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Ruijsenaars’ elliptic difference operators

For n € N,
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Notation:
» § and k are (complex) parameters,
> [z] = Ceczza(z | w1, w2) w/ degenerations:
[z] = sin(mz/w) (trigonometric),
[z] = sinh(7z/w) (hyperbolic),
[z] =z (rational),

(where o denotes the Weierstrass sigma function),
8l 5
> T = Hiel TX,' w/

Tf/f(xl,...,x,',...,xn):f(xl,...,x,'—i—é,...,x,,
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Ruijsenaars’ elliptic difference operators
» Introduced by Ruijsenaars (1987), who proved commutativity:

[ng>, Dﬁ’)] -0, VkI=1,...,n

» Calogero—Moser—Sutherland operators are limiting cases. For example,
with [z] = z and kK — 0k,

n 2 n
T SRS PS>
i=1 =1

ax,) +0(8%), §—0.
Xi — X
j#i ot

» Also called relativistic Calogero-Moser—Sutherland systems, since
Hy := D (x) + DY(—x)  (time transl.)
P, := DV(x) — D{P(—x) (space transl.)

n
B:=— ij (Lorentz boost)

i=1
yield a representation of the Lie alg. of the Poincaré group in 1 4+ 1
dimensions, see Ruijsenaars (1987).

» Intimate connections w/ integrable (quantum) field theories.

(For example, when [z] = sinh(7z/w) joint eigenfuncs. of D,(,k) reproduce
scattering in the quantum sine-Gordon model (for suitable 4, k); see H. &
Ruijsenaars (2020).)



Noumi and Sano’s operators

Consider the commutative alg.

Noumi & Sano (2020) introduced the difference operators

HO =3 1] '_X’ ,X] — )] H[Xf_Xj+K]“’~Tf“ (keN),

Xi — X
\ME\NZ 1<i<j<n ij=1 [ ! J + 61”’
I

and proved:
> Sk (—1) ke + 18]DYIHY = 0, K € N, (Wronski relations),

Notation:
> [zl = [2llz + 6] [z + (k - 1)3],
> T =TT, (T5)"



Deformed elliptic Ruijsenaars operators

Ruijsenaars’ and Noumi & Sano’s operators can be unified in a family
of commutative difference operators H% (x,y;6,k) (k € N) in two
sets of variables x = (x1, . .., Xm) andy = (y1, ..., vr)-



Deformed elliptic Ruijsenaars operators

We introduce the difference operators

Hiv= Y, Guaoy)THT (keN),
weN™ IC{1,...r}
[+ =k
with
[xi = x; + (i — w;)d] =[x — X + Ky
Cui(x,y) = (-1)!l . /
! 1§/];[§m [xi — ><j] e} [xi — Xj + 5]#,
N | /)
i€l j¢! i — vl
S R R 7l N
= \yer b= +#:5] i b=y (= 1]
Obs: We have
> HU(x: 8, k) = H (x: 6, k),
> H (vidok) = (— 1)kka)(y;7K, -9).



Main results

Theorem (H., Langmann, Noumi & Rosengren)

> We have
[Hm, Hgi?r} =0, VkIE€N,
» The operators H,(nl)r ..... H,(nmf D are algebraically independent (for generic
6, K).

Consider the difference operators

D¥\(x,y;6, k) = H¥) (v, x; =k, —=08)  (k € N),

k

m,

(with DY) (x; 6, k) = (=1)kDY(x; 6, k) and D{(y;6, k) = H*) (v; —&, —6).)

Theorem (H., Langmann, Noumi & Rosengren)
The operators Dﬁnk, ), and H,(nk, ), are related by

> ke + B]DSIHS), =0 (K €N).
k+I=K



Main results

Fix a meromorphic solution Gs to
Gs(z + 0) = [2] Gs(2).
(Generically, Gs can be constructed from Ruijsenaars’ elliptic gamma function.)

Theorem (H., Langmann, Noumi & Rosengren)
Assuming that
(m—n)k = (r—7s)s,

the function

<D(m'r'”'5)(x1 ..... Xmi Y1, -« Ve X1, ..., Xni Y1, ..., Ys)

_ H Gs(xi + Xj — k) H Gk(yi+Y+9)
Gs(xi + X;) Gk(yi +Y))

I i+ Y1 T i+ X1
1<i<m 1<i<r
1</<s 1520

satisfies the kernel function identities

HEY (6 )™ (x; v X YY) = HE(X; V)™ ™) (x; y; X; Y)  (k € N).



Historical interlude

Consider
—Z - Zr:a + m(m+1) Z V(X — x)
2 8X dy? /
1<i<j<n
mH)ZZV —y)+(@+1/m) Y V-,
=1 j=1 1<i<j<r
w/ potential function
1/2° (rational)
V(z) =4 1/sin’z (trigonometric)

©(2) (elliptic)

(When m =1 and/or r = 0 we have an ordinary Calogero—Moser—Sutherland
operator.)
» Chalykh, Feigin & Veselov (1998) proved integrability when r =1 and V
is rational/trigonometric.
» For n,r € N arbitrary and V trigonometric, the operator was introduced
and studied by Sergeev (2001). Integrability proved by Sergeev &
Veselov (2004).



Historical interlude

» Khodarinova (2005) established integrability for r = 1 and V elliptic.
P> There are intimate connections with

> Lie superalgebras (Sergeev, Seergev & Veselov),

> Cherednik algebras (Feigin),

P (B-ensembles of random matrices (Desrosiers & Liu),

> CFT and the fractional quantum Hall effect (Atai & Langmann),

> .
» Chalykh (2000, 2002) introduced analogous deformations of

rational /trigonometric Ruijsenaars operators in n+ 1 variables.

» The trigonometric limit of H,(,,l), due to Sergeev & Veselov (2009).

» Feigin and Silantyev (2014) obtained the trigonometric limit of H,(,,k), for
all k € N and proved commutativity.

» The elliptic operator H,(nl), was first considered by Atai, H. & Langmann
(2014), who established a corresponding kernel function identity.



Proof of commutativity

There are two main steps in our proof.

Step 1: We reduce [H,(,,k), H,(,Qr} = 0 to the identities

Sk = S|>\\+r—kv A E Nm, 0< k< |>\|,
for

S = Z H lyvi—y; —6llyi—yj+ 96 — K]

o<y inisicm iepygp ViY== K]
PC{1,....r}.|ul+|Pl=k

1 ([Xi—XJJF(S]u,uJ [ — % + Kl [x = x5 = X0l )

o1 \ X =X 4 K- [Xi =% + 0l [xi — % — (Aj = 1)8 — K]y,

1—'"[ [xi = ¥ + Nl — 5 + (i — 1)6 + K]
i1 \ep Xi =Y+ wid]lx — v+ (N = 1)6 + K]

N ) Pt L Rty )

jop i =i = Kl =y + (8 = 1)9]



Proof of commutativity

Remark: We note that
AR T ([x, — x5+ (i — )] b —x +8 — Klu,uf)

[xi —x + "‘]u/—uj B [xi — %] [xi —x; + K’]I»Ly_ﬂj

ij=1 1<i<j<m
where factors of the form [x; — x; + (ui — p;)0] are typical of elliptic
hypergeometric series related to root systems of type A. In fact, Sk = Sixj4r—«
is essentially equivalent to an elliptic hypergeometric transformation formula

due to Langer, Schlosser and Warnaar (2009).

Step 2: We obtain the identity Sk = S)x4—« by multiple principal
specialization in

Z H [ZI_Zj_a][ZI_Zj_b]_ Z H [ZI_ZJ_a][ZI_ZJ_b].

IC{1,....n} icl jgI [zi — z]lzi — 2z — a— b] IC{L,..n} iel ¢! [zi — z]lzi —z —a— D]
[l|=k |l|=n—k

The latter identity is due to Ruijsenaars (1987).
(He used it to prove commutativity for his elliptic difference operators.)




Proof of commutativity

Specifically, we take

n=I|X+r, a=4 b=k-0,



Further source identities

> We infer the Wronski type relation 3, ,_,(—1)*[kk + /6]D,(7k)H,(/) =0
from

Z (1\/\ [lz| = Iwl+ /4] H [zi—z+a] H [zi — wj] —o0

llzl =Iwll G (20— 2] [z —wj + 4]

n
lzl=> 2.
j=1

(This is the same identity proved and used by Noumi & Sano (2020) in the
undeformed r = 0 case.)
> \We obtain the kernel identities from the Kajihara—Noumi (2003) identity

[Z/_Zj_a] [Z/+Wj+a]
Z H [zi — z]] H [zi + wj]

1C{1,...,n} i€l j¢l i€l
[1|=k Jje{1....n}

_ Z H [Wr —4a H [wi + 2z + 4]
I1c{L,.nyictjgr Wi T WJ] el [wi + 2]
|1|=k Jje{l,...n}

(A similar identity used by Ruijsenaars (2006) to obtain kernel identities in the
undeformed case.)



Further source identities

» The last two source identities can be derived as consequences of the
Frobenius (1882) determinant evaluation

N ([x +2+ wj]) _ D+ Izl W Thcigenlz — 21w — w]
1<ij<n \ [N][zi + wj] T Ti<ij<nlzi +wl '




Multiple hypergeometric series

The last source identity is at the root of various transformation and
summation formulas for multiple elliptic hypergeometric series.

Specifically, consider

by, ..., bn X,'fX'—‘,— i — 5
mci cn>:Z H [ G (i — 1))

..... e 1<i<i<m [xi — x;]
lul=N

m n

. l—m[ Xi =%+ ajlu I1 [xi + by,

[xi — x; + 0]y [xi + clu,

ij=1 i=1 k=1

(where [Z]x = [2][z + 0] - - - [z + (k — 1)4]).
Under the balancing condition

a+ o +am=bi+-+ by,
Kajihara & Noumi (2003) established




Multiple hypergeometric series

The trigonometric limit yields the multiple basic hypergeometric series

_ Z ulkl H qhixi — gMix; H (ajxi/xjs @), HH (xibx: @)

T Xij — X Xi | Xi
HENM 1<i<j<m J ij=1 q // J'q)“" i=1 k= 1 XiCk; q)“'

(where (z;q)k = (1 — 2)--- (1 — g¥712)).

In particular, it satisfies Kajihara's (2004) far-reaching generalisation of
Euler's transformation formula for the Gauss hypergeometric series »F:

(Pm'n a, ..., am|biyi, ..., bn}’n_u
X1, oo Xm| CV1, ..., CYn "
_ (aBu/c"; ) o (c/bl, ....c/bnlexi/ar, ..., CX’"/am-aﬁu/c”)
(u; q)oo Yieeons Yn CX1, .-, CXm ' '
with
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