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Abstract Let fk(n) be the maximum number of time steps taken to reach
equilibrium by a system of n agents obeying the k-dimensional Hegselmann-
Krause bounded confidence dynamics. Previously, it was known that Ω(n) =
f1(n) = O(n3). Here we show that f1(n) = Ω(n2), which matches the best-
known lower bound in all dimensions k ≥ 2.
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1 Introduction

The field of opinion dynamics is concerned with how human agents influence
one another in forming opinions, say on social and political issues (though
in principle on anything). Mathematical modelling in this area has increased
rapidly in recent years, as technology has improved the prospects for run-
ning computer simulations. Rigorous results remain rare, however, and mainly
confined to the simplest properties of the simplest models. One such sim-
ple model which has proven immensely popular is the so-called Hegselmann-
Krause bounded confidence model (HK-model for brevity). It was introduced
in [6], though the paper usually cited is [5], which at the time of writing has
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935 citations on Google scholar, mostly from non-mathematicians. The model
works as follows. We have a finite number n of agents, indexed by the inte-
gers 1, 2, . . . , n. Time is measured discretely and the opinion of agent i at
time t ∈ N ∪ {0} is represented by a real number xt(i) ∈ R. There is a fixed
parameter r > 0 such that the dynamics are given by

xt+1(i) =
1

|Nt(i)|
∑

j∈Nt(i)

xt(j), (1)

where Nt(i) = {j : |xt(j) − xt(i)| ≤ r}. Thus each agent is only willing to
compromise at any time with those whose opinions lie within his so-called
confidence interval, and he updates to the average of these opinions, including
his own. Moreover, the width of this interval, 2r, is the same for all agents.
Since the dynamics are obviously unaffected by rescaling all opinions and the
confidence bound r by a common factor, we can assume without loss of gen-
erality that r = 1.

Two important qualitative features of the HK-model are that agents act
synchronously and in a completely deterministic manner. This is in contrast to
some other famous opinion dynamics models such as voter models [10] or the
Deffuant-Weisbuch model [3]. Its popularity is probably due to the simplicity
of its formulation, which nevertheless seems “natural”. Mathematically, it is
very tantalising. The update rule (1) is linear, but clearly the transition matrix
is in general time-dependent, which is the key point. The HK-model has many
elegant features which are still either partly understood or have only been
observed in simulations. For a more comprehensive survey of the theoretical
challenges, see for example the introduction to [11].

In this paper, we will focus on one particular question which has been
the subject of much attention, namely how long it takes for opinions obey-
ing the HK-dynamics to stabilise. First, some notation and terminology. Let
(x(1), . . . , x(n)) be a configuration of opinions. We say that agents i and j
agree if x(i) = x(j). A maximal set of agents that agree is called a cluster,
and the number of agents in a cluster is called its size. The configuration is
said to be frozen1 if |x(i) − x(j)| > 1 whenever x(i) 6= x(j). Clearly, if the
configuration is frozen then xt+1(i) = xt(i) for all i, and it is easy to see that
the converse also holds.

Perhaps the most fundamental result about the HK-dynamics is that any
configuration of opinions will freeze in a finite number of time steps, which
moreover is universally bounded by a function of the number n of agents only.
Indeed, the same is true of a wide class of models including HK as a simple
prototype, see [2]. Let f1(n) denote the maximum number of time steps taken
to freeze by a configuration of n agents obeying (1). For the HK-model, the
bound given in [2] is f1(n) = nO(n). However, it is known that f1(n) is bounded
by a polynomial function of n. The first such bound of O(n5) was established
in [9] and the current record is O(n3), due to [1].

1 Other terms used in the literature are “in equilibrium” or “has converged”. We think
our term captures the point with the least possible room for misinterpretation, however.
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Fig. 1 Schematic representation of the configuration Dn. Each dumbbell has weight n.

Lower bounds for f1(n) have received less attention, perhaps due to the
difficulty in finding explicit examples of configurations which take a long time
to freeze. A natural example to look at is the configuration En = (1, 2, . . . , n),
in which opinions are equally spaced with gaps equal to the confidence bound.
Thus, agents are placed as far apart as possible to begin with, without being
split into two isolated groups. It is not hard to see that, as this configuration
updates, if i < n/2 then the opinions of agents i and (n + 1) − i will remain
constant as long as t < i, while both will change at t = i. Hence, the time taken
for the configuration En to freeze is at least n/2. In fact, this configuration
freezes in time 5n/6 +O(1), see [4].

Thus, f1(n) = Ω(n), an observation that was already made in [9]. In this
paper, we will prove that f1(n) = Ω(n2) by exhibiting an explicit sequenceDn
of configurations which take this long to freeze. In fact, we shall abuse notation
slightly. Though we could define a suitable configuration for any number n of
agents, in order to simplify the appearance of certain formulas we will assume
that n is even and let Dn denote a certain configuration on 3n + 1 agents.
Our construction basically combines the chain En with an example of Kurz
[7], and is defined as follows:

Definition 1 Let n be a positive, even integer. The configurationDn consists
of 3n+ 1 agents whose opinions are given by

x(i) =

−
1
n , if 1 ≤ i ≤ n,

i− (n+ 1), if n+ 1 ≤ i ≤ 2n+ 1,
n+ 1

n , if 2n+ 2 ≤ i ≤ 3n+ 1.
(2)

The configuration is represented pictorially in Figure 1. It has the shape
of a dumbbell. Indeed, someone familiar with the theory of Markov chains
might consider this a natural candidate for maximising the freezing time2.
There is a subtlety, however. Along the “bar” of the dumbbell, opinions are
equally spaced at distance one, whereas the two dumbbell clusters themselves
are positioned much closer, at distance 1/n, to the ends of the bar. The latter is
what raises the freezing time from Θ(n) to Θ(n2), as will become evident from

2 In the general theory of irreducible Markov chains on graphs, dumbbell-like graphs are
known to have the longest mixing times. See, for example, [8].
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the proof below. In fact, this is just one of at least three ways of considering
our construction as a modification of others previously known which all freeze
in linear time. A second way would be to think of it as starting from En, which
freezes in time O(n), and then adding the dumbbells. A third would be to start
from the configuration in [7], which consists of the two dumbbells placed at
distance 1/n from their respective solitary agents, but then without the long
intermediate chain3. Kurz showed that his configuration took time Ω(n) to
freeze and as a by-product of our method, it can be easily shown to freeze in
time O(n).

Let us now formally state our result.

Theorem 1 The configuration Dn freezes after time Ω(n2).

The proof will be given in the next section. One important feature of our
result is that it matches the best-known lower bound for the freezing time of
the multi-dimensional HK-model. The latter refers to the fact that rule (1)
makes sense if opinions xt(i) are considered as vectors in Rk for any fixed k
and neighborhoods Nt(i) are defined with respect to Euclidean distance. The
sociological interpretation would be that there are k “issues”, and that agents
will compromise if and only if their opinions are sufficiently close on all issues.
Let fk(n) denote the maximum number of time steps taken to freeze by a
configuration of n agents with opinions in Rk and obeying (1). It turns out
that fk(n) is bounded by a universal polynomial function of n and k. This was
also established in [1], who gave the bound fk(n) = O(n10k2). Note, though,
that this is much worse than the best bound O(n3) in one dimension. Indeed,
the proof of the latter in [1] uses a different argument which does not seem to
generalise to higher dimensions4.

Already in two dimensions, however, a quadratic lower bound was also
proven in [1]. Their example, which we denote Fn, places the n agents at the
vertices of a regular n-gon of side-length one, and they show that the system
requires at least n2/28 steps to freeze. 5 The configuration Fn seems, at least
in hindsight, like a natural “two-dimensional version” of En. It is not really
clear how far one can push this idea, however, as the upper bound of O(n10k2)
for all dimensions makes immediately clear. Indeed, there is no example known
in dimensions k ≥ 3 which takes longer to freeze than Fn, now considered as a
configuration on a plane in Rk. The configurations Dn discussed in this paper
are also quite different from the Fn.

3 In fact, in the Markov chain literature, this configuration is commonly termed a dumb-
bell, whereas ours would be referred to as a “dumbbell with a chain in between”. We hope
the reader is not confused !

4 An important fact which makes the one-dimensional model much simpler to analyse is
that, as soon as an agent becomes isolated, he will remain so forever. This is not always the
case in higher dimensions. As an example in R2, consider three agents a, b, c initially placed
at (0, −0.5), (0, 0.5) and (1, 0) respectively. At t = 0, only a and b will interact, but this
first interaction will bring them both to (0, 0) where they are close enough to c to interact
at t = 1.

5 By symmetry, it is clear that all agents will end up in agreement in this case.
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We finish this section by giving some more fairly standard terminology
to be used below. Let (x(1), . . . , x(n)) be a configuration of one-dimensional
opinions, obeying the convention that x(i) ≤ x(j) whenever i ≤ j. We can
define a receptivity graph G, whose nodes are the n agents and where an edge
is placed between agents i and j whenever |x(i) − x(j)| ≤ 1. We say that
agents i and j are connected if they are in the same connected component
of the receptivity graph. Observe that every connected component of G is
an interval of agents and that i is disconnected from i + 1 if and only if
x(i+ 1) > x(i) + 1.

2 Proof of Theorem 1

Lemma 1 Let n ≥ 2 and let Pn denote the path on n vertices, indexed from
left-to-right by the integers 1, . . . , n. Let X0, X1, . . . be a random walk on Pn
with transition probabilities pi, j given by

pi, j =

2/3, if (i, j) = (1, 1) or (n, n),
1/3, otherwise and if |i− j| ≤ 1,
0, otherwise.

(3)

For any i, j and t ≥ 0, let hi, j(t) denote the expected number of times a walk
started at i will hit j up to and including time t, i.e.:

hi, j(t) = E[#s : Xs = j, 0 ≤ s ≤ t | X0 = i].

Then h1, 1(t) ≤ c1 ·
√
t for all 1 ≤ t ≤ n2, where c1 > 0 is an absolute constant,

independent of n.

Proof This result surely follows from standard textbook facts about random
walks on graphs, but since we cannot point to a reference for the precise result,
we shall outline a proof in any case.

Let us consider instead a cycle C2n of length 2n, with vertices indexed clock-
wise by 1, 2, . . . , 2n, and a random walk on the cycle for which the transition
probabilities are p′i, j = 1/3 if |i− j| (mod 2n) ≤ 1 and p′i, j = 0 otherwise. Let
h′i, j(t) denote the expected number of times a walk on C2n started at node i
hits node j up to and including time t.

Claim 1: (i) h′1, 2n(t) ≤ h′1, 1(t).
(ii) h1, 1(t) = h′1, 1(t) + h′1, 2n(t) ≤ 2h′1, 1(t).

To prove (i) first note that, by the symmetry of the transition rules on the
cycle, the function h′i, i(t) is independent of i. Let τ be the random time at
which a walk started at 1 first hits 2n. Then

h′1, 2n(t) =

t∑
s=0

P(τ = s) · h′2n, 2n(t− s) =

t∑
s=0

P(τ = s) · h′1, 1(t− s) ≤

≤
t∑

s=0

P(τ = s) · h′1, 1(t) ≤ h′1, 1(t),
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where we have used the obvious fact that the functions h′i, j(t) are all non-
decreasing in t.

The right-hand inequality in (ii) follows from (i). For the left-hand equality,
we identify the nodes of C2n in pairs as

v1 = {1, 2n}, v2 = {2, 2n− 1}, . . . , vn = {n, n+ 1}.

A random walk on C2n can be identified with a random walk on the path Pn
whose vertices from left-to-right are v1, . . . , vn, where any step in the former
which remains inside the same subset vi is considered as standing still at the
same vertex in the latter. It is also easy to see that if the transition probabil-
ities on the cycle are p′i, j , then on the path they become pi, j . The equality in
(ii) follows immediately from these observations.

By Claim 1, it suffices to prove that h′1, 1(t) = O(
√
t) for all 1 ≤ t ≤ n2.

We go one step further. Let q(t) denote the probability that the walk on C2n,
started at node 1, is also at node 1 at time t. By linearity of expectation, it
suffices to prove that q(t) = O(1/

√
t) for all 1 ≤ t ≤ n2.

So fix a time t ≥ 1. Any walk consists of steps of three types: clockwise,
anticlockwise and standing still. The walk will be back at node 1 at time t if
and only if the numbers of clockwise and anticlockwise steps among the first t
steps are congruent modulo 2n. The expected number of standing still steps is
t/3 and, up to an error of order e−αt, where α > 0 is an absolute constant, we
can ignore all walks where the number of standing still steps is greater than
t/2 say. Conditioned on the number l of such steps and their timings, there are
2t−l possible walks. The number of these which have c clockwise steps is

(
t−l
c

)
,

which is less than 2t−l
√
t−l for any c and maximised at c = b t−l2 c. Since we’re as-

suming l ≤ t/2, it follows that every binomial coefficient is less than 2t−l
√

2
t .

The ones that contribute to q(t) are those such that 2c ≡ t− l (mod 2n). The
gap between any two such values of c is at least n which, since t ≤ n2, is at
least d

√
t e.

Claim 2: There is a real number κ ∈ (0, 1) such that, for all integers m ≥ 2
and r ≥ 1, (

m

bm/2c+ rd
√
m e

)
≤ κr

(
m

bm/2c

)
. (4)

Once again, we will prove this directly, rather than appealing to some textbook
fact. For 0 ≤ k < m, let f(m, k) :=

(
m
k+1

)
/
(
m
k

)
= m−k

k+1 . The function f(m, k)
is decreasing in k as long as k ≥ bm/2c, thus it suffices to prove (4) for r = 1. If
we put k = bm/2c+ b 12

√
mc then, for sufficiently large m, f(m, k) ≤ 1− 1√

m
.

Thus, for sufficiently large m,(
m

bm/2c+d
√
m e
)(

m
bm/2c

) =

d
√
m e∏

j=1

f(m, bm/2c+ j) ≤
(

1− 1√
m

) 1
2

√
m

≤ e−1/2. (5)
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So, for m sufficiently large, (4) holds with κ = e−1/2 Hence it holds for some
κ < 1 and all m ≥ 2, since for all such m, the first quotient in (5) is strictly
less than one. This proves Claim 2.

Claim 2 implies that, conditioned on l, the contributions to q(t) from dif-
ferent values of c decrease exponentially as one moves away from b t−l2 c, and
hence the total contribution is bounded by an absolute constant times the

largest one which, as previously stated, is at most
√

2
t . Unwinding our argu-

ment, what we have shown is that, provided 1 ≤ t ≤ n2 and conditioning on
the number and timing of all standing still steps up to time t, the probability
of the walk being back at node 1 is O(1/

√
t) + O(e−αt) = O(1/

√
t). Hence,

q(t) = O(1/
√
t), as desired.

Lemma 2 Let n ∈ N, κ ∈ Q>0 and, for t ≥ 0, let δt = (δ1, t, . . . , δn, t) be a
sequence of vectors in Qn≥0 defined recursively as follows:

δ0 = (0, . . . , 0),

δ1, t+1 = κ+
2

3
δ1, t +

1

3
δ2, t,

δn, t+1 = κ+
2

3
δn, t +

1

3
δn−1, t,

δi, t =
1

3
(δi−1, t + δi, t + δi+1, t) , ∀ 2 ≤ i ≤ n− 1.

Then there is an absolute constant c2 > 0 such that δi, t ≤ c2 · κ ·
√
t for all i

and all t ≤ n2.

Proof For any t, it is clear that δi, t = δ(n+1)−i, t and that δi, t ≥ δi+1, t for all

i < n/2. It thus suffices to prove that δ1, t = O(κ
√
t) for all t ≤ n2.

The recursion can be written in matrix form as

δ0 = 0, (6)

δt+1 = v + P · δt, (7)

where v = (κ, 0, 0, . . . , 0, κ)T and P = (pi, j) is the transition matrix of (3).
It follows easily from (6) and (7) that, for any t > 0,

δt = (I + P + · · ·+ P t−1)v.

Hence,
δ1, t = κ · (h1, 1(t) + h1, n(t)) ≤ 2κ · h1, 1(t), (8)

where the last inequality can be proven in a similar manner to part (i) of Claim
1 in the proof of Lemma 1. Hence, Lemma 2 follows from (8) and Lemma 1.

Proof of Theorem 1. For simplicity (see (9) below), we assume n ≥ 3. Let
x0 = Dn ∈ R3n+1 and for all t > 0 let the updates xt = (xt(1), . . . , xt(3n+1))
be generated according to (1). So xt represents the positions of the agents at
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time t. We will find it more convenient to work instead with the vectors of
gaps yt = (y0, t, . . . , yn+1, t) ∈ Rn+2 given by

yi, t = xt(n+ 1 + i)− xt(n+ i), 0 ≤ i ≤ n+ 1.

Observe that y0 =
(
1
n , 1, . . . , 1, 1

n

)
. Let Gt denote the receptivity graph at

time t. For as long as Gt = G0, it is easily checked that yt+1 = M · yt where
M = (mi, j) is an (n+ 2)× (n+ 2) matrix whose upper left 2× 3 block is(

n
(n+1)(n+2)

1
n+2 0

n
n+2

2n+1
3(n+2)

1
3

)
,

which is symmetric about its midpoint, i.e.:

mi, j = m(n+3)−i, (n+3)−j

and which, for 3 ≤ i ≤ n, satisfies

mi, j =

{
1/3, if |i− j| ≤ 1,
0, otherwise.

(9)

We define auxiliary vectors δt = (δ0, t, . . . , δn+1, t) as follows:

yi, t =:
1

n
− δi, t

n2
, if i = 0 or i = n+ 1, (10)

yi, t =: 1− δi, t
n2

, for 1 ≤ i ≤ n. (11)

Observe that δ0 = 0 and δi, t = δ(n+1)−i, t for all i and t. As long as Gt = G0

one checks that the following recursion is satisfied:

0 ≤ δ0, t+1 ≤ 1 +
1

n
(δ0, t + δ1, t) , (12)

0 ≤ δ1, t+1 ≤ δ0, t +
2

3
δ1, t +

1

3
δ2, t, (13)

0 ≤ δi, t+1 =
1

3
(δi−1, t + δi, t + δi+1, t) for 2 ≤ i ≤ n− 1. (14)

Applying Lemma 2 with κ = 2 it is easy to deduce that, for some absolute
constant c3 > 0 and all t ≤ c3 · n2, the solution to (12)-(14) with initial
condition δ0 = 0 will satisfy

δ0, t ≤ 2, δn+1, t ≤ 2, δi, t < n− 2 for 1 ≤ i ≤ n.

But this in turn implies, from (10) and (11), that yi, t + yi+1, t > 1 for all
0 ≤ i ≤ n and all t ≤ c3 · n2, hence indeed it is true that Gt = G0 for all such
t. In particular, agent n+ 2 will not be visible to the cluster on the left before
time c3 · n2, which proves that the configuration will take at least this long to
freeze.
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Remark 1 One can prove that the configuration does indeed freeze in time
Θ(n2). First, we can turn the above argument around somewhat and deduce
instead from the above relations that δ0, t ≥ 1/2 for all t > 0 and hence,
instead of (13), that

δ1, t+1 ≥
1

4
+

2

3
δ1, t +

1

3
δ2, t.

The argument in Lemma 2 can then be turned on its head to deduce that
δ1, t = Ω(h1,1(t)), while it is almost trivial that h1,1(t) = Ω( tn ). What all of
this implies is that agent n+ 2 will indeed become visible to the cluster on the
left at time t∗ = Θ(n2), and it will then immediately disconnect from agent
n+ 3. We then just need to consider the subsequent evolution of the chain C
of agents n+ 3, . . . , 2n− 2. Since δi, t∗ = O(n) for every i, it follows from (10)
and (11) that the gaps between consecutive agents in C are all greater than
1−O(1/n). Hence the chain will freeze in time 5n/6+O(1). This last deduction
follows from unpublished results in [4], more precisely from Theorem 1.1 and
remarks at the outset of Section 3 in that paper.

Given that the configurationDn freezes in time Θ(n2), one can try to com-
pute the constant factor accurately. We have not done so, but a combination
of simulations and the Ockham’s razor principle lead us to believe that the

freezing time for Dn is (1 + o(1))n
2

4 . The factor of 4 = 22 comes from the fact

that the numbers δ1, t in (11) seem to grow like 2
√
t.

Note that, if our hypothesis is correct, then the freezing time of the con-
figuration Dn still grows more slowly, at least for n � 0, than that of the
two-dimensional configuration F3n+1. These are also two quite different types
of configurations. It remains unclear what the right estimate for the function
fk(n) might be in higher dimensions.

Acknowledgements We thank Sascha Kurz and Anders Martinsson for helpful discus-
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