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Calogero-Moser systems

Integrable N-particle systems in one dimension w/ (defining) Hamiltonian of
the form

Ur(xa, ..., Xn) = Z ﬁ—i—uﬁx{ X2:ZX,2.

1<i<j<N

» Trigonometric (Sutherland, 1971):

Ur(x, ..., xn) = Z na

oy
LTy Sin a(xi — x;)

» Moser (1975) proved integrability at the classical level by obtaining Lax
representations.

» Olshanetsky & Perelomov (1977) established quantum integrability and
introduced root system generalisations.
(The above systems correspond to Ay_1.)



Lassalle=Nekrasov Correspondence

The rational (U = Ug) and trigonometric (U = Ur) dynamics are very
different:

> Rational: the system is isochronous, i.e. all solutions are periodic w/ the
same period 27/w.

» Trigonometric: the motion is much more complicated.

In a surprising development, Nekrasov (1997) showed that the two systems
are essentially equivalent!

> More precisely, he constructed a symplectomorphism
w: Mg — M7,

where Mg, 7 denotes the phase space of the rational/trigonometric
system, mapping integrals to integrals.

» |n particular, the rational Hamiltonian is mapped to the trigonometric
momentum!



Lassalle=Nekrasov Correspondence

Explains an earlier construction of Lassalle (1991).

» Specifically, he constructed multivariable Hermite polynomials from Jack
polynomials.

» Form an orthogonal basis in the (complex) algebra of symmetric
polynomials.

» Can be interpreted as a correspondence between eigenfunctions of the
rational w/ harmonic confinement and trigonometric Calogero-Moser
systems.

We call this equivalence the Lassalle—Nekrasov correspondence.

Aim: describe a generalisation of the (quantum) correspondence from the
symmetric to the much wider quasi-invariant setting.



Reminder: Classical Hermite polynomials

‘Probabilistic’ convention: monic polynomials

Hp(x) = x" + Z ax"', acl,

i=0

orthogonal wrt. the Gaussian weight w(x) = e /2

» The (renormalised) Hermite functions 9,(x) = e’Xz/QHn(X) satisfy

2
(f% +X ) o = (0 + 1/2),.

» Generating function:
ek K2 /2 Z k"
x—k=/ Hn(X)F

» Alternatively, w/ the bilinear form
(p,qy = (p(d/dx)q)(0), p.q e C[x] & (X" X"y = 18,

we have ,
Hn(X) _ <knY ekx—k /2>.



Quasi-invariants

Subalgebra

On C (C[X1 ..... XN], me ZZO,
consisting of polynomials p(x1, ..., xy) that are permutation-invariant up to
order 2m.

> More precisely,

px) — plsx) =0 mod (1 — )"

(where 1 < j <j < N and s;; denotes the transposition i <+ j),
P or equivalently,

(8/8x; —0/8x)* 'p(x) =0, xi=x, k=1,..., m,

(where 1 < i< j<N).

> Interpolate between C[x, ..., xn]°V and C[x, . . ., Xn]:
w =C[x, ..., xv]* € Qm CClx, ..., xn] = Qo.
P In the simplest nontrivial case N = 2,

Om = (C<X1 + X, (Xl _ X2)2, (X1 _ X2)2m+1>.



Multidimensional Baker-Akhiezer function

Introduced by Chalykh & Veselov (1990) to address the problem:
Describe all supercomplete commutative rings of differential operators
in RN, containing some Schrédinger operator H = — Z,’L 831 + U(x).

(In other words, H should have at least N + 1 commuting (algebraically) independent
integrals.)

Specifically, the BA function ¢(x, k), x, k € CM, is uniquely determined by:
> ¢(x, k) is of the form
d(x, k) = P(x, k)™
for some polynomial (in x)
P(x, k) = Am(x)Am(k) + lower degree terms,
where

1<i<j<N

» ¢(x, k) is m-quasi-invariant (in x).



Baker-Akhiezer function

Properties (Chalykh & Veselov, 1990; Chalykh, Feigin & Veselov, 1999):
> ¢(x, k) = ¢k, x),
» for each g € Q, exists diff. op. Lg s.t.
Lad(x, k) = a(k)d(x. k),

P in particular,

N
2
Le=)Y 8 - Z o (8, — By)
i=1 1<i<j<N
> [Lg,Ly]=0forall g, € Qm,
» [ Qm C Qn for each g € Qp.
Rmk:
_ -1 2m(m+ 1)
Lo =—An(x)" " oHoApn, Zax/ + Z ﬁ

1<i<j<N



m-Hermite polynomials

Recall the rational Calogero-Moser Hamiltonian w/ harmonic confinement:
2m (m+ 1) 2
62
S ILTID DL RS o
1<i<j<N
taking m € Zxo.
(Here y =2m(m+ 1) and w = 1/2).

Rmk: For N = 1, we recover the harmonic oscillator

d? X2
+ .

Ar=—gat7y

Convenient to work w/
Lr = —Wo(x) " (Hg + mN(N — 1)/2 — N/2)Ws(x)

N N
=8 Y (B0 = > s,
i=1 e i=1

1<i<j<N ™!

where Wo(x) = An(x) " exp(—x?/4).



m-Hermite polynomials

Consider the bilinear form

(p. @)m = (0,0)"(Lpq)(0), p.q€E Q.

Rmk: For N =1,
Qn=Clx], ¢(0,0) = €e“lxckmo =1, (p,q) = (p(d/dx)q)(0).
Definition
We let
F(x, k) = ¢(x, k) exp(—k’/2)
and define a ‘Hermitisation” map Xy : Qm — Qm, g — Hq by
Ha(x) = (q. F(x, ))m.

If g is homogeneous, we call H; a m-Hermite polynomial.



m-Hermite polynomials

Proposition

» If g € Qn is homogeneous, then
Hq = q + lower degree terms.

» For any homogenous basis q; in Qm, the m-Hermite polynomials H,, form
a basis in Qn,.

Proof.

Combining

La(K)d(x, k) = a(x)b(x, k),  Hq(x) = (La(K)d(x, k) exp(—=k*/2)) |, Lo
we obtain the first claim.

Quasi-invariance of Hg(x) follows from that of ¢(x, k). Proceeding by
induction in the degree d, we thus arrive at the second claim. O



m-Hermite polynomials

Proposition
For homogenous q € Qn, we have

LrHq = —(deg q)Hy
Proof.

From the definition of ¢(x, k), it is readily seen that ¢(tx, k) = ¢(x, tk).
Taking the limit t — 0 in (¢(tx, k) — ¢(x, tk))/t = 0, we obtain

Ex(x, k) — Exg(x, k) =0, E _Zz, -

Combining this identity w/ Lc@(x, k) = k*¢(x, k), we deduce
LrxF(x, k) = (Le — Ex)@(x, k) exp(—k>/2) = —ExF(x, k).

Note that E is self-adj., since homogeneous components of Q,, of different
degrees are orthogonal. Hence,

(Lrxt)(a) = (a(-). LrF(x, - ))m = —(Eq(), F(x,))m = =(xnE)(q).



m-Hermite polynomials

Further properties:

» Introducing the bilinear form

I — p(x)a(x)

—x2/2
e ax, g€ ,
m)N2 Jieomn TTicicien(xi — X)2m X P aEQn

we have
{Hp. Ha}m = (pP. @) m,
(independent of ¢ € RN as long as ¢; # g foralll1 <i<j<N).
> For g € Qn,

_exp(x*/2) q(—iz)¢(iz, x)
Hq(x) = @Cm)N2 Jieprn H1§i<j§N(Z/ — z))2m

e =2z

> and

N
m
Ho=exp(-L/2)a, L= 08— Y ———(8 8.
i=1

— X
1<i<j<N



Lassalle—-Nekrasov correspondence

Recall: The Hermitisation map
XH:O9m — Qm, g+ HG’(X) = <Qv F(Xv )>m
intertwines between

Lr = —Wo(x) " (Hr + mN(N — 1)/2 — N/2)Wy(x)
N
> m
=20 2 %9 -2 o0
and
N
E = ZX,‘@XI
i=1
Rmk: Writing x; = €24, we get

E =

N

>_(=id5).

which can be viewed as an integral (total momentum) of the trigonometric
Calogero-Moser system!



Lassalle—-Nekrasov correspondence

More generally, consider Heckman's (1991) ‘global’ Dunkl operators

m
D,‘ = X,‘D, — E Z(SU — 1),

P

w/ the original Dunkl (1981) operators

D,f6X,+mZX % (s — 1).
j#

Properties (Heckman, 1991):

> The operators L4 := Res(D{ + - -- + D§) commute,
(where Res means restriction to C[xy, ..., xn]oN).

» [r1=E and
Lro= _%4)0(2) Y(Hr — m*N(N? — 1)/3)®o(2),

w/ xj = e and

®o(z) = H sin”"(z — z), Za§+ Z 2m( m+1)

1<i<j<N 1<i<j<N sin”

,Z)



Lassalle—-Nekrasov correspondence

Theorem
Following Baker & Forrester (1997), Let

d I
-1
Lra=Lra+ Z (2, - /)I ad(Lta), d=1.2,...,
I=1 ’

W/ adL(LT.d) = [L, LT,d]-
Then the diagram
Om ’ﬁ‘_) Om

erl lLR‘d

On —— Onm
is commutative for alld =1,2,...

Rmk: A direct computation reveals Lgr1 = —Lg.

Since im(x#) = Qm, we have the following:

Corollary

The operators Lr 4 commute and are thus quantum integrals of the rational
Calogero-Moser system w/ harmonic confinement.



Concluding remarks

» The proof relies on a remarkable symmetry property of the rational
Baker-Akhiezer function:

Lta(x)p(x, k) = Lr.a(K)p(x, k), d=1,2,...

» Recall: The rational Cherednik algebra H,, can be identified w/ the
algebra generated by x;, D; and s;.
The map L1,g — Lgr,q is essentially given by the following automorphism
of Hm:
Xi— Xi — Di, Diw— Di, sj+—sj.

(introduced by Etingof & Ginzburg, 2002).
» The above results are naturally associated w/ the positive roots
Ay, ={e—¢g:1<i<j<N}cCR",

taken w/ multiplicity m € Z>o. Part of our results generalise to all
configurations of vectors in RV w/ multiplicities admitting the rational
Baker-Akhiezer function, (which includes all Coxeter configurations).
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