On the spectra of complex Lamé operators William Haese-Hill¹, Martin Hallnäs² and Alexander Veselov¹

¹Dept. of Mathematical Sciences, Loughborough University, UK ²Dept. of Mathematical Sciences, Chalmers University of Technology and the University of Gothenburg, Sweden

Lamé operators

Let $\mathcal{E} = \mathbb{C}/\mathcal{L}$ be a general elliptic curve, where \mathcal{L} is a period lattice, and let $\wp(z)$ be the corresponding Weierstrass' elliptic function,

$$\wp(z+\Omega)=\wp(z), \quad \Omega\in\mathcal{L},$$

satisfying

$$(\wp')^2 = 4(\wp - e_1)(\wp - e_2)(\wp - e_3)$$

We study *complex Lamé operators* in $L^2(\mathbb{R})$ of the form

$$L = -\frac{d^2}{dx^2} + m(m+1)\omega^2 \wp(\omega x + z_0),$$

with

 $m \in \mathbb{N}, \quad \mathbf{2}\omega \in \mathcal{L},$

and $z_0 \in \mathbb{C}$ chosen such that

 $z = \omega x + z_0 \notin \mathcal{L}, \quad x \in \mathbb{R}.$

Note that the potential $m(m+1)\omega^2 \wp(\omega x + z_0)$ is regular and periodic with period 2, but generically complex-valued.

Examples w/ rhombic period lattices and m = 1

Using the software *R*, we have plotted spectra of the complex Lamé operator with rhombic period lattices, m = 1 and $\omega = \omega_1 \in (0, \infty)$.

Viewed as an equation in \mathbb{C} , the solutions of the Lamé equation

$$-\frac{d^2\psi}{dz^2}+m(m+1)\wp(z)\psi=\lambda\psi$$

were described explicitly by Hermite and Halphen.

Solutions and spectrum for m = 1

For the m = 1 Lamé equation

$$-rac{d^2\psi}{dz^2}+2\wp(z)\psi=\lambda\psi, \ \ \lambda=-\wp(k),$$

the solutions are given by

$$\psi(z,k) = \frac{\sigma(z+k)}{\sigma(z)\sigma(k)} \exp(-\zeta(k)z),$$

with $k \in \mathbb{C}$. (Here $\sigma(z)$ and $\zeta(z)$ are the Weierstrass σ - and ζ -function.) Due to the Floquet property

 $\psi(z+2,k) = \exp(2\eta k - 2\zeta(k)\omega)\psi(z,k),$

with $\eta = \zeta(\omega)$, they remain bounded on the line $z = \omega x + z_0$, $x \in \mathbb{R}$, if and only if

$$u(k) := \operatorname{Re}[\eta k - \zeta(k)\omega] = 0.$$

It follows (from a result by Rofe-Beketov) that the corresponding values of $\lambda = -\omega^2 \wp(k)$ constitute the spectrum of the m = 1 Lamé operator

$$\mathcal{L}=-rac{d^2}{dx^2}+2\omega^2\wp(\omega x+z_0).$$

The problem is thus to study the zero level set of the real analytic function u(k), $k \in \mathcal{E}^{\times} = \mathcal{E} \setminus 0$.

Main results (cont.)

Reference

Further details, including proofs of the above results and references to earlier literature on the subject, can be found in the following preprint:

W. H.-H., M. H. and A. V, *On the spectra of real and complex Lamé operators*, arXiv:1609.06247.

Main results

Assuming the *non-degeneracy* conditions

 $\eta + \omega \boldsymbol{e}_{j} \neq \boldsymbol{0}, \quad \boldsymbol{j} = \boldsymbol{1}, \boldsymbol{2}, \boldsymbol{3}$

u(k) is a Morse function on \mathcal{E}^{\times} . Assuming, in addition, that the level set u(k) = 0 is *non-singular*, i.e.

 $u(k^*) \neq 0$, k^* a critical point of u(k),

we use Morse theory arguments to prove the following result.

Theorem: Under our non-degeneracy and non-singularity assumptions, the spectrum of the m = 1 complex Lamé operator consists of two regular analytic arcs. Precisely one arc extends to infinity and the remaining endpoints are $-\omega^2 e_j$, j = 1, 2, 3.

