) = ν(E).
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2. For every measurable set E ⊆ X, we have ν(E) = 0 if and only if µ(E) = 0.

Moreover, Lp(X,µ) is canonically isometrically isomorphic to Lp(X, ν).

Proof. For every n in N, we define a measure νn on Xn by

νn(E) =

n−1∑
j=0

µ(T−j(E) ∩Xn,0)

for every E in A. It is clear that νn(T (E)) = νn(E) for every measurable set E.

Set ν =
∑
n∈N

νn + µ|X∞ . It is clear that ν ◦ T = ν on X \ X∞, so condition (1) is satisfied.

In order to check condition (2), assume that ν(E) = 0 for some measurable set E. If n ∈ N, then

νn(E) = 0, and thus

µ(T−j(E) ∩Xn,0) = µ(T−j(E ∩Xn,j)) = 0

for every j = 0, . . . , n − 1. Using that T preserves null-sets, we get µ(E ∩ Xn,j) = 0 for every

j = 0, . . . , n − 1. Since the sets Xn,j form a partition of Xn, we deduce that µ(E ∩ Xn) = 0 for

n < ∞. Since we also have µ(E ∩ X∞) = 0 and the sets Xn form a partition of X, we conclude

that µ(E) = 0.

Conversely, if E is measurable and µ(E) = 0, then µ(E ∩X∞) = 0 and µ(T−j(E)) = 0 for

all j in Z. Thus νn(E) = 0 for all n in N, whence ν(E) = 0.

The last claim is a standard fact. Denote by f the Radon-Nikodym derivative f = dµ
dν , and

define linear maps ϕp : Lp(X,µ)→ Lp(X, ν) and ψp : Lp(X, ν)→ Lp(X,µ) by

ϕp(ξ) = ξf
1
p and ψp(η) = ηf−

1
p

for all ξ in Lp(X,µ) and all η in Lp(X, ν). Then ϕp and ψp are mutual inverses. Moreover, we

have

‖ϕp(ξ)‖pp =

∫
X

|ξ|pf dν =

∫
X

|ξ|p dµ = ‖ξ‖pp

for all ξ in Lp(X,µ). We conclude that ϕp is the desired isometric isomorphism.
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Remark XVIII.3.5. Adopt the notation of Lemma XVIII.3.4. It is immediate to check that if

ϕp : Lp(X,µ)→ Lp(X, ν) is the canonical isometric isomorphism, then

ϕp(v)(η)(x) = h(x)η(T−1(x))

for all η in Lp(X, ν) and all x in X \ X∞. (Note the absence of the correction term which is

present in the statement of Theorem XIII.2.4.) Since the Banach algebras generated by v and

ϕp(v) are isometrically isomorphic, we have therefore shown that we can always assume that T is

measure preserving on X \X∞.

Notation XVIII.3.6. If g : X → C is a measurable function, we denote by ran(g) the range of g,

and by essran(g) its essential range, which is defined by

essran(g) =
{
z ∈ C : µ

(
g−1(Bε(z))

)
> 0 for all ε > 0

}
.

It is well known that the spectrum of the multiplication operator mg is essran(g), and that

essran(g) ⊆ ran(g).

Remark XVIII.3.7. We recall the following fact about spectra of elements in Banach algebras.

If A is a unital Banach algebra, B a subalgebra containing the unit of A, and a is an element of B

such that spB(a) ⊆ S1, then spA(a) = spB(a). In other words, for elements whose spectrum (with

respect to a given algebra) is contained in S1, their spectrum does not change when the element is

regarded as an element of a larger or smaller algebra.

The following easy lemma will be used a number of times in the proof of

Theorem XVIII.3.9, so we state and prove it separately.

Lemma XVIII.3.8. Let n in N, let (Y, ν) be a measure space and let S : Y → Y be a measurable

map. Let E be a measurable subset of Y with 0 < ν(E) < ∞ such that E,S−1(E), . . . , Sn−1(E)

are pairwise disjoint. Define a linear map ψE : `pn → Lp(X,µ) by

ψE(η) =
1

ν(E)
1
p

n−1∑
j=0

ηju
j
S(1E)
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for all η in `pn. Then ψE is an isometry.

Proof. Note that ψE(η) is a measurable function for all η in `pn. For η in `pn, we use that the sets

E,S−1(E), . . . , Sn−1(E) are pairwise disjoint at the first step to get

‖ψE(η)‖pp =
1

µ(E)

N−1∑
j=0

|ηj |p‖ujT (1E)‖pp = ‖η‖pp,

so ψE is an isometry and the result follows.

Denote by F p(v, v−1) the unital Banach subalgebra of B(Lp(X,µ)) generated by v and

v−1. Then F p(v, v−1) is an Lp-operator algebra and there is a canonical algebra homomorphism

C[Z]→ F p(v, v−1) given by x 7→ v.

Theorem XVIII.3.9. Let N in N. Then sp(vN ) is a (possibly empty) closed subset of S1, which

is invariant under rotation by ωN . Moreover, the Gelfand transform defines a canonical isometric

isomorphism

Γ: F p(vN , v
−1
N )→

(
C(sp(vN )), ‖ · ‖sp(vN ),N

)
.

(See Definition XVIII.2.4 for the definition of the norm ‖ · ‖sp(vN ),N .)

Proof. The proposition is trivial if sp(vN ) is empty (which happens if and only if µ(XN ) = 0), so

assume it is not.

We prove the second claim first. Note that vN is multiplication by the measurable function

g = h · (h ◦ T−1) · · · (h ◦ T−N+1) : XN → S1.

By Lemma XVIII.3.2 and Remark XVIII.3.3, we may assume that the range and essential of g

agree with the range and essential of h|Xn,0 , respectively. By Exercise 6, part (b) in [227], we may

assume that the range of h|Xn,0 is contained in its essential range, and hence that essran(h|Xn,0) =
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ran(h|Xn,0). Let (zn)n∈N be a dense infinite sequence in ran(h|Xn,0), and set

wn =



0 1

0
. . .

. . .
. . .

0 1

zn 0


∈MN .

Then w =
⊕
n∈N

wn is an invertible isometry on
⊕
n∈N

`pN
∼= `p.

Claim: Let f in C[Z]. Then ‖f(v)‖ = ‖f(w)‖.

It is clear that ‖f(w)‖ = sup
n∈N
‖f(wn)‖ . Let ε > 0. Choose δ > 0 such that whenever a and

b are elements in a Banach algebra such that ‖a − b‖ < δ, then ‖f(a) − f(b)‖ < ε
2 . Choose n in N

and choose ξ = (ξ0, . . . , ξN−1) ∈ `pN with ‖ξ‖p = 1 such that

‖f(wn)ξ‖ > ‖f(w)‖ − ε

2
.

Since zn is in the essential range of h|Xn,0 , we can find a measurable set E in X with µ(E) > 0

such that

|h(x)− zn| < δ

for all x in E. Since X is σ-finite, we may assume that µ(E) < ∞. We may also assume that the

sets E, T (E), . . . , TN−1(E) are pairwise disjoint. The linear map ψE : `pN → Lp(XN , µ) given by

ψE(η) =
1

µ(E)
1
p

N−1∑
j=0

ηju
j
T (1E)

for all η = (η0, . . . , ηN−1) ∈ `pN , is an isometry by Lemma XVIII.3.8.

For notational convenience, we write

z(0)
n = zn and z(1)

n = · · · = z(N−1)
n = 1,
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and we take indices modulo N . Thus, for η in `pN we have wnη =
(
ηj−1z

(j−1)
n

)N−1

j=0
. Moreover,

ψE(wnη) =
1

µ(E)
1
p

N−1∑
j=0

z(j−1)
n ηj−1u

j
T (1E) =

1

µ(E)
1
p

N−1∑
j=0

ηjz
(j)
n uj+1

T (1E)

and

vψE(η) =
1

µ(E)
1
p

N−1∑
j=0

ηj(mh ◦ uj+1
T )(1E)

for all η ∈ `pN . Thus,

‖ψE(wnη)− vψE(η)‖pp =
1

µ(E)

N−1∑
j=0

|ηj |p
∥∥∥z(j)
n uj+1

T (1E)− (mh ◦ uj+1
T )(1E)

∥∥∥p
p

≤ 1

µ(E)

N−1∑
j=0

|ηj |p sup
x∈T−j−1(E)

∣∣∣z(j)
n − h(x)

∣∣∣p ∥∥∥uj+1
T (1E)

∥∥∥p
p

< ‖η‖pp δp,

for all η ∈ `pN , which shows that ‖ψE ◦ wn − v ◦ ψE‖ < δ. By the choice of δ, we deduce that

‖ψE ◦ f(wn)− f(v) ◦ ψE‖ <
ε

2
.

Using that ψE is an isometry at the third step, we get

‖f(v)‖ ≥ ‖f(v)ψE(ξ)‖ ≥ ‖ψE(f(wn)ξ)‖ − ε

2
= ‖f(wn)ξ‖ − ε

2
> ‖f(w)‖ − ε.

Since ε > 0 is arbitrary, we conclude that ‖f(v)‖ ≥ ‖f(w)‖.

Let us show that ‖f(w)‖ ≥ ‖f(v)‖. Given ε > 0, choose g in Lp(XN , µ) with ‖g‖p = 1 such

that

‖f(v)g‖p > ‖f(v)‖ − ε.

Write XN as a disjoint union XN = XN,0t. . .tXN,N−1, where each of the sets XN,j is measurable

and T−1(XN,j) = XN,j+1, where the subscripts are taken mod N . Given a measurable subset Y
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of XN,0 with 0 < µ(Y ) < ∞, the linear map ψY : `pN → Lp(XN , µ) defined in Lemma XVIII.3.8 is

isometric because the sets Y, T (Y ), . . . , TN−1(Y ) are pairwise disjoint.

Set

ε0 = min

{
ε,

ε

2‖f(v)g‖p

}
.

Choose δ0 > 0 such that whenever a and b are elements in a Banach algebra such that ‖a − b‖ <

δ0, then ‖f(a)− f(b)‖ < ε0.

By simultaneously approximating the functions

g|XN,0 , T
−1(g|XN,1), . . . , T−N+1(g|XN,N−1

) and h|XN,0

as functions on XN,0, by step-functions, we can find:

– A positive integer K in N and disjoint, measurable sets Y (k) of positive finite measure with

XN,0 =
⊔K
k=1 Y

(k);

– Elements η(k) = (η
(k)
j )N−1

j=0 in `pN ;

– Not necessarily distinct positive integers n1, . . . , nK ,

such that

1. With h̃ = 1X\XN,0 +
K∑
k=1

znk1Y (k) , we have

‖h− h̃‖∞ < δ0

2. With g̃ =
K∑
k=1

ψY (k)(η(k)), we have

‖g − g̃‖p <
ε0

‖f(v)‖+ ε
.

Set ṽ = mh̃ ◦ uT . It follows from condition (1) above that

‖v − ṽ‖ ≤ ‖h− h̃‖∞‖uT ‖ < δ0,

and by the choice of δ0, we conclude that ‖f(v)− f(ṽ)‖ < ε0.
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For ξ ∈ `pN and k = 1, . . . ,K, we have

ṽψY (k)(ξ) = (mh̃ ◦ uT )

 1

µ(Y (k))
1
p

N−1∑
j=0

ξj1T−j(Y (k))


=

1

µ(Y (k))
1
p

znkξj1Y (k) +

N−2∑
j=1

ξj+11T−j(Y (k)) + ξ01T−N+1(Y (k))

= ψY (k) (wnkξ) .

It follows that

f(ṽ)ψY (k)(ξ) = ψY (k)(f(wnk)ξ)

for all ξ in `pN . Thus,

‖f(v)g − f(ṽ)g̃‖p ≤ ‖f(v)g − f(ṽ)g‖p + ‖f(ṽ)g − f(ṽ)g̃‖p

≤ ‖f(v)− f(ṽ)‖‖g‖p + ‖f(ṽ)‖‖g − g̃‖p

≤ ε0 + (‖f(v)‖+ ε)
ε

2‖f(v)g‖p
≤ ε

‖f(v)g‖p
.

We therefore conclude that

‖f(ṽ)g̃‖p
‖g̃‖p

≥ ‖f(v)g‖p(1 + ε)

‖g‖p + ε
=
‖f(v)g‖p(1 + ε)

1 + ε
=
‖f(v)g‖p
‖g‖p

≥ ‖f(v)‖ − ε.

We have

‖f(ṽ)g̃‖p =

∥∥∥∥∥f(ṽ)

(
K∑
k=1

ψY (k)(η(k))

)∥∥∥∥∥
p

=

∥∥∥∥∥
K∑
k=1

ψY (k)

(
f(wnk)η(k)

)∥∥∥∥∥
p

=

(
K∑
k=1

∥∥∥f(wnk)η(k)
∥∥∥p
p

) 1
p

,
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and also

‖g̃‖p =

∥∥∥∥∥
K∑
k=1

ψY (k)(η(k))

∥∥∥∥∥
p

=

(
K∑
k=1

∥∥∥η(k)
∥∥∥p
p

) 1
p

.

Set

w̃ =

K⊕
k=1

wnk ∈ B

(
K⊕
k=1

`pN

)
,

and η =
(
η(1), . . . , η(K)

)
∈

K⊕
k=1

`pN . Then w̃ is an invertible isometry, and the computations above

show that

‖f(w̃)η‖p = ‖f(ṽ)g̃‖p and ‖η‖p = ‖g̃‖p.

We clearly have

‖f(w̃)‖ = max
k=1,...,K

‖f(wnk)‖ ≤ sup
n∈N
‖f(wn)‖ = ‖f(w)‖.

We conclude that

‖f(w)‖ ≥ ‖f(w̃)‖ ≥ ‖f(w̃)η‖p
‖η‖p

=
‖f(ṽ)g̃‖p
‖g̃‖p

≥ ‖f(v)‖ − ε.

Since ε > 0 is arbitrary, this shows that ‖f(w)‖ ≥ ‖f(v)‖, and hence the proof of the claim is

complete.

We will now show that sp(vN ) is invariant under translation by the N -th roots of unity

in S1. We retain the notation of the first part of this proof. Note that since sp(vN ) is a subset

of S1, it can be computed in any unital Banach algebra that contains vN by Remark XVIII.3.7;

in particular, it can be computed in F p(vN , v
−1
N ). Also, the spectrum of vN in F p(vN , v

−1
N ) is

equal to the spectrum of w in B(`p), since we have shown that vN 7→ w extends to an isometric

isomorphism F p(vN , v
−1
N ) ∼= F p(w,w−1). Moreover, it is clear that

sp(w) =
⋃
n∈N

sp(wn).

It is a straightforward exercise to show that sp(wn) = {ζ ∈ T : ζN = zn}, which is clearly invariant

under translation by the N -th roots of unity in S1, so the claim follows.
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We have shown in the first part that there is an isometric isomorphism

F p(vN , v
−1
N ) ∼=

(
C(sp(vN )), ‖ · ‖sp(vN ),N

)
.

Now, the Gelfand transform Γ: F p(vN , v
−1
N ) → C(sp(vN )) maps v to the canonical inclusion

of sp(vN ) into C, so the image of Γ is isometrically isomorphic to
(
C(sp(vN )), ‖ · ‖sp(vN ),N

)
, as

desired.

The situation for v∞ is rather different, since the range of the Gelfand transform does

not contain all continuous functions on its spectrum (which is either S1 or empty). Indeed, the

Banach algebra that v∞ generates together with its inverse is isometrically isomorphic to F p(Z)

(or the zero algebra if µ(X∞) = 0); see Theorem XVIII.3.14 below.

One difficulty of working with with v∞ is that the analog of Lemma XVIII.3.1 is not in

general true, that is, v∞ need not have an infinite bilateral sub-shift, as the following example

shows.

Example XVIII.3.10. Let X = S1 with normalized Lebesgue measure µ. Given θ in R \ Q,

consider the invertible transformation Tθ : S1 → S1 given by rotation by angle θ. Then Tθ

is measure preserving and every point of S1 has infinite period. We claim that there is no

measurable set E with positive measure such that the sets Tnθ (E) for n in Z are pairwise disjoint.

If E is any set such that all its images under Tθ are disjoint, we use translation invariance of µ to

get

1 = µ(S1) ≥ µ

(⋃
n∈Z

Tnθ (E)

)
=
∑
n∈Z

µ(E).

It follows that E must have measure zero, and the claim is proved.

In order to deal with the absence of infinite sub-shifts, we will show that the set

transformation T∞ has what we call “arbitrarily long strings”, which we proceed to define.

Definition XVIII.3.11. Let (Y, ν) be a measure space and let S : Y → Y be an invertible

measure class preserving transformation. Given a measurable set E in Y with µ(E) > 0,

the finite sequence E,S−1(E), . . . , S−n+1(E) is called a string of length n for S if the sets

E,S−1(E), . . . , S−n+1(E) are pairwise disjoint.
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The map S is said to have arbitrarily long strings if for all n in N there exists a string of

length n.

The following lemma is not in general true without some assumptions on the σ-algebra.

What is needed in our proof is that for every point x in X, the intersection of the measurable sets

of positive measure that contain x is the singleton {x}, which is guaranteed in our case since we

are working with the (completed) Borel σ-algebra on a complete metric space.

Lemma XVIII.3.12. Let (Y, ν) be a σ-finite measure space such that for every y in Y , the

intersection of the measurable sets of positive measure that contain y is the singleton {y}. Let

S : Y → Y be an invertible measure class preserving transformation such that every point of Y has

infinite period. Then S has arbitrarily long strings.

Proof. Let (Em)m∈N be a decreasing sequence of measurable sets with µ(Em) > 0 for all m in

N and such that
⋂
m∈N

Em = {x}. Without loss of generality, we may assume that T (x) does not

belong to Em for all m in N.

Let n in N. We claim that there exist mn in N and a sequence (F
(n)
m )m≥mn of measurable

sets such that

1. For all m ≥ mn, the set F
(n)
m is contained in Em and x ∈ F (n)

m ;

2. µ(F
(n)
m ) > 0 for all m ≥ mn;

3. The sets F
(n)
m , T−1(F

(n)
m ), . . . , T−n(F

(n)
m ) are pairwise disjoint (up to null-sets).

We proceed by induction on n.

Set n = 1. If there exists m1 such that µ(Em1
4T−1(Em1

)) > 0, take F
(1)
m1 = Em1

∩

T−1(Em1)c and F
(1)
m = F

(1)
m0∩Em for all m ≥ m1. It is easy to verify that the sequence (F

(1)
m )m≥m1

satisfies the desired properties. If no such m1 exists, it follows that µ(Em4T−1(Em)) = 0 for all

m in N. Upon getting rid of null-sets, we may assume that Em = T−1(Em) for all m in N. We

have

{x} =
⋂
m∈N

Em =
⋂
m∈N

T−1(Em) = T−1

( ⋂
m∈N

Em

)
= {T−1(x)},

which implies that x is a fixed point for T . This is a contradiction, and the case n = 1 is proved.
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Let n ≥ 2, and let mn−1 and (F
(n−1)
m )m≥mn−1 be as in the inductive hypothesis for n − 1.

Suppose that there exists mn such that the sets

F (n−1)
mn , T−1(F (n−1)

mn ), . . . , T−n(F (n−1)
mn )

are not disjoint up to null-sets. Let j ∈ {0, . . . , n− 1} such that

µ(T−j(F (n−1)
mn )4T−n(F (n−1)

mn )) > 0.

Since T preserves null-sets, it follows that µ(T−(n−j)(F
(n−1)
mn )4F (n−1)

mn ) > 0. By assumption,

the first n − 1 translates of F
(n−1)
mn are pairwise disjoint, so we must have j = n and hence

µ(T−n(F
(n−1)
mn )4F (n−1)

mn ) > 0. Using an argument similar to the one used in the case n = 1,

one shows that the sequence given by

F (n)
mn = F (n−1)

mn ∩ T−1(F (n−1)
mn )c and F (n)

m = F (n)
mn ∩ F

(n−1)
m

for all m ≥ mn, satisfies the desired properties.

If no such mn exists, it follows that µ(F
(n−1)
m ∩ T−n(F

(n−1)
m )) = 0 for all m ≥ mn−1. Again,

upon getting rid of null-sets, we may assume that F
(n−1)
m = T−n(F

(n−1)
m ) for all m ≥ mn−1. We

have

{x} =
⋂
m∈N

F (n−1)
m =

⋂
m∈N

T−n(F (n−1)
m ) = T−n

( ⋂
m∈N

F (n−1)
m

)
= {T−n(x)},

and thus T−n(x) = x. This is again a contradiction, which shows that such mn must exist. This

proves the claim, and the proof is finished.

To see that Lemma XVIII.3.12 is not true in full generality, consider Y = Z endowed with

the σ-algebra {∅,Z} and measure µ(Z) = 1. Let S : Z→ Z be the bilateral shift. Then every point

of Y has infinite period, but there are no strings of any positive length, let alone of arbitrarily

long length.

Corollary XVIII.3.13. The measure class preserving transformation T : X → X has arbitrarily

long strings if and only if either µ(X∞) > 0 or µ(Xn) > 0 for infinitely many values of n in N.
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We are now ready to prove that F p(v∞, v
−1
∞ ) is isometrically isomorphic to F p(Z). We

prove the result in greater generality because the proof is essentially the same and the extra

flexibility will be needed later.

Theorem XVIII.3.14. Let p ∈ [1,∞), let (Y, ν) be a σ-finite measure space with ν(Y ) > 0,

and let S : Y → Y be an invertible measure class preserving transformation with arbitrarily long

strings. Let h : Y → S1 be a measurable function and let

w = mh ◦ uS : Lp(Y, ν)→ Lp(Y, ν)

be the resulting invertible isometry. Then sp(w) = S1 and there is a canonical isometric

isomorphism

F p(w,w−1) ∼= F p(Z)

determined by sending w to the canonical generator of F p(Z).

Proof. We prove the second claim first. Denote by λp : C[Z] → B(`p) the left regular

representation of Z. It is enough to show that for every f in C[Z], one has

‖f(w)‖B(Lp(Y,ν)) = ‖λp(f)‖Fp(Z).

Recall that the norm on F p(Z) is universal with respect to representations of Z of Lp-spaces.

Since w is an invertible isometry, it induces a representation of Z on Lp(Y, ν), and universality of

the norm ‖ · ‖Fp(Z) implies that ‖λp(f)‖ ≥ ‖f(w)‖.

We proceed to show the opposite inequality. Let ε > 0 and choose an element ξ = (ξk)k∈Z

in `p of finite support with ‖ξ‖pp = 1, and such that

‖λp(f)ξ‖p > ‖λp(f)‖ − ε.

Choose K in N such that ξk = 0 whenever |k| > K. Find a positive integer N in N and complex

coefficients an with −N ≤ n ≤ N such that f(x, x−1) =
N∑

n=−N
anx

n. By assumption, there exists a

measurable subset E ⊆ Y with ν(E) > 0 such that the sets S−N−K(E), . . . , SN+K(E) are pairwise

disjoint. Since Y is σ-finite, we may assume that ν(E) <∞.
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Define a function g : Y → C by

g =

K∑
k=−K

ξkw
k(1E).

Clearly g is measurable. Using that the translates of E are pairwise disjoint at the first step, we

compute

‖g‖pp =

K∑
k=−K

|ξk|p‖wk(1E)‖pp = ν(E)‖ξ‖pp = ν(E) <∞,

so g ∈ Lp(Y, ν) and ‖g‖p = ν(E)
1
p .

We have

f(w)g =

N∑
n=−N

anw
n(g)

=

N∑
n=−N

anw
n

(
K∑

k=−K

ξkw
k(1E)

)

=

N∑
n=−N

K∑
k=−K

anξkw
n+k(1E)

=

N+K∑
j=−N−K

[λp(f)ξ]j w
j(1E).

We use again that the translates of E are pairwise disjoint at the first step to get

‖f(w)g‖pp =

N+K∑
j=−N−K

∣∣∣[λp(f)ξ]j

∣∣∣p ∥∥wj(1E)
∥∥ = ‖λp(f)ξ‖pp ν(E).

We conclude that

‖f(w)g‖p = ‖λp(f)ξ‖p ν(E)
1
p

= ‖λp(f)ξ‖p ‖g‖p

> (‖λp(f)‖ − ε) ‖g‖p.

The estimate above shows that ‖f(w)‖Lp(Y,ν) > ‖λp(f)‖Fp(Z) − ε, and since ε > 0 is

arbitrary, we conclude that ‖f(w)‖ ≥ ‖λp(f)‖Fp(Z), as desired.
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We now claim that sp(w) = S1. We first observe that since sp(w) is a subset of S1, it can

be computed in any unital algebra that contains w by Remark XVIII.3.7. In particular, we can

compute the spectrum in F p(w,w−1).

We have shown that there is a canonical isometric isomorphism ϕ : F p(w,w−1) → F p(Z)

that maps w to the bilateral shift s in B(`p). We deduce that

spFp(w,w−1)(w) = spFp(Z)(ϕ(w)) = sp(s) = S1,

and the proof is complete.

Corollary XVIII.3.15. Assume that µ(X∞) > 0. Then sp(v∞) = S1 and there is a canonical

isometric isomorphism F p(v∞, v
−1
∞ ) ∼= F p(Z) determined by sending v∞ to the canonical generator

of F p(Z).

Proof. Since A contains the Borel σ-algebra on the metric space X, Lemma XVIII.3.12 applies

and the result follows from Theorem XVIII.3.14.

It is an immediate consequence of Theorem XVIII.3.9 and Theorem XVIII.3.14 that the

sequence (sp(vn))n∈N is a spectral configuration, in the sense of Definition XVIII.2.3. We have

been working with complete σ-finite standard Borel spaces in order to use Theorem XIII.2.4, as

well as to prove Lemma XVIII.3.12. Our next lemma is the first step towards showing that one

can get around this assumption in the general (separable) case.

Lemma XVIII.3.16. Let p ∈ [1,∞), let (X,A, µ) and (Y,B, ν) be two complete σ-finite standard

Borel spaces such that Lp(X,µ) and Lp(Y, ν) are isometrically isomorphic, and let ϕ : Lp(X,µ) →

Lp(Y, ν) be any isometric isomorphism. Let v : Lp(X,µ) → Lp(X,µ) be an invertible isometry

and set w = ϕ−1 ◦ v ◦ ϕ, which is an invertible isometry of Lp(Y, ν). If Xn and Yn, for n in N, are

defined as in the beginning of this section with respect to v and w, respectively, then ϕ restricts to

an isometric isomorphism Lp(Xn, µ|Xn)→ Lp(Yn, ν|Yn).

Proof. Write v = mhv ◦ uTv and w = mhw ◦ uTw as in Theorem XIII.2.4. For n in N, the set Xn is

the set of points of X of period n, and similarly with Yn. Recall that there are canonical isometric
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isomorphisms

Lp(X,µ) ∼=
⊕
n∈N

Lp(Xn, µ|Xn) and Lp(Y, ν) ∼=
⊕
n∈N

Lp(Yn, ν|Yn).

Since ϕ is an isometric isomorphism, Lamperti’s theorem also applies to it, so there are

a measurable function g : Y → S1 and an invertible measure class preserving transformation

S : X → Y such that ϕ = mg ◦ uS . It is therefore enough to show that S(Xn) = Yn for all n in N.

It is an easy exercise to check that the identity w = ϕ−1 ◦ v ◦ ϕ implies Tw = S−1 ◦ Tv ◦ S.

The period of a point x in X (with respect to Tv) equals the period of S(x) (with respect to Tw),

and the result follows.

Recall that if (X,µ) is a measure space for which Lp(X,µ) is separable, then there is a

complete σ-finite standard Borel space (Y, ν) for which Lp(X,µ) and Lp(Y, ν) are isometrically

isomorphic.

Definition XVIII.3.17. Let p ∈ [1,∞), let (X,A, µ) be a measure space for which Lp(X,µ) is

separable, and let v : Lp(X,µ) → Lp(X,µ) be an invertible isometry. Let (Y,B, ν) be a complete

σ-finite standard Borel space and let ψ : Lp(X,µ) → Lp(Y, ν) be an isometric isomorphism. Set

w = ψ−1 ◦v ◦ψ, which is an invertible isometry of Lp(Y, ν). Let {Yn}n∈N be the partition of Y into

measurable subsets as described in the beginning of this section, and note that w restricts to an

invertible isometry wn of Lp(Yn, ν|Yn) for all n in N. By the comments before Lemma XVIII.3.16,

the sequence (sp(wn))n∈N is a spectral configuration.

We define the spectral configuration assosited with v, denoted σ(v), by

σ(v) = (sp(wn))n∈N.

We must argue why σ(v), as defined above, is independent of the choice of the complete

σ-finite standard Borel space (Y, ν) and the isometric isomorphism, but this follows immediately

from Lemma XVIII.3.16.

The following is the main result of this section, and it asserts that every Lp-operator

algebra generated by an invertible isometry together with its inverse is as in Theorem XVIII.2.5.

The proof will follow rather easily from the results we have already obtained.

587



Theorem XVIII.3.18. Let p ∈ [1,∞), let (X,µ) be a measure space for which Lp(X,µ) is

separable, and let v : Lp(X,µ) → Lp(X,µ) be an invertible isometry. Let σ(v) be the spectral

configuration associated to v as in Definition XVIII.3.17. Then the Gelfand transform defines an

isometric isomorphism

Γ: F p(v, v−1)→ F p(σ(v)).

In particular, F p(v, v−1) can be represented on `p.

Proof. Denote by ι : sp(v) → C the canonical inclusion sp(v) ↪→ C. For n in N, denote by

ιn : sp(vn) → C the restriction of ι to sp(vn), which is the canonical inclusion sp(vn) ↪→ C.

Note that F p(σ(v)) is generated by ι and ι−1, and that Γ(v) = ι.

Let f ∈ C[Z]. We claim that ‖f(v)‖ = ‖f(ι)‖. Once we have proved this, the result will

follow immediately.

Using Theorem XVIII.3.9 and Theorem XVIII.3.14 at the second step, and the definition of

the norm ‖ · ‖σ(v) (Definition XVIII.2.4) at the third step, we have

‖f(v)‖ = sup
n∈N
‖f(vn)‖ = sup

n∈N
‖f(ιn)‖sp(vn),n = ‖f(ι)‖σ(v),

and the claim is proved.

The last assertion in the statement follows from part (1) of Theorem XVIII.2.5.

In particular, we have shown that Lp-operator algebras generated by an invertible isometry

and its inverse can always be isometrically represented on `p. We do not know whether this is

special to this class of Lp-operator algebras, and we believe it is possible that under relatively

mild assumptions, any separable Lp-operator algebra can be isometrically represented on `p. We

formally raise this a problem.

Problem XVIII.3.19. Let p ∈ [1,∞). Find sufficient conditions for a separable Lp-operator

algebra to be isometrically represented on `p.

It is well known that any separable L2-operator algebra can be isometrically represented on

`2.

We combine Theorem XVIII.3.18 with Theorem XVIII.2.5 to get an explicit description of

F p(v, v−1) for an invertible isometry of a not necessarily separable Lp-space.
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Corollary XVIII.3.20. Let p ∈ [1,∞)\{2}, let (X,µ) be a measure space, and let v : Lp(X,µ)→

Lp(X,µ) be an invertible isometry. Then one, and only one, of the following holds:

1. There exist a positive integer N ∈ N and a (finite) spectral configuration σ = (σn)Nn=1 with

σ = sp(v), and a canonical isometric isomorphism

F p(v, v−1) ∼= F p(σ) ∼=
(
C(sp(v)), max

n=1,...,N
‖ · ‖σn,n

)
.

In this case, there is a Banach algebra isomorphism

F p(v, v−1) ∼= (C(sp(v)), ‖ · ‖∞) ,

but this isomorphism cannot in general be chosen to be isometric unless v is a multiplication

operator.

2. There is a canonical isometric isomorphism

F p(v, v−1) ∼= F p(Z).

It is obvious that the situations described in (1) and (2) cannot both be true.

Proof. It is clear that F p(v, v−1) is separable as a Banach algebra. By Proposition 1.25 in [207],

there are a measure space (Y, ν) for which Lp(Y, ν) is separable and an isometric representation

ρ : F p(v, v−1) → B(Lp(Y, ν)). The result now follows from Theorem XVIII.3.18, which assumes

that the isometry acts on a separable Lp space, together with Theorem XVIII.2.5.

We make a few comments about what happens when p = 2. Invertible isometries on Hilbert

spaces are automatically unitary, so one always has C∗(v, v−1) = C∗(v) ∼= C(sp(v)) isometrically,

although all known proofs of this fact use completely different methods than the ones that are

used here.

Recall that an algebra is said to be semisimple if the intersection of all its maximal left

(or right) ideals is trivial. For commutative Banach algebras, this is equivalent to the Gelfand

transform being injective. It is well-known that all C∗-algebras are semisimple.
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Corollary XVIII.3.21. Let p ∈ [1,∞), let (X,µ) be a measure space, and let

v : Lp(X,µ)→ Lp(X,µ)

be an invertible isometry. Then:

1. F p(v, v−1) is semisimple.

2. Except in the case when F p(v, v−1) ∼= F p(Z) and p 6= 2, the Gelfand transform

Γ: F p(v, v−1) → C(sp(v)) is an isomorphism, although not necessarily isometric. In

particular, if sp(v) 6= S1, then Γ is an isomorphism.

The conclusions in Corollary XVIII.3.21 are somewhat surprising. Indeed, as we will see

in the following section, part (1) fails if v is an invertible isometry of a subspace of an Lp-space.

It will follow from Proposition XIX.2.5 that part (2) also fails for isometries of subspaces of Lp-

spaces.

It is a standard fact that Banach algebras are closed under holomorphic functional calculus,

and that C∗-algebras are closed under continuous functional calculus. Using the description of

the Banach algebra F p(v, v−1) of the corollary above, we can conclude that algebras of this form

are closed by functional calculus of a fairly big class of functions, which in some cases includes all

continuous functions on the spectrum of v.

Corollary XVIII.3.22. Let p ∈ [1,∞) \ {2}, let (X,µ) be a measure space, and let

v : Lp(X,µ) → Lp(X,µ) be an invertible isometry. Then F p(v, v−1) is closed under functional

calculus for continuous functions on sp(v) of bounded variation. Moreover, if F p(v, v−1) is not

isomorphic to F p(Z), then it is closed under continuous functional calculus.

In the context of the corollary above, if p = 2 then F p(v, v−1) is always isometrically

isomorphic to C(sp(v)), and hence it is closed under continuous functional calculus.

We conclude this work by describing all contractive homomorphisms between algebras of

the form F p(v, v−1) that respect the canonical generator.

Corollary XVIII.3.23. Let p ∈ [1,∞) \ {2}, and let v and w be two invertible isometries on

Lp-spaces. The following are equivalent:
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1. The linear map ϕ0 : C[v, v−1] → C[w,w−1] determined by v 7→ w, extends to a contractive

homomorphism

ϕ : F p(v, v−1)→ F p(w,w−1).

2. We have sp(v) ⊆ sp(w), and for every function g in F p(σ(w)) ⊆ C(sp(w)), the restriction

g|sp(v) belongs to F p(σ(v)) and

∥∥g|sp(v)

∥∥
σ(v)
≤ ‖g‖σ(w).

3. We have σ̃(v) ⊆ σ̃(w).

Proof. This is an immediate consequence of Theorem XVIII.3.18 and Corollary XVIII.2.13.

An Application: Quotients of Banach Algebras Acting on L1-spaces

In this section, we use our description of Banach algebras generated by invertible isometries

of Lp-spaces to answer the case p = 1 of a question of Le Merdy (Problem 3.8 in [165]). In the

theorem below, we show that the quotient of a Banach algebra that acts on an L1-space, cannot in

general be represented on any Lp-space for p ∈ [1,∞). In Chapter XIX, we give a negative answer

to the remaining cases of Le Merdy’s question, again using the results of the present work.

We begin with some preparatory notions. Let A be a commutative Banach algebra, and

denote by Γ: A → C0(Max(A)) its Gelfand transform. Given a closed subset E ⊆ Max(A), denote

by k(E) the ideal

k(E) = {a ∈ A : Γ(a)(x) = 0 for all x ∈ E}

in A. Similarly, given an ideal I in A, set

h(I) = {x ∈ Max(A) : Γ(a)(x) = 0 for all a ∈ I},

which is a closed subset of Max(A). It is clear that h(k(E)) = E for every closed subset

E ⊆ Max(A). It is an easy exercise to check that if A is a semisimple Banach algebra, then

the quotient A/k(E) is semisimple as well, essentially because k(E) is the largest ideal J of A

satisfying h(J) = E.
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Definition XVIII.4.1. A commutative, semisimple Banach algebra A is said to have (or satisfy)

spectral synthesis if for every closed subset E ⊆ Max(A), there is only one ideal J in A satisfying

h(J) = E (in which case it must be J = k(E)).

It is easy to verify that a semisimple Banach algebra A has spectral synthesis if and only if

every quotient of A is semisimple. (We are thankful to Chris Phillips for pointing this out to us.)

It is a classical result due to Malliavin in the late 50’s ([179]), that for an abelian locally

compact group G, its group algebra L1(G) has spectral synthesis if and only if G is compact.

Theorem XVIII.4.2. There is a quotient of F 1(Z) that cannot be isometrically represented on

any Lp-space for p ∈ [1,∞). In particular, the class of Banach algebras that act on L1-spaces is

not closed under quotients.

Proof. The norm of a function f ∈ `1(Z) as an element of F 1(Z) = F 1
λ(Z) is the norm it gets as a

convolution operator on `1(Z). The fact that `1(Z) has a contractive approximate identity is easily

seen to imply that in fact ‖f‖F 1(Z) = ‖f‖`1(Z). It follows that there is a canonical identification

F 1(Z) = `1(Z). (See Proposition 3.14 in [207] for a more general version of this argument.)

Denote by v ∈ `1(Z) the canonical invertible isometry that, together with its inverse,

generates `1(Z). If I is an ideal in `1(Z) and π : `1(Z) → `1(Z)/I is the quotient map, then

`1(Z)/I is generated by π(v) and π(v−1). These elements are invertible and have norm one, since

we have

‖π(v)‖ ≤ 1 , ‖π(v−1)‖ ≤ 1 , and 1 ≤ ‖π(v)‖‖π(v−1)‖.

By Malliavin’s result, `1(Z) does not have spectral synthesis. Let I be an ideal in `1(Z)

such that `1(Z)/I is not semisimple. Then this quotient cannot be represented on any Lp-space,

for p ∈ [1,∞), by part (1) of Corollary XVIII.3.21.

We close this chapter by showing that our results cannot be extended to invertible

isometries of more general Banach spaces, even subspaces of Lp-spaces.

Remark XVIII.4.3. We keep the notation from the proof of Theorem XVIII.4.2. By

Corollary 1.5.2.3 in [140], the quotient `1(Z)/I can be represented on a subspace of an L1-space.

In particular, `1(Z)/I is generated by an invertible isometry of a SL1-space, and its inverse. We

conclude that part (1) of Corollary XVIII.3.21 fails if we replace Lp-spaces with SLp-spaces.
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Similarly, it follows from Proposition XIX.2.5 that part (2) also fails for isometries of SLp-spaces,

even when the Banach algebra they generate is semisimple, and even if the invertible isometry has

non-full spectrum.
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CHAPTER XIX

QUOTIENTS OF BANACH ALGEBRAS ACTING ON LP -SPACES

This chapter is based on joint work with Hannes Thiel ([95]).

We show that the class of Banach algebras that can be isometrically represented on an Lp-

space, for p 6= 2, is not closed under quotients. This answers a question asked by Le Merdy 20

years ago. Our methods are heavily reliant on our earlier study of Banach algebras generated by

invertible isometries of Lp-spaces.

Introduction

An operator algebra is a closed subalgebra of the algebra B(H) of bounded linear operators

on a Hilbert space H. If A is an operator algebra and I ⊆ A is a closed, two-sided ideal, then

the quotient Banach algebra A/I is again an operator algebra, that is, it can be isometrically

represented on a Hilbert space. This classical result is due to Lumer and Bernard, although the

commutative case (when A is a uniform algebra) was proved earlier by Cole.

Some Banach algebras are naturally given as algebras of operators on certain classes of

Banach spaces. If E is a class of Banach spaces, we say that a Banach algebra A is an E -operator

algebra if there exist a Banach space E ∈ E and an isometric homomorphism ϕ : A → B(E). If

H is the class of all Hilbert spaces, then an H -operator algebra is just an operator algebra in

the usual sense. With this terminology, the Bernard-Cole-Lumer theorem states that H -operator

algebras are closed under quotients. A natural question is then:

Question XIX.1.1. For what other classes E of Banach spaces are E -operator algebras closed

under quotients?

Given p ∈ [1,∞), we say that a Banach space E is a QSLp-space if E is isometrically

isomorphic to a quotient of a (closed) subspace of an Lp-space. We denote by QS L p the class

of all QSLp-spaces. In Corollary 3.2 of [165], Christian Le Merdy showed that QS L p-operator

algebras are closed under quotients. This result generalizes the Bernard-Cole-Lumer theorem,

which is the case p = 2, since QS L 2 = L 2 is the class of Hilbert spaces.
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With L p denoting the class of Lp-spaces, Problem 3.8 in [165] asks whether L p-operator

algebras are closed under quotients for p 6= 2. A partial result in this direction is the work of

Marius Junge ([140]) on the class S L p of (closed) subspaces of Lp-spaces, which he describes

as a first step towards dealing with the class L p. Indeed, Corollary 1.5.2.3 in [140] asserts that

S L p-operator algebras are also closed under quotients.

As the authors point out, the arguments used both in [165] and [140] are not suitable to

deal with the class L p, which seems to be the class for which Question XIX.1.1 is more natural.

In this chapter, which is based on [95], we answer Le Merdy’s question negatively. In other

words, we show that L p-operator algebras are not closed under quotients when p ∈ [1,∞) \ {2}.

We do so by exhibiting a concrete example of an L p-operator algebra A and a closed, two-

sided ideal I in A such that A/I cannot be represented on an Lp-space. What we show is

slightly stronger: in our example, the quotient A/I cannot be represented on any Lq-space for

q ∈ [1,∞). The algebra A is a semisimple commutative Banach algebra: the algebra F p(Z) of

p-pseudofunctions on Z.

Given the recent attention received by L p-operator algebras, deciding whether these are

closed under quotients becomes more relevant and technically useful. For example, consider the

Lp-analogs Opn of the Cuntz algebras; see [204]. These are all simple, and any contractive, non-

zero representation of any of them on an Lp-space is automatically injective (in fact, isometric).

For p = 2, these two properties are well-known to be equivalent. However, for p 6= 2, they are not,

since quotients of L p-operator algebras are not in general representable on Lp-spaces. These two

properties of Opn therefore require separate and independent proofs. A similar problem arises with

the Lp-analogs Apθ of irrational rotation algebras; see [93].

If A is a commutative unital Banach algebra, we will denote by ΓA : A → C(Max(A)) its

Gelfand transform, which is natural in the following sense. If ϕ : A→ B is a unital homomorphism

between commutative unital Banach algebras A and B, then the assignment Max(B) → Max(A)

given by I 7→ ϕ−1(I) defines a contractive homomorphism Γ(ϕ) : C(Max(A)) → C(Max(B))
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making the following diagram commute:

A
ΓA //

ϕ

��

C(Max(A))

Γ(ϕ)

��
B

ΓB

// C(Max(B)).

Our Examples

We begin by introducing some terminology which will be needed later. We adopt the

convention that all representations of Banach algebras are contractive, and do not include this

in the terminology.

Definition XIX.2.1. Let A be a Banach algebra and let E be a class of Banach spaces.

1. We say that A is (unitally) representable on E , if there exist a Banach space E ∈ E and a

(unital) contractive, injective homomorphism ϕ : A→ B(E).

2. We say that A is (unitally) isomorphically represented on E , if there exist a Banach space

E ∈ E and a (unital) contractive, injective homomorphism ϕ : A→ B(E) with closed range.

3. We say that A is (unitally) isometrically represented on E , if there exist a Banach space

E ∈ E and a (unital) isometric homomorphism ϕ : A→ B(E).

Isometric representability is the notion we are mostly concerned with in this chapter,

but we will be able to say things about contractive equivalent representability as well. On the

other hand, the notion of (contractive) representability, although natural, is far too weak for our

purposes, as is shown below.

Proposition XIX.2.2. Let A be a (unital) separable, semisimple, commutative Banach algebra.

Let p be an arbitrary Hölder exponent in [1,∞). Then A is (unitally) representable on an Lp-

space.

Proof. Let X be a separable locally compact Hausdorff space. Let {xn}n∈N be a countable

dense subset of X. For n ∈ N, denote by δn the atomic measure concentrated on {xn}, and

set µ =
∑
n∈N

2−nδn. Then µ is a Borel probability measure on X. It is easy to check that the

homomorphism

ϕ : C0(X)→ B(Lp(X,µ))
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given by (ϕ(f)ξ)(x) = f(x)ξ(x) for every f ∈ C0(X), every ξ ∈ Lp(X,µ) and almost every x ∈ X,

is a isometric representation, which is unital if X is compact.

Now for the Banach algebra A in the statement, its maximal ideal space Max(A) is locally

compact, Hausdorff and separable (and it is compact if A is unital). The Gelfand transform

ΓA : A → C0(Max(A)) is injective and contractive (and unital if A is). By the first paragraph

in this proof, there exists a (unital) isometric representation ϕA of C0(Max(A)) on an Lp-space.

Then ϕA ◦ ΓA is a (unital) representation of A on an Lp-space.

In the rest of this section, for any p ∈ [1,∞) \ {2}, we exhibit an example of a unital Lp-

operator algebra A and a closed, two-sided ideal I in A such that A/I cannot be isomorphically

represented on any Lq-space for q ∈ [1,∞). Our example is a semisimple, commutative Banach

algebra: the algebra F p(Z) of p-pseudofunctions on Z, and the quotient A/I is also semisimple. In

particular, A/I can be represented on an Lq-space for every q ∈ [1,∞), by Proposition XIX.2.2.

We begin with some preparatory results. Our first lemma allows us to assume that

contractive representations of unital Banach algebras on Lp-spaces are unital.

Lemma XIX.2.3. Let A be a unital Banach algebra and let p ∈ [1,∞). If A can be represented

(respectively, isomorphically or isometrically represented) on an Lp-space, then it can be unitally

represented (respectively, unitally isomorphically or unitally isometrically represented) on an Lp-

space.

Proof. Let E be an Lp-space and let ϕ : A → B(E) be a contractive, injective homomorphism.

Then e = ϕ(1) is an idempotent with ‖e‖ = 1 in B(E). By Theorem 6 in [267], the range F of e is

an Lp-space. The cut-down homomorphism

ψ : A→ B(F ) ∼= ϕ(1)B(E)ϕ(1)

is the desired unital, contractive, injective representation.

Finally, ψ has closed range (respectively, is isometric) if and only if so does ϕ.

For the rest of this section, we fix p ∈ [1,∞). We will abbreviate the Gelfand transform

ΓFp(Z) : F p(Z)→ C(S1) of F p(Z) to just Γ. For an open subset V of S1, we denote

IV = Γ−1(C0(V )),
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which is a closed, two-sided ideal in F p(Z). We will abbreviate F p(Z) to A, and the quotient

F p(Z)/IV to AV . The Gelfand transform ΓAV : AV → C(Max(AV )) will be abbreviated to ΓV .

Remark XIX.2.4. We recall the following fact about spectra of elements in Banach algebras. If

B is a unital Banach algebra, A is a subalgebra containing the unit of B, and a is an element of

A such that spA(a) ⊆ S1, then spA(a) = spB(a). In other words, if the spectrum of an element

of a Banach algebra is a subset of S1, then the spectrum can be computed in any unital algebra

containing the element (bigger or smaller than the original algebra).

Proposition XIX.2.5. Let V be an open subset of S1. Suppose that there exist q ∈ [1,∞) and

an Lq-space E such that AV is isomorphically representable on E. Then the Gelfand transform

ΓV : AV → C(S1 \ V ) is an isomorphism (although not necessarily isometric). In particular, and

identifying F p(Z) with a subalgebra of C(S1) via Γ, it follows that every continuous function on

S1 \ V is the restriction of a function in F p(Z).

Proof. It is clear that Max(AV ) is canonically homeomorphic to S1 \ V , so the range of ΓV can be

canonically identified with a subalgebra of C(S1 \ V ). Moreover, it is clear that AV is semisimple,

and hence there are natural identifications

AV ∼=
Γ(F p(Z))

Γ(F p(Z)) ∩ C0(V )
∼=

Γ(F p(Z)) + C0(V )

C0(V )
.

Denote by π : A → AV the canonical quotient map. Observe that AV is generated by the

image π(u) of the canonical generator u of A = F p(Z), which is an invertible isometry. Suppose

that there exist q ∈ [1,∞), an Lq-space E, and an isomorphic representation ϕ : AV → B(E). By

Lemma XIX.2.3, we can assume that ϕ is unital. It is clear that ϕ(π(u)) generates ϕ(AV ). Since

ϕ is unital, ϕ(π(u)) is an invertible isometry of an Lq-space. Moreover, using Remark XIX.2.4 at

the first step, we have

spB(E)(ϕ(π(u))) = spϕ(AV )(ϕ(π(u))) = spAV (π(u)) = S1 \ V.

We claim that the Gelfand transform Γϕ(AV ) : ϕ(AV )→ C(S1 \ V ) is an isomorphism. Once

we show this, it will follow that ΓV is also an isomorphism.

First, Γϕ(AV ) is clearly injective by semisimplicity of AV . Suppose that q = 2. Then ϕ(AV )

is a C∗-algebra, because it is generated by an invertible isometry of a Hilbert space (a unitary),
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and AV is therefore self-adjoint. The claim is then an immediate consequence of Gelfand’s

theorem (and in this case Γϕ(AV ) is isometric). Assume now that q ∈ [1,∞)\{2}. In this case, and

since the spectrum of ϕ(π(u)) in B(E) is not the whole circle, the result follows from part (1) of

Corollary 5.20 in [96]. The claim is proved, and the first part of the proposition follows.

For the second claim, denote by r : C(S1) → C(S1 \ V ) the restriction map. It is clear that

Γ(π) = r. Naturality of the Gelfand transform shows that the diagram

A
Γ //

π

��

C(S1)

r

��
AV

ΓV

// C(S1 \ V )

is commutative. It follows that for every f ∈ C(S1 \ V ), there exists g ∈ A = F p(Z) such that

ΓV (π(g)) = f . Regarding g as a function on S1, this is equivalent to g|S1\V = f .

Let θ ∈ R. Then it is easy to show that the homeomorphism hθ : S1 → S1 given by hθ(ζ) =

e2πiθζ for ζ ∈ S1 induces an isometric automorphism of F p(Z). (We warn the reader that it

is not in general true that any homeomorphism of S1 induces an isometric, or even contractive,

automorphism of F p(Z). In fact, when p 6= 2, the only homeomorphisms of S1 that do so are the

rotations and compositions of rotations with the homeomorphism ζ 7→ ζ of S1.)

The following is the main result of this chapter. Recall our conventions and notations from

the comments before Proposition XIX.2.5.

Theorem XIX.2.6. Let p ∈ [1,∞) \ {2}. Let V be a nontrivial open subset of S1, and assume

that V is not dense in S1. Then AV cannot be isomorphically represented on any Lq-space for

q ∈ [1,∞).

Proof. We argue by contradiction, so let V be an open subset of S1 as in the statement, and

suppose that there exists q ∈ [1,∞) such that AV can be isomorphically representable on an

Lq-space.

Let f ∈ C(S1). We claim that f belongs to Γ(F p(Z)). Once we prove this, it will follow

from part (2) of Corollary XIV.3.20 that p = 2, and hence the proof will be complete.

Let W be an open subset of S1 such that V ∩ W = ∅. With the notation used in the

comments before this theorem, and using compactness of S1, find n ∈ N and θ1, . . . , θn ∈ R such
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that
n⋃
j=1

hθj (W ) = S1. For j ∈ {1, . . . , n}, set Vj = hθj (V ) and Wj = hθj (W ). There is an

isometric isomorphism

Ahθj (V )
∼= AV ,

so the Banach algebra Ahθj (V ) can be isomorphically represented on an Lq-space. It follows from

Proposition XIX.2.5 that every continuous function on S1\Vj is in the image of ΓVj . In particular,

every continuous function on Wj is in the image of ΓVj .

From now on, we identify the algebras A,AV1
, . . . , AVn with their images under their

Gelfand transforms. In particular, for j = 1, . . . , n, every continuous function on Wj is the

restriction of a function in A.

Choose continuous functions k1, . . . , kn : S1 → R satisfying

1. 0 ≤ kj ≤ 1 for j = 1, . . . , n;

2. supp(kj) ⊆Wj for j = 1, . . . , n;

3.
n∑
j=1

kj(ζ) = 1 for all ζ ∈ S1;

4. kj belongs to F p(Z) for j = 1, . . . , n (for example, take kj ∈ C∞(S1)).

For j = 1, . . . , n, choose a function gj ∈ F p(Z) such that (gj)|Wj
= f |Wj

. Then the product

gjkj belongs to F p(Z) because each of the factors does. Since the support of kj is contained in

Wj , and f and gj agree on Wj , we have fkj = gjkj for j = 1, . . . , n. Now,

f = f ·

 n∑
j=1

kj

 =

n∑
j=1

gjkj ,

so f belongs to F p(Z), and the claim is proved.

We have shown that the Gelfand transform Γ: F p(Z) → C(S1) is surjective. Since F 2(Z) is

canonically isomorphic to C(S1), we must have p = 2 by part (2) of Corollary XIV.3.20. This is a

contradiction, and the result follows.

In contrast to Theorem XIX.2.6, some (non-trivial) quotients of F p(Z) are isometrically

representable on Lp-spaces. For example, if V is the complement of the set of n-th roots of unity

in S1 for some n ∈ N, then F p(Z)/IV is canonically isometrically isomorphic to F p(Zn). (This

identification is induced by the quotient map Z → Zn.) An analogous statement holds for the
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translates of V . We do not know, however, whether these are the only quotients of F p(Z) that can

be represented on Lp-spaces. We therefore suggest:

Problem XIX.2.7. Characterize those ideals I of F p(Z) such that F p(Z)/I can be isometrically

represented on an Lp-space.

We do not know whether F p(Z) has spectral synthesis, except for p = 1 (in which case it

does not) and p = 2 (in which case it does). Since Banach algebras generated by an invertible

isometry of an Lp-space together with its inverse are automatically semisimple by the results

in Chapter XVIII, we conclude that for F p(Z)/I to be isometrically representable on an Lp-

space, there must exist an open subset V ⊆ S1 such that I = IV (and V must be dense by

Theorem XIX.2.6). This means that Problem XIX.2.7 can be solved without knowing whether

F p(Z) has spectral synthesis, that is, without knowing whether every ideal of F p(Z) is of the form

IV .

We do not know whether density of V is sufficient for F p(Z)/IV to be representable on an

Lp-space.

We conclude this chapter with an observation. If A is a Banach algebra and a ∈ A, we

denote by B(a) the smallest Banach subalgebra of A containing a.

Remark XIX.2.8. Suppose that p is not an even integer, and let V ⊆ S1 be as in

Theorem XIX.2.6. It follows from Corollary 1.5.2.3 in [140] that AV can be isometrically

represented on an SLp-space, so there exists an invertible isometry v of an SLp-space E such that

B(u) is isometrically isomorphic to AV . By Theorem I in [240], there exist a canonical Lp-space

F containing E as a closed subspace, and a canonical invertible isometry w of F extending v. By

naturality of the construction, one may be tempted to guess that B(v) and B(w) are isometrically

isomorphic. However, this is not the case since B(w) is trivially representable on an Lp-space,

while B(v) ∼= AV is not, by Theorem XIX.2.6.
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CHAPTER XX

REPRESENTATIONS OF ETALE GROUPOIDS ON LP -SPACES

This chapter is based on joint work with Martino Lupini ([89]).

For p ∈ (1,∞), we study representations of etale groupoids on Lp-spaces. Our main result

is a generalization of Renault’s disintegration theorem for representations of etale groupoids on

Hilbert spaces. We establish a correspondence between Lp-representations of an etale groupoid

G, contractive Lp-representations of Cc(G), and tight regular Lp-representations of any countable

inverse semigroup of open slices of G that is a basis for the topology of G. We define analogs

F p(G) and F pλ (G) of the full and reduced groupoid C∗-algebras using representations on Lp-

spaces. As a consequence of our main result, we deduce that every contractive representation of

F p(G) or F pλ (G) is automatically completely contractive. Examples of our construction include

the following natural families of Banach algebras: discrete group Lp-operator algebras, the analogs

of Cuntz algebras on Lp-spaces, and the analogs of AF-algebras on Lp-spaces. Our results yield

new information about these objects: their matricially normed structure is uniquely determined.

More generally, groupoid Lp-operator algebras provide analogs of several families of classical C∗-

algebras, such as Cuntz-Krieger C∗-algebras, tiling C∗-algebras, and graph C∗-algebras.

Introduction

Groupoids are a natural generalization of groups, where the operation is no longer

everywhere defined. Succinctly, a groupoid can be defined as a small category where every arrow

is invertible, with the operations being composition and inversion of arrows. A groupoid is called

locally compact when it is endowed with a (not necessarily Hausdorff) locally compact topology

compatible with the operations; see [196]. Any locally compact group is in particular a locally

compact groupoid. More generally, one can associate to a continuous action of a locally compact

group on a locally compact Hausdorff space the corresponding action groupoid as in [176]. This

allows one to regard locally compact groupoids as a generalization of topological dynamical

systems.
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A particularly important class of locally compact groupoids are those where the operations

are local homeomorphisms. These are the so-called etale—or r-discrete [225]—groupoids, and

constitute the groupoid analog of actions of discrete groups on locally compact spaces. In fact,

they can be described in terms of partial actions of inverse semigroups on locally compact spaces;

see [66]. Alternatively, one can characterize etale groupoids as the locally compact groupoids

having an open basis of slices, that is, sets where the source and range maps are injective [66,

Section 3]. In the étale case, the set of all open slices is an inverse semigroup.

The representation theory of etale groupoids on Hilbert spaces has been intensively

studied since the seminal work of Renault [225]; see the monograph [196]. A representation of

an etale groupoid G on a Hilbert space is an assignment γ 7→ Tγ of an invertible isometry Tγ

between Hilbert spaces to any element γ of G. Such an assignment is required to respect the

algebraic and measurable structure of the groupoid. The fundamental result of [225] establishes

a correspondence between the representations of an etale groupoid G and the nondegenerate

I-norm contractive representations of Cc(G). (The I-norm on Cc(G) is the analogue of the L1-

norm for discrete groups. When G is Hausdorff, Cc(G) is just the space of compactly-supported

continuous functions on G. The non-Hausdorff case is more subtle; see [66, Definition 3.9].)

Moreover, such a correspondence is compatible with the natural notions of equivalence for

representations of G and Cc(G). In turn, nondegenerate representations of Cc(G) correspond

to tight regular representations of any countable inverse semigroup Σ of open slices of G that is

a basis for the topology. Again, such correspondence preserves the natural notions of equivalence

for representations of Cc(G) and Σ. Tightness is a nondegeneracy condition introduced by Exel in

[66, Section 11]. In the case when the set G0 of objects of G is compact and zero dimensional,

the one can take Σ to be the inverse semigroup of compact open slices of G. In this case the

semilattice E (Σ) of idempotent elements of Σ is the Boolean algebra of clopen subsets of G0,

and a representation of G is tight if and only if its restriction to E (Σ) is a Boolean algebra

homomorphism.

In this chapter, which is based on [89], we show how an important chapter in the theory

of C∗-algebras admits a natural generalization to algebras of operators on Lp-spaces, perfectly

mirroring the Hilbert space case. We prove that the correspondences described in the paragraph

above directly generalize when one replaces representations on Hilbert spaces with representations
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on Lp-spaces for some Hölder exponent p in (1,∞). For p = 2, one recovers Renault’s and Exel’s

results. Interestingly, the proofs for p = 2 and p 6= 2 differ drastically. The methods when p 6= 2

are based on the characterization of invertible isometries of Lp-spaces stated by Banach in [6].

(The first available proof is due to Lamperti [161], hence the name Banach-Lamperti theorem.)

Following [216, 164, 48], we say that a representation of a matricially normed algebra A on

Lp(λ) is p-completely contractive if all its amplifications are contractive when the algebra of n × n

matrices of bounded linear operators on Lp(λ) is identified with the algebra of bounded linear

operators on λ × cn. (Here and in the following, cn denotes the counting measure on n points.)

If G is an etale groupoid, then the identification between Mn(Cc(G)) and Cc(Gn) for a suitable

amplification Gn of G defines matricial norms on the algebra Cc(G). As a corollary of our analysis

a contractive representation of Cc(G) on an Lp-space is automatically p-completely contractive.

In the case of Hilbert space representations, the universal object associated to Cc(G) is the

groupoid C∗-algebra C∗(G), as defined in [196, Chapter 3]. One can also define a reduced version

C∗λ(G) (see [196, pages 108-109]), that only considers representations of Cc(G) that are induced—

in the sense of Rieffel [196, Appendix D]—from a Borel probability measure on the space of

objects of G. Amenability of the groupoid G implies that the canonical surjection from C∗(G)

to C∗λ(G) is an isomorphism. In the case when G is a countable discrete group, these objects are

the usual full and reduced group C∗-algebras.

A similar construction can be performed for an arbitrary p in (1,∞), and the resulting

universal objects are the full and reduced groupoid Lp-operator algebras F p(G) and F pλ (G) of G.

When G is a countable discrete group, these are precisely the full and reduced group Lp-operator

algebras of G as defined in [207]; see also Chapter XIV. When G is the groupoid associated with

a Bratteli diagram as in [226, Section 2.6], one obtains the spatial Lp-analog of an AF C∗-algebra;

see [215]. (The Lp-analogs of UHF C∗-algebras are considered in [209, 208].) When G is one of

the Cuntz groupoids defined in [226, Section 2.5], one obtains the Lp-analogs of the corresponding

Cuntz algebra from [204, 209, 208].

More generally, this construction provides several new examples of Lp-analogs of “classical”

C∗-algebras, such as Cuntz-Krieger algebras, graph algebras, and tiling C∗-algebras (all of which

can be realized as groupoid C∗-algebras for a suitable etale groupoid; see [160] and [196]). It is
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worth mentioning here that there seems to be no known example of a nuclear C∗-algebra that

cannot be described as the enveloping C∗-algebra of a locally compact groupoid.

We believe that this point of view is a contribution towards clarifying what are the well-

behaved representations of algebraic objects—such as the Leavitt algebras, Bratteli diagrams,

or graphs—on Lp-spaces. In [204, 209, 208], several characterizations are given for well behaved

representations of Leavitt algebras and stationary Bratteli diagrams. The fundamental property

considered therein is the uniqueness of the norm that they induce. The groupoid approach shows

that these representations are precisely those coming from representations of the associated

groupoid or, equivalently, its inverse semigroup of open slices.

Another upshot of the present work is that the groupoid Lp-operator algebras F p(G) and

F pλ (G) satisfy an automatic p-complete contractivity property for contractive homomorphisms

into other Lp-operator algebras. In fact, F p(G) and F pλ (G) have canonical matrix norms. Such

matrix norm structure satisfies the Lp-analog of Ruan’s axioms for operator spaces as defined in

[48, Subsection 4.1], building on [216, 164]. Using the terminology of [48, Subsection 4.1], this

turns the algebras F p(G) and F pred(G) into p-operator systems such that the multiplication is p-

completely contractive. It is a corollary of our main results that any contractive representation

of these algebras on an Lp-space is automatically p-completely contractive. As a consequence the

matrix norms on F p(G) and F pλ (G) are uniquely determined—as it is the case for C∗-algebras.

It is still not clear what are the well-behaved algebras of operators on Lp-spaces. Informally

speaking, these should be the Lp-operator algebras that behave like C∗-algebras. The results in

this chapter provide strong evidence that Lp-operator algebras of the form F p(G) and F pλ (G) for

some etale groupoid G, indeed behave like C∗-algebras. Beside having the automatic complete

contractiveness property for contractive representations on Lp-spaces, another property that

F p(G) and F pλ (G) share with C∗-algebras is being generated by spatial partial isometries as

defined in [204]. These are the partial isometries whose support and range idempotents are

hermitian operators in the sense of [175]; see also [10]. (In the C∗-algebra case, the hermitian

idempotents are precisely the orthogonal projections.) In particular, this property forces the

algebra to be a C∗-algebra in the case p = 2. (A stronger property holds for unital C∗-algebras,

namely being generated by invertible isometries; see [14, Theorem II.3.2.16]. As observed by Chris
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Phillips, this property turns out to fail for some important examples of algebras of operators on

Lp-spaces, such as the Lp-analog of the Toeplitz algebra.)

The present work indicates that the properties of being generated by spatial partial

isometries, and having automatic complete contractiveness for representations on Lp-spaces, are

very natural requirements for an Lp-operator algebra to behave like a C∗-algebra. We believe

that the results of this work are a step towards a successful identification of those properties that

characterize the class of “well behaved” Lp-operator algebras.

Notation

We denote by ω the set of natural numbers including 0. An element n ∈ ω will be identified

with the set {0, 1, . . . , n− 1} of its predecessors. (In particular, 0 is identified with the empty set.)

We will therefore write j ∈ n to mean that j is a natural number and j < n.

For n ∈ ω or n = ω, we denote by cn the counting measure on n. We denote by Q(i)⊕ω the

set of all sequences (αn)n∈ω of complex numbers in Q(i) such that αn = 0 for all but finitely many

indices n ∈ ω.

All Banach spaces will be reflexive, and will be endowed with a (Schauder) basis. Recall

that a basis (bn)n∈ω of a Banach space Z is said to be boundedly complete if
∑
n∈ω

λnbn converges in

Z whenever sup
n∈ω

∥∥∥∑j∈n λjbj

∥∥∥ < ∞. By [26, Theorem 7.4], every basis of a reflexive Banach space

is boundedly complete.

All Borel spaces will be standard. For a standard Borel space X, we denote by B(X) the

space of complex-valued bounded Borel functions on X, and by BX the σ-algebra of Borel subsets

of X.

For a Borel measure µ on a standard Borel space X, we denote by Bµ the measure algebra

of µ. This is the quotient of the Boolean algebra BX of Borel subsets of X by the ideal of µ-

null Borel subsets. By [147, Exercise 17.44] Bµ is a complete Boolean algebra. The characteristic

function of a set F will be denoted by χF .

Given a measure space (X,µ) and a Hölder exponent p ∈ (1,∞), we will denote the

Lebesgue space Lp(X,µ) simply by Lp(µ). Recall that Lp(µ) is separable precisely if there is a

σ-finite Borel measure λ on a standard Borel space such that Lp(λ) is isometrically isomorphic to

Lp(µ). Moreover there exists n ∈ ω ∪ {ω} such that λ is Borel-isomorphic to ([0, 1] × n, ν × cn),
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where ν is the Lebesgue measure on [0, 1]. The push-forward of a measure µ under a function φ

will be denote by φ∗µ or φ∗(µ).

If X and Z are Borel spaces, we say that Z is fibred over X if there is a Borel surjection

q : Z → X. In this case, we call q the fiber map. A section of Z is a map σ : X → Z such that q ◦σ

is the identity map of X. For x ∈ X, we denote the value of σ at x by σx, and the fiber q−1({x})

over x is denoted by Zx. If Z(0) and Z(1) are Borel spaces fibred over X via fiber maps q(0) and

q(1) respectively, then their fiber product Z(0) ∗ Z(1) is the Borel space fibred over X defined by

Z(0) ∗ Z(1) =
{

(z(0), z(1)) : p(0)(z(0)) = p(1)(z(1))
}
.

We exclude p = 1 in our analysis mostly for convenience, because we use duality in many

situations. Moreover the theory of L1-operator algebras seems not to be as well-behaved as that

for p ∈ (1,∞), and is in some sense less interesting. For example:

– The reduced L1-group algebra of the free group F2 on two generators is not simple, unlike

for p ∈ (1,∞) (see [217]);

– For a locally compact group G, the canonical map F 1(G) → F 1
λ(G) is always an isometric

isomorphism (even if G is not amenable), unlike for p ∈ (1,∞) (see [207] and Chapter XIV);

We do not know whether the results of this chapter carry over to the case p = 1.

Borel Bundles of Banach Spaces

Definition XX.2.1. Let X be a Borel space. A (standard) Borel Banach bundle over X is a

Borel space Z fibred over X together with

1. Borel maps +: Z ∗ Z → Z, · : C×Z → Z, and ‖ · ‖ : Z → C,

2. a Borel section 0 : X → Z, and

3. a sequence (σn)n∈ω of Borel sections σn : X → Z

such that the following holds:

– Zx is a reflexive Banach space with zero element 0x for every x ∈ X;
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– there is K > 0 such that, for every x ∈ X, the sequence (σn,x)n∈ω is a basis of Zx with basis

constant K, and the sequence (σ′n,x)n∈ω is a basis of Z ′x with basis constant K.

The sequence (σn)n∈ω is called a basic sequence for Z, and K is called basis constant for

(σn)n∈ω. We say that (σn)n∈ω is an unconditional basic sequence if there exists K > 0 such that

for every x ∈ X, the sequences (σn,x)n∈ω and
(
σ′n,x

)
n∈ω are unconditional bases of Zx and Z ′x

with unconditional basis constant K. Finally, we say that (σn)n∈ω is a normal basic sequence if

‖σn,x‖ =
∥∥σ′n,x∥∥ = 1 for every n ∈ ω and x ∈ X.

Example XX.2.2 (Constant bundles). Let X be a Borel space, let Z be a reflexive Banach

space, and set Z = X × Z. Then Z with the product Borel structure is naturally a Borel Banach

bundle, where each fiber Zx is isomorphic to Z. In the particular case when Z is the field of

complex numbers, this is called the trivial bundle over X.

Let q : Z → X be a Borel Banach bundle. Then the space of Borel sections of Z has a

natural structure of B(X)-module. Accordingly, if ξ1 and ξ2 are Borel sections of Z and f ∈

B(X), we denote by ξ1 + ξ2 and fξ the Borel sections given by

(ξ1 + ξ2)x = (ξ1)x + (ξ2)x and (fξ)x = f(x)ξx

for every x in X.

If E is a Borel subset of X, then q−1(E) is canonically a Borel Banach bundle over E,

called the restriction of Z to E, and denoted by Z|E .

Remark XX.2.3. A Borel Banach bundle where each fiber is a Hilbert space is called a Borel

Hilbert bundle. Such bundles (usually called just Hilbert bundles) are the key notion in the study

of representation of groupoids on Hilbert spaces; see [268, Appendix F], [196, Section 3.1], and

[222, Section 2]. The Gram-Schmidt process shows that a Borel Hilbert bundle H over X always

has a basic sequence (σn)n∈ω such that for all x in X, the sequence (σn,x)n∈ω is an orthonormal

basis of Hx.
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Canonical Borel structures

Let X be a Borel space, and let Z be a set (with no Borel structure) fibred over X.

Assume there are operations

+: Z ∗ Z → Z , · : C×Z → Z and ‖ · ‖ : Z → C,

making each fiber a Banach space. In this situation, we will say that Z is a bundle of Banach

spaces over X, and will denote it by
⊔
x∈X
Zx. Let Z ′ be the set

Z ′ =
{

(x, v) : x ∈ X, v ∈ Z
′

x

}
.

Then Z ′ is also a bundle of Banach spaces over X.

Suppose further that there is a sequence (σn)n∈ω of Borel sections σn : X → Z such that,

for every x ∈ X, the sequence (σn,x)n∈ω is a basis of Zx. For every x ∈ X, denote by (σ′n,x)n∈ω

the dual basis of Z ′x. Assume that for every m ∈ ω and every sequence (αj)j∈m in Q(i)⊕m, the

map X → R given by x 7→

∥∥∥∥∥ ∑j∈mαjσj,x
∥∥∥∥∥ is Borel. Set

Z =

(x, (αn)n∈ω) ∈ X × Cω : sup
n∈ω

∥∥∥∥∥∥
∑
j∈n

αjσj,x

∥∥∥∥∥∥ <∞
 .

We claim that Z is a Borel subset of X × Cω. To see this, note that a pair (x, (αn)n∈ω) in

X × Cω belongs to Z if and only if there is N ∈ ω such that for every m, k ∈ ω there is (βj)j∈m in

Q(i)⊕m such that

max
j∈n
|αj − βj | ≤

1

2k
and

∥∥∥∥∥∥
∑
j∈m

βjσj,x

∥∥∥∥∥∥ <∞.
Since the map x 7→

∥∥∥∥∥ ∑j∈mβjσj,x
∥∥∥∥∥ is Borel, this proves the claim.

The assignment (x, (αn)n∈ω) 7→
∑
n∈ω

αnσn,x induces a bijection Z → Z since, for every

x ∈ X, the sequence (σn,x)n∈ω is a boundedly complete basis of Zx. This bijection induces a

standard Borel structure on Z, and it is not difficult to verify that such Borel structure turns Z

into a Borel Banach bundle.
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A similar argument shows that the set

Z ′ =

(x, (αn)n∈ω) ∈ X × Cω : sup
n∈ω

∥∥∥∥∥∥
∑
j∈n

αjσ
′
j,x

∥∥∥∥∥∥ <∞


is Borel, and that the map from Z ′ to Z ′ given by (x, (αn)n∈ω) 7→
∑
n∈ω

αnσ
′
n,x is a bijection. This

induces a standard Borel structure on Z ′ that makes Z ′ a Borel Banach bundle.

It follows from the definition of the Borel structures on Z and Z ′, that the canonical

pairing Z ∗ Z ′ → C is Borel. In fact, for (x, (αn)n∈ω) ∈ Z and (x, (βn)n∈ω) ∈ Z ′, we have

〈∑
n∈ω

αnσn,x,
∑
m∈ω

βmσ
′
m,x

〉
=
∑
n∈ω

αnβn.

The standard Borel structures on Z and Z ′ here described will be referred to as the

canonical Borel structures associated with the sequence (σn)n∈ω of Borel sections X → Z. By

[147, Theorem 14.12], these can be equivalently described as the Borel structures generated by the

sequence of functionals on Z and Z ′ given by

z 7→
〈
z, σ′n,q(z)

〉
and w 7→

〈
σn,q(w), w

〉
for n ∈ ω.

As a consequence of the previous discussion, we conclude that if Z is a Borel Banach

bundle, then the Borel structure on Z is generated by the sequence of maps Z → C given by

z 7→
〈
z, σ′n,q(z)

〉
for n in ω. Moreover, the dual bundle Z ′ has a unique Borel Banach bundle

structure making the canonical pairing Borel. In the following, whenever Z is a Borel Banach

bundle, we will always consider Z ′ as a Borel Banach bundle endowed with such canonical Borel

structure.

The following criterion to endow a Banach bundle with a Borel structure is an immediate

consequence of the observations contained in this subsection.

Lemma XX.2.4. Let (Zk)k∈ω be a sequence of reflexive Banach spaces. For every k ∈ ω,

let (bn,k)n∈ω be a basis of Zk with dual basis (b′n,k)n∈ω, and suppose that both (bn,k)n∈ω and

(b′n,k)n∈ω have basis constant K independent of k. Let Z be a bundle of Banach spaces over X,

and assume there exist a Borel partition (Xk)k∈ω of X, and isometric isomorphisms ψx : Zk → Zx
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and ψ′x : Z ′k → Z ′x for k ∈ ω and x ∈ Xk. For k, n ∈ ω and x ∈ Xk, set σn,x = ψx(bn,k) and

σ′n,x = ψ′x(b′n,k). There are unique Borel Banach bundle structures on Z and Z ′ such that (σn)n∈ω

and (σ′n)n∈ω are basic sequences, and such that the canonical pairing between Z and Z ′ is Borel.

Banach space valued Lp-spaces

For the remainder of this section, we fix a Borel Banach bundle q : Z → X over the

standard Borel space X, a basic sequence (σn)n∈ω of Z with basis constant K, a σ-finite Borel

measure µ on X, and a Hölder exponent p ∈ (1,∞).

Definition XX.2.5. Denote by Lp(X,µ,Z) the space of Borel sections ξ : X → Z such that

Np(ξ)
p =

∫
‖ξx‖p dµ(x) <∞.

It follows from the Minkowski inequality that Lp(X,µ,Z) is a seminormed complex vector

space. We denote by Lp(X,µ,Z) the normed space obtained as a quotient of the seminormed

space (Lp(X,µ,Z), Np).

When Z is the trivial bundle over X, then Lp(X,µ,Z) coincides with the Banach space

Lp(X,µ). Consistently, we will abbreviate Lp(X,µ,Z) and Lp(X,µ,Z) to Lp(µ,Z) and Lp(µ,Z),

respectively.

Theorem XX.2.6. The normed vector space Lp(µ,Z) is a Banach space.

Proof. We need to show that the norm on Lp(µ,Z) is complete. In order to show this, it is

enough to prove that if (ξn)n∈ω is a sequence in Lp(µ,Z) such that
∑
n∈ω

Np(ξn) < ∞, then there is

ξ ∈ Lp(µ,Z) such that

lim
m→∞

Np

(
ξ −

∑
n∈m

ξn

)
= 0.
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Let (ξn)n∈ω be such a sequence. We use Fatou’s Lemma at the second step and Jensen’s

inequality at the fourth to obtain

∫ (∑
n∈ω
‖ξn,x‖

)p
dµ(x) =

∫
lim
n→∞

∑
j∈n
‖ξj,x‖

p

dµ(x)

≤ lim inf
n→∞

∫ ∑
j∈n
‖ξj,x‖

p

dµ(x)

= lim inf
n→∞

Np

∑
j∈n

ξj

p

≤ lim inf
n→∞

∑
j∈n

Np(ξj)

p

=

(∑
n∈ω

Np(ξn)

)p
<∞.

Therefore, the Borel set

F =

{
x ∈ X :

∑
n∈ω
‖ξn,x‖ <∞

}

is µ-conull. Using that Zx is a Banach space for all x ∈ X, we conclude that the sequence(∑
j∈n

ξj,x

)
n∈ω

converges to an element ξx of Zx for all x ∈ F . Set ξx = 0x for x ∈ X\F . The

resulting map ξ : X → Z is a section, and we claim that it is Borel. To see this, it is enough to

observe that the identity

〈ξx, σ′k,x〉 =


∑
n∈ω
〈ξn,x, σ′k(x)〉 if x ∈ F

0 otherwise

implies that the assignment x 7→ 〈ξx, σ′k,x〉 is Borel. The claim now follows.

Finally,

Np

ξ −∑
j∈n

ξn

 =

∫ ∥∥∥∥∥∥
∑
j≥n

ξj,x

∥∥∥∥∥∥
p

dµ(x) ≤

∑
j≥n

Np(ξj,x)

p

,

and since lim
n→∞

(∑
j≥n

Np(ξj,x)

)p
= 0, the proof is complete.
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As it is customary, we will identify an element of Lp(µ,Z) with its image in the quotient

Lp(µ,Z). We will also write ‖ · ‖p, or just ‖ · ‖ if no confusion is likely to arise, for the norm on

Lp(µ,Z) induced by Np.

Lemma XX.2.7. Suppose that (ξn)n∈ω is a sequence in Lp(µ,Z) converging in norm to an

element ξ in Lp(µ,Z). Then there are a µ-conull Borel subset X0 of X, and a subsequence

(ξnk)k∈ω such that lim
k→∞

‖ξnk,x − ξx‖ = 0 for every x ∈ X0.

Proof. Given ε > 0 and n ∈ ω, set

Fn,ε = {x ∈ X : ‖ξn,x − ξx‖ ≥ ε} .

Then lim
n→∞

µ(Fn,ε) = 0 by Chebyshev’s inequality. Find an increasing sequence (nk)k∈ω in ω such

that µ
(
Fm,2−k

)
≤ 2−k for every m ≥ nk, and set

F =
⋂
k∈ω

⋃
m≥nk

Fm,2−k .

Then µ(F ) = 0 and moreover lim
k→∞

‖ξnk,x − ξx‖ = 0 for all x ∈ X\F . This concludes the proof.

Proposition XX.2.8. Let ξ ∈ Lp(µ,Z). Then:

1. The function 〈ξ, σ′n〉 : X → R defined by x 7→
〈
ξx, σ

′
n,x

〉
belongs to Lp(µ);

2. The sequence

(∑
k∈n
〈ξ, σ′k〉σk

)
n∈ω

converges to ξ.

Proof. (1). The function 〈ξ, σ′n〉 is Borel because the canonical pairing map is Borel. Moreover,

the estimate ∫ ∣∣〈ξx, σ′n,x〉∣∣p dµ(x) ≤ (2K)
p
∫
‖ξx‖p dµ(x) = (2K‖ξ‖)p

shows that 〈ξ, σ′n〉 belongs to Lp(µ).

(2). For every x ∈ X, and using that K is a basis constant for (σn,x)n∈ω, we have

∥∥∥∥∥∑
k∈n

〈
ξx, σ

′
k,x

〉
σk,x

∥∥∥∥∥ ≤ K ‖ξx‖ .
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Given ε > 0 and n ∈ ω, define the Borel set

Fn,ε =

{
x ∈ X :

∥∥∥∥∥∑
k∈n

〈
ξx, σ

′
k,x

〉
σk,x − ξx

∥∥∥∥∥ ≤ ε
}

.

Then
⋃
n∈ω

Fn,ε = X. By the dominated convergence theorem, there is n0 ∈ ω such that

∫
X\Fn0,ε

‖ξx‖p dµ(x) < ε.

Thus, for n ≥ n0, we have

∥∥∥∥∥∑
k∈n

〈ξ, σ′k〉σk − ξ

∥∥∥∥∥
p

p

=

∫ ∥∥∥∥∥∑
k∈n

〈
ξx, σ

′
k,x

〉
σk,x − ξx

∥∥∥∥∥
p

dµ(x)

≤ µ (Fn,ε) ε+ (K + 1)
p
∫
X\Fn,ε

‖ξx‖p dµ(x)

≤ ((K + 1)
p

+ 1) ε.

This shows that the sequence

(∑
k∈n
〈ξ, σ′k〉σk

)
n∈ω

converges to ξ.

In view of Proposition XX.2.8, the sequence (σn)n∈ω can be thought as a basis of Lp(µ,Z)

over Lp(µ). In particular, Proposition XX.2.8 implies that Lp(µ,Z) is a separable Banach space.

It is not difficult to verify that, if (σn)n∈ω is an unconditional basic sequence for Z, then the

series
∑
k∈ω
〈ξ, σ′k〉σk converges unconditionally to ξ for every ξ ∈ Lp(µ,Z).

Proposition XX.2.9. Let (fn)n∈ω be a sequence in Lp(µ) such that

sup
n∈ω

∥∥∥∥∥∑
k∈n

fkσk

∥∥∥∥∥
p

is finite. Then the sequence (∑
k∈n

fkσk

)
n∈ω

of partial sums converges in Lp(µ,Z).
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Proof. Set M = sup
n∈ω

∥∥∥∥∑
k∈n

fkσk

∥∥∥∥p and fix N ∈ ω. Given n ∈ ω, define

FNn =

{
x ∈ X :

∥∥∥∥∥∑
k∈n

fk(x)σk,x

∥∥∥∥∥ ≤ 2NM

}
.

Then FNn is Borel and µ(FNn ) ≥ 1− 1
N . Set

FN =
⋂
n∈ω

⋃
k≥n

FNk .

Then µ(FN ) ≥ 1− 1
N . Since (σn,x)n∈ω is a basis for Zx with basis constant K, we have

sup
m∈ω

∥∥∥∥∥∑
k∈m

fk(x)σk,x

∥∥∥∥∥ ≤ 2NMK <∞

for every x ∈ FN . We conclude that the Borel set

F =

{
x ∈ X : sup

m∈ω

∥∥∥∥∥∑
k∈m

fk(x)σk,x

∥∥∥∥∥ <∞
}

is µ-conull. Given x ∈ F , and since (σn,x)n∈ω is a boundedly complete basis of Zx, the

series
∑
n∈ω

fn(x)σn,x converges to an element ξx of Zx. Defining ξx = 0x for x ∈ X\F , one obtains

a Borel section ξ : X → Z. Moreover,

∫
‖ξx‖p dµ(x) ≤ sup

n∈ω

∫ ∥∥∥∥∥∑
k∈n

fk(x)σk,x

∥∥∥∥∥
p

dµ(x) ≤M,

and hence ξ belongs to Lp(µ,Z). It follows from Proposition XX.2.8 that ξ is the limit in

Lp(µ,Z) of

(∑
k∈n

fkσk

)
n∈ω

.

Pairing

In this subsection, we show that there is a natural pairing between Lp(µ,Z) and Lp
′
(µ,Z ′),

under which we may identify Lp(µ,Z)′ with Lp
′
(µ,Z ′). We describe this pairing first.

Define a map

〈·, ·〉 : Lp(µ,Z)× Lp
′
(µ,Z ′)→ C by 〈ξ, η〉 =

∫
〈ξx, ηx〉 dµ(x)
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for all ξ ∈ Lp(µ,Z) and all η ∈ Lp′(µ,Z ′). To show that this map is well-defined, we must check

that the assignment x 7→ 〈ξx, ηx〉 is integrable. For this, assuming without loss of generality that

‖ξ‖p = ‖η‖p′ = 1, we use Young’s inequality at the second step to get

∫
|〈ξx, ηx〉|dµ(x) ≤

∫
‖ξx‖‖ηx‖dµ(x)

≤ 1

p

∫
‖ξx‖pdµ(x) +

1

p′

∫
‖ηx‖p

′
dµ(x) = 1.

Theorem XX.2.10. The function from Lp
′
(µ,Z ′) to Lp (µ,Z)

′
given by

η 7→ 〈·, η〉 =

∫
〈·x, ηx〉 dµ(x)

is an isometric isomorphism.

Proof. We first show that such a function is isometric. Fix ε > 0 and fix η ∈ Lp
′
(µ,Z ′) with

‖η‖p′ = 1. Set Z0 =
{
z ∈ Z :

(
〈z, σn,q(z)〉

)
n∈ω ∈ Q(i)⊕ω

}
and

F =
{
z ∈ Z0 : ‖z‖ ≤ 1 and (1− ε)

∥∥ηq(z)∥∥ ≤ ∣∣〈z, ηq(z)〉∣∣} .
Then q(F ) = X, and the fiber map q is countable-to-one on F . By [147, Theorem 18.10], there is

a Borel section τ : X → Z such that τx ∈ F for every x ∈ X. Define a Borel section ξ : X → Z by

ξx = ‖ηx‖p
′−1

τx for x ∈ X. Then

‖ξ‖p =

∫
‖ξx‖p dµ(x) ≤

∫
‖ηx‖p

′
dµ(x) = 1,

and thus ξ belongs to Lp(µ,Z). Finally,

∫
|〈ξx, ηx〉| dµ(x) ≥ (1− ε)

∫
‖ηx‖p

′
dµ(x) = 1− ε

and thus ‖〈·, η〉‖ ≥ ‖η‖. Since the opposite inequality is immediate, we conclude that the function

η 7→ 〈·, η〉 is isometric, as desired.

We will now show that such a function is surjective. Let Φ ∈ Lp(µ,Z)′ be given. For every

n ∈ ω, define the Borel measure λn on X by λn(E) = Φ(χEσn) for E ⊆ X. Then λn is absolutely

continuous with respect to µ. Denote by gn = dλn
dµ the corresponding Radon-Nikodym derivative,
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which belongs to L1(µ). Then

Φ(χEσn) =

∫
χEgn dµ

for all Borel subsets E ⊆ X and all n ∈ ω. By continuity, we have Φ(fσn) =
∫
fgn dµ for every

bounded Borel function f on X.

Fix n ∈ ω. We claim that gn belongs to Lp
′
(µ). Let h be a Borel function on X of modulus

one such that hgn = |gn|. Given k in ω, set Ek = {x : |gn(x)| ≤ k} and define a bounded Borel

function hk : X → C by

hk = χEkh |gn|
p′−1

.

It is readily checked that |hk|p coincides with |gn|p
′

on Ek. We use this at the last step to get

‖Φ‖
(∫

Ek

|gn|p
′
dµ

) 1
p

= ‖Φ‖
(∫
|hk|p dµ

) 1
p

≥ Φ(hkσn)

=

∫
hkgn dµ =

∫
Ek

|gn|p
′
dµ(x).

It follows that
(∫

Ek
|gn|p

′
dµ(x)

) 1
p′ ≤ ‖Φ‖. Since k is arbitrary, an application of the monotone

convergence theorem yields ‖gn‖p′ ≤ ‖Φ‖, and hence gn ∈ Lp
′
(µ). The claim is proved. Let K be

a basis constant for (σn)n∈ω. We claim that

sup
n∈ω

∥∥∥∥∥∥
∑
j∈n

gjσ
′
j

∥∥∥∥∥∥
p′

≤ K ‖Φ‖ .

Fix ξ ∈ Lp (µ,Z), and write ξ =
∑
n∈ω

fnσn as in Proposition XX.2.8. Then

∣∣∣∣∣∣
∫ 〈

ξ,
∑
j∈n

gjσ
′
j

〉
dµ

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
j∈n

∫
fjgj dµ

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
j∈n

Φ(fjσj)

∣∣∣∣∣∣
=

∣∣∣∣∣∣Φ
∑
j∈n

fjσj

∣∣∣∣∣∣ ≤ ‖Φ‖
∥∥∥∥∥∥
∑
j∈n

fjσj

∥∥∥∥∥∥
≤ K ‖Φ‖ ‖ξ‖.

This being true for every ξ ∈ Lp(µ,Z) implies that
∥∥∥∑j∈n gjσ

′
j

∥∥∥ ≤ K ‖Φ‖, and the claim has

been proved. We can now conclude from Proposition XX.2.9 that the sequence
(∑

j∈n gjσ
′
j

)
n∈ω
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of partial sums converges to an element η in Lp
′
(µ,Z ′). Using Proposition XX.2.8 it is immediate

to verify that

Φ(ξ) =

∫
〈ξ, η〉 dµ

for every ξ ∈ Lp(µ,Z). Thus Φ = 〈·, η〉, and this finishes the proof.

It follows that the Banach space Lp(µ,Z) is reflexive. (Recall that the Banach bundle is

assumed to have a basic sequence (σn)n∈ω, and, in particular, all its fibers are reflexive.)

Bundles of Lp-spaces

Consider a Borel probability measure µ on a standard Borel space X. Let λ be a Borel

probability measure on a standard Borel space Z fibred over X via a fiber map q such that

q∗(λ) = µ. By [147, Exercise 17.35], the measure λ admits a disintegration (λx)x∈X with respect

to µ, which is also written as λ =
∫
λx dµ(x). In other words,

– there is a Borel assignment x 7→ λx, where λx is a probability measure on Zx, and

– for every bounded Borel function f : Z → C, we have

∫
f dλ =

∫ (∫
f dλx

)
dµ(x).

Consider the Banach bundle Z =
⊔
x∈X

Lp(λx) over X, where the fiber Zx over x is Lp(λx).

Theorem XX.2.11. There is a canonical Borel Banach bundle structure on Z such that Lp(µ,Z)

is isometrically isomorphic to Lp(λ).

Proof. Let us assume for simplicity that µ and λx are atomless for every x ∈ X. In this case, by

[106, Theorem 2.2], we can assume without loss of generality that []

– X is the unit interval [0, 1] and µ is its Lebesgue measure;

– Z is the unit square [0, 1]2 and λ is its Lebesgue measure;

– q : Z → X is the projection onto the first coordinate; and

– λx is the Lebesgue measure on {x} × [0, 1] for every x ∈ X.
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Let (hn)n∈ω be the Haar system on [0, 1] defined as in [26, Chapter 3]. For n ∈ ω and

x ∈ [0, 1], define h
(p)
n,x : [0, 1]→ R by

h(p)
n,x(t) =

hn(t)

‖hn‖p

for every t ∈ [0, 1]. Then
(
h

(p)
n,x

)
n∈ω

is a normalized basis of Lp(λx) for every x ∈ [0, 1]. It follows

from the discussion in Subsection XX.2 that there are unique Borel Banach bundle structures on

Z and Z ′ =
⊔
x∈X

Lp
′
(λx) such that (h

(p)
n )n∈ω and (h

(p′)
n )n∈ω are normal basic sequences for Z and

Z ′, and that the canonical pairing between Z and Z ′ is Borel.

We claim that Lp(µ,Z) can be canonically identified with Lp(λ). Given f ∈ Lp(λ), consider

the Borel section sf : X → Z defined by sf,x(t) = f(x, t) for x, t ∈ [0, 1]. It is clear that sf,x

belongs to Lp(µ,Z) and that (∫
‖sf,x‖pp dµ(x)

) 1
p

= ‖f‖p .

It follows that the map f 7→ sf,x induces an isometric linear map s : Lp(λ) → Lp(µ,Z). The fact

that s is surjective is a consequence of Proposition XX.2.8, since the range of s is a closed linear

subspace of Lp(µ,Z) that contains h
(p)
n for every n ∈ ω.

The case when λ and µ are arbitrary Borel probability measures can be treated similarly,

using the classification of disintegration of Borel probability measures given in [106, Theorem 3.2],

together with Lemma XX.2.4. In fact, the results of [106] show that the same conclusions hold if λ

is a Borel σ-finite measure.

Definition XX.2.12. Let X be a Borel space, and let µ be a Borel probability measure on

X. An Lp-bundle over (X,µ) is a Borel Banach bundle Z =
⊔
x∈X

Lp(λx) obtained from the

disintegration of a σ-finite Borel measure λ on a Borel space Z fibred over X, as described in

Theorem XX.2.11.

Decomposable operators

Let qX : Z → X and qY : W → Y be standard Borel Banach bundles with basic sequences

(σn)n∈ω and (τn)n∈ω, respectively, and let φ : X → Y be a Borel isomorphism.

Definition XX.2.13. Let B(Z,W, φ) be the space of contractive linear maps of the form

T : Zx → Wφ(x) for some x ∈ X. For such a map T , we denote the corresponding point x in

X by xT .
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Consider the Borel structure on B(Z,W, φ) generated by the maps T 7→ xT and

T 7→
〈
Tσn,xT , τ

′
m,φ(xT )

〉
for n,m ∈ ω. It is not difficult to check that the operator norm and

composition of operators are Borel functions on B(Z,W, φ), which make B(Z,W, φ) into a Borel

space fibred over X.

Lemma XX.2.14. The Borel space B(Z,W, φ) is standard.

Proof. Let V be set of elements (x, (cn,m)n,m∈ω) in X × Cω×ω such that, for some M ∈ ω and

every (αn)n∈ω ∈ Q(i)⊕ω, we have

sup
m∈ω

∥∥∥∥∥∑
k∈m

(∑
n∈ω

ancn,m

)
τφ(x),m

∥∥∥∥∥ ≤M sup
n∈ω

∥∥∥∥∥∑
k∈n

αkσx,k

∥∥∥∥∥ .

Then V is a Borel subset of X × Cω×ω, and it is therefore a standard Borel space by [147,

Corollary 13.4]. The result follows since the function B(Z,W, φ)→ X × Cω×ω given by

T 7→
(
xT ,

(〈
Tσn,xT , τ

′

m,φ(xT )

〉)
(n,m)∈ω×ω

)

is a Borel isomorphism between B(Z,W, φ) and V .

Fix Borel σ-finite measures µ on X and ν on Y with φ∗(µ) ∼ ν.

Proposition XX.2.15. If x 7→ Tx is a Borel section of B(Z,W, φ) such that, for some M ≥ 0

and µ-almost every x ∈ X, we have

‖Tx‖p ≤Mp dφ∗(µ)

dν
(φ(x)), (XX.1)

then the linear operator T : Lp(µ,Z)→ Lp(ν,W) defined by

(Tξ)y = Tφ−1(y)ξφ−1(y).

for all y ∈ Y , is bounded. Moreover, the norm of T is the minimum M ≥ 0 such that the

inequality in (XX.1) holds for µ-almost every x ∈ X.
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Proof. For ξ in Lp(µ,Z), we have

‖Tξ‖p =

∫
‖(Tξ)y‖p dν(y) =

∫ ∥∥Tφ−1(y)ξφ−1(y)

∥∥p dν(y)

=

∫ ∥∥Tφ−1(y)ξφ−1(y)

∥∥p dν(y) ≤
∫ ∥∥Tφ−1(y)

∥∥p ∥∥ξφ−1(y)

∥∥p dν(y)

≤
∫
Mp dφ∗(µ)

dν
(y)
∥∥ξφ−1(y)

∥∥p dν(y) ≤Mp‖ξ‖p.

This shows that T is bounded with norm at most M . It remains to show that

‖Tx‖p ≤ ‖T‖p
dφ∗(µ)

dν
(φ(x))

for µ-almost every x ∈ X. For α ∈ Q(i)⊕ω, set

σα =
∑
n∈ω

αnσn ∈ Lp(µ,Z)

and observe that the set {σα,x : α ∈ Q(i)⊕ω} is dense in Zx for every x ∈ X. It is therefore enough

to show that ∥∥Tφ−1(y)σn,φ−1(y)

∥∥p ≤ ‖T‖p dφ∗(µ)

dν
(y)
∥∥σn,φ−1(y)

∥∥p
for every α ∈ Q(i)⊕ω, and for ν-almost every y ∈ Y . In order to show this, let g : Y → C be a

bounded Borel function. Then

∫
|g(y)|p

∥∥Tφ−1(y)σα,φ−1(y)

∥∥p dν
= ‖T (g ◦ φ)σα‖p

≤ ‖T‖p
∫
‖g(φ(x))σα,x‖p dµ(x)

≤ ‖T‖p
∫
|g(y)|p

∥∥σα,φ−1(y)

∥∥p dφ∗(µ)(x)

= ‖T‖p
∫
|g(y)|p

∥∥σα,φ−1(y)

∥∥p dφ∗(µ)

dν
(y) dν(y).

Since g is arbitrary, this concludes the proof.

Definition XX.2.16. An operator T : Lp(µ,Z) → Lp(ν,W) obtained from a Borel section

x 7→ Tx of B(Z,W, φ) as in Proposition XX.2.15, is called decomposable with respect to the Borel
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isomorphism φ : X → Y . The Borel section x 7→ Tx corresponding to the decomposable operator T

is called the disintegration of T with respect to the Borel isomorphism φ : X → Y .

Remark XX.2.17. It is not difficult to verify that the disintegration of a decomposable operator

T is essentially unique, in the sense that if x 7→ Tx and x 7→ T̃x are two Borel sections defining the

same decomposable operator, then Tx = T̃x for µ-almost every x in X.

Given a bounded Borel function g : Y → C, denote by ∆g ∈ B(Lp(ν,W)) the corresponding

multiplication operator.

We have the following characterization of decomposable operators.

Proposition XX.2.18. For a bounded map T : Lp(µ,Z) → Lp(ν,W), the following are

equivalent:

1. T is decomposable with respect to φ;

2. ∆gT = T∆g◦φ for every bounded Borel function g : Y → C;

3. There is a countable collection F of Borel subsets of Y that separates the points of Y , such

that ∆χF T = T∆χφ−1[F ]
for every F ∈ F .

Proof. (1) implies (2). Let x 7→ Tx be a Borel section of B(Z,W, φ) such that

(Tξ)y = Tφ−1(y)ξφ−1(y)

for every ξ ∈ Lp(ν,W) and every y ∈ Y . Then

(∆gT )y = g(y)Tφ−1(y)ξφ−1(y) = (T∆g◦φξ)y

for all y ∈ Y .

(2) implies (3). Obvious.

(3) implies (1). For (αn)n∈ω ∈ Q(i)⊕ω, set

σα =
∑
n∈ω

αnσn ∈ Lp(µ,Z) and σ̂α = Tσα ∈ Lp(ν,W).
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Using the assumption (3) at the second step, we get

∫
F

‖σ̂α,y‖p dν(y) = ‖∆χF σ̂α‖
p

=
∥∥T∆φ−1[F ]σα

∥∥p
≤ ‖T‖p

∥∥∆φ−1[F ]σα
∥∥p

= ‖T‖p
∫
φ−1[F ]

‖σα,x‖p dµ(x)

= ‖T‖p
∫
F

∥∥σα,φ−1(y)

∥∥p dφ∗(µ)(y)

= ‖T‖p
∫
F

∥∥σα,φ−1(y)

∥∥p dφ∗(µ)

dν
(y) dν(y)

for every F ∈ F . We conclude that

‖σ̂α,y‖p ≤ ‖T‖p
∥∥σα,φ−1(y)

∥∥p dφ∗(µ)

dν
(y)

for ν-almost every y ∈ Y and every α ∈ Q(i)⊕ω. It follows that for µ-almost every x ∈ X, the

linear map σα,x 7→ σ̂α,φ(x) extends to a bounded linear map Tx : Zx →Wφ(x) that satisfies

‖Tx‖p ≤ ‖T‖p ‖σα,x‖p
dφ∗(µ)

dν
(φ(x)) .

Since the assignment x 7→
〈
Txσn,x, τm,φ(x)

〉
is Borel, it follows that the map x 7→ Tx defines a

Borel section of B(Z,W, φ) satisfying

(Tξ)y = Tφ−1(y)ξφ−1(y)

for ξ ∈ Lp(µ,Z) and ν-almost every y ∈ Y . This concludes the proof.

Definition XX.2.19. A φ-isomorphism from Z to W is a Borel section x 7→ Tx of the bundle

B(Z,W, φ) such that Tx is a surjective isometry for every x ∈ X.

If T = (Tx)x∈X is a φ-isomorphism from Z to W, we denote by T−1 the φ−1-isomorphism(
T−1
φ−1(y)

)
y∈Y

from W to Z.

Definition XX.2.20. If X = Y , then Z and W are said to be isomorphic if there is an idX -

isomorphism from Z to W. In this case an idX -isomorphism is simply called an isomorphism.
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Theorem XX.2.21. Let F be a countable collection of Borel subsets of Y that separates the

points of Y , and let T : Lp(µ,Z)→ Lp(ν,W) be an invertible isometry such that

∆χF T = T∆χφ−1(F )

for every F ∈ F . Then there are a µ-conull subset X0 of X, a ν-conull subset Y0 of Y , and a φ-

isomorphism Z|X0
→ W|Y0

such that T is the decomposable operator associated with the Borel

section

x 7→
(
dφ∗(µ)

dν
φ(x)

) 1
p

Tx.

Moreover, if T̃ is another decomposable operator associated with said Borel section, then T̃x = Tx

for µ-almost every x ∈ X.

Proof. Given (αn)n∈ω in Q(i)⊕ω, set σα =
∑
n∈ω

αnσn ∈ Lp(µ,Z), and set

σ̂α = ∆
( dφ∗(µ)

dν )
− 1
p

(Tσα) .

Let F ∈ F . Then

∆χF σ̂α = ∆χF T∆
( dφ∗(µ)

dν ◦φ)
− 1
p
σα = T∆

χφ−1(F )(
dφ∗µ
dν ◦φ)

− 1
p
σα.

Thus,

∫
F

‖σ̂α,y‖p dν(y) = ‖∆χF σ̂α‖
p

=

∥∥∥∥T∆
χφ−1(F )(

dφ∗(µ)
dν ◦φ)

− 1
p
σα

∥∥∥∥p
=

∥∥∥∥∆
χφ−1(F )(

dφ∗(µ)
dν ◦φ)

− 1
p
σα

∥∥∥∥p
=

∫
φ−1[F ]

(
dφ∗(µ)

dν
◦ φ
)
‖σα,x‖p dµ(x)

=

∫
F

(
dν

dφ∗(µ)

)∥∥σα,φ−1(y)

∥∥p dφ∗(µ)(y)

=

∫
F

∥∥σα,φ−1(y)

∥∥p dν(y).
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We conclude that ‖σ̂α,y‖ =
∥∥σα,φ−1(y)

∥∥ for ν-almost every y ∈ Y . Therefore, for µ-almost

every x ∈ X, the linear map σα,x 7→ σ̂α,φ(x) extends to a linear isometry Tx : Zx → Wφ(x).

It can be verified, as in the proof of Proposition XX.2.18, that x 7→ Tx is a Borel section of

B(Z,W, φ). Moreover, it is clear that T is the decomposable operator associated with the section

x 7→
((

dφ∗(µ)
dν

)
(φ(x))

) 1
p

Tx.

We claim that Tx is surjective for µ-almost every x ∈ X. We will do so by constructing a

left inverse.

Reasoning as before on T−1, one obtains a Borel section y 7→ Sy of B (W,Z, φ)

such that T−1 is the decomposable operator associated with the Borel section given by y 7→(
dφ−1ν
dµ

(
φ−1(y)

)) 1
p

Sy. Since the disintegration of a decomposable operator is unique, we have

idZx =

(
dφ−1ν

dµ

(
φ−1(φ(x))

)) 1
p

Sφ(x)

((
dφ∗(µ)

dν

)
(φ(x))

) 1
p

Tx = Sφ(x)Tx

for µ-almost every x ∈ X. This shows that Sφ(x) is the inverse of Tx for µ-almost every x ∈ X,

and the claim is proved.

The last assertion follows again from uniqueness of the disintegration of a decomposable

operator.

Banach Representations of Etale Groupoids

Some background notions on groupoids

A groupoid can be defined as a (nonempty) small category where every arrow is invertible.

The set of objects of a groupoid G is denoted by G0. Identifying an object with its identity arrow,

one can regard G0 as a subset of G. We will denote the source and range maps on G by s, r : G→

G0, respectively. The set of pairs of composable arrows

{(γ, ρ) ∈ G×G : s(γ) = r(ρ)}
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will be denoted, as customary, by G2. If (γ, ρ) is a pair of composable arrows of G, we denote

their composition by γρ. If A and B are subsets of G, we denote by AB the set

{
γρ : (γ, ρ) ∈ (A×B) ∩G2

}
.

Similarly, if A is a subset of G and γ ∈ G, then we write Aγ for A{γ} and γA for {γ}A. In

particular, when x is an object of G, then Ax denotes the set of elements of A with source x,

while xA denotes the set of elements of A with range x.

A slice of a groupoid G is a subset A of G such that source and range maps are injective on

A. (Slices are called G-sets in [225, 196].) If U ⊆ G0, then the set of elements of G with source

and range in U is again a groupoid, called the restriction of G to U , and will be denoted by G|U .

A locally compact groupoid is a groupoid endowed with a topology having a countable basis

of Hausdorff open sets with compact closures, such that

1. composition and inversion of arrows are continuous maps, and

2. the set of objects G0, as well as Gx and xG for every x ∈ G0, are locally compact Haudorff

spaces.

It follows that also source and range maps are continuous, since s(γ) = γ−1γ and r(γ) =

γγ−1 for all γ ∈ G. It should be noted that the topology of a locally compact groupoid might not

be (globally) Hausdorff. Examples of non-Hausdorff locally compact groupoids often arise in the

applications, such as the holonomy groupoid of a foliation; see [196, Section 2.3]. Locally compact

groups are the locally compact groupoids with only one object.

Definition XX.3.1. An etale groupoid is a locally compact groupoid such that composition

of arrows—or, equivalently, the source and range maps—are local homeomorphisms. This in

particular implies that Gγ and γG are countable discrete sets.

etale groupoids can be regarded as the analog of countable discrete groups. In fact,

countable discrete groups are precisely the etale groupoids with only one object.

Definition XX.3.2. Let G be an etale groupoid. If U is an open Hausdorff subset of G,

then Cc(U) is the space of compactly supported continuous functions on U . Recall that B(G)

denotes the space of complex-valued Borel functions on G. We define Cc(G) to be the linear span
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inside B(G) of the union of all Cc(U), where U ranges over the open Hausdorff subsets of G.

(Equivalently, U ranges over a covering of G consisting of open slices [66, Proposition 3.10].) One

can define the convolution product and inversion on Cc(G) by

(f ∗ g)(γ) =
∑

ρ0ρ1=γ

f(ρ0)g(ρ1) and f∗(γ) = f(γ−1)

for f, g ∈ Cc(G). For f ∈ Cc(G), its I-norm is given by

‖f‖I = max

sup
x∈G

∑
γ∈xG

|f (γ)| , sup
x∈G

∑
γ∈Gx

|f (γ)|

 .

These operations turn Cc(G) into a normed *-algebra; see [196, Section 2.2].

Similarly, one can define the space Bc(G) as the linear span inside B(G) of the space of

complex-valued bounded functions on G vanishing outside a compact Hausdorff subset of G.

Convolution product, inversion, and the I-norm can be defined exactly in the same way on Bc(G)

as on Cc(G), making Bc(G) a normed *-algebra; see [196, Section 2.2]. Both Cc(G) and Bc(G)

have a contractive approximate identity.

Remark XX.3.3. When G is a Hausdorff etale groupoid, then Cc(G) as defined above coincides

with the space of compactly supported continuous functions on G.

Definition XX.3.4. A representation of Cc(G) on a Banach space Z is a homomorphism

π : Cc(G) → B(Z). We say that π is contractive if it is contractive with respect to the I-norm

on Cc(G).

Let G be an etale groupoid, and let µ is a Borel probability measure on G0. Then µ

induces σ-finite Borel measures ν and ν−1 on G, which are given by

ν(A) =

∫
G0

|xA| dµ(x)

and

ν−1(A) = ν(A−1) =

∫
G0

|Ax| dµ(x)

for every Borel subset A of G.
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Observe that ν is the measure obtained integrating the Borel family (cxG)x∈X—where cxG

denotes the counting measure on xG—with respect to µ. Similarly, ν is the measure obtained

integrating (cGx)x∈X with respect to µ.

The measure µ is said to be quasi-invariant if ν and ν−1 are equivalent, in symbols ν ∼

ν−1. In such case, the Radon-Nikodym derivative dν
dν−1 will be denoted by D. Results of Hahn

[108] and Ramsay [223, Theorem 3.20] show that one can always choose—as we will do in the

following—D to be a Borel homomorphism from G to the multiplicative group of strictly positive

real numbers.

Definition XX.3.5. An open slice of a groupoid G is an open subset A of G such that source

and range maps are injective on A. If A is an open slice, then there is a local homeomorphism

θA : A−1A→ AA−1 given by θA(x) = r(Ax) for x ∈ A−1A.

Proposition 3.2.2 of [196] shows that, if A is an open slice, then

D(yA)−1 =
d(θA)∗µ|A−1A

dµ|AA−1

(y)

for every y ∈ G. Moreover, µ is quasi-invariant if and only if d(θA)∗µ|A−1A ∼ dµ|AA−1 for every

open slice A.

It is easy to verify that if µ and µ̃ are equivalent quasi-invariant measures on G0, and ν and

ν̃ are the corresponding measures on G, then ν ∼ ν̃ and

dν

dν̃
(γ) =

dµ

dµ̃
(r(γ)) and

dν−1

d(ν̃)−1
(γ) =

dµ

dµ̃
(s(γ))

for all γ ∈ G. The chain rule then shows that

dν̃

dν̃−1
(γ) =

dµ̃

dµ
(r(γ))

dν

dν−1
(γ)

dµ

dµ̃
(s(γ))

for all γ ∈ G.

Remark XX.3.6. etale groupoids can be characterized as those locally compact groupoids whose

topology admits a countable basis of open slices.

Closely related to the notion of an etale groupoid is that of an inverse semigroup.
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Definition XX.3.7. An inverse semigroup is a semigroup S such that for every element s of S,

there exists a unique element s∗ of S such that ss∗s = s and s∗ss∗ = s∗.

Let G be an etale groupoid, and denote by Σ(G) the set of open slices of G. The operations

AB = {γρ : (γ, ρ) ∈ (A×B) ∩G2} and A−1 = {γ−1 : γ ∈ A}

turn Σ(G) into an inverse semigroup. The set Σc(G) of precompact open slices of G is

a subsemigroup of Σ(G). Similarly, the set ΣK(G) of compact open slices of G is also a

subsemigroup of Σ(G).

Definition XX.3.8. An etale groupoid G is called ample if ΣK(G) is a basis for the topology of

G. This is equivalent to the assertion that G0 has a countable basis of compact open sets.

Representations of etale groupoids on Banach bundles

Throughout the rest of this section, we fix an etale groupoid G, and a Borel Banach bundle

q : Z → G0.

Definition XX.3.9. We define the groupoid of fiber-isometries of Z by

Iso(Z) =
{

(T, x, y) : T : Zx → Zy is an invertible isometry, and x, y ∈ G0
}
.

We denote the elements of Iso(Z) simply by T : Zx → Zy.

The set Iso(Z) has naturally the structure of groupoid with set of objects G0, where the

source and range of the fiber-isometry T : Zx → Zy are s(T ) = x and r(T ) = y, respectively. If

(σn)n∈ω is a basic sequence for Z, then the Borel structure generated by the maps

T 7→
〈
Tσn,s(T ), σm,r(T )

〉
for n,m ∈ ω, is standard, and makes Iso(Z) a standard Borel groupoid. This means that Iso (Z)

is a groupoid endowed with a standard Borel structure that makes composition and inversion of

arrows Borel.

Definition XX.3.10. Let µ be a quasi-invariant Borel probability measure on G0. A Borel map

T : G → Iso(Z) is said to be a µ-almost everywhere homomorphism, if there exists a µ-conull
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subset U of G0 such that the restriction of T to G|U is a groupoid homomorphism which is the

identity on U .

Definition XX.3.11. A representation of G on Z, is a pair (µ, T ) consisting of an invariant

Borel probability measure µ on G0, and a µ-almost everywhere homomorphism T : G→ Iso(Z).

If G is a discrete group, then a Borel Banach bundle over G0 is just a Banach space Z, and

a representation of G on Z is a Borel group homomorphism from G to the Polish group Iso(Z)

of invertible isometries of Z endowed with the strong operator topology. (It should be noted

here that a Borel group homomorphism from G to Iso(Z) is automatically continuous by [147,

Theorem 9.10].)

Example XX.3.12 (Dual representation). Let (µ, T ) be a representation of G on Z. The dual

representation of (µ, T ) is the representation (µ, T ′) of G on Z ′ defined by

(T ′)γ =
(
Tγ−1

)′
: Z ′s(γ) → Z

′
r(γ)

for all γ ∈ G.

There is a natural notion of equivalence for representations of G on Banach bundles.

Definition XX.3.13. Two representations (µ, T ) and (µ̃, T̃ ) of G on Borel Banach bundles Z

and Z̃ over G0, are said to be equivalent, if µ ∼ µ̃ and there are a µ-conull (and hence µ̃-conull)

Borel subset U of G0, and an isomorphism v : Z|U → Z̃|U (see Definition XX.2.20) such that

T̃γvs(γ) = vr(γ)Tγ

for every γ ∈ G|U .

It is clear that two representations are equivalent if and only if their dual representations

are equivalent. (Recall our standing assumption that all Borel Banach bundles are endowed with a

basic sequence and, in particular, all the fibers are reflexive Banach spaces.)

We now show how to integrate groupoid representations to Lp-bundles. From now on, we

fix a Hölder exponent p ∈ (1,∞).

630



Theorem XX.3.14. Let (µ, T ) be a representation of G on Z. Then the equation

(πT (f)ξ)x =
∑
γ∈xG

f(γ)D(γ)−
1
pTγξs(γ) (XX.2)

for f ∈ Cc(G), ξ ∈ Lp(µ,Z), and x ∈ G0, defines an I-norm contractive, nondegenerate

representation πT : Cc(G)→ B(Lp(µ,Z)).

Proof. Fix f ∈ Cc(G), ξ ∈ Lp(µ,Z), and η ∈ Lp
′
(µ,Z ′). We claim that the complex-valued

function on G defined by

γ 7→ D−
1
p (γ)f(γ)

〈
Tγξs(γ), ηr(γ)

〉
is ν-integrable. This follows from the following estimate where we use Hölder’s inequality at the

third step:

∫ ∣∣f(γ)
〈
Tγξs(γ), ηr(γ)

〉∣∣D− 1
p (γ) dν(γ)

=

∫ ∣∣f(γ)
〈
Tγξs(γ), ηr(γ)

〉∣∣D− 1
p (γ) dν(γ)

≤
∫
|f(γ)|

1
p
∥∥ξs(γ)

∥∥D− 1
p (γ) |f(γ)|

1
p′
∥∥ηr(γ)

∥∥ dν(γ)

≤
(∫
|f(γ)|

∥∥ξs(γ)

∥∥pD−1(γ) dν(γ)

) 1
p
(∫
|f(γ)|

∥∥ηr(γ)

∥∥p′ dν(γ)

) 1
p′

=

(∫
|f(γ)|

∥∥ξs(γ)

∥∥p dν−1(γ)

) 1
p
(∫
|f(γ)|

∥∥ηr(γ)

∥∥p′ dν(γ)

) 1
p′

=

∫ ∑
γ∈Gx

|f(γ)| ‖ξx‖p dµ(x)

 1
p
∫ ∑

γ∈yG
f(y) ‖ηy‖p

′
dµ(y)

 1
p′

≤ ‖f‖I‖ξ‖ ‖η‖ .

Therefore, the linear functional φT,ξ(f) : Lp
′
(µ,Z ′)→ C given by

φT,ξ(f)(η) =

∫
G

f(γ)D−
1
p (γ)

〈
Tγξs(γ), ηr(γ)

〉
dν(γ)
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for η ∈ Lp′(µ,Z ′), satisfies ‖φT,ξ(f)‖ ≤ ‖f‖I‖ξ‖. By Theorem XX.2.10, there is a unique element

πT (f)ξ of Lp(µ,Z) of norm at most ‖f‖I‖ξ‖, such that

∫
〈(πT (f)ξ)x, ηx〉 dµ(x) = φT,ξ(f)(η)

=

∫ 〈∑
γ∈xG

f(γ)D(γ)−
1
pTγξs(γ), ηx

〉
dµ(x)

for all η ∈ Lp′(µ,Z ′). In particular, Equation (XX.2) defines a bounded linear operator πT (f) ∈

B(Lp(µ,Z)) of norm at most ‖f‖I .

We claim that πT : Cc(G) → B(Lp(µ,Z)) is a nondegenerate homomorphism. Given f and

g in Cc(G), we have

(πT (f ∗ g)ξ)x

=
∑
γ∈xG

(f ∗ g)(γ)D(γ)−
1
pTγξs(γ)

=
∑
γ∈xG

∑
(ρ0,ρ1)∈G2

ρ0ρ1=γ

f(ρ0)g (ρ1)D(ρ0)−
1
pD (ρ1)

− 1
p Tρ0

Tρ1
ξs(ρ1)

=
∑
ρ0∈xG

f(ρ0)D(ρ0)−
1
pTρ0

 ∑
ρ1∈s(ρ0)

g(ρ1)D(ρ1)−
1
pTρ1ξs(ρ1)


=
∑
ρ0∈xG

f(ρ0)D(ρ0)−
1
pTρ0 (πT (g)ξ)s(ρ0)

= (πT (f)πT (g)ξ)x

for µ-almost every x ∈ G0. We conclude that πT is multiplicative.

Let us now show that πT is nondegenerate. Assume that η ∈ Lp
′
(µ,Z ′) satisfies

〈π(f)ξ, η〉 = 0 for every f ∈ Cc(G) and every ξ ∈ Lp(µ,Z). We claim that η = 0. Let (σn)n∈ω be a

basic sequence for Z. For α ∈ Q(i)⊕ω, set σα =
∑
n∈ω

αnσn ∈ Lp(µ,Z). Then {σα,x : α ∈ Q(i)⊕ω} is

a dense subspace of Zx for every x ∈ X, and therefore {Tγσα,x : α ∈ Q(i)⊕ω} is a dense subspace

of Zr(γ) for every γ ∈ Gx. By assumption,

0 = 〈π(f)σα, η〉 =

∫
D−

1
p (γ)f(γ)

〈
Tγσα,s(γ), ηr(γ)

〉
dν(γ)
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for every f ∈ Cc(G). Therefore, 〈Tγσα,s(γ), ηr(γ)〉 = 0 for ν-almost every γ ∈ G and for every

α ∈ Q(i)⊕ω. This implies that ηx = 0 for µ-almost every x ∈ G0, and thus η = 0. This finishes the

proof.

Definition XX.3.15. Let (µ, T ) be a representation of G on Z. We call the representation

πT : Cc(G)→ B(Lp(µ,Z)) constructed in the theorem above, the integrated form of (µ, T ).

Remark XX.3.16. Given a representation (µ, T ) of G on Z, one can show that there is an I-

norm contractive nondegenerate representation πT : Bc(G) → B(Lp(µ,Z)) defined by the same

expression as in the statement of Theorem XX.3.14.

Definition XX.3.17. Let µ be a Borel σ-finite measure on G0 and let π : Cc(G) → B(Lp(µ,Z))

be an I-norm contractive nondegenerate representation. The dual representation of π is the I-

norm contractive nondegenerate representation π′ : Cc(G)→ B(Lp
′
(µ,Z ′)) given by π′(f) = π(f∗)′

for all f ∈ Cc(G).

Lemma XX.3.18. Let (µ, T ) be a representation of G on Z. Then πT (f)′ = πT ′(f
∗) for all

f ∈ Cc(G).

Proof. The result follows from the following computation, valid for all ξ ∈ Lp(µ,Z) and all η ∈

Lp
′
(µ,Z ′):

〈πT ′(f∗)η, ξ〉 =

∫
f ′(γ)D(γ)−

1
p
〈
Tγ−1ηs(γ), ξr(γ)

〉
dν(γ)

=

∫
f(γ−1)

〈
Tγ−1ηs(γ), ξr(γ)

〉
D(γ)

1
p′ dν−1(γ)

=

∫
f(γ)

〈
Tγηr(γ), ξs(γ)

〉
D(γ)

− 1
p′ dν(γ)

=

∫
f(γ)

〈
Tγξs(γ), ηr(γ)

〉
dν(γ)

= 〈πT (f)ξ, η〉.

Our next goal is to show that two representations of a groupoid on Borel Banach bundles

are equivalent if and only if their integrated forms are equivalent.

Theorem XX.3.19. Let (µ,Z) and (λ,W) be Borel Banach bundles over G0, and let T and S be

groupoid representations of G on Z and W, respectively. Then T and S are equivalent if and only

if πT and πS are equivalent.
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Proof. Suppose that T and S are equivalent. Thus µ ∼ λ and there are a µ-conull Borel subsets U

of G0 and an isomorphism v : Z|U → WU (see Definition XX.2.20) such that vr(γ)Tγ = Sγvs(γ) for

every γ ∈ G|U . Define a linear map u : Lp(µ,Z)→ Lp(λ,W) by

(uξ)x =

(
dµ

dλ
(x)

) 1
p

vxξx

for ξ in Lp(µ,Z) and x ∈ U . It is easy to check that u is isometric. We claim that u is bijective.

For this, it suffices to check that its inverse is given by

(u−1ξ)y =

(
dλ

dµ
(y)

) 1
p

v−1
y ξy

for all ξ ∈ Lp(λ,W) and all y ∈ G0. We omit the details.

We claim that u intertwines πT and πS . Once we show this, the “only if” implication will

be proved. To prove the claim, fix ξ in Lp(λ,W) and x ∈ G0. We have

(uπT (f)u−1ξ)x

=

(
dµ

dλ
(x)

) 1
p

vx(πT (f)u−1ξ)x

=

(
dµ

dλ
(x)

) 1
p

vx

∑
γ∈xG

f(γ)

(
dνµ

dν−1
µ

(γ)

)− 1
p

Tγ(u−1ξ)s(γ)


=
∑
γ∈xG

f(γ)

(
dµ

dλ
(x)

) 1
p
(
dνµ

dν−1
µ

(γ)

)− 1
p
(
dλ

dµ
(s(γ))

) 1
p

vxTγv
−1
s(γ)ξs(γ)

=
∑
γ∈xG

f(γ)

(
dνλ

d(νλ)−1
(γ)

)− 1
p

Sγξs(γ)

= (πS(f)ξ)x

for all x ∈ G, and the claim is proved.

Conversely, assume that πT and πS are equivalent, and let u : Lp(µ,Z) → Lp(λ,W) be a

surjective isometry such that

uπT (f) = πS(f)u (XX.3)

for every f ∈ Cc(G). Denote by I the set of those functions f in Bc(G) that satisfy

Equation (XX.3). Fix an open subset U of G contained in some compact Hausdorff set. It follows
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from the dominated convergence theorem that if (fn)n∈ω is a uniformly bounded sequence in I

converging to a function f ∈ B(U), then f ∈ I. By [196, Lemma 2.2.1], we have B(U) ⊆ I. In

particular, if A is an open slice of G contained in some compact Hausdorff set, then χA belongs to

I.

Let F be a countable basis for the topology of G consisting of open slices each one of which

is contained in some compact Hausdorff set. Apply Theorem XX.2.21 to find a Borel conull set X0

of G0 and an isomorphism v : Z|X0 →W|X0 such that

(uξ)x =

(
dµ

dλ
(x)

) 1
p

vxξx

for all x ∈ X0 and all ξ ∈ Lp(µ,Z). It is not difficult to verify that Sγvs(γ) = vr(γ)Tγ for all γ in

G. This finishes the proof.

Amplification of representations

Given a natural number n ≥ 1, regard Mn(Cc(G)) as a normed *-algebra with respect to

the usual matrix product and involution, and the I-norm

‖[fij ]i,j∈n‖I

= max

max
x∈G0

max
j∈n

∑
j∈n

∑
γ∈xG

|fij(γ)| , max
x∈G0

max
j∈n

∑
j∈n

∑
γ∈Gx

|fij(γ)|

 .

Definition XX.3.20. Let µ be a σ-finite Borel measure on G0, and let π : Cc(G) → B(Lp(µ,Z))

be an I-norm contractive representation. We define its amplification π(n) : Mn(Cc(G)) →

B(`p(n,Lp(µ,Z))) by

π(n)([fij ]i,j∈n)[ξj ]j∈n =

∑
j∈n

π(fij)ξj


i∈n

.

If one starts with a representation T of a groupoid on a Borel Banach bundle, one may

take its integrated form, and then its amplification to matrices over Cc(G), as in the definition

above. The resulting representation π
(n)
T is the integrated form of a representation of an amplified

groupoid, which we proceed to describe.
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Definition XX.3.21. Given n ≥ 1, denote by Gn the groupoid n × G × n endowed with the

product topology, with set of objects G0 × n, and operations defined by

s(i, γ, j) = (s(γ), j) , r(i, γ, j) = (r(γ), i) and (i, γ, j)(j, ρ, k) = (i, γρ, k).

Denote by Z(n) the Borel Banach bundle over G0 × n such that Z(n)
(x,j) = Zx, with basic

sequence (σ
(n)
k )k∈ω defined by

σ
(n)
k,(x,j) = σk,x

for (x, j) ∈ G0 × n. Endow G0 × n with the measure µ(n) = µ × cn, and define the amplification

T (n) : Gn → Iso(Z(n)) of T by T
(n)
(i,γ,j) = Tγ for (i, γ, j) ∈ Gn.

Proposition XX.3.22. Let (T, µ) be a representation of G on Z. Given n ≥ 1, the

representations π
(n)
T and πT (n) are equivalent.

Proof. Under the canonical identifications

Mn(Cc(G)) ∼= Cc(Gn)

and

`p(n,Lp(µ,Z)) ∼= Lp(µ(n),Z(n)),

it is easy to verify that π
(n)
T is (equivalent to) the integrated form of the representation T (n). We

omit the details.

Representations of etale groupoids on Lp-bundles

In this section, we want to isolate a particularly important and natural class of

representations of an etale groupoid on Banach spaces.

We fix a quasi-invariant measure µ on G0. Let λ be a σ-finite Borel measure on a standard

Borel space Z fibred over G0 via q, and assume that µ = q∗(λ). Denote by Z the Lp-bundle⊔
x∈G0

Lp(λx) over µ obtained from the disintegration λ =
∫
λx dµ(x) as in Theorem XX.2.11.

Definition XX.3.23. Adopt the notation from the comments above. A representation T : G →

Iso(Z) is called an Lp-representation of G on Z. Under the identification Lp(µ,Z) ∼= Lp(µ) given
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by Theorem XX.2.11, the integrated form πT : Cc(G) → B(Lp(λ)) of T , is an I-norm contractive

nondegenerate representation.

It will be shown in Theorem XX.6.9 that every I-norm contractive nondegenerate

representation of Cc(G) on an Lp-space is the integrated form of some Lp-representation of G.

Remark XX.3.24. It is clear that an L2-representation of G in the sense of Definition XX.3.23,

is a representation of G on a Borel Hilbert bundle. Conversely, any representation of G on a Borel

Hilbert bundle is equivalent—as in Definition XX.3.13—to an L2-representation. In fact, if H is a

Borel Hilbert bundle over G0, then for every 0 ≤ α ≤ ω the set Xα = {x ∈ G0 : dim(Hx) = α} is

Borel. Thus, H is isomorphic to the Hilbert bundle

Z0 =
⊔

0≤α≤ω

Xα × `2(α).

Set Z =
⊔

0≤α≤ω
(Zα × α), and define a σ-finite Borel measure λ on Z by λ =

⊔
0≤α≤ω

(µ × cα). It

is immediate that Z0 is (isomorphic to) the Borel Hilbert bundle
⊔

x∈G0

L2(λx) obtained from the

disintegration of λ with respect to µ.

In view of the above remark, there is no difference, up to equivalence, between L2-

representations and representations on Borel Hilbert bundles. The theory of Lp-representations

of G for p ∈ (1,∞) can therefore be thought of as a generalization of the theory of representations

of G on Borel Hilbert bundles.

Example XX.3.25 (Left regular representation). Take Z = G and λ = ν, in which case the

disintegration of λ with respect to µ is (cxG)x∈X . For γ ∈ G, define the surjective linear isometry

Tµ,pγ : `p(s(γ)G)→ `p(r(γ)G)

by

(Tµ,pγ ξ)(ρ) = ξ(γ−1ρ).

The assignment γ 7→ Tµ,pγ defines a representation

Tµ,p : G→ Iso

( ⊔
x∈G0

`p(xG)

)
,
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which we shall call the left regular Lp-representation of G associated with µ. When the Hölder

exponent p is clear from the context, we will write Tµ in place of Tµ,p.

Lemma XX.3.26. The dual (Tµ,p)′ of the left regular Lp-representation associated with µ is the

left regular Lp
′
-representation Tµ,p

′
associated with µ.

Proof. The result follows from the following computation, valid for all η ∈ `p
′
(r(γ)G) and all

ξ ∈ `p(s(γ)G):

〈
Tµ,p

′

γ η, ξ
〉

=
∑

ρ∈r(γ)G

(Tµ,p
′

γ η)(ρ)ξ(ρ) =
∑

ρ∈r(γ)G

η(γ−1ρ)ξ(ρ)

=
∑

θ∈s(γ)G

η(θ)ξ(γθ) =
∑

ρ∈r(γ−1)G

ξ(γρ)η(ρ)

=
〈
Tµ,pγ−1ξ, η

〉
=

〈(
Tµ,pγ−1

)′
η, ξ

〉
.

We will now compute the integrated form of the left regular Lp-representation Tµ of

G associated with a quasi-invariant Borel probability measure µ on G0. Following Rieffel’s

induction theory and for consistency with [196, Section 3.1 and Appendix D] we will denote such

representation by Ind(µ).

Proposition XX.3.27. The integrated form Ind(µ) of the left regular representation Tµ

associated with µ, is the left action of Cc(G) on Lp(ν−1) by convolution.

Proof. It is easy to check that multiplication by D
1
p and D

1
p′ define isometric isomorphisms

Lp(ν) ∼= Lp(ν−1) and Lp
′
(ν) ∼= Lp

′
(ν−1), respectively.
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Given ξ ∈ Lp(ν) and η ∈ Lp′(ν), set ξ̂ = D
1
p ξ ∈ Lp(ν−1) and η̂ = D

1
p′ η ∈ Lp′(ν−1). Then

〈Ind(µ)(f)ξ, η〉Lp(ν)

=

∫
f(γ)

〈
Tγξs(γ), ηr(γ)

〉
dν(γ)

=

∫ ∑
γ∈xG

f(γ)
〈
Tγξs(γ), ηx

〉
D−

1
p (γ) dµ(x)

=

∫ ∑
γ∈xG

f(γ)

∑
ρ∈xG

ξ(γ−1ρ)η(ρ)

D−
1
p (γ) dµ(x)

=

∫ ∑
x∈xG

∑
ρ∈xG

∑
γ∈xG

f(γ)ξ̂(γ−1ρ)

 η̂(ρ)D−1(ρ) dµ(x)

=

∫ ∑
γ∈xG

∑
ρ∈xG

(f ∗ ξ̂)(ρ)η̂(ρ)D−1(ρ) dµ(x)

=
〈
f ∗ ξ̂, η̂

〉
Lp(ν−1)

This finishes the proof.

Lemma XX.3.28. A function f in Cc(G) belongs to Ker(Ind(µ)) if and only if it vanishes on the

support of ν.

Proof. Suppose that f vanishes on the support of ν. Then

〈Ind(µ)(f)ξ, η〉Lp(ν) =

∫
f(γ)

〈
Tγξs(γ), ηr(γ)

〉
D−

1
p (γ) dν(γ) = 0.

for every ξ ∈ Lp(ν) and η ∈ Lp′(ν), so Ind(µ)(f) = 0.

Conversely, if Ind(µ)(f) = 0 then f ∗ ξ = 0 for every ξ ∈ Lp(ν−1). In particular, f =

f ∗ χG0 = 0 in Lp(ν−1). Thus f(γ) = 0 for ν−1-almost every γ ∈ G and hence also for ν-almost

every γ ∈ G. By continuity of f , this implies that f vanishes on the support of ν.

Definition XX.3.29. Let us say that a family M of quasi-invariant probability measures on G0

separates points, if for every nonzero function f ∈ Cc(G), there is a measure µ ∈ M such that f

does not vanish on the support of the integrated measure ν =
∫
cxG dµ(x). Similarly, a collection

R of representations of Cc(G) on Banach algebras is said to separate points if for every nonzero

function f ∈ Cc(G), there is a representation π ∈ R such that π(f) is nonzero.
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By Lemma XX.3.28, a family M of Borel probability measures on G0 separates points if

and only if the collection of left regular representations associated with elements of M separates

points.

Proposition XX.3.30. The family of left regular representations associated with quasi-invariant

Borel probability measures on G0 separates points.

Proof. A quasi-invariant Borel probability measure is said to be transitive if it is supported by

an orbit. Every orbit carries a transitive measure, which is unique up to equivalence; see [225,

Definition 3.9 of Chapter 1 ]. It is well known that the transitive measures constitute a collection

of quasi-invariant Borel probability measures on G0 that separates points; see [225, Proposition

1.11 of Chapter 2], so the proof is complete.

Representations of Inverse Semigroups on Lp-spaces

The Banach-Lamperti theorem

Let µ and ν be Borel probability measures on standard Borel spaces X and Y , and let

p ∈ [1,∞). For f ∈ Lp(µ), the support of f , denoted supp(f), is the largest element F of Bµ

such that fχF = f . (See Subsection XX.1 for the definition of the Boolean algebra Bµ.) The

completeness of Bµ implies that such a largest element exists.

Lemma XX.4.1 (Lamperti-Clarkson; see [72, Proposition 3.2.2]). Adopt the notation of the

comments above, and suppose that p 6= 2. If f, g ∈ Lp(µ) satisfy

‖f + g‖p + ‖f − g‖p = 2‖f‖p + 2 ‖g‖p ,

then the supports of f and g are disjoint elements of Bµ.

Theorem XX.4.2 (Banach-Lamperti). Let p ∈ [1,∞)\{2}. If u : Lp(µ) → Lp(ν) is a surjective

linear isometry, then there are conull Borel subsets X0 and Y0 of X and Y , a Borel isomorphism

φ : X0 → Y0 such that φ∗(µ)|X0
∼ ν|Y0

, and a Borel function g : Y → C with |g(y)|p = dφ∗(µ)
dν (y)

for ν-almost every y ∈ Y , such that

uξ = g ·
(
ξ ◦ φ−1

)
for every ξ ∈ Lp(ν).
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Proof. Define maps Ψ: Bµ → Bν and Φ: Bν → Bµ by

Ψ(F ) = supp(u−1χF ) and Φ(E) = supp(uχE)

for all F ∈ Bµ and all E ∈ Bν . It follows from Lemma XX.4.1 that Φ and Ψ are mutually inverse

σ-complete Boolean algebra homomorphisms. By [147, Theorem 15.10] there are conull subsets

X0 and Y0 of X and Y respectively, and a Borel isomorphism φ : X0 → Y0 such that Φ(E) =

φ−1(E ∩ Y0) for every E ∈ Bν . It follows that φ∗(µ|X0) ∼ ν|Y0 . Set g = u1X , and observe that

uχF = g · χφ(F ) = g ·
(
χF ◦ φ−1

)
for every F ∈ Bµ. Thus uξ = g · (ξ ◦φ−1) for every ξ ∈ Lp(µ). We conclude that |g(y)|p = dφ∗(µ)

dν (y)

for ν-almost every y ∈ Y , and this finishes the proof.

Hermitian idempotents and spatial partial isometries

Let X be a complex vector space. The following definition is taken from [175].

Definition XX.4.3. A semi-inner product on X is a function [·, ·] : X ×X → C satisfying:

1. [·, ·] is linear in the first variable;

2. [x, λy] = λ [x, y] for every λ ∈ C and x, y ∈ X;

3. [x, x] ≥ 0 for every x ∈ X, and equality holds if and only if x = 0;

4. |[x, y]| ≤ [x, x] [y, y] for every x, y ∈ X.

The norm on X associated with the semi-inner product [·, ·] is defined by ‖x‖ = [·, ·]
1
2 for

x ∈ X.

In general, there might be different semi-inner products on X that induce the same norm.

Nonetheless, it is not difficult to see that on a smooth Banach space—and in particular on Lp-

spaces—there is at most one semi-inner product compatible with its norm; see the remark after

the proof of Theorem 3 in [175].
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Definition XX.4.4. A semi-inner product on a Banach space that induces its norm is called

compatible. A Banach space X endowed with a compatible semi-inner product is called a semi-

inner product space.

By the above discussion, if X is a smooth Banach space, then a compatible semi-inner

product—when it exists—is unique.

Remark XX.4.5. It is easy to verify that the norm of Lp(λ) is induced by the semi-inner

product

[f, g] = ‖g‖2−pp

∫
f(x)g(x) |g(x)|p−2

dλ(x)

for f, g ∈ Lp(λ) with g 6= 0.

An inner product on X is precisely a semi-inner product such that moreover [x, y] = [y, x]

for every x, y ∈ X. Semi-inner products allow one to generalize notions for operators on Hilbert

spaces to more general Banach spaces.

Definition XX.4.6. Let X be a semi-inner product space, and let T ∈ B(X). The numerical

range W (T ) of T , is the set

{[Tx, x] : x ∈ X, [x, x] = 1} ⊆ C.

The operator T is called hermitian if W (T ) ⊆ R.

Adopt the notation and terminology from the definition above. In view of [175] the

following statements are equivalent:

1. T is hermitian;

2. ‖1 + irT‖ ≤ 1 + o (r) for r → 0;

3. ‖exp (irT )‖ = 1 for all r ∈ R.

It is clear that when X is a Hilbert space, an operator is hermitian if and only if it is self-

adjoint. In particular, the hermitian idempotents on a Hilbert space are exactly the orthogonal

projections.

Let λ be a Borel measure on a standard Borel space Z. Hermitian idempotents on Lp(λ),

for p 6= 2, have been characterized by Banach in [6]: these are precisely the multiplication

operators associated with characteristic functions on Borel subsets of Z.
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Recall that a bounded linear operator s on a Hilbert space is a partial isometry if there is

another bounded linear operator t such that st and ts are orthogonal projections. The following is

a generalization of partial isometries on Hilbert spaces to Lp-spaces. We use the term ‘spatial’ in

accordance to the terminology in [204, 209, 208, 207].

Definition XX.4.7. Let X be a Banach space and s ∈ B (X). We say that s is a partial isometry

if ‖s‖ ≤ 1 and there exists t ∈ B (X) such that ‖t‖ ≤ 1 and st and ts are idempotent.

Definition XX.4.8. Let X be a semi-inner product space and s ∈ B (X). We say that s is a

spatial partial isometry if ‖s‖ ≤ 1 and there exists t ∈ B (X) such that ‖t‖ ≤ 1 and st and ts are

hermitian idempotents.

Following [204], we call an element t as in Definition XX.4.8 a reverse of s. (It is in general

not unique.) We call ts and st the source and range idempotents of s, respectively. We denote

by S(B (X)) the set of all spatial partial isometries in R, and by E(B (X)) the set of hermitian

idempotents in R.

It is a standard fact in Hilbert space theory that all partial isometries on a Hilbert space

are spatial. Moreover, the reverse of a partial isometry on a Hilbert space is unique, and it

is given by its adjoint. The situation for partial isometries on Lp-spaces, for p 6= 2, is rather

different. The following proposition can be taken as a justification for the term “spatial”.

Proposition XX.4.9. Let p ∈ (1,∞) \ {2} and let λ be a σ-finite Borel measure on a standard

Borel space Z. If s is a spatial partial isometry on Lp(λ), then there are Borel subsets E and F of

Z, a Borel isomorphism φ : E → F , and a Borel function g : F → C such that

(sξ)(y) =


g(y) · (ξ ◦ φ−1)(y) if y ∈ F , and

0 otherwise

for all ξ in Lp(λ) and for λ-almost every y ∈ Z.

Moreover, if e is a hermitian idempotent in Lp(λ), then there is a Borel subset E of Z such

that e = ∆χE .

Proof. The result follows from the characterization of hermitian idempotents mentioned above,

together with Theorem XX.4.2.
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Remark XX.4.10. Adopt the notation of the above proposition. It is easy to check that the

reverse of s is also spatial, and that it is given by

(tξ)(y) =


(g ◦ φ)(y) · (ξ ◦ φ)(y) if y ∈ E, and

0 otherwise

for all ξ in Lp(λ) and for λ-almost every y ∈ Z. In particular, the reverse of a spatial partial

isometry of an Lp-space is unique. We will consequently write s∗ for the reverse of a spatial

partial isometry s.

The set S(Lp(λ)) of spatial partial isometries on Lp(λ) is an inverse semigroup, and the set

E(Lp(λ)) of hermitian idempotents on Lp(λ) is precisely the semilattice of idempotent elements

of S(Lp(λ)). Moreover, the map Bλ → E(Lp(λ)) given by F 7→ ∆χF is an isomorphism of

semilattices. Thus, E(Lp(λ)) is a complete Boolean algebra.

Remark XX.4.11. If (ej)j∈I is an increasing net of hermitian idempotents, then sup
j∈I

ej is the

limit of the sequence (ej)j∈I in the strong operator topology.

Representations of inverse semigroups

We now turn to inverse semigroup representations on Lp-spaces by spatial partial

isometries. Fix an inverse semigroup Σ, and recall that Mn(Σ) has a natural structure of inverse

semigroup for every n ≥ 1 by [196, Proposition 2.1.4].

Definition XX.4.12. Let λ be a σ-finite Borel measure on a standard Borel space. A

representation of Σ on Lp(λ) is a semigroup homomorphism ρ : Σ→ S(Lp(λ)).

For n ≥ 1 denote by λ(n) the measure λ × cn, where cn is the counting measure on n. We

define the amplification ρ(n) : Mn(Σ) → S(Lp(λ(n))) of ρ, by ρn([σij ]i,j∈n) = [ρ(σij)]i,j∈n, where

we identify B(Lp(λ(n))) with Mn(B(Lp(λ))) in the usual way.

The dual of ρ is the representation ρ′ : Σ→ S(Lp
′
(λ)) given by ρ′(σ) = ρ(σ∗)′ for σ ∈ Σ.

Definition XX.4.13. Denote by CΣ complex *-algebra of formal linear combinations of elements

of Σ, with operations determined by δσδτ = δστ and δ∗σ = δσ∗ for all σ, τ ∈ Σ, and endowed

with the `1-norm. The canonical identification of CMn(Σ) with Mn(CΣ) for n ≥ 1, defines matrix

norms on CΣ.
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Remark XX.4.14. Every representation ρ : Σ → S(Lp(λ)) induces a contractive representation

πρ : CΣ → B(Lp(λ)) such that πρ(δσ) = ρ (σ) for σ ∈ Σ. It is not difficult to verify the following

facts:

1. Since, for n ≥ 1, the amplification π
(n)
ρ of πρ to Mn(CΣ) is the representation associated

with the amplification ρ(n) of ρ, it follows that πρ is p-completely contractive.

2. The representation πρ′ associated with the dual ρ′ of ρ is the dual of the representation πρ

associated with ρ.

Definition XX.4.15. Let λ and µ be σ-finite Borel measure on standard Borel spaces, and

let ρ and κ be representations of Σ on Lp(λ) and Lp(µ) respectively. We say that ρ and κ are

equivalent if there is a surjective linear isometry u : Lp(λ) → Lp(µ) such that uρ(σ) = κ(σ)u for

every σ ∈ Σ.

Adopt the notation of the definition above. If ρ and κ are equivalent, then their dual

representations ρ′ and κ′ are also equivalent. Similarly, if ρ and κ are equivalent, then the

corresponding representations πρ and πκ of CΣ are equivalent.

Tight representations of semilattices

In the following, all semilattices will be assumed to have a minimum element 0.

Consistently, all inverse semigroups will be assumed to have a neutral element 0, which is the

minimum of the associated idempotent semilattice. In the rest of this subsection we recall some

definitions from Section 11 of [66].

Definition XX.4.16. Let E be a semilattice and let B = (B, 0, 1,∧,∨,¬) be a Boolean algebra.

A representation of E on B is a semilattice morphism E → (B,∧) satisfying β(0) = 0.

Two elements x, y of E are said to be orthogonal, written x ⊥ y, if x ∧ y = 0. Furthermore,

we say that x and y intersect (each other) if they are not orthogonal.

If X ⊆ Y ⊆ E, then X is a cover for Y if every nonzero element of Y intersects an element

of X.

It is easy to verify that a representation of a semilattice E on a Boolean algebra sends

orthogonal elements to orthogonal elements. It is also immediate to check that a cover for the set

of predecessors of some x ∈ E is also a cover for {x}.
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Notation XX.4.17. If X and Y are (possibly empty) subsets of E, we denote by EX,Y the set

EX,Y = {z ∈ E : z ≤ x for all x ∈ X, and z ⊥ y for all y ∈ Y }.

We are now ready to state the definition of tight representation of a semilattice.

Definition XX.4.18. Let E be a semilattice and let B be a Boolean algebra. A representation

β : E → B is said to be tight if for every pair X,Y of (possibly empty) finite subsets of E and

every finite cover Z of EX,Y , we have

∨
z∈Z

β(z) =
∧
x∈X

β(x) ∧
∧
y∈Y
¬β(y). (XX.4)

Lemma XX.4.19. Let E be a semilattice, let B be a Boolean algebra and let β : E → B be a

tight representation. If z0, . . . , zn−1 are elements of E such that for every w ∈ E, there exists

j ∈ n such that zj ∧ w 6= 0, then
∨
j∈n

β(zj) = 1. In particular, if E has a largest element 1, then

β(1) = 1.

Proof. The result is immediate since the assumptions imply that {z0, . . . , zn−1} is a cover of

E∅,∅.

Lemma XX.4.20 ([66, Proposition 11.9]). Suppose that E is a Boolean algebra. If β is a

representation of E on B, then β is tight if and only if β is a Boolean algebra homomorphism.

Definition XX.4.21. Suppose that E is a semilattice. A subsemilattice F of E is dense if for

every x ∈ E nonzero there is y ∈ F nonzero such that y ≤ x.

Lemma XX.4.22. Suppose that E is a semilattice, and F is a dense subsemilattice of E. If β is

a tight representation of E on B, then the restriction of β to F is a tight representation of F .

Proof. Suppose that X,Y ⊂ F and that Z is a cover for FX,Y . We claim that Z is a cover for

EX,Y . Pick x ∈ EX,Y nonzero. Then there is y ∈ F nonzero such that y ≤ x. Since y ∈ FX,Y and

Z is a cover for FX,Y , there is z ∈ Z such that z and y intersect. Therefore also z and x intersect.

This shows that Z is a cover for EX,Y . Therefore Equation (XX.4) holds. This concludes the

proof that the restriction of β to F is tight.
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Tight representations of inverse semigroups on Lp-spaces

As in the case of representation of inverse semigroups on Hilbert spaces (see [66, Section

13]), we will isolate a class of “well behaved” representations of inverse semigroups on Lp-spaces.

The following definition is a natural generalization of [66, Definition 13].

Definition XX.4.23. Let λ be a σ-finite Borel measure on a standard Borel space. A

representation ρ : Σ → S(Lp(λ)) is said to be tight if its restriction to the idempotent semilattice

E(Σ) of Σ is a tight representation on the Boolean algebra E(Lp(λ)) of hermitian idempotents.

Remark XX.4.24. If ρ : Σ → S(Lp(λ)) is a tight representation as above, then the net

(ρ(σ))σ∈E(Σ) converges to the identity in the strong operator topology. Thus, tightness should

be thought of as a nondegeneracy condition for representations of inverse semigroups

Definition XX.4.25. A tight representation ρ of Σ on Lp(λ) is said to be regular if, for every

idempotent open slice U of G, ρ (U) is the limit of the net (ρ (V ))V where V ranges among

all idempotent open slices of G with compact closure contained in U , ordered by inclusion. In

formulas

ρ(U) = lim
V ∈E(Σc(G)),V⊆U

ρ(V ). (XX.5)

Representations of semigroups of slices

Let G be an etale groupoid, let λ be a σ-finite Borel measure on a standard Borel space,

and let π be a contractive nondegenerate representation of Cc(G) on Lp(λ). Denote by Σc(G) the

inverse semigroup of precompact open slices of G. In this subsection, we show how to associate to

π a tight, regular representation of ρπ of Σc(G) on Lp(λ).

Given a precompact open slice A of G, ξ ∈ Lp(λ), and η ∈ Lp
′
(λ), the assignment f 7→

〈π(f)ξ, η〉 is a ‖ · ‖∞-continuous linear functional on Cc(A) of norm at most ‖ξ‖‖η‖. By the Riesz-

Markov-Kakutani representation theorem, there is a Borel measure µA,ξ,η supported on A, of total

mass at most ‖ξ‖‖η‖, such that

〈π(f)ξ, η〉 =

∫
f dµA,ξ,η (XX.6)

for every f ∈ Cc(G). If A,B ∈ Σc(G), then µA,ξ,η and µB,ξ,η coincide on A ∩ B. Arguing as in

[196, page 87, and pages 98-99], we conclude that there is a Borel measure µξ,η defined on all of
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G, such that µA,ξ,η is the restriction of µξ,η to A, for every A ∈ Σc(G), and moreover 〈π(f)ξ, η〉 =∫
f dµξ,η for every f ∈ Cc(G).

Lemma XX.4.26. The linear span of {π(χA)ξ : A ∈ Σc(G), ξ ∈ Lp(λ)} is dense in Lp(λ).

Proof. Let η ∈ Lp
′
(λ) satisfy 〈ρπ(A)ξ, η〉 = 0 for every ξ ∈ Lp(λ) and every A ∈ Σc(G). Since

〈ρπ(A)ξ, η〉 =
∫
χA dµξ,η, we conclude that µξ,η(A) = 0 for every ξ ∈ Lp(λ) and every A ∈ Σc(G).

Thus 〈π(f)ξ, η〉 = 0 for every f ∈ Cc(G) and every ξ ∈ Lp(λ). Since π is nondegenerate, we

conclude that η = 0, which finishes the proof.

Equation (XX.6) allows one to extend π to Bc(G) by defining

〈π(f)ξ, η〉 =

∫
fdµξ,η

for f ∈ Bc(G), ξ ∈ Lp(λ), and η ∈ Lp (η). Lemma 2.2.1 of [196] shows that π is indeed a

nondegenerate representation of Bc(G) on Lp(λ). In particular the function ρπ : A 7→ π(χA) is

a semigroup homomorphism from Σc(G) to B (Lp(λ)). We will show below that such a function is

a tight, regular representation of Σc(G) on Lp(λ)

Suppose that f ∈ B(G0). Define π(f) ∈ B (Lp(λ)) by

〈π(f)ξ, η〉 =

∫
fdµξ,η (XX.7)

for ξ ∈ Lp(λ), and η ∈ Lp′(λ). Since

π (fg) = π(f)π(g) (XX.8)

for f, g ∈ Bc(G
0), it follows via a monotone classes argument that Equation (XX.8) holds for

any f, g ∈ B(G0). In particular, π(χA) is an idempotent for every A ∈ B(G). It follows from

Lemma XX.4.26 that π (χG0) is the identity operator on Lp(λ). Fix now A ∈ BG0 and r ∈ R. For
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any ξ ∈ Lp(λ) and η ∈ Lp′(λ) we have that

|〈(1 + irπ(χA)) ξ, η〉| = |〈π (χG0 + irχA) ξ, η〉|

=

∣∣∣∣∫ (χG0 + irχA) dµξ,η

∣∣∣∣
≤ ‖χG0 + irχA‖∞ ‖ξ‖ ‖η‖

≤
(

1 +
1

2
r2

)
‖ξ‖ ‖η‖ .

Therefore

‖1 + irπ(χA)‖ ≤ 1 +
1

2
r2.

This shows that π(χA) is an hermitian idempotent of Lp(λ).

It follows from Equation (XX.7) and Equation (XX.8) that the function A 7→ π(χA)

is a σ-complete homomorphism of Boolean algebras from B(G0) to E (Lp(λ)). Therefore by

Lemma XX.4.20 and Lemma XX.4.22 the function ρπ : A 7→ π(χA) for A ∈ Σc(G) is a tight,

regular representation of Σc(G) on Lp(λ).

The same argument shows that if Σ is an inverse subsemigroup of Σc(G) which is a basis

for the topology of G, then the restriction of ρπ to Σ is a tight, regular representation of Σ on

Lp(λ).

Remark XX.4.27. It is clear that if π and π̃ are I-norm contractive nondegenerate

representations of Cc(G) on Lp-spaces, then π and π̃ are equivalent if and only if ρπ and ρπ̃ are

equivalent. The easy details are left to the reader.

Disintegration of Representations

Throughout this section, we let G be a locally compact groupoid and Σ be an inverse

subsemigroup of Σc(G) that generates the topology of G. Denote by Σc the inverse semigroup

of precompact elements of Σ. Let λ be a σ-finite measure on a standard Borel space Z.

The disintegration theorem

Theorem XX.5.1. If ρ : G → S(Lp(λ)) is a tight, regular representation, then there are a quasi-

invariant measure µ on G0, and, with λ =
∫
λx dµ(x) denoting the disintegration of λ with respect
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to µ, a representation T of G on the Borel Banach bundle
⊔

x∈G0

Lp(λx), such that

〈ρ(A)ξ, η〉 =

∫
A

D(γ)−
1
p 〈Tγξs(γ), ηr(γ)〉 dν(γ)

for A ∈ Σ, for ξ ∈ Lp(λ), and for η ∈ Lp′(λ).

The rest of this section is dedicated to the proof of the theorem above. For simplicity and

without loss of generality, we will focus on the case where λ is a probability measure. In the

following, we fix a representation ρ as in the statement of Theorem XX.5.1.

Fibration

Define Φ: E(Σ)→ Bλ by ∆χΦ(U)
= ρ(U) for U ∈ E(Σ). Denote by U the semilattice of open

subsets of G0. Extend Φ to a function U → Bλ by setting

Φ(V ) =
⋃

W∈E(Σc),W⊆U

Φ(W ).

Then ∆χΦ(V )
is the limit in the strong operator topology of the increasing net(

∆χρ(W )

)
W∈E(Σc),W⊆V

. By Equation (XX.5), the expression above indeed defines an extension

of Φ. Moreover, a monotone classes argument shows that Φ is a representation. Tightness of ρ

together with Equation (XX.5) further imply that Φ(U ∪ V ) = Φ(U) ∪ Φ(V ) whenever U and V

are disjoint, and that

Φ

(⋃
n∈ω

Un

)
⊆
⋃
n∈ω

Φ (Un) (XX.9)

for any sequence (Un)n∈ω in U . For U ∈ U , set m(U) = λ(Φ(U)). Using [196, Proposition 3.2.7],

one can extend m to a Borel measure on G0 by setting

m(E) = inf {m(U) : U ∈ U , E ⊆ U}

for E ∈ BG0 . Extend Φ to a homomorphism from BG0 to Bλ, by setting

Φ(E) =
∧
{Φ(U) : U ∈ U , U ⊇ E} .
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(The infimum exists by completeness of Bλ.)

Lemma XX.5.2. The map Φ: BG0 → Bλ is a σ-complete Boolean algebra homomorphism.

Proof. We claim that given E0 and E1 in BG0 , we have Φ(E0 ∩ E1) = Φ(E0) ∩ Φ(E1).

To prove the claim, observe that if Uj is an open set containing Ej for j ∈ {0, 1}, then

Φ(U0∩U1) = Φ(U0)∩Φ(U1), and thus Φ(E0∩E1) ⊆ Φ(E0)∩Φ(E1). In order to prove that equality

holds, it is enough to show that given ε > 0, we have

λ (Φ(E0 ∩ E1)) ≥ λ (Φ (E0) ∩ Φ (E1))− ε.

Fix an open set U containing E0 ∩ E1 such that m(U) ≤ m(E0 ∩ E1) + ε. Let V0 and V1 be open

sets satisfying Ej\(E0 ∩ E1) ⊆ Vj for j = 0, 1, and

µ(Vj) ≤ µ(Ej\(E0 ∩ E1)) + ε.

For j = 0, 1, set Uj = U ∪ Vj . Then Uj ⊇ Ej and

λ(Φ(E0 ∩ E1)) = m(E0 ∩ E1) ≥ m(U)− ε ≥ m(U0 ∩ U1)− 3ε

= λ(Φ(U0 ∩ U1))− 3ε = λ(Φ(U0) ∩ Φ(U1))− 3ε

≥ λ(Φ(E0) ∩ Φ(E1))− 3ε.

We have therefore shown that Φ(E0 ∩ E1) = Φ(E0) ∩ Φ(E1), so the claim is proved.

It remains to show that if (En)n∈ω is a sequence of pairwise disjoint Borel subsets of G0,

then

Φ

(⋃
n∈ω

En

)
=
⋃
n∈ω

Φ (En) .

By Equation (XX.9), the left-hand side is contained in the right-hand side. On the other hand, we

have

λ

(
Φ

(⋃
n∈ω

En

))
= m

(⋃
n∈ω

En

)
=
∑
n∈ω

m(En)

=
∑
n∈ω

λ(Φ(En)) = λ

(⋃
n∈ω

Φ(En)

)
,
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so we conclude that equality holds, and the proof is complete.

By [147, Theorem 15.9], there is a Borel function q : Z → G0 such that Φ(E) = q−1(E) for

every E ∈ BG0 . Moreover, the map q is unique up to λ-almost everywhere equality.

Measure

Define a Borel probability measure µ on G0 by µ = q∗(λ). Consider the disintegration

λ =
∫
λx dµ(x) of λ with respect to µ, the Borel Banach bundle Z =

⊔
x∈G0

Lp(λx), and identify

Lp(λ) with Lp(µ,Z) as in Theorem XX.2.11.

For A ∈ Σ, denote by θA : A−1A→ AA−1 the homomorphism defined by θA(x) = r(Ax) for

x ∈ A−1A. Since ρ(A) is a spatial partial isometry with domain Φ(s(A)) and range Φ(r(A)), there

are a Borel function gA : Φ(r(A))→ C and a Borel isomorphism φA : Φ(s(A))→ Φ(r(A)) such that

(ρ(A)ξ)z = gA(z)ξ(φ−1
A (z)) (XX.10)

for z ∈ Φ(r(A)). We claim that (q ◦ φA)(z) = (θA ◦ q)(z) for λ-almost every z ∈ Φ(r(A)).

By the uniqueness assertion in [147, Theorem 15.9], it is enough to show that (θA ◦ q ◦

φ−1
A )−1(U) = Φ(U) for every U ∈ E(Σ) with U ⊆ r(A). We have

(θA ◦ q ◦ φ−1
A )−1(U) = (φA ◦ q−1 ◦ θ−1

A )(U) = φA(Φ(θ−1
A (U))) = φA(Φ(A−1UA)).

Given ξ ∈ Lp(λ|Φ(r(A))), set η = ξ ◦ φA. Then

∆χφA(Φ(A−1UA))
ξ =

(
∆χΦ(A−1UA)

η
)
◦ φ−1

A =
(
ρ
(
A−1UA

)
η
)
◦ φ−1

A

=
(
ρ(A)−1ρ(U)ρ(A)η

)
◦ φ−1

A =
(
ρ(A)−1ρ(U)gAξ

)
◦ φ−1

A

=
(
ρ(A)−1χΦ(U)gAξ

)
◦ φ−1

A

=
(

(gA ◦ φA)
−1 (

χΦ(U) ◦ φA
)

(gA ◦ φA) η
)
◦ φ−1

A

= χΦ(U)ξ = ∆χΦ(U)
ξ.

Thus Φ(U) = φA(Φ(A−1UA)) = (θA ◦q◦φ−1
A )−1(U), and hence (θA ◦q◦φ−1

A )(z) = q(z) for λ-almost

every z ∈ Φ(r(A)), as desired. The claim is proved.
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It is shown in [196, Proposition 3.2.2] that µ is quasi-invariant whenever (θA)∗µ|s(A) ∼

µ|r(A) for every open slice A of G. The same proof in fact shows that it is sufficient to check this

condition for A ∈ Σ. Given A ∈ Σ, we have

µ|r(A) = q∗λ|Φ(r(A)) ∼ q∗((φA)∗λ|Φ(s(A))) = (q ◦ φA)∗λ|Φ(s(A)) = (θA ◦ q)∗λ|Φ(s(A))

= (θA)∗(q∗λ|Φ(s(A))) = (θA)∗µ|s(A),

so µ is quasi-invariant.

Disintegration

For x ∈ G0, set Zx = q−1({x}), and note that Zx = Φ({x}). Given A ∈ Σ, regard ρ(A) as a

surjective linear isometry

ρ(A) : Lp(λ|Φ(s(A)))→ Lp(λ|Φ(r(A))).

Let Z denote the Borel Banach bundle

⊔
x∈G0

Lp(λx),

and identify Lp(λ|Φ(s(A))) and Lp(λ|Φ(r(A))) with Lp(µ|s(A),Z|s(A)) and Lp(µ|r(A),Z|r(A)),

respectively.

If U ∈ E(Σ) satisfies U ⊆ r(A), one uses ρ(A−1UA) = ρ(A)−1ρ(U)ρ(A) to show that

∆U ◦ ρ(A) = ρ(A) ◦∆θA(U).

By Theorem XX.2.21, there is a Borel section x 7→ TAx of B(Z|s(A),Z|r(A), θA) consisting of

invertible isometries, such that

(ρ(A)ξ)|Zy =

(
d(θA)∗µ

dµ
(y)

) 1
p

TA
θ−1
A (y)

ξ|Zφ−1(y)

for µ-almost every y ∈ r(A). Since

(ρ(A)ξ) |Zy = (gA) |Zy ·

(
ξ|Zy ◦

(
(φA)||ZyZ

θ
−1
A

(y)

)−1
)
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for µ-almost every y ∈ r(A), we have

TAx ξ =

(
d(θA)∗µ

dµ
(θA(x))

) 1
p

(gA) |ZθA(x)

(
ξ ◦
(

(φA)||ZθA(x)

Zx

)−1
)

for µ-almost every x ∈ s(A). Arguing as in the proof of [196, Theorem 3.2.1], one can see that if A

and B are in Σ and U ∈ E(Σ), then

– TAx = TBx for µ-almost every x ∈ s(A ∩B),

– (TAx )−1 = TA
−1

θA(x) for µ-almost every x ∈ s(A), and

– TUx is the identity operator of Lp(λx) for µ-almost every x ∈ U .

Moreover, up to discarding a ν-null set, the assignment T : G → Iso(Z) given by Tγ = TAγ

for some A ∈ Σ containing γ, is well defined and determines a representation of G on Z. It is a

consequence of Equation (XX.10) that

〈ρ(A)ξ, η〉 =

∫
D (xA)

− 1
p

〈
TxAξθ−1

A (x), ηx

〉
dµ(x),

for every ξ ∈ Lp(Z, µ) and every η ∈ Lp′(µ,Z ′). This concludes the proof of Theorem XX.5.1.

Lp-operator Algebras of Etale Groupoids

Throughout this section, we fix a Hölder exponent p ∈ (1,∞).

Lp-operator algebras

Definition XX.6.1. A concrete Lp-operator algebra is a subalgebra A of B(Lp(λ)) for some σ-

finite Borel measure λ on a standard Borel space. The identification of Mn(A) with a subalgebra

of B(Lp(λ(n))) induces a norm on Mn(A). The collection of such norms defines a p-operator

space structure on A as in [48, Section 4.1]. Moreover the multiplication on A is a p-completely

contractive bilinear map. (Equivalently Mn(A) is a Banach algebra for every n ∈ N.)

An abstract Lp-operator algebra is a Banach algebra A endowed with a p-operator space

structure, which is p-completely isometrically isomorphic to a concrete Lp-operator algebra.
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Let A be a separable matricially normed algebra and let R be a collection of p-completely

contractive nondegenerate representations of A on Lp-spaces. Set IR =
⋂
π∈R

Ker(π). Then IR is an

ideal in A. Arguing as in [17, Section 1.2.16], the completion FR(A) of A/IR with respect to the

norm

‖a+ I‖ = sup{‖π(a)‖ : π ∈ R}

for a ∈ A, is a Banach algebra. Moreover, FR(A) has a natural p-operator space structure that

makes it into an (abstract) Lp-operator algebra.

Remark XX.6.2. If R separates the points of A, then the ideal IR is trivial, and hence the

canonical map A→ FR(A) is an injective p-completely contractive homomorphism.

Definition XX.6.3. Let Rp denote be the collection of all p-completely contractive

nondegenerate representations of A on Lp-spaces associated with σ-finite Borel measures on

standard Borel spaces. Then FR
p

(A) is abbreviated to F p(A), and called the enveloping Lp-

operator algebra of A.

Suppose further that A is a matricially normed *-algebra with a completely isometric

involution a 7→ a∗. If π : A→ B(Lp(λ)) is a p-completely contractive nondegenerate representation

as before, then the dual representation of π is the p′-completely contractive nondegenerate

representation π′ given by π′(a) = π(a∗)′ for all a ∈ A.

Let R be a collection of p-completely contractive nondegenerate representations of A on

Lp-spaces, and denote by R′ the collection of duals of elements of R. It is immediate that the

involution of A extends to a p-completely isometric anti-isomorphism FR(A) → FR
′
(A). Finally,

since (Rp)′ = Rp′ , the discussion above shows that the involution of A extends to a p-completely

isometric anti-isomorphism F p(A)→ F p
′
(A).

The full Lp-operator algebra of an etale groupoid

Let G be an etale groupoid.

Definition XX.6.4. We define the full Lp-operator algebra F p(G) of G to be the enveloping

Lp-operator algebra of the matricially normed *-algebra Cc(G).
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Remark XX.6.5. By Proposition XX.3.30, the family of p-completely contractive nondegenerate

representations of Cc(G) on Lp-spaces separates the points of Cc(G), and hence the canonical map

Cc(G)→ F p(G) is injective.

The proof of the following is straightforward, and is left to the reader.

Proposition XX.6.6. The correspondence sending a p-completely contractive representation

of F p(G) on an Lp-space to its restriction to Cc(G), is a bijective correspondence between p-

completely contractive representations of F p(G) on Lp-spaces and p-completely contractive

representations of Cc(G) on Lp-spaces.

Definition XX.6.7. Let Σ be an inverse semigroup, and consider the matricially normed *-

algebra CΣ. Denote by Rptight the collection of tight representations of Σ on Lp-spaces. We define

the tight enveloping Lp-operator algebra of Σ, denoted F ptight(Σ), to be FR
p
tight(CΣ).

Remark XX.6.8. Since the dual of a tight representation is also tight, it follows that the

involution on CΣ extends to a p-completely isometric anti-isomorphism F ptight(Σ)→ F p
′

tight(Σ).

Let Σ be an inverse semigroup of open slices of G that is a basis for its topology. Let Z be

a Borel Banach bundle over G0, and let (T, µ) be a representation of G on Z. Then T induces a

tight representation ρT : Σ→ S(Lp(Z)) determined by

〈ρT (A)ξ, η〉 =

∫
r(A)

D−
1
p (xA)

〈
TxAξθ−1

A (x), ηx

〉
dµ(x)

for all A ∈ Σ, for all ξ ∈ Lp(Z) and all η ∈ Lp′(Z ′). We also denote by πT the integrated form of

T as in Theorem XX.3.14.

It is shown in Subsection XX.4 that a contractive representation π of Cc(G) on Lp(λ)

induces a tight regular representation ρπ of Σ on Lp(λ).

Theorem XX.6.9. Adopt the notation of the comments above.

1. The assignment T 7→ ρT determines a bijective correspondence between representations of G

on Lp-bundles and tight regular representations of Σ on Lp-spaces.

2. The assignment π 7→ ρπ determines a bijective correspondence between contractive

representations of Cc(G) on Lp-spaces and tight regular representations of Σ on Lp spaces.
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3. The assignment T 7→ πT assigning is a bijective correspondence between representations of G

on Lp-bundles and contractive representations of Cc(G) on Lp-spaces.

Moreover, the correspondences in (1), (2), and (3) preserve the natural relations of

equivalence of representations.

The difference between (1) and (3) above is that in (3) the representations of Σ are not

necessarily assumed to be regular. In fact this condition is trivially satisfied by any representation

in the case of the inverse semigroup of compact open slices.

Proof. (1). This is an immediate consequence of the Disintegration Theorem XX.5.1.

(2). Suppose that ρ is a tight representation of Σ on Lp(λ). Applying the Disintegration

Theorem XX.5.1 one obtains a representation (µ, T ) of G on the bundle
⊔
x∈G0 Lp(λ) for a

disintegration λ =
∫
λxdµ (x). One can then assign to ρ the integrated form πρ of (µ, T ). It is

easy to verify that the maps ρ 7→ πρ and π 7→ ρπ are mutually inverse.

Finally (3) follows from combining (1) and (2).

Observe that when G is ample, and Σ is the inverse semigroup of compact open slices, any

tight representation of Σ on an Lp-space is automatically regular.

Corollary XX.6.10. If A is an Lp-operator algebra, then any contractive homomorphism from

Cc(G) or F p(G) to A is automatically p-completely contractive.

Proof. It is enough to show that any contractive nondegenerate representation of Cc(G) on an

Lp-space is p-completely contractive. This follows from part (3) of Theorem XX.6.9, together

with the fact that the integrated form of a representation of G on an Lp-bundle is p-completely

contractive, as observed in Subsection XX.3.

Corollary XX.6.11. Adopt the assumptions of Theorem XX.6.9, and suppose moreover that

G is ample. Then the Lp-operator algebras F p(G) and F ptight(Σ) are p-completely isometrically

isomorphic. In particular, F p(G) is generated by its spatial partial isometries.

Proof. This follows from part (2) of Theorem XX.6.9.
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Reduced Lp-operator algebras of etale groupoids

Let µ be a (not necessarily quasi-invariant) Borel probability measure on G0, and let ν

be the measure on G associated with µ as in Subsection XX.3. Denote by Ind(µ) : Cc(G) →

B(Lp(ν−1)) the left action by convolution. Then Ind(µ) is contractive and nondegenerate.

Remark XX.6.12. When µ is quasi-invariant, the representation Ind(µ) is the integrated form

of the left regular representation Tµ of G on
⊔

x∈G0

`p(xG) as defined in Subsection XX.3.27. The

same argument as in Lemma XX.3.28 shows that a function f in Cc(G) belongs to Ker(Ind(µ)) if

and only if f vanishes on the support of ν.

Definition XX.6.13. Define Rpλ red to be the collection of representations Ind(µ) where µ varies

among the Borel probability measures on G0. The reduced Lp-operator algebra F pλ (G) of G is the

enveloping Lp-operator algebra FR
p
λ(Cc(G)). The norm on F pλ (G) is denoted by ‖ · ‖λ.

By Proposition XX.3.30, the family Rpλ separates points, and hence the canonical map

Cc(G) → F pλ (G) is injective. It follows that the identity map on Cc(G) extends to a canonical

p-completely contractive homomorphism F p(G)→ F pλ (G) with dense range.

Remark XX.6.14. The dual of Ind(µ) : Cc(G) → B(Lp(ν−1)) is the representation

Ind(µ) : Cc(G)→ B(Lp
′
(ν)), and thus the involution on Cc(G) extends to a p-completely isometric

anti-isomorphism F pred(G)→ F p
′

λ (G).

For x ∈ G0, we write δx for its associated point mass measure, and write Ind(x) in place of

Ind(δx). In this case, ν is the counting measure cxG on xG, and ν−1 is the counting measure cGx

on Gx. Moreover, Ind(x) is given by

(Ind(x)f(ξ))(ρ) =
∑

γ∈r(ρ)G

f(γ)ξ(γ−1ρ)

for f ∈ Cc(G), ξ ∈ Lp(ν−1), and ρ ∈ Gx.

Proposition XX.6.15. Let µ be a probability measure on G0. If f ∈ Cc(G), then

‖Ind(µ)f‖ = sup
x∈supp(µ)

‖Ind(x)(f)‖.
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Proof. Denote by C the support of µ and fix f ∈ Cc(G). Set

M = sup
x∈supp(µ)

‖Ind(x)(f)‖.

We will first show that ‖Ind(µ)f‖ ≤ M . Given ξ ∈ Lp(ν−1) and η ∈ Lp′(ν−1) with ‖ξ‖, ‖η‖ ≤ 1,

we use Hölder’s inequality at the second to last step to get

|〈Ind(µ)(f)ξ, η〉| =
∣∣∣∣∫ (Ind(µ)(f)ξ) (ρ)η(ρ) dν−1(ρ)

∣∣∣∣
=

∣∣∣∣∣∣
∫ ∑

γ∈r(ρ)G

f(γ)ξ(γ−1ρ)η(ρ) dν−1(ρ)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫
C

∑
ρ∈Gx

∑
γ∈r(ρ)G

f(γ)ξ(γ−1ρ)η(ρ) dµ(x)

∣∣∣∣∣∣
=

∣∣∣∣∫
C

〈Ind(x)(f)ξ|Gx, η|Gx〉 dµ(x)

∣∣∣∣
≤
∫
C

|〈Ind(x)(f)ξ|Gx, η|Gx〉| dµ(x)

≤M
∫
C

‖ξ|Gx‖ ‖η|Gx‖ dµ(x)

= M

∫
C

∑
γ∈Gx

|ξ(γ)|p
 1

p
∑
γ∈Gx

|η(γ)|p
′

 1
p′

dµ(x)

≤M

∫
C

∑
γ∈Gx

|ξ(γ)|p dµ(x)

 1
p
∫

C

∑
g∈Gx

|η(γ)|p
′

 1
p′

≤M,

which implies that ‖Ind(µ)f‖ ≤M , as desired.

Conversely, fix x ∈ C and let (Vn)n∈ω be a decreasing sequence of open sets containing x

such that {Vn}n∈ω is a basis for the neighborhoods of x. Then µ(Vn) > 0 for all n in ω, since x

is in the support of µ. For n ∈ ω, choose a positive function fn ∈ Cc(Vn) ⊆ Cc(G) satisfying

fn(x) = 1 and
∫
fn dµ = 1.

Given ξ ∈ Lp(ν−1) and η ∈ Lp′(ν−1), set

ξn =

(
f

1
p
n ◦ s

)
ξ and ηn =

(
f

1
p′
n ◦ s

)
η.
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Then

〈Ind(y)f(ξn), ηn〉 = fn(y)
∑
ρ∈Gy

∑
γ∈r(ρ)G

f(γ)ξ(γ−1ρ)η(ρ)

for all y ∈ G0 and all n ∈ ω. Fix ε > 0. Since the map y 7→ 〈Ind(y)f(ξ), η〉 is continuous on G0,

there is N ∈ ω such that if n ≥ N , then

|〈Ind(y)(f)ξ, η〉 − 〈Ind(x)(f)ξ, η〉| < ε

for every y ∈ Vn. For n ≥ N , we have

|〈Ind(µ)(f)ξn, ηn〉 − 〈Ind(x)(f)ξ, η〉|

=

∫
Vn

fn(y)|〈(Ind(y)(f)− Ind(x)(f))ξ, η〉|dµ(y) < ε.

Therefore

|〈Ind(x)f(ξ), η〉|

= lim
n→∞

|〈Ind(µ)f(ξn), ηn〉| ≤ ‖Ind(µ)f‖ lim
n→∞

‖ξn‖‖ηn‖

= ‖Ind(µ)f‖ lim
n→∞

∑
γ∈Gx

|ξn(γ)|p
 1

p

lim
n→∞

∑
γ∈Gx

|ηn(γ)|p
′

 1
p′

= ‖Ind(µ)f‖‖ξ‖‖η‖.

This concludes the proof.

Corollary XX.6.16. The algebra F pλ (G) of G is p-completely isometrically isomorphic to the

enveloping Lp-operator algebra FR(Cc(G)) with respect to the family of representations R =

{Ind(x) : x ∈ G0}.

Amenable groupoids and their Lp-operator algebras

There are several equivalent characterizations of amenability for etale groupoids. By [2,

Theorem 2.2.13], an etale groupoid is amenable if and only if has an approximate invariant mean.
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Definition XX.6.17. An approximate invariant mean on G is a sequence (fn)n∈ω of positive

continuous compactly supported functions on G such that

1.
∑
γ∈xG

fn(γ) ≤ 1 for every n ∈ ω and every x ∈ G0,

2. the sequence of functions x 7→
∑
γ∈xG

fn(γ) converges to 1 uniformly on compact subsets of

G0, and

3. the sequence of functions

γ →
∑

ρ∈r(γ)G

|fn(ρ−1γ)− fn(ρ)|

converges to 0 uniformly on compact subsets of G.

Lemma XX.6.18. If G is amenable and m ≥ 1, then its amplification Gm is amenable.

Proof. Let (fn)n∈ω be an approximate invariant mean for G. For n ∈ ω, define f
(m)
n : Cc(Gm)→ C

by f
(m)
n (i, γ, j) = 1

mfn(γ) for (i, γ, j) ∈ Gm. It is not difficult to verify that (f
(m)
n )n∈ω is an

approximate invariant mean for Gm. We omit the details.

Definition XX.6.19. A pair of sequences (gn)n∈ω and (hn)n∈ω of positive functions in Cc(G) is

said to be an approximate invariant p-mean for G, if they satisfy the following:

1.
∑
γ∈xG

gn(γ)p ≤ 1 and
∑
γ∈xG

hn(γ)p
′ ≤ 1 for every n ∈ ω and every x ∈ G0,

2. the sequence of functions x 7→
∑
ρ∈xG

gn(ρ)hn(ρ) converges to 1 uniformly on compact subsets

of G0, and

3. the sequences of functions

γ 7→
∑

ρ∈r(γ)G

|gn(γ−1ρ)− gn(ρ)|p

and

γ 7→
∑

ρ∈r(γ)G

|hn(γ−1ρ)− hn(ρ)|p
′

converges to 0 uniformly on compact subsets of G.

It is not difficult to see that any amenable groupoid has an approximate invariant p-mean.

Indeed, if (fn)n∈ω is any approximate invariant mean on G, then the sequences (f
1/p
n )n∈ω and

(f
1/p′

n )n∈ω define an approximate invariant p-mean on G.
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Remark XX.6.20. It is easy to check that if (gn, hn)n∈ω is an approximately invariant p-mean

on G, then (hn ∗ gn)n∈ω converges to 1 uniformly on compact subsets of G.

The following theorem asserts that full and reduced Lp-operator algebras of amenable etale

groupoids are canonically isometrically isomorphic.

Theorem XX.6.21. Suppose that G is amenable. Then the canonical homomorphism F p(G) →

F pλ (G) is a p-completely isometric isomorphism.

Proof. In view of Corollary XX.6.10 and Lemma XX.6.18, it is enough to show that the canonical

p-completely contractive homomorphism from F p(G) to F pλ (G) is isometric. Let µ be a quasi-

invariant measure on G0, let λ be a σ-finite Borel measure on a standard Borel space, and let

λ =
∫
λx dµ(x) be the disintegration of λ with respect to µ. Let T be a representation of G on

Z =
⊔

x∈G0

Lp(λx), and let πT : Cc(G)→ B(Lp(µ,Z)) be its integrated form. We want to show that

‖πT (f)‖ ≤ ‖f‖λ.

Set W =
⊔

x∈G0

`p(Gx,Lp(λx)) and let (gn, hn)n∈ω be an approximate invariant p-mean for

G. For ξ ∈ Lp(µ,Z) and η ∈ Lp′(µ,Z ′), define ξ̂n ∈ Lp(µ,W) and η̂n ∈ Lp
′
(µ,W ′) by

ξ̂n,x(γ) = D
1
p (γ)gn(γ)Tγ−1ξr(γ) and η̂n,x(γ) = D

1
p′ (γ)hn(γ)Tγ−1ηr(γ).

Then

∫ ∥∥∥ξ̂n,x∥∥∥p dµ(x) =

∫ ∑
γ∈Gx

D(γ) |gn(γ)|p
∥∥ξr(γ)

∥∥p dµ(x)

=

∫
D(γ) |gn(γ)|p

∥∥ξr(γ)

∥∥p dν−1(γ)

=

∫
|gn(γ)|p

∥∥ξr(γ)

∥∥p dν(γ)

=

∫ ∑
γ∈xG

|gn(γ)|p ‖ξx‖p dµ(x) ≤
∫
‖ξx‖p dµ(x).

This shows that ξ̂n belongs to Lp(µ,W) and that ‖ξ̂n‖ ≤ ‖ξ‖. Similarly, η̂n belongs to Lp
′
(µ,W ′)

and ‖η̂n‖ ≤ ‖η‖.

Given x ∈ G0, identify `p(Gx,Lp(λx)) with `p(Gx) ⊗ Lp(λx) and consider the

representation Ind(x) ⊗ 1: Cc(G) → B(`p(Gx,Lp(λx))), which for f ∈ Cc(G) is given by is
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given byQTOallowdisplaybreaks

〈(Ind(x)⊗ 1)(f)v, w〉 =
∑
γ∈Gx

∑
ρ∈r(γ)G

f(ρ)
〈
v(ρ−1γ), w(γ)

〉

for v ∈ `p(Gx,Lp(λx)) and w ∈ `p′(Gx,Lp′(λx)).

Set π =
∫

(Ind(x)⊗ 1) dµ(x) : Cc(G)→ B(Lp(µ,W)). Fix v ∈ Lp(µ,W) and w ∈ Lp′(ν,W ′)

with ‖v‖, ‖w‖ ≤ 1. Then

〈π(f)v, w〉 =

∫
〈(Ind(x)⊗ 1)(f)vx, wx〉 dµ(x)

=

∫ ∑
γ∈Gx

∑
ρ∈r(γ)G

f(ρ)
〈
vx(ρ−1γ), wx(γ)

〉
dµ(x)

and hence

|〈π(f)v, w〉| ≤
∫
|〈(Ind(x)⊗ 1)(f)vx, wx〉|dµ

≤
∫
‖(Ind(x)⊗ 1)(f)‖‖vx‖‖wx‖dµ

≤
∫
‖Ind(x)(f)‖‖vx‖‖wx‖dµ

≤ ‖f‖λ
∫
‖vx‖‖wx‖dµ(x) ≤ ‖f‖λ.

We conclude that ‖π(f)‖ ≤ ‖f‖λ for all f ∈ Cc(G). In particular, for v = ξ̂n and w = η̂n,

one gets

〈
π(f)ξ̂n, η̂n

〉
=

∫ ∑
γ∈Gx

∑
ρ∈s(γ)G

f(ρ)〈ξ̂n,x(ρ−1γ), η̂n,x(γ)〉 dµ

=

∫ ∑
γ∈xG

∑
ρ∈xG

f(ρ)D−
1
p (ρ)gn(ρ−1γ)hn(γ)〈Tρξs(ρ), ηx〉 dµ(x)

=

∫ ∑
ρ∈xG

∑
γ∈xG

gn
(
ρ−1γ

)
hn(γ)

 f(ρ)D−
1
p (ρ)〈Tρξs(ρ), ηx〉 dµ(x)
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=

∫ ∑
ρ∈xG

∑
γ∈xG

hn(γ)g∗n(γ−1ρ)

 f(ρ)D−
1
p (ρ)〈Tρξs(ρ), ηx〉 dµ(x)

=

∫ ∑
ρ∈xG

(hn ∗ gn)(ρ)f(ρ)D−
1
p (ρ)〈Tρξs(ρ), ηx〉 dµ(x)

and thus

lim
n→∞

〈π(f)ξ̂n, η̂n〉

= lim
n→∞

∫ ∑
ρ∈xG

(hn ∗ gn)(ρ)f(ρ)D−
1
p (ρ)〈Tρξs(ρ), ηx〉 dµ(x)

=

∫ ∑
ρ∈xG

f(ρ)D−
1
p (ρ)〈Tρξs(ρ), ηx〉 dµ(x) = 〈πT (f)ξ, η〉 .

We conclude that

‖πT (f)‖ ≤ lim
n→∞

∣∣∣〈π(f)ξ̂n, η̂n

〉∣∣∣ ≤ ‖π(f)‖ ≤ ‖f‖red,

as desired.

Examples: Analogs of Cuntz Algebras and AF-algebras

Throughout this section, we let p ∈ (1,∞).

The Cuntz Lp-operator algebras

Fix d ∈ ω with d ≥ 2. The following is [204, Definition 1.1] and [204, Definition 7.4 (2)].

Algebra representations of complex unital algebras are always assumed to be unital.

Definition XX.7.1. Define the Leavitt algebra Ld to be the universal (complex) algebra with

generators s0, . . . , sd−1, s
∗
0, . . . , s

∗
d−1, subject to the relations

1. s∗jsk = δj,k for j, k ∈ d; and

2.
∑
j∈d

sjs
∗
j = 1.

If λ is a σ-finite Borel measure on a standard Borel space, a spatial representation of Ld on

Lp(λ) is an algebra homomorphism ρ : Ld → S(Lp(λ)) such that for j ∈ d, the operators ρ(sj) and

ρ(s∗j ) are mutually inverse spatial partial isometries, that is, ρ(s∗j ) = ρ(sj)
∗.
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It is a consequence of a fundamental result of J. Cuntz from [39] that any two *-

representations of Ld on a Hilbert space induce the same norm on Ld. The corresponding

completion is the Cuntz C∗-algebra Od.

Cuntz’s result was later generalized by N.C. Phillps in [204] to spatial representations

of Ld on Lp-spaces. Theorem 8.7 of [204] asserts that any two spatial Lp-representations of Ld

induce the same norm on it. The corresponding completion is the Cuntz Lp-operator algebra Opd;

see [204, Definition 8.8]. We now to explain how one can realize Opd as a groupoid Lp-operator

algebra.

Denote by dω the space of infinite sequences of elements of d, endowed with the product

topology. (Recall that d is identified with the set {0, 1, . . . , d− 1} of its predecessors.) Denote by

d<ω the space of (possibly empty) finite sequences of elements of d. The length of an element a of

d<ω is denoted by lh(a). For a ∈ d<ω and x ∈ dω, define aax ∈ dω to be the concatenation of a

and x. For a ∈ d<ω, denote by [a] the set of elements of dω having a as initial segment, that is,

[a] =
{
aax : x ∈ dω

}
.

Clearly {[a] : a ∈ d<ω} is a clopen basis for dω.

Definition XX.7.2. The Cuntz inverse semigroup Σd is the inverse semigroup generated by a

zero 0, a unit 1, and elements sj for j ∈ d, satisfying s∗jsk = 0 whenever j 6= k.

Set s∅ = 1 and sa = sa0
· · · salh(a)−1

∈ Σd for a ∈ d<ω\ {∅}. Every element of Σd can be

written uniquely as sas
∗
b for some a, b ∈ d<ω.

Remark XX.7.3. The nonzero idempotents E(Σd) of Σd are precisely the elements of the form

sas
∗
a for a ∈ d<ω. Moreover, the function d<ω ∪ {0} → E(Σ) given by a 7→ sas

∗
a and 0 7→ 0, is a

semilattice map, where d<ω has its (downward) tree ordering defined by a ≤ b if and only if b is

an initial segment of a, and 0 is a least element of d<ω ∪ {0}.

Observe that if a, b ∈ d<ω, then ab = 0 if and only if a(j) 6= b(j) for some j ∈

min{lh(a), lh(b)}
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Lemma XX.7.4. Let B be a Boolean algebra and let β : d<ω → B be a representation. Then β is

tight if and only if β(∅) = 1 and

β(a) ≤
∨
j∈d

β(aaj)

for every a ∈ d<ω.

Proof. Suppose that β is tight. Since 1 is a cover of E∅,∅, we have β(∅) = 1. Similarly, {aaj : j ∈

d} is a cover of E{a},∅ and thus β(a) ≤
∨
j∈d

β(aaj). Let us now show the “if” implication. By [66,

Proposition 11.8], it is enough to show that for every a ∈ d<ω and every finite cover Z of {a},

one has β(a) ≤
∨
z∈Z

β(z). That this is true follows from the hypotheses, using induction on the

maximum length of elements of Z.

Lemma XX.7.5. Let λ be a σ-finite Borel measure on a standard Borel space, and ρ be a

representation of Σd on Lp(λ). Then ρ is tight if and only if

∑
j∈d

ρ(sjs
∗
j ) = ρ(1) = 1.

Proof. Suppose that ρ is tight. Then ρ|E(Σ) is tight and therefore

1 = ρ(1) =
∨
j∈d

ρ(sjs
∗
j ) =

∑
j∈d

ρ(sjs
∗
j )

by Lemma XX.7.4. Conversely, given a ∈ d<ω, we have

∑
j∈d

ρ(saajs
∗
aaj) =

∑
j∈d

ρ(sasjs
∗
js
∗
a) =

∑
j∈d

ρ(sa)ρ(sjs
∗
j )ρ(s∗a)

= ρ(sa)

∑
j∈d

ρ(sjs
∗
j )

 ρ(s∗a) = ρ(sa)ρ(1)ρ(s∗a)

= ρ(sas
∗
a),

which shows that ρ is tight, concluding the proof.

Proposition XX.7.6. The algebra F ptight(Σd) is p-completely isometric isomorphic to Opd.

Proof. Observe that the Leavitt algebra Ld (see Definition XX.7.1) is isomorphic to the quotient

of CΣd by the ideal generated by the elements δ1 −
∑
j∈d

δsjs∗j and δ0. (Here, δs denotes the
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canonical element in CΣd corresponding to s ∈ Σd.) By Lemma XX.7.5, tight representations

of Σd correspond precisely to spatial representations of the Leavitt algebra Ld as defined in [204,

Definition 7.4]. The result then follows.

It is well known that Σd an inverse semigroup of compact open slices of an ample groupoid

Gd. We now proceed to define Gd. Let T : dω → dω denote the unilateral shift on dω, and observe

that T is one-to-one on [a] whenever lh(a) ≥ 1. Denote by Gd the groupoid

Gd = {(x,m− n, y) : x, y ∈ dω,m, n ∈ N, Tmx = Tny} ,

with operations defined by

s(x,m− n, y) = x , r(x,m− n, y) = y

(x,m− n, y)(y, k − r, z) = (x,m− n+ k − r, z)

(x, k, y)−1 = (y,−k, x).

For a and b in d<ω, set

[a, b] =
{(
aax, lh(a)− lh(b), bax

)
: x ∈ dω

}
⊆ Gd.

The collection {[a, b] : a, b ∈ d<ω} is a basis of clopen slices for Gd, and Gd is therefore ample.

Theorem XX.7.7. Let d ≥ 2 be a positive integer, and let Gd denote the corresponding Cuntz

groupoid. Then F p(Gd) is canonically p-completely isometrically isomorphic to Opd.

Proof. It is easy to check that the function sas
∗
b 7→ [a, b] defines an injective homomorphism

from Σd to the inverse semigroup of compact open slices of Gd. It is well known that Gd is

amenable; see [226, Exercise 4.1.7]. It follows from Theorem XX.6.21, Corollary XX.6.11, and

Proposition XX.7.6, that there are canonical p-completely isometric isomorphisms

F pλ (Gd) ∼= F p(Gd) ∼= F ptight(Σd)
∼= Opd.
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Analogs of AF-algebras on Lp-spaces

In this subsection, we show how one can use the machinery developed in the previous

sections to construct those Lp-analogs of AF-algebras that look like C∗-algebras, and which are

called “spatial” in [215].

Fix n ∈ N. The algebra Mn(C) of n × n matrices with complex coefficients can be

(algebraically) identified with B(`p(n)). This identification turns Mn(C) into an Lp-operator

algebra that we will denote—consistently with [204]—by Mp
n. It is not difficult to verify that Mp

n

can be realized as a groupoid Lp-operator algebra, and we proceed to outline the argument.

Denote by Tn the principal groupoid determined by the trivial equivalence relation on n. It

is well-known (see [225, page 121]) that Tn is amenable. Moreover, the inverse semigroup ΣK(Tn)

of compact open slices of Tn, is the inverse semigroup generated by a zero element 0, a unit 1, and

elements ejk for j, k ∈ n, subject to the relations e∗jke`m = δk`ejm for j, k, `,m ∈ n. It is not

difficult to verify, using Lemma XX.4.19, that a tight Lp-representation ρ of ΣK (T ) satisfies

1 = ρ(1) =
∑
j∈n

ρ(ejj).

It thus follows from [204, Theorem 7.2] that the map from Mp
n to the range of ρ, defined by

assigning ρ (ejk) to the jk-th matrix unit in Mp
n, is isometric. We conclude that F p(Tn) is

isometrically isomorphic to Mp
n. Reasoning in the same way at the level of amplifications shows

that F p(Tn) and Mp
n are in fact p-completely isometrically isomorphic.

If k ∈ N and n = (n0, . . . , nk−1) is a k-tuple of natural numbers, then the Banach algebra

Mp
n0
⊕· · ·⊕Mp

nk−1
acts naturally on the Lp-direct sum `p(n0)⊕

p
· · ·⊕

p
`p(nk−1) ∼= `p(n0 + · · ·+nk−1).

The Banach algebra Mp
n0
⊕ · · · ⊕Mp

nk−1
can also be realized as groupoid Lp-operator algebra by

considering the disjoint union of the groupoids Tn0 , Tn1 , . . . , Tnk−1
.

Here is the definition of spatial Lp-operator AF-algebras

Definition XX.7.8. A separable Banach algebra A is said to be a spatial Lp-operator AF-algebra

if there exists a direct system (An, ϕn)n∈ω of Lp-operator algebras An which are isometrically

isomorphic to algebras of the form Mp
n0
⊕ · · · ⊕Mp

nk
, with isometric connecting maps ϕn : An →

An+1, and such that A is isometrically isomorphic to the direct limit lim−→(An, ϕn)n∈ω.
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Banach algebras as in the definition above, as well as more general direct limits of

semisimple finite dimensional Lp-operator algebras, will be studied in [215].

In the rest of this subsection, we will show that spatial Lp-operator AF-algebras can be

realized as groupoid Lp-operator algebras.

For simplicity, we will start by observing that spatial Lp-operator UHF-algebras are

groupoid Lp-operator algebras. Spatial Lp-operator UHF-algebras are the spatial Lp-operator

AF-algebras where the building blocks An appearing in the definition are all full matrix algebras

Mp
dn

for some dn ∈ ω. These have been defined and studied in [208].

Let d = (dn)n∈ω be a sequence of positive integers. Denote by Apd the corresponding Lp-

operator UHF-algebra defined as above; see also [209, Definition 3.9]. In the following we will

show that Apd is the enveloping algebra of a natural groupoid associated with the sequence d.

Define Zd =
∏
j∈n dj , and consider the groupoid

Gd =

(αax, βax
)

: α, β ∈
∏
j∈n

dj , x ∈
∏
j≥n

dj , n ∈ ω


having Zd as set of objects. (Here we identify x ∈ Zd with the pair (x, x) ∈ Gd.) The operations

are defined by

s(αax, βax) = βax,

(αax, βax)−1 = (βax, αax), and

(αax, βax)(γay, δay) = (αax, δay) whenever βax = γay.

It is well-known that Gd is amenable; see [226, Chapter III, Remark 1.2].

Given k ∈ ω and given α and β in
∏
j∈k dj , define

Uαβ =

(αax, βax
)
∈ Gd : x ∈

∏
j≥k

dj

 .

Then Uαβ : α, β ∈
∏
j∈k

dj , k ∈ ω


is a basis of compact open slices for an ample groupoid topology on Gd.
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Fix k ∈ ω and consider the compact groupoid

Gkd =
⋃Uα,β : α, β ∈

∏
j∈k

dj

 .

The groupoid Gd can be seen as the topological direct limit of the system (Gkd)k∈ω. It is clear

that, if n = d0 · · · dk−1, then Gkd is isomorphic to the groupoid Tn defined previously. Therefore

F p(Gkd) is isometrically isomorphic to Mp
d0···dk−1

.

For k ∈ N, identify C(Gkd) with a *-subalgebra of Cc(Gd), by setting f ∈ C(Gkd) to be

0 outside Gkd. For k < n, we claim that the inclusion map from C(Gkd) to C(Gnd ) induces an

isometric embedding

ϕn : F p(Gkd)→ F p(Gnd ).

This can be easily verified by direct computation, after noticing that Gkd and Gnd are amenable,

and hence the full and reduced norms on C(Gkd) and C(Gnd ) coincide. One then obtains a direct

system
(
F p(Gkd), ϕn

)
n∈N with isometric connecting maps whose limit is F p(G). Since F p(Gkd) ∼=

Mp
d0···dk−1

as observed above, we conclude that F p(Gd) ∼= Apd.

We now turn to spatial AF-algebras. As in the C∗-algebra case, there is a natural

correspondence between Lp-operator AF-algebras and Bratteli diagrams. Let (E, V ) be a Bratteli

diagram, and A(E,V ) be the associated Lp-operator AF-algebra. In the following, we will explain

how to realize A(E,V ) as a groupoid Lp-operator algebra.

Denote by X the set of all infinite paths in (E, V ). Then X is a compact zero dimensional

space. Denote by G(E,V ) the tail equivalence relation on X, regarded as a principal groupoid

having X as set of objects. It is well known that G(E,V ) is amenable; see [226, Chapter III,

Remark 1.2]. If α, β are finite paths of the same length and with the same endpoints, define Uαβ

to be the set of elements of G(E,V ) of the form
(
αax, βax

)
. The collection of all the sets Uαβ is

a basis for an ample groupoid topology on G(E,V ). For k ∈ ω, let G
(E,V )
k be the union of Uαβ

over all finite paths α, β as before that moreover have length at most k. Then G
(E,V )
n is a compact

groupoid and G is the topological direct limit of (G
(E,V )
k )k∈ω.

Fix k ∈ ω. Denote by l the cardinality of the k-th vertex set Vk. Denote by n0, . . . , nl−1 the

multiplicities of the vertices in Vk. (The multiplicity of a vertex in a Bratteli diagram is defined in

the usual way by recursion.) Set n = (n0, . . . , nl−1), and observe that G
(E,V )
k is isomorphic to the
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groupoid Tn as defined above. In particular

F p
(
G(E,V )
n

)
∼= Mp

n0
⊕ · · · ⊕Mp

nl−1
.

As before, one can show that the direct system (F p(G
(E,V )
n ))n∈ω has isometric connecting maps,

and that the inductive limit is F p(G(E,V )). This concludes the proof that A(E,V ) is p-completely

isometrically isomorphic to F p
(
G(E,V )

)
. In particular, this shows that A(E,V ) is indeed an Lp-

operator algebra.

Concluding Remarks and Outlook

It is not difficult to see that the class of Lp-operator algebras is closed—within the class of

all matricially normed Banach algebras—under taking subalgebras and ultraproducts. As observed

by Ilijas Farah and Chris Phillips, this observation, together with a general result from logic for

metric structures, implies that the class of Lp-operator algebras is—in model-theoretic jargon—

universally axiomatizable. This means that Lp-operator algebras can be characterized as those

matricially normed Banach algebras satisfying certain expressions only involving

– the algebra operations,

– the matrix norms,

– continuous functions from Rn to R, and

– suprema over balls of matrix amplifications.

Determining what these expressions are seems to be, in our opinion, an important problem

in the theory of algebras of operators on Lp-spaces.

Problem XX.8.1. Find an explicit intrinsic characterization of Lp-operator algebras within the

class of matricially normed Banach algebras.

An explicit characterization of algebras acting on subspaces of quotients of Lp-spaces was

provided by Le Merdy in [165]. These are precisely the matricially normed Banach algebras that

are moreover p-operator spaces in the terminology of [48], and such that multiplication is p-

completely contractive. Similar results have been obtained by Junge for algebras of operators

on subspaces of Lp-spaces; see [140, Corollary 1.5.2.2].
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It is shown in [20, Theorem 5.1] that the reduced C∗-algebra of an etale groupoid is simple

if and only the groupoid is minimal and topologically principal. (A groupoid is called minimal if

it has no nontrivial invariant open set of objects, and topologically principal if the set of objects

with trivial isotropy group is dense.) We believe that the same should be true for the reduced

Lp-operator algebras of etale groupoids. This has been shown for Lp-analogs of UHF-algebras and

Cuntz algebras in [209] by seemingly ad hoc methods.

Problem XX.8.2. Is F pλ (G) simple whenever G is a minimal and topologically principal etale

groupoid?

A potential application of groupoids to the theory of Lp-operator algebras comes from

the technique of Putnam subalgebras. Let X be a compact metric space and let h : X → X be

a homeomorphism. Denote by u the canonical unitary in the C*-crossed product C(X) oh Z

implementing h. If Y is a closed subset of X, then the corresponding Putnam subalgebra

(C(X)oh Z)Y is the C∗-subalgebra of C(X)oh Z generated by C(X) and uC0(X\Y ). It is known

that (C(X)oh Z)Y can be described as the enveloping C∗-algebra of a suitable etale groupoid.

In the context of C∗-algebras, Putnam subalgebras are fundamental in the study of

transformation group C∗-algebras of minimal homeomorphisms. For example, Putnam showed

in [218, Theorem 3.13] that if h is a minimal homeomorphism of the Cantor space X, and Y is a

nonempty clopen subset of X, then (C(X) oh Z)Y is an AF-algebra. This is then used in [218] to

prove that the crossed product (C(X) oh Z)Y is a simple AT-algebra of real rank zero. Similarly,

Putnam subalgebras were used by Huaxin Lin and Chris Phillips in [172] to show that, under

a suitable assumption on K-theory, the crossed product of a finite dimensional compact metric

space by a minimal homeomorphism is a simple unital C∗-algebra with tracial rank zero.

Considering the groupoid description of Putnam subalgebras provides a natural application

of our constructions to the theory of Lp-crossed products introduced in [207]. It is conceivable

that with the aid of groupoid Lp-operator algebras, Putnam subalgebras could be used to obtain

generalizations of the above mentioned results to Lp-crossed products.

672



CHAPTER XXI

NONCLASSIFIABILITY OF UHF LP -OPERATOR ALGEBRAS

This chapter is based on joint work with Martino Lupini ([90]).

We prove that simple, separable, monotracial UHF Lp-operator algebras are not classifiable

up to (complete) isomorphism using countable structures, such as K-theoretic data, as invariants.

The same assertion holds even if one only considers UHF Lp-operator algebras of tensor product

type obtained from a diagonal system of similarities. For p = 2, it follows that separable

nonselfadjoint UHF operator algebras are not classifiable by countable structures up to (complete)

isomorphism. Our results, which answer a question of N. Christopher Phillips, rely on Borel

complexity theory, and particularly Hjorth’s theory of turbulence.

Introduction

Suppose that X is a standard Borel space and λ is a Borel probability measure on X. For

p ∈ [1,∞), we denote by Lp(λ) the Banach space of Borel-measurable complex-valued functions

on X (modulo null sets), endowed with the Lp-norm. Let B(Lp(λ)) denote the Banach algebra of

bounded linear operators on Lp(λ) endowed with the operator norm. We will identify the Banach

algebra Mn(B(Lp(λ))) of n× n matrices with entries in B(Lp(λ)), with the algebra B(Lp(λ)⊕n) of

bounded linear operators on the p-direct sum Lp(λ)⊕n of n copies of Lp(λ).

A (concrete) separable, unital Lp-operator algebra, is a separable, closed subalgebra of

B(Lp(λ)) containing the identity operator. (Such a definition is consistent with [207, Definition

1.1], in view of [207, Proposition 1.25].) In the following, all Lp-operator algebras will be assumed

to be separable and unital. Every unital Lp-operator algebra A ⊆ B(Lp(λ)) is in particular a

p-operator space in the sense of [48, 4], with matrix norms obtained by identifying Mn(A) with a

subalgebra of Mn(B(Lp(λ))).

If A is a unital complex algebra, then an Lp-representation of A on a standard Borel

probability space (X,λ) is a unital algebra homomorphism ρ : A → B(Lp(λ)). The closure inside

B(Lp(λ)) of ρ(A) is an Lp-operator algebra, called the Lp-operator algebra associated with ρ.

It can be identified with the completion of A with respect to the operator seminorm structure
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‖[aij ]‖ρ = ‖[ρ(aij)]‖Mn(B(Lp(λ))) for [aij ] ∈ Mn(A); see [17, 1.2.16]. A unital homomorphism ϕ is

completely bounded if every amplification ϕ(n) is bounded and

‖ϕ‖cb = sup
n∈N

∥∥∥ϕ(n)
∥∥∥

is finite.

Definition XXI.1.1. Let A and B be unital Lp-operator algebras.

1. A and B are said to be (completely) isomorphic, if there is a (completely) bounded unital

isomorphism ϕ : A→ B with (completely) bounded inverse ϕ−1 : B → A.

2. A and B are said to be (completely) commensurable if there are (completely) bounded unital

homomorphisms ϕ : A→ B and ψ : B → A.

For d ∈ N, we denote by Md the unital algebra of d × d complex matrices, with matrix

units {ei,j}1≤i,j≤d. Let d = (dn)n∈N be a sequence in N, and let ρ = (ρn)n∈N be a sequence of

representations ρn : Mdn → B(Lp(Xn, λn)). Define Md to be the algebraic infinite tensor product⊗
n∈N

Mdn . Let X =
∏
n∈N

Xn be the product Borel space and λ =
⊗
n∈N

λn be the product measure.

We naturally regard the algebraic tensor product
⊗
n∈N

B(Lp(λn)) as a subalgebra of B(Lp(λ)). The

correspondence

Md →
⊗
n∈N

B(Lp(λn)) ⊆ B(Lp(λ))

a1 ⊗ · · · ⊗ ak 7→ ρ1(a1)⊗ · · · ⊗ ρk(ak),

extends to a unital homomorphism Md → B(Lp(λ)).

Definition XXI.1.2. The algebra A(d,ρ) as defined in [204, Example 3.8], is the Lp-operator

algebra associated with ρ. A UHF Lp-operator algebra of tensor product type d is an algebra of

the form A(d,ρ) for some sequence ρ as above; see [204, Definition 3.9] and [208, Definition 1.7].

A special class of UHF Lp-operator algebras of tensor product type d has been introduced

in [208, Section 5]. For d ∈ N, denote by cd the normalized counting measure on d =

{0, 1, 2, . . . , d− 1}, and set `p(d) = Lp({0, . . . , d− 1}, cd). The (canonical) spatial representation σd
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of Md on `p(d) is defined by setting

(
σd(a)ξ

)
(j) =

∑
i=0,...,d−1

aijξ(i)

for a ∈ Md, for ξ ∈ `p(d) and j = 0, . . . , d − 1; see [204, Definition 7.1]. Observe that the

corresponding matrix norms on Md are obtained by identifying Md with the algebra of bounded

linear operators on `p(d).

Fix a real number γ in [1,+∞), and an enumeration (wd,γ,k)k∈N of all diagonal d × d

matrices with entries in [1, γ] ∩ Q. Let X be the disjoint union of countably many copies of

{0, 1, . . . , d − 1}, and let λd be the Borel probability measure on X that agrees with 2−kcd on

the k-th copy of {0, 1, . . . , d− 1}. We naturally identify the algebraic direct sum
⊕
n∈N

B(`p(d)) with

a subalgebra of B(Lp(λd)). The map

Md →
⊕
n∈N

B(`p(d)) ⊆ B(Lp(λd))

x 7→
(
σd
(
wd,γ,kxw

−1
d,γ,k

))
k∈N

defines a representation ργ : Md → B(Lp(λd)).

For a sequence γ in [1,+∞), we will denote by ργ the sequence of representations

ργn : Mdn → B(Lp(λdn)) described in the paragraph above. Following the terminology in [208,

Section 3 and Section 5], we say that the corresponding UHF Lp-operator algebras A(d,ργ) are

obtained from a diagonal system of similarities .

Definition XXI.1.3. If A is a unital Banach algebra, a normalized trace on A is a continuous

linear functional τ : A → C with τ(1) = 1, satisfying τ(ab) = τ(ba) for all a, b ∈ A. The algebra A

is said to be monotracial if A has a unique normalized trace.

Recall that a Banach algebra is said to be simple if it has no nontrivial closed two-sided

ideals.

Remark XXI.1.4. It was shown in [209, Theorem 3.19(3)] that UHF Lp-operator algebras

obtained from a diagonal system of similarities are always simple and monotracial.
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Problem 5.15 of [208] asks to provide invariants which classify, up to isomorphism,

some reasonable class of UHF Lp-operator algebras, such as those constructed using diagonal

similarities. The following is the main result of the present chapter, which is based on [90].

Theorem XXI.1.5. The simple, separable, monotracial UHF Lp-operator algebras are not

classifiable by countable structures up to any of the following equivalence relations:

1. complete isomorphism;

2. isomorphism;

3. complete commensurability;

4. commensurability.

The same conclusions hold even if one only considers UHF Lp-operator algebras of tensor

product type d obtained from a diagonal system of similarities for a fixed sequence d = (dn)n∈N of

positive integers such that, for every distinct n,m ∈ N, neither dn divides dm nor dm divides dn.

It follows from Theorem XXI.1.5 that simple, separable, UHF Lp-operator algebras

with a unique tracial state are not classifiable by K-theoretic data, even after adding to the

K-theory a countable collection of invariants consisting of countable structures. When p = 2,

Theorem XXI.1.5 asserts that separable nonselfadjoint UHF operator algebras are not classifiable

by countable structures up to isomorphism. This conclusion is in stark constrast with Glimm’s

classification of UHF C∗-algebras by their corresponding supernatural number [102]. (Observe

that, in view of Glimm’s classification, Banach-algebraic isomorphism and ∗-isomorphism coincide

for UHF C∗-algebras.)

Borel Complexity Theory

In order to obtain our main result, we will work in the framework of Borel complexity

theory. In such a framework, a classification problem is regarded as an equivalence relation E on a

standard Borel space X. If F is another equivalence relation on another standard Borel space Y , a

Borel reduction from E to F is a Borel function g : X → Y with the property that

xEx′ if and only if g(x)Fg(x′).
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The map g can be seen as a classifying map for the objects of X up to E. The requirement

that g is Borel captures the fact that g is explicit and constructible (and not, for example,

obtained by using the Axiom of Choice). The relation E is Borel reducible to F if there is a Borel

reduction from E to F . This can be interpreted as asserting that is it possible to explicitly classify

the elements of X up to E using F -classes as invariants.

The notion of Borel reducibility provides a way to compare the complexity of classification

problems in mathematics. Some distinguished equivalence relations are then used as benchmarks

of complexity. The first such a benchmark is the relation =R of equality of real numbers. (One

can replace R with any other Polish space.) An equivalence relation is called smooth if it is Borel

reducible to =R. Equivalently, an equivalence relation is smooth if its classes can be explicitly

parametrized by the points of a Polish space. For instance, the above mentioned classification of

UHF C∗-algebras due to Glimm [102] shows that the classification problem of UHF C∗-algebras

is smooth. Smoothness is a very restrictive notion, and many natural classification problems

transcend such a benchmark. For instance, the relation of isomorphism of rank 1 torsion-free

abelian groups is not smooth; see [127].

A more generous notion of classifiability is being classifiable by countable structures.

Informally speaking, an equivalence relation E on a standard Borel space X is classifiable by

countable structures if it is possible to explicitly assign to the elements of X complete invariants

up to E that are countable structures, such as as countable (ordered) groups, countable (ordered)

rings, etcetera. To formulate precisely this definition, let L be a countable first order language

[180, Definition 1.1.1]. The class Mod(L) of L-structures supported by the set N of natural

numbers can be regarded as a Borel subset of
∏
n∈N

2N
n

. As such, Mod(L) inherits a Borel structure

making it a standard Borel space. Let ∼=L be the relation of isomorphism of elements of Mod(L).

Definition XXI.2.1. An equivalence relation E on a standard Borel space is said to be

classifiable by countable structures, if there exists a countable first order language L such that

E is Borel reducible to ∼=L.

The Elliott-Bratteli classification of AF C∗-algebras ([57] and [19]) shows, in particular,

that AF C∗-algebras are classifiable by countable structures up to ∗-isomorphism. Any smooth

equivalence relation is in particular classifiable by countable structures.
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Many naturally occurring classification problems in mathematics, and particularly in

functional analysis and operator algebras, have recently been shown to transcend countable

structures. This has been obtained, for examample, for the relation of unitary conjugacy of

irreducible representations and automorphisms of non type I C∗-algebras ([124], [148], [69], [177]);

for the relation of conjugacy for automorphisms of Z-stable C∗-algebras and McDuff II1 factors

([149]); and for the relation of isomorphism for von Neumann factors ([244], [245]). The main tool

involved in these results is the theory of turbulence developed by Hjorth in [125].

Suppose that G y X is a continuous action of a Polish group G on a Polish space X. The

corresponding orbit equivalence relation EXG is the relation on X obtained by setting xEXG x
′ if

and only if x and x′ belong to the same orbit. Hjorth’s theory of turbulence provides a dynamical

condition, called (generic) turbulence, that ensures that a Polish group action G y X yields

an orbit equivalence relation EXG that is not classifiable by countable structures. This provides,

directly or indirectly, useful criteria to prove that a given equivalence relation is not classifiable by

countable structures. A prototypical example of turbulent group action is the action of `1 on RN

by translation. A standard argument allows one to deduce the following nonclassification criterion

from turbulence of the action `1 y RN and Hjorth’s turbulence theorem [125, Theorem 3.18]; see

for example [177, Lemma 3.2 and Criterion 3.3].

Recall that a subspace of a topological space is meager if it is contained in the union of

countably many closed nowhere dense sets.

Proposition XXI.2.2. Suppose that E is an equivalence relation on a standard Borel space X.

If there is a Borel map f : [0,+∞)N → X such that

1. f(t)Ef(t′) whenever t, t′ ∈ [0,+∞)N satisfy t− t′ ∈ `1, and

2. the preimage under f of any E-class is meager,

then E is not classifiable by countable structures.

We will apply such a criterion to establish our main result.

Nonclassification

Fix a sequence d = (dn)n∈N of integers such that for every distinct n,m ∈ N, neither dn

divides dm nor dm divides dn. In particular, this holds if the numbers dn are pairwise coprime.
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The same argument works if one only assumes that all but finitely many values of d satisfy such

an assumption. We endow [1,+∞)N with the product topology, and regard it as the parametrizing

space for UHF Lp-operator algebras of type d obtained from a diagonal system of similarities,

as described in the previous section; see also [208, Section 3 and Section 5]. We therefore regard

(complete) isomorphism and (complete) commensurability of UHF Lp-operator algebras of type d,

obtained from a diagonal system of similarities, as equivalence relations on [1,+∞)N.

For γ ∈ [1,+∞)N, we denote by Aγ the corresponding UHF Lp-operator algebra. In

the following, we will denote by γ and γ′ sequences (γn)n∈N and (γ′n)n∈N in [1,+∞)N. For

γ ∈ [1,+∞), we denote by Mγ
d the Lp-operator algebra structure on Md induced by the

representation ργ defined in Section XXI.1. The corresponding matrix norms on Mγ
d are denoted

by ‖ · ‖γ . In particular, when γ = 1 one obtains the matrix norms induced by the spatial

representation σd of Md. The algebra Aγ can be seen as the Lp-operator tensor product
p⊗

n∈N
Mγn
dn

,

as defined in [209, Definition 1.9]. (Note that, unlike in [209], we write the Hlder exponent p as a

superscript in the notation for tensor products.)

Lemma XXI.3.1. Let γ,γ′ ∈ [1,+∞)N satisfy

L :=
∏
n∈N

γn
γ′n

< +∞.

Then the identity map on the algebraic tensor product Md =
⊗
n∈N

Mdn extends to a completely

bounded unital homomorphism Aγ → Aγ
′
, with ‖ϕ‖cb ≤ L. In other words, the matrix norms

‖ · ‖γ and ‖ · ‖γ′ on the algebraic tensor product
⊗
n∈N

Mdn satisfy

‖ · ‖γ′ ≤ L‖ · ‖γ .

Proof. For j ∈ N, let Lj =
γj
γ′j

. Fix ε > 0. In order to prove our assertion, it is enough to show

that if k ∈ N and x is an element of Mk

(⊗
j∈N

Mdj

)
, then ‖x‖γ′ ≤ (1 + ε)L‖x‖γ . Let x ∈

Mk

(⊗
j∈N

Mdj

)
, and choose n,m ∈ N and Xi,j ∈Mk(Mdi) for 1 ≤ i ≤ n and 1 ≤ j ≤ m, satisfying

x =
∑

1≤j≤m

X1,j ⊗ · · · ⊗Xn,j
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By definition of the matrix norms on Aγ , for 1 ≤ i ≤ n there exists a diagonal matrix wi ∈ Mdi

with entries in [1, γi] such that, if Wi ∈ Mk(Mdi) is the diagonal matrix with entries in Mdi , and

nonzero entries equal to wi (in other words, Wi = 1Mk
⊗ wi), then

‖x‖γ ≤ (1 + ε)

∥∥∥∥∥∥
∑

1≤j≤m

W1X1,jW
−1
1 ⊗ · · · ⊗WnXn,jX

−1
n

∥∥∥∥∥∥ .
For 1 ≤ i ≤ n, we denote the diagonal entries of wi ∈ Mdj by ai,`, for ` = 1, . . . , di. We will

define two other diagonal matrices

w′i = diag(a′i,1, . . . , a
′
i,di) and ri = diag(ri,1, . . . , ri,di)

in Mdi , with entries in [1, γ′i] and [1, Li], respectively, as follows. For 1 ≤ ` ≤ di, we set

a′i,` =

 ai,`, if ai,` < γ′i;

γ′i, if aj,` ≥ γ′i.

and

ri,` =

 1, if ai,` < γ′i;

1
γ′i
ai,`, if ai,` ≥ γ′i.

Observe that ri,` belongs to [1, Li] (since ai,` ≤ γi ≤ Liγ
′
i), and that a′i,` belongs to [1, γ′i] for all

1 ≤ i ≤ n and 1 ≤ ` ≤ di.

Define w′i and ri to be the diagonal di × di matrices with diagonal entries a′i,` and ri,`

for 1 ≤ ` ≤ di. Let W ′i , Ri ∈ Mk(Mdi) be the diagonal k × k matrices with entries in Mdi

having diagonal entries equal to, respectively, w′i and ri. (In other words, W ′i = 1Mk
⊗ w′i and

Ri = 1Mk
⊗ ri.)

Then Wi = RiW
′
i for all 1 ≤ i ≤ n. Additionally,

‖Ri‖ ≤ Li and
∥∥R−1

i

∥∥ ≤ 1.
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Therefore,

‖x‖γ ≤ (1 + ε)

∥∥∥∥∥∥
∑

1≤j≤m

W1X1,jW
−1
1 ⊗ · · · ⊗WnXn,jW

−1
n

∥∥∥∥∥∥
= (1 + ε)

∥∥∥∥∥∥
∑

1≤j≤m

R1W
′
1X1,jW

′−1
1 R−1

1 ⊗ · · · ⊗RnW ′nXn,jW
′−1
n R−1

n

∥∥∥∥∥∥
≤ (1 + ε) ‖R1‖ ‖R2‖ · · · ‖Rn‖

∥∥∥∥∥∥
∑

1≤j≤m

W ′1X1,jW
′−1
1 ⊗ · · · ⊗W ′nXn,jW

′−1
n

∥∥∥∥∥∥
≤ (1 + ε)L1 · · ·Ln

∥∥∥∥∥∥
∑

1≤j≤m

W ′1X1,jW
′−1
1 ⊗ · · · ⊗W ′nXn,jW

′−1
n

∥∥∥∥∥∥
≤ (1 + ε)L ‖x‖γ′ .

This concludes the proof.

Corollary XXI.3.2. If γ,γ′ ∈ [1,+∞)N satisfy

∏
n∈N

max

{
γn
γ′n
,
γ′n
γn

}
< +∞,

then Aγ and Aγ
′

are completely isomorphic.

The following lemma can be proved in the same way as [208, Lemma 5.11] with the extra

ingredient of [208, Lemma 5.8]. As before, we denote by ⊗p the Lp-operator tensor product; see

[209, Definition 1.9].

Lemma XXI.3.3. Let L > 0 and let d ∈ N. Then there is a constant R(L, d) > 0 such that the

following holds. Whenever A is a unital Lp-operator algebra, whenever γ, γ′ ∈ [1,+∞) satisfy

γ′ ≥ R(L, d)γ,

and ϕ : Mγ
d → Mγ′

d ⊗p A is a unital homomorphism with ‖ϕ‖ ≤ L, there exists a unital

homomorphism ψ : Mγ
d → A with ‖ψ‖ ≤ L+ 1.

Our assumption on the values of d will be used for the first time in the next lemma,

where it is shown that sufficiently different sequences yield noncommensurable UHF Lp-operator

algebras.
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The K0-group of a Banach algebra A is defined using idempotents in matrices over A, and

a suitable equivalence relation involving similarities of such idempotents. We refer the reader to

[13, Chapters 5,8,9] for the precise definition and some basic properties. What we will need here is

the following:

Remark XXI.3.4. For n ∈ N and a unital Banach algebra A, if there exists a unital, continuous

homomorphism Mn → A, then the class of unit of A in K0(A) must be divisible by n.

Lemma XXI.3.5. Suppose that γ,γ′ ∈ [1,+∞)N satisfy γ′n ≥ R(n, dn)γn for infinitely many

n ∈ N. Then there is no continuous unital homomorphism ϕ : Aγ → Aγ
′
.

Proof. Assume by contradiction that ϕ : Aγ → Aγ
′

is a continuous unital homomorphism and set

L = ‖ϕ‖. Pick n ∈ N such that n ≥ L and γ′n ≥ R(n, dn)γn. Set

A =

p⊗
m∈N,m 6=n

Mγm
dm
.

Apply Lemma XXI.3.3 to the unital homomorphism ϕ : Mγn
dn
→ Mγn

dn
⊗p A, to get a unital

homomorphism ψ : Mγn
dn
→ A with ‖ψ‖ ≤ L+ 1.

Using Remark XXI.3.4, we conclude that the class of the unit of A in K0(A) is divisible

by dn. On the other hand, the K-theory of A is easy to compute using that K-theory for Banach

algebras commutes with direct limits (with contractive maps). We get

K0 (A) = Z
[

1

b
: b 6= 0 divides dm for some m 6= n

]

with the unit of A corresponding to 1 ∈ K0(A) ⊆ Q.

Since there is a prime appearing in the factorization of dn that does not divide any dm,

for m 6= n, we deduce that the class of the unit of A in K0(A) cannot be divisible by dn. This

contradiction shows that there is no continuous unital homomorphism ϕ : Aγ → Aγ
′

We say that a set is comeager if its complement is meager. Observe that, by definition, a

nonmeager set interescts every comeager set. Recall that we regard [1,+∞)N as the parametrizing

space of the UHF Lp-operator algebras of tensor product type d obtained from a diagonal system

of similarities. Consistently, we regard (complete) isomorphism and commensurability of such

algebras as equivalence relations on [1,+∞)N.
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Proof of Theorem XXI.1.5. By [209, Theorem 3.19(3)], every UHF Lp-operator algebra of

tensor product type d obtained from a diagonal system of similarities is simple and monotracial.

Therefore, it is enough to prove the second assertion of Theorem XXI.1.5. For t ∈ [0,+∞)N,

define exp(t) to be the sequence (exp(tn))n∈N of real numbers in [1,∞). By Corollary XXI.3.2,

if t, t′ ∈ [0,+∞)N satisfy t−t′ ∈ `1, then Aexp(t) and Aexp(t′) are completely isomorphic. We

claim that for any nonmeager subset C of [0,+∞)
N

one can find t, t′ ∈ C such that Aexp(t) and

Aexp(t′) are not commensurable. This fact together with Corollary XXI.3.2 will show that the

Borel function

[0,+∞)N → [1,+∞)N

t 7→ exp(t)

satisfies the hypotheses of Proposition XXI.2.2 for any of the equivalence relations E in the

statement of Theorem XXI.1.5, yielding the desired conclusion.

Let then C be a nonmeager subset of [0,+∞)N, and fix t ∈ C. We want to find t′ ∈ C such

that Aexp(t) and Aexp(t′) are not commensurable. The set

{
t′ ∈ [0,+∞)N : for all but finitely many n ∈ N, exp(t′n) ≤ R(n, dn) exp(tn)

}
=
⋃
k∈N

{
t′ ∈ [0,+∞)N : ∀n ≥ k, exp(t′n) ≤ R(n, dn) exp(tn)

}
is a countable union of closed nowhere dense sets, hence meager. Therefore, its complement

{
t′ ∈ [0,+∞)N : for infinitely many n ∈ N, exp(t′n) > R(n, dn) exp(tn)

}
,

is comeager. In particular, since C is nonmeager, there is t′ ∈ C such that exp(t′n) ≥

R(n, dn) exp(tn) for infinitely many n ∈ N. By Lemma XXI.3.3, there is no continuous unital

homomorphism from Aexp(t) to Aexp(t′). Therefore Aexp(t) and Aexp(t′) are not commensurable.

This concludes the proof of the above claim.

683



REFERENCES CITED

[1] F. Albiac and N. Kalton. Topics in Banach space theory. Graduate Texts in Mathematics 233,
Springer, New York,, 2006.

[2] C. Anantharaman and J. Renault. Amenable groupoids. Contemp. Math., 282:35–46, 2001.

[3] R. Antoine, F. Perera, and L. Santiago. Pullbacks, c(x)-algebras, and their cuntz semigroup. J.
Funct. Anal., 260(10):2844–2880, 2011.

[4] R. Antoine, F. Perera, and H. Thiel. Tensor products and regularity properties of Cuntz
semigroups. Houston J. Math., to appear (preprint, arXiv:1410.0483), 2014.

[5] M. Atiyah and G. Segal. Equivariant K-theory and completion. J. Differential Geometry,
3:1–18, 1969.
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