FINITE GROUPS WITH AN AUTOMORPHISM CUBING A LARGE
FRACTION OF ELEMENTS

PETER HEGARTY

ABSTRACT. We investigate the possible structures imposed on a finite group by its
possession of an automorphism sending a large fraction of the group elements to their
cubes, the philosophy being that this should force the group to be, in some sense, close
to abelian. We prove two main theorems. In the first, we completely classify all finite
groups with an automorphism cubing more than half their elements. All such groups
are either nilpotent class 2 or possess an abelian subgroup of index 2. For our second
theorem, we show that if a group possesses an automorphism sending more than 4/15
of its elements to their cubes, then it must be solvable. The group As shows that this
result is best-possible.

Both our main findings closely parallel results of prevous authors on finite groups
possessing an automorphism which inverts many group elements. The technicalities
of the new proofs are somewhat more subtle, and also throw up a nice connection to
a basic problem in combinatorial number theory, namely the study of subsets of finite
cyclic groups which avoid non-trivial solutions to one or more translation invariant
linear equations.

1. INTRODUCTION

Let n be an integer. A group G is said to be n-abelian if the map x +— z" is an
endomorphism of . It is a simple observation that, for n = —1 or 2, an n-abelian
group is abelian. The fact that there exist non-abelian groups of every exponent greater
than or equal to three means that this observation does not extend to any other value
of n. However, Alperin [A] obtained an elegant classification of n-abelian groups for
every n > 0, his result being that a group is n-abelian if and only if it is a homomorphic
image of a subgroup of the direct product of an abelian group, a group of exponent
dividing n and a group of exponent dividing n — 1. In particular, for n = 3 this implies
that a group for which the map z +— 23 is an injective endomorphism must also be
abelian.

Suppose n € {—1, 2, 3}. For finite groups, the following questions now arise
naturally :

1. Is there a constant ¢, < 1 such that any finite group GG possessing an automor-
phism sending more than ¢, |G| elements to their n:th powers is abelian ?

2. More generally, for what constants ¢/, < 1 can we produce an ‘elegant’ (in some
sense which is generally acceptable) classification of finite groups G possessing an
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automophism sending more than ¢, |G| elements to their n:th powers ? The groups ap-
pearing in the classification should all, in some sense, be ‘close’ to abelian.

Regarding Question 1, it is known that c_; = ¢3 = 3/4 and ¢, = 1/2 : see [Mil],
[Mac1] and [Z] respectively. For each prime p, let ¢, denote the collection of finite
groups whose order is divisible by p and by no smaller prime. Restricting attention to
groups in ¥, it is also known that ¢, = 1/p for each n € {—1, 2, 3} and for every odd
p : see [LM2], [L] and [Macl].

Regarding Question 2, there is also a lot known. For each odd p, complete classifica-
tions are known of those groups in ¥, possessing an automorphism which sends exactly
1/p of the group elements to their inverses [LM2], squares [L] respectively cubes [DM].
For even order groups there are the following results :

n = —1 : In what is probably the most significant paper in this area, Liebeck and
MacHale [LM1] provided a concise classification of those groups admitting an auto-
morphism which inverts more than half their elements. MacHale and the author [HM]
extended this classification to include groups admitting an automorphism which inverts
exactly half the group elements, but already here the classification is considerably more
detailed.

n = —2 : the author [H], improving upon results in [Z], classified neatly all even order
groups possessing an automorphism squaring more than one-sixth of their elements. I
also provided partial information at exactly one-sixth, but not a full classification.

The missing piece in this jigsaw is a classification analogous to those above when n = 3.
The main purpose of this paper is to provide this missing piece (Theorem 3.1 below).
It is important to note here that all the fractions appearing in these classifications (in-
cluding ours) appear to be optimal, i.e.: a reasonable corresponding description seems
impossible for any smaller value of the fraction in question. In this sense, we think that
Theorem 3.1 really does put a finishing touch to the body of work outlined above.

The methods introduced in [LM1] provide the basis for much of the subsequent in-
vestigations in the papers cited above. Let n € {—1,2}. If an automorhpism « of a
group G sends a large fraction of the elements to their n:th powers, then for a large
fraction of pairs z, y of elements the relation z"y™ = (zy)™ holds, and hence [z, y| = 1.
Liebeck and MacHale exploit this information by focusing attention on a subgroup H
of G' of maximal order satisfying ha = h™ V h € H, and considering the (right)
coset decomposition of H in G. If z is any element of G\ H such that xaw = z" then
{h € H : (hx)a = (hz)"} = Cy(x) is a proper subgroup of H, by definition of the
latter. These observations form the basis of a counting argument which eventually leads
to the kinds of results we refer to above.

For n = 3 we want to apply the same type of argument, but we run into an imme-
diate difficulty, namely : the relation 23y = (xy)? does not on its own imply that  and
y commute. The main contribution of the present paper is to remove this obstacle to
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obtaining results for n = 3 which are as good as those for n € {—1,2}. The technical
results obtained in Section 2 for this purpose are thus, in my opinion, the real heart of
the paper, especially since they establish an unexpected connection between our prob-
lem and a fundamental problem in combinatorial number theory, namely the study of
sets of integers which contain no non-trivial solutions to one or more translation in-
variant linear equations. These connections, which may be of independent interest, are
summarised in Proposition 2.9 below.

The final classification obtained in Theorem 3.1 is almost identical to the one in [LM1],
except for obvious extra conditions on the 3-part of GG. This is, in fact, not a surprise,
once the machinery in Section 2 has been developed, though the path to the final result
is still more difficult than in [LM1]. Section 3 is devoted to the proof of this theorem.
To illustrate further the effectiveness of our machinery, we devote Section 4 to a proof
of the fact (Theorem 4.1) that a finite group admitting an automorphism sending more
than 4/15:ths of its elements to their cubes must be solvable. This mirrors analogous
results for inverses [P] and squares [H], where the corresponding constants are 4/15
and 7/60 respectively. Curiously the same group, namely As, illustrates that all three
constants are optimal.

The final section (Section 5) provides a brief summary of our findings and a discus-
sion of outstanding issues.
2. PRELIMINARY LEMMAS AND CONNECTIONS TO NUMBER THEORY

First let us fix some notation. If G is a finite group and « an automorphism of GG, we
denote

Ty, = {gEG:ga:g?’}

and

|T3,a

T o) = .
3 (G7 ) ‘ G|

If N is an a-invariant subgroup of GG, we denote by ay the restriction of o to N. If; in

addition, N <1 G then the induced automorphism of G/N is denoted o

We reserve the letter H for a subgroup of G contained inside 73 ,. In Section 3, but

not otherwise, we will further reserve H to denote a subgroup of maximum order with

this property. For z,y € G, the commutator z~'y~'zy is denoted [z, y]. Finally, for
n > 0, the cyclic group of order n is denoted Z,,.

In the following lemmas, consider a group G and an automorphism « as given. The
proofs of the first two results are obvious :

Lemma 2.1. If N < G is a-invariant, then r3(G, o) < r3(G/N, ™).

Lemma 2.2. If z € T3, then Cg(z) = Cg(x®). In particular, if H C Ty, then
(H : Cy(x)) is not divisible by three.

The next two results are also easy :
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Lemma 2.3. If H C T3,, v € T3, and H/Cy(2?) is elementary 2-abelian, then
hx € T3, < [h, 2] = 1.
Proof. Suppose hx € T3 ,. Then

(hz)a = (hz)® = haza = hz?,
which implies that h?z2 = (xh)2. But our assumptions imply that [h%, z?] = 1, thus
(zh)? = h%z? = 2?h?, from which it follows that [h, z] = 1. O
Lemma 2.4. Suppose each of a,b, ab and ba is in Ts ,. Then [a,b] = 1.

Proof. As in the proof of the previous lemma, we can deduce immediately from our
assumptions that

a’b?* = (ba)?, b*a® = (ab)>.
But then a?b® = (ba)?b = b(ab)? = b%a?, so [a® b®] = 1. But then [a?,b] = 1 by
Lemma 2.2, so now (ba)? = a?b* = b%a?, thus [a, b] = 1. O
The next result is the crucial one :

Lemma 2.5. Suppose each of a, b, ab and a™'b is in T3 o. Then [a,b] = 1.

Proof. As previously, we can deduce immediately from our assumptions that
a’b?® = (ba)? 2.1)
and
a ?b? = (ba 1) (2.2)
From these and the identity

[z, yzy '] = [z ') (v ey ) (ya tyzy )’
it is easily deduced that bab~! € Cg(a), from which we also deduce, using (2.1), that
a’ba € Cg(b). Thus

a’bab™" € Cg(a) N Cq(b) D Cy(ab). (2.3)

Now, since G is finite, there exists a positive integer n such that a” € Cg(b). First
suppose 7 is even, say n = 2k. Then, by (2.3), (a®bab™")* = a*bab™" € Cg(b), hence
a® € Cg(b). Thus we may in fact assume n is odd, say n = 2k + 1.

Then, using (2.3) again, we have that (a?bab™1)**! = a**1(ab)a?**la=*b! €
Cg(ab), which implies that a=*b~! € C(ab) and hence that (ba*)? € Cg(ab).

But (2.3) also implies that b *a%b = abab !, hence that b 'a?*b = a*ba*b?, and in
turn that a®*b? = (ba*)2. Thus

(ba*)? = a*b*a* € Ci(ab). (2.4)

Furthermore, by Lemma 2.2 we may assume that n is not divisible by three, so that
k = 3l or k = 31 + 2 for some /.

First suppose k& = 3I. Then (2.4) says that a®b*a® € Cg(ab). But a®b3a® =
(a®ba')cv and ab € T 4, hence

a®ba’ € Cg(ab), (2.5)

by Lemma 2.2. But, going back to (2.3), we have (a*bab™1)" = a?balb=! € Cg(ab)
which, together with (2.5), implies that b=' € Cg(ab), hence that [a, b] = 1 as required.
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Alternatively, if k¥ = 3] + 2, then n = —1 (mod 6) so n? = 1 (mod 6). Thus if we
work with n? instead of n we will get the same conclusion, namely that [a, b] = 1, and
so the lemma is proved. 0

Remark 2.6. In the above proof we have used the finiteness of G to guarantee that
some power of ¢ commutes with b. Hence the proof goes through in any torsion group,
for example. But we do not know whether these restrictions are really necessary, or
whether the lemma holds in arbitrary groups.

Corollary 2.7. Suppose each of a, b, ab and a=?b is in Ty . Then [a,b] = 1.

Proof. The assumptions imply that
a’b? = (ba)?, a *b? = (ba %)%
Then
a® = (a*b*)(a~*b*) ! = baba’b 1 a?b7?,
and so
a®b® = baba®b~! (ab?) = (ba)?a’ba = a®b*aba,
from which it follows that b=2a € Cg(a®b®). Then Lemma 2.2 implies that, in fact,

b=2a € Cg(ab). But then (b=2a)(ab) = (ab)(b2a), hence a=2b*> = (ba~')?, which
implies that a b € T3 . Now the result follows from Lemma 2.5. O

Remark 2.8. Another corollary of Lemma 2.5 is that if a, b, ab and a?b are all in T3 ,,
then [a,b] = 1. This follows immediately from the lemma upon making the variable
substitutions a’ := a, b’ := ab. Similarly, if {a, b, ab,a®b} C T3, then [a,b] = 1. This
follows from Corollary 2.7 upon substituting a’' := a~!, b’ := ab. We do not know if it
is possible to obtain further results like these. One may ask : does there exist any integer
n ¢ {—1,£2, 3} such that, if {a, b, ab, a"b} C T}, then one must have [a,b] =1 ? We
suspect that there are no other such n.

Let H be a subgroup of G such that H C T3,. Thus H is abelian. Let z € T3,.
Then clearly, {h € H : hx € Tj3,} consists of entire cosets in H of Cy(z). Thus
the set Hx N T3 , may be identified with a subset, which we denote .7 (H, z), of the
abelian group H/Cy(z). The last two results now immediately yield the following,
which establishes the connection referred to earlier between our work and combinatorial
number theory :

Proposition 2.9. For any subgroup H C T5 , and any x € T ,, the subset J (H, x)
of the abelian group H/Cy(x), written additively, contains no non-trivial solutions to
either of the translation invariant linear equations a+b = 2c, a+2b = 3c. In particular,
it contains no 3-term arithmetic progressions.

Proof. This follows directly from Lemma 2.5 and Corollary 2.7. Note that a 3-term
arithmetic progression is just a solution to @ + b = 2¢ with a # b (we allow a = ¢,
which can arise in groups of even order). 0

Let f(x1,...,2,) € Z|xy,...,x,] be any translation invariant linear function, i.e.:
f(z1,...,xy) = D1 a;z; where a; € Zoand ) . a; = 0. It is known that if A C N
has non-zero upper asymptotic density then A must contain a non-trivial solution to
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f(z1,...,x,) = 0. This is an easy consequence of the celebrated theorem of Szemerédi
stating that if A C N has non-zero upper asymptotic density, then A contains arbitrar-
ily long arithmetic progressions. For a discussion of these results, inlcuding a formal
definition of what is meant by a ‘non-trivial solution’ of a translation invariant linear
equation, see [R]. Note that, for an equation in three variables, like those appearing in
Proposition 2.9, non-trivial means simply that x, 9, 3 are not all equal.

These results have immediate corollaries in finite cyclic groups, namely, as n — oo,
if A C Z,, contains no non-trivial solutions to f(z1,...,x,) = 0 (modn), then |A| =
o(n). This is, in fact, what we will use in Section 4 of this paper, where the subgroup
H will always be a cyclic group generated by a single element of 73 ,. It is worth not-
ing though, that corresponding results exist for arbitrary finite abelian groups : for an
up-to-date treatment of these matters, see for example [GT].

Speaking somewhat informally, Proposition 2.9 and the above results from number
theory imply the following : Let GG be a finite group possessing an automorphism o
for which r3(G, «) is large. Then either there is a correspondingly large proportion of
commuting pairs of group elements after all (as would be the case if we replaced r3 by
T_1 OT r'2), or most of the elements of 75 , have small order.

3. PROOF OF CLASSIFICATION THEOREM

The purpose of this section is to prove the following theorem :

Theorem 3.1. The finite group G admits an automorphism o for which r3(G, ) > 1/2
if and only if G has one of the following structures :

L G is abelian and (|G|, 3) = 1.

I1. GG is non-abelian with a normal Sylow 3-subgroup S satisfying the following condi-
tions :

(a) S C K where (G : K) = 2 and K is abelian,

(b) SNZ(G) ={1}.
In particular, if (|G|, 3) = 1 then it suffices for G to have an abelian subgroup of index 2.

II1. G is nilpotent class two and (|G|,3) = 1. All Sylow p-subgroups, for p > 2,
are abelian. The Sylow 2-subgroup Sy has one of the following structures :

(i) S, =2 Cy = < z >, say. So/Z(Ss) is elementary abelian, generated by Zx, ..., Zxy,
Zay, ..., Zay, subject to the following commutator relations :
(@i, 2] = [ai, a;] = [a;,x;] =1 wheneveri # j, |[a;,x;] = z.

(i) S, = Cy x Cy = < 21 > X < 29 >, say. So/Z(S3) is elementary abelian of order
16, generated by Zzx,, Zxo, Zay, Zasy, subject to the following commutator relations :

(@i, ;] = [ai, aj] = [a;,xj] =1 wheneveri # j, [a;,xi] = 2.

First let us deal with the ‘if” part of the theorem by constructing an explicit automor-
phism « of each type of group such that r3(G, o) > 1/2.
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I. The map o : g — ¢V g € G is an automorphism and r3(G, o) = 1.

IL If + € G\K then (|z|,3) = 1 since, if 3"" = 1 then, by normality of S and
commutativity of K, we have " € SN Z(G) = {1}. Now fix any choice of z € G\ K
and define the map o : G — G as follows :

ka:=kz 'kxVk €K, za:=2° (kr)a:=karaVkeK.

It is easily checked that « is well-defined and thus a homomorphism. Furthermore, « is
one-to-one on K since k*z 'kx =1 & 23 = (k™) & v = 2k~! & k = 1, where
we have used the fact that (|g|,3) = 1 for all ¢ € G\K. Thus a € Aut(G). Finally,
it is also easily verified that 73 , = Kz U Ck(x), hence r3(G, o) = ”2—*711 > %, where
(K : Ck(x)) = n.

IIL. Let A be the abelian subgroup of G generated by Z(G) and ay, ..., ax. The map
a : G — @ defined by

3 .
(azfizg -z = a®23 23 - 1)% Va€ A ¢€{0,1},i=1,...k,

is easily seen to be an automorphism of G such that r3(G, ) = 2212111 In particular, for
groups of type (ii) we have r3(G, o) = 5/8. For more details, see [LM1].

Remark 3.2. For each of the groups GG in Theorem 3.1, it is easy to show that there is no
B € Aut(G) such that 73(G, B) > r3(G, ), where « is the automorphism constructed
above. See [LM1] for similar remarks.

Now we turn to the ‘only if” part of the theorem. Fix a group G and an automorphism
« for which r3(G, o) > 1/2. For the remainder of this section, H will denote a sub-
group of G of maximum order subject to the condition that H C T3 . The center of G
will be denoted simply by Z.

Lemma 3.3. H D 7.

Proof. By considering a decomposition of G into cosets of Z we see that if r3(G, «) >
1/2then Z C Ts,. Since < Z,z > C T3, for any = € T} ,, maximality of H implies
that H D Z. O

In the notation of Proposition 2.9 let us denote
T (H,
t(H, z) := M
|H/Cp(z)]
In this section we only need some very weak consequences of the machinery developed

in Section 2, namely :

Lemma 34. Let z € T3 ,\H. Then |Hz N T3,| < $|H|. Hence every right-coset
of H in G intersects Ts,. In particular, H is not properly contained in any other
abelian subgroup of G. Moreover, if Hr # Hx™' and (H : Cy(z)) = n > 2 then
Hz NTso|+ [He *NTse| <2 (1+ 1n—1])|H|
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Proof. By maximality of H, the group H/Cy(z) must be non-trivial. Then it is an
elementary consequence of Proposition 2.9 that ¢(H,z) < 1/2. This implies the first
assertion of the lemma. The second one follows immediately and then the third from
the definition of H.

For the final assertion, let K := Cy(z) = C(z~") and consider H/K as an additive
group. Let

S, :=.7(H,z)\{0}, S_:=.7(H,z")\{0}.
Lemma 2.5 implies that
S N(=Sy) =8 N(=S)=5nNn85_ =9,
from which the result follows. U
Let (G : H) = m and
G=HUHzyl---UHz, (3.1

be a right-coset decomposition of H in G such that z; € T3, for every ¢ € {2,...,m}.
Such a decomposition exists by Lemma 3.4. Then

r3(G, @) = (1+Z sz). (3.2)

The next result will set us up nicely for the remainder of the proof of our theorem :

Lemma 3.5. Assuming r3(G, ) > 1/2 we must have r3(G, o) = %L for some n € N,
Moreover, in a right-coset decomposition of H in G as in (3.1), we must have
(H : Cy(x;)) > 2 for at most one index i and 7 (H, x;) = {0} for every index i.

Proof. Let there be k indices 4 for which (H : Cy(z;)) > 2.
CASEI:k =0.

In this case, by (3.2), 73(G, «) = %t where (G : H) = m. Clearly, 7 (H, z;) = {0}
whenever (H : Cy(x;)) = 2.

CASEIL: k=1.

Suppose (H : Cy(zm)) = n > 2. If (G : H) = 2 then Lemma 2.3 implies that
I (H,z3) = {0} and so r3(G, o) = ”;1 Otherwise we must have Hz,,, = Hz;z; for
some 4,7 < m and so H/C’H( m) = Cy X Cy. Thusn =4, 7(H,x,) = {0} and
r3(G, o) = 224

CASEIIL : k = 2.

Let ¢, j be the indices such that (H : Cy(x;)) = n; > 2and (H : Cy(z;)) = n; > 2.
By Lemma 2.2, in fact n; > 4 and n; > 4. If neither Hz? = Hz; nor H:c? = Hz;
holds, then Lemma 2.3 implies that .7 (H,z;) = 7 (H,z;) = {0} and (3.2) gives
r3(G,a) < 1/2, a contradiction. Hence, we may assume that Hz? = Hz;, say. But
then, by Lemma 2.2, there is a third coset, namely Hz3, such that (H : Cy(z?)) > 2.
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Thus CASE III cannot arise.
CASEIV : k > 2.

Let Hy = Hyy, Hys, ..., Hy,, be a complete set of cosets of H in G for which y; € T3 ,
and (H : Cy(y;)) = n; > 4. If y? € H then t(H,y;) = 1/n; by Lemma 2.3, so if this
were the case for every i = 1, ..., k then (3.2) would imply that r3(G, o) < 1/2.

Without loss of generality, suppose 4> ¢ H. Thus the cosets Hy and Hy ' are
distinct. If (H : Cy(y?)) = 2 then Lemma 2.3 and (3.2) again give the contradiction
that 73(G, ) < 1/2. Thus Hy? = Hy; for some j. But, using both Lemmas 2.3 and
3.4 this time, we’ll get the same contradiction if (H : Cg(y*)) < 2. In particular,
we may assume that y* ¢ H and hence that the four cosets Hy, Hy~!, Hy?, Hy=? are
distinct. Grouping these in two pairs and using Lemma 3.4 again, we arrive at the same
contradiction unless (H : Cy(y)) = 5 and ¢t(H,y) = 2/5. In this case, maximality of
H means that y°> € H. But then we claim that, in fact, 7 (H, z) = {0}. Forif hy € T3 4
then so is (hy)a? = h%°, and hence h 'y ' € T3 ,. But then h € Cy(y) by Lemma
2.4.

Thus CASE IV cannot arise either, and so the proof of Lemma 3.5 is complete. [

Let us call a right coset Hx exceptional if (H : Cy(x)) > 2. By Lemma 3.5 there is
at most one exceptional coset of H in G. Moreover, we have

Corollary 3.6. Suppose (G : H) > 2. Then h> € Z forall h € H. In fact, v €
Z whenever x € T3, and the coset Hzx is not exceptional. If x € T3, and Hz is
exceptional, then H/Cy(z) =2 Cy x Co, 2* € H and z* € Z.

Proof. Lemma 3.5 immediately implies that h* € Z forall h € H. If z € T3 , and the
coset Hz is not exceptional, then the subgroup < C'y(x), z > has the same properties as
H, so applying the lemma to it instead yields that z> € Z. Suppose H is exceptional.
If x? € H then z* € Z, so suppose z? ¢ H. Then the subgroup < Cg(x), z > has the
same properties as H, and so 2 € Z, a contradiction. |

Note that if (G : H) = 2 then G is of type I or I in Theorem 3.1. So henceforth
we shall always assume that (G : H) > 2. We require two further preparatory results
before presenting the main body of our argument.

Lemma 3.7. Suppose that for every possible choice of the subgroup H we have that
H < G. Then there is an automorphism [ of G, possibly different from o, such that
r3(G, B) > 1/2 and for which any corresponding Hg is an abelian subgroup of maxi-
mum order in G. Moreover, G is of type III in Theorem 3.1.

Proof. From Corollary 3.6 we know that z? € H forall z € T3 ,. If H <G this implies
that g2 € H for all ¢ € G. If the same is true for any possible choice of H then, by
Lemma 3.5, it follows that > € Z for all ¢ € G, since Z is just the intersection of all
the possible choices for H.

Now let x € T3, and I, be the inner automorphism of G' which sends g to x gz
Since g* € Z forall g, it is easily checked that gz € T , if and only if g € T 1,,. Thus
r3(G,a) = r3(G, I,a) forany z € T ,.
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Now let A be an abelian subgroup of maximum order in G. Since 73(G, o) > 1/2,
there is some coset Az such thatz € Tj, and |AzNT3 | > 1| A|. Butthen [ANT; 1, 4| >
%|A|, so A C T3, since A is abelian. So we choose [ := I,«. It remains to show that
G 1is of type III in Theorem 3.1. This is highly non-trivial, but the argument parallels
entirely that in Section 4 of [LM1], with very minor modifications. We thus omit further
details. g

Lemma 3.8. Suppose that (H : Z) = 2. Let K := Z U G\T; . Then K is an abelian
subgroup of index 2 in G.

Proof. The assumption implies that there is no exceptional coset, and hence 7> € Z
for all z € T3,, by Corollary 3.6. Thus if a,b and b~'a are each in T3 then so is
b*(b~'a) = ba, and so [a,b] = 1 by Lemma 2.5. By maximality of H, it follows that,
forany z € T3 ,\Z, we have C(z) N T3, = < Z,x >.

To show that K is closed under multiplication, it suffices to show that if g1, g, € K
then g, 'g: € K. Clearly this is the case if either g; or g, lies in Z. So suppose
{91,92} € K\Z.Let H= < Z,h >. By Lemma 3.5, there exist z1, 2 € T3,\Z such
that g; = hz; for¢ = 1,2. Then g, 191 =25 Le,, and by the above observations, this
lies in T} ,, if and only if [z1,z5] = 1, hence if and only if z, € < Z,z; >. But this
will imply that either g, ! g1 € Z, which is okay, or that go € H\Z, contradicting that
g € K.

This proves that K is closed, hence a subgroup of G. Clearly (G : K) = 2 and, by
its definition, we can write G = K Ll Kz, where Kz C T3 ,. Then for any & € K we
have that

(kx)a = (kx)® = kaza = kax?,

hence ko = kx~'kxk, since 22 € Z. But since this holds for any choice of x and £, it
follows that K is abelian. O

By Lemma 2.1 and Corollary 3.6 the induced automorphism oZ of G/Z sends more
than half its elements to their inverses. By the main result of [LM1] there are the fol-
lowing three possibilities :

(A) G/Z is abelian.

(B) G/Z is nilpotent class two with (G/Z)" = Cs or Cy x Cy, and various other condi-
tions.

(C) G/Z has an abelian subgroup of index 2.

If (A) holds then we are done, by Lemmas 3.3 and 3.7. Next we deal with (B) by
proving

Lemma 3.9. Let G be a group possessing an automorphism o for which r3(G, ) >
1/2. Suppose that G is nilpotent of class at most 3 and that (G/Z)' is elementary
abelian of order at most 4. Then unless G has an abelian subgroup of index 2, the class
of G is at most 2.

Note that this will indeed deal with (B), by Lemma 3.7.
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Proof. We consider a minimal counterexample to the lemma and obtain a contradiction.
By the results in [DM] we know that all Sylow p-subgroups of G, for p > 2, are abelian,
so we may assume G to be a 2-group. Further, by Lemma 3.7, we may assume that there
is a choice of the subgroup H which is not normal in G'. We fix such a choice once and
for all. In the body of the text to follow, we shall assume that there are no exceptional
right cosets of H in G. Some additional technicalities arise otherwise, and these will be
indicated by means of footnotes.

Let N := Ng(H). Since G is nilpotent, we have a strict containment H C N. We
consider three cases :

CASE 1: N contains an abelian subgroup of index 2, but (N : H) > 2.
CASE2: (N :H)=2.
CASE 3 : N contains no abelian subgroup of index 2.

First consider CASE 1. Let K denote the abelian subgroup of index 2. By Lemma
3.4, K does not contain H, so (H : KN H) =2. But KN H = Z(N). Since N is
a-invariant, we can now apply Lemma 3.8 to it to conclude that it possesses an abelian
subgroup L of index 2, possibly different from K. Indeed, L = (K N H) U N\T3 ,.

Suppose L < G. Letz € T3,\N and h € Z(N). Then z~'hz € L. Butz~'hz €
Ty o since 22 € H (Corollary 3.6), thus z7'hz € LN T3, C H. Butz ¢ N so if
(H : Cy(z)) =2,then h € Cy(z). Since x was chosen arbitrarily and there is at most
one exceptional coset, it follows that 4 € Z. Thus (H : Z) = 2 and so G possesses an
abelian subgroup of index 2.

So we may assume that L is not normal in G. In particular, L 2 G', so [LNG'| <
:|G'|. But since G has class at most three and Z C H, we see that G’ C N and is
abelian. Hence, by definition of L, |G’ N T3,| > 3|G'| and so G' C T3, since it is
abelian.

Now consider any « € T3 ,\H for which the coset Hx is not exceptional. We shall
show that x € N, which would imply that NV = G, since there is at most one exceptional
coset, contradicting our assumptions about H. Let h € H. Then, since G’ C T3 ,, we
have [h, z]a = [h,z]3. But also [h, z]a = [ha,za] = [h3, 23] and, by Corollary 3.6,
[h3, 23] = [h,z]. Thus [h,z]> = 1 and another application of Corollary 3.6 implies
that h € Cyx(z~'hz). But Cg(x~'hz) D Cx(x). Thus, since (H : Cy(x)) = 2, we
conclude that if h € H\Cy(x) then z7'hz € Cg(H), hence z7'hz € H by Lemma
3.4. Thus x € N as required, and this deals with CASE 1.

Now we turn to CASE 2. We have [N N T3,| < 2|N| by Lemma 3.5. On the other
hand, Corollary 3.6 and the fact that G is nilpotent of class at most three imply that ev-
ery conjugate of H lies in NNT3 ,. To avoid a contradiction we must have (G : N) = 2,
thus (G : H) = 4. Write G = HU Hz U Hy U Hz, where z, y, z € T3 , and the cosets
Hzx and Hy are not exceptional. If Cy(z) = Cy(y) then (H : Z) = 2, a contradiction
by Lemma 3.8. Otherwise, (H : Z) = 4 and, if Hz is exceptional, then Z = Cy(z) so
that, in particular, 22 € Z. Thus, by Corollary 3.6, the group G/Z, of order 16, has at
least 8 involutions. In addition :
(i) G/Z is non-abelian, since G is not of class two,
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(ii) G/Z has a non-normal subgroup of order 4, namely H/Z,

(iii) G/Z has no elements of order 8, since G has no abelian subgroup of index two.
These various restrictions serve to eliminate all possible structures for G/Z (see [TW]),
a contradiction which completes the analysis of CASE 2.

Finally we turn to CASE 3. It is here that we at last will make use of the induction
hypothesis. If it were impossible to find z1, 29 € G\N with Cy(z1) # Cy(x2), then
we’d have (H : Z) = 2, a contradiction by Lemma 3.8. So choose z1,z2 € G\N with
Cu(x1) # Cy(x2) and such that neither Hx; nor Hz, is exceptional, and pick any
h € Cg(z1)\Cu(zy). Consider the set

Sp:={g€G:9'hge H}.

We have N C S;, C G, with all containments proper, since x; € S, and 2o € Sj. But
the fact that G is nilpotent of class at most three, together with Lemma 3.3, implies that
Sy, 1s in fact a subgroup of G. Moreover it is a-invariant, by Corollary 3.6. Clearly S,
satisfies the remaining hypotheses of Lemma 3.9 so, by minimality of G, either S, has
an abelian subgroup of index two or it is nilpotent class two. The former would imply
that NV also contained an abelian subgroup of index 2, the latter that H <1.S},. Either way
we have a contradiction, so the proof of Lemma 3.9 is complete. O

It remains to prove Theorem 3.1 under assumption (C), that G/Z contains an abelian
subgroup of index 2. Let this subgroup be K/Z where (G : K) = 2. By Lemma 3.7
we may assume a choice of H which is not normal in . Further we may assume that
(H : Z) > 2, as otherwise, by Lemma 3.8, G is clearly of type II in Theorem 3.1. We
consider two cases :

CASE1: K D H.
CAsE2: (K:KNH)=2.

If K O Hthen H < K and so K = Ng(H). Let
L:={h€H:g'hge HY g € G}. (3.3)

Then L is evidently a subgroup of H. We cannot have L = H since otherwise H < G.
On the other hand, for any z € G\ K we have that C'y (x) C L. As there must be at least
one non-exceptional coset of H outside K, it follows that (H : L) = 2. If there is no
exceptional coset, then clearly L = Z and so (H : Z) = 2, a contradiction. Otherwise,
notice that K is nilpotent class two and a-invariant, being the normaliser of H. Thus,
by Lemma 3.7, it is of type III in Theorem 3.1. In particular, (K : Ck(k)) < 2 for
every k € K. Thus we’ll still get the contradiction that L = Z, unless (K : H) = 2
and (H : Z) = 4. So |G/Z| = 16 and G is nilpotent. We can assume that

(i) G/Z is of class three, as otherwise G would be of class at most three and we could
apply Lemma 3.9,

(ii) G/Z has no elements of order 8, as otherwise G would have an abelian subgroup
of index 2, and thus clearly be of type II in Theorem 3.1, since it is nilpotent,

(iii) G/ Z has a non-normal subgroup of order 4, namely H/Z.
These conditions eliminate all possible structures for G/Z : see [TW]. We have dealt
with CASE 1.
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Finally, suppose (K : K N H) =2. Let H* := KN H. Clearly, H* O Z and H* < G.
In fact H* = L, the latter defined as in (3.3). We can now argue as before, though note
that there is an even easier approach : to avoid the contradiction that (H : Z) = 2 we’d
need to have (G : Ng(H)) = 2 and H = Ng(H) N Cg(H*), which together yield the
immediate contradiction that H <1 G.

This completes the proof of Theorem 3.1.

4. SOLVABLE GROUPS

In this section we further illustrate the effectiveness of the machinery developed in
Section 2 by proving

Theorem 4.1. Let G be afinite group admitting an automorphism o for whichr3(G, o) >
4/15. Then G is solvable.

The constant 4/15 is best-possible, since 73(As, i) = 4/15, where ¢ denotes the iden-
tity automorphism.

The proof of Theorem 4.1 is by induction on the group order. Unsurprisingly, we shall
have recourse to the classification of the finite simple groups in what follows, though the
amount of information we draw on is quite limited and which we begin by summarising.

Lemma 4.2. Let N be a non-abelian finite simple group and A an abelian subgroup of
N of maximum order. Then either |A|> < |N| or N = Lo(q) for some prime power g,
in which case

INl=4q(¢® —1)/2, |Al=q, ifqisodd,
‘N|ZQ(C]2—1); |Al =q+1, ifqiseven.

In particular, N has no abelian subgroup of index less than 12, and if N has an abelian
subgroup of index less than 144, then N = Ly(q) for some q € {5,7,8,9,11,13}.

Proof. The first assertion is the main result of [V]. The second follows from a direct
computation and the fact (see [CCNPW]) that the only non-abelian simple groups of
order at most | (143)3/2] = 1710 are the groups Ly(q) forq € {5,7,8,9,11,13}. O

Lemma 4.3. No non-abelian finite simple group possesses a solvable subgroup of index
less than 5. The only non-abelian finite simple groups possessing a solvable subgroup
of index at most 14 are the groups Ly(q), for ¢ € {5,7,8,9,11,13}, plus the group
Ls(3).

Proof. The first assertion follows from the solvability of S4. For the second assertion,
see [CCNPW]. O

In the following table, /V is a non-abelian simple group, A an abelian subgroup of
maximum order and M a maximal subgroup of index at most 14. The data and notation
are taken from [CCNPW].
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(W [ M A 7] (VD)
L,(5) | 2°-3-5 12 A, 5
D10 6
S3 10
Ly(7) | 25-3-7 24 Sy 7
Z7XZ3 8
L,(9) | 2°-32-5 40 As 6

(Z3 X Zg) b Z4
L2 (8) 23 . 32 -7 56 (Z2 X Z2 X Zg) X Z7 9

—_
o

Ly(11) [22-3-5-11| 60 As 11
Z11 A Z5 12
L2(13) 22 -3-7-13 84 Z13 A Z6 14

L3(3) | 28-3%-13 | 432 | (Z3 X Z3) = (Zy-S3) | 13

From this table, we can also conclude the following :

Lemma 4.4. Let N be a non-abelian finite simple group.

(i) If N possesses a solvable subgroup S such that (N : S) < 14 and Z(S) # {1},
then N 2 Ly(5).

(ii) If N possesses a Sylow 2-subgroup of index less than 45, then N = Ly(5) or
Ly (7).

From now on, GG denotes a minimal counterexample to Theorem 4.1 : our aim is to
obtain a contradiction. We also fix a choice of o € Aut(G) such that r3(G, o) > 4/15.

Lemma 4.5. If G has either an abelian subgroup of index less than 144 or a solv-
able subgroup of index less than 25, then G has a non-abelian characteristic simple
subgroup N with trivial centraliser. Thus G is isomorphic to a subgroup of Aut(N).

Proof. By Lemmas 4.2 and 4.3, any group satisfying either of the hypotheses of Lemma
4.5 can possess no subgroup of the form N x NV, where N is a non-abelian simple group.
In particular, either G itself is simple, or it possesses a proper characteristic subgroup
N;. By Lemma 2.1 and the minimality of G, the factor group G//N; must be solvable.
Thus /N; must be insolvable. Repeating this argument, we see that either /V; is simple
or possesses a proper characteristic subgroup No. Then NV, is also characteristic in G,
and so must be insolvable by Lemma 2.1. Iteration of the argument must terminate with
a characteristic, non-abelian simple subgroup N of G. Then G possesses a subgroup
isomorphicto N x Cg(NV). Our hypotheses on G force Cz(V) to be solvable. But then
G/Cg(N) cannot be solvable, so Cg(N) = {1} by minimality of G and Lemma 2.1.
This proves the lemma. |

Our idea to force a contradiction will be to use the information that 3(G, o) > 4/15
to produce a subgroup S of G which is either abelian of small index or solvable with
non-trivial center and even smaller index. We then use the lemmas above to reduce
the number of possibilities for G’ to only a very few, which can be eliminated by direct
computation. As in the previous section, we will work around a coset decomposition
with respect to a subgroup H C T3 ,. However, in this section H will always be a cyclic
group, rather than a subgroup of maximum order sitting inside 75 ,. We will make more
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forceful use of Proposition 2.9, and to this end we now introduce some more notation :

Let n be a positive integer. We denote by 7'(n) the maximum size of a subset of Z,,
written additively, which contains no non-trivial solutions to either of the equations
a+b=2c a+2b=3c. WesetT, :=T(n)/n. Roth’s theorem (see [R]) implies that
Tn — 0 as n — 0o. We have the following table of values :

(n [T ] 7 |
2 1 |12
i1 2 [1)2
51 2 | 2/5
7 2 | 2/7
8| 2 |1/4
10] 2 | 1/5
11| 2 [2/11
13| 3 [3/13
14 3 [3/14
16| 4 | 1/4
17| 4 [4/17

Also it is not difficult to verify that 7,, < 4/17 for any n > 17. The proof of The-
orem 4.1 will now be accomplished in a sequence of steps, the goal of which is to
progressively restrict the possible orders of the elements in the subset 75 , of our hy-
pothetical counterexample GG. At the end of this sequence of steps we will be able to
conclude that every element of 73 ,, has order 2 or 4. But then sending an element to its
cube is the same as sending it to its inverse, so Theorem 4.1 follows from the analogous
result in [P].

Step 1: T3 , contains no element of prime power order q where g > 17.

The arguments in this first step will provide a protoype for all remaining steps, so we
present a careful reasoning here and later on become more concise. Let h € T3 , be an
element of prime-power order ¢ and H := < h >. We consider a decomposition of G
into right cosets of H and let S be the subgroup of GG generated by all the cosets Hz
such that HxNT3, # ¢ and Cy(z) # {1}. Then Z(S) is non-trivial, since ¢ is a prime
power. Also S is a-invariant. Let (G : S) := r and r3(G, o) := &. By Proposition 2.9,
if v ¢ Sthen |[HzNTs,| < 74|H|. It follows that 73(G, o) < &+ (1 — 1) 7, and hence,
since r3(G, ) > 4/15 we must have

§—1q
< ——. 4.1
"S-, -1
This is a non-trivial restriction whenever 7, < 4/15. Then in particular we must have
r3(S, ag) > 4/15 so, by minimality of G, either S is solvable or S = G. But the latter
contradicts minimality of G, by Lemma 2.1, since Z(S) # {1}. So we conclude that if
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7, < 4/15 then G contains a solvable subgroup S with non-trivial center and of index
bounded by (4.1).

Now, as previously noted, if ¢ > 17 then 7, < 4 /17. Since £ < 1 a priori, we then
have, by (4.1), that (G : S) < 24. But, moreover, by Theorem 3.1, if S is non-abelian
then £ < 3/4 and then (4.1) gives that (G : S) < 16. So suppose S is non-abelian.
Since it is a-invariant and solvable, so also is S* := Coreg(S) and G/S* is isomorphic
to a subgroup of Si. But minimality of G' and Lemma 2.1 force S* to be trivial, hence
G itself is isomorphic to a subgroup of Si4, contradicting the fact that G possesses an
element of prime power order ¢ > 17.

Thus S must be abelian, i.e.: G possesses an abelian subgroup of index at most 24.
By Table 1 and Lemma 4.5, G must then be isomorphic to one of Ly(5), S5 and Ly (7).
One checks by direct calculation that none of these three groups possess an automor-
phism « such that r3(G, ) > 4/15.

Step 2 : T3 , possesses no elements of order 13.

Suppose h € T3, with |h| = 13. Let H := < h > and consider the subgroup S
defined in analogous manner to the previous step. Since 713 = 3/13, we obtain from
(4.1) that either S is abelian and (G : S) < 21 or S is at least solvable with non-trivial
center and (G : S) < 14. The former possibility is dealt with as above. The latter
implies, as above, that G' can be embedded in S;4. But then the subgroup H must be
self-centralising in G, so H = S and |G| < 13 x 14 = 182. This leaves the same three
possibilities for GG, by Lemma 4.5, which have already been dealt with.

Step 3 : 75 , possesses no elements of order 11.

Suppose otherwise with H = < h > and |h| = 11. Since 7; = 2/11, this time
(4.1) yields (G : S) < 9 so that G is embeddable in Sy, immediately contradicting the
existence of any element of order 11 in G.

Step 4 : T3 , possesses no elements of order 16.

Suppose otherwise and let H = < h > with h € T3, and |h| = 16. Since 75 =
1/4 < 4/15 we could proceed as before, but we would be left with a greater number
of possibilities for G' to check directly. So we modify our approach. One can check
that, up to automorphisms, the only four-element subsets of Z4 that avoid non-trivial
solutions to both @ 4+ b = 2c¢ and a + 2b = 3c are

{0,1,4,5}, {0,1,4,13}, {0,1,5,12}, {0,1,12,13}.
The important point is that each of these sets contains either 4 or 12. Since the subset
{4,12} is characteristic in Zg, it now follows from Lemmas 2.4 and 2.5 that, for any

S T3,a,

7
|H$ﬂ Tgya‘ + ‘Hl'_l N T3,a| < Eu——”
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Note that this applies even if Hx = Hz ™. As a result, when applying (4.1), we can
replace 716 = 1/4 by the better constant 7], = 7/32, which will force the subgroup S
to be abelian of index 16 in G. Then the only two remaining possibilities for G’ (namely
As and S5) have already been considered.

At this point we can state that any element of 75 , must have order 2i5k 7k where i < 3
and j,k < 1.

Step 5 : T3 , contains no elements of order 10, 14 or 35.

Let p1, po be distinct primes and let i € Tj ,, be an element of order pyp,. If 7,, < 1/2
fori = 1,2, it is easy to see that the argument in Step 1 can be modified to produce a
subgroup S of GG of index

< 6 — Tpip2 ,

4/15 = Tpyp,
which is still solvable, a-invariant and, crucially, possessing non-trivial center. Indeed,
Z(S) will contain either AP or h?2.

Now since, in fact, 7, < 1/2 for any n > 1, we can indeed apply this argument.
Of the numbers 74¢, 714, 735, the largest is 714 = 3/14 and this gives the worst bounds.
We find then that either S is abelian of index at most 14, or non-abelian of index at
most 10. The former option is subsumed by previous steps. For the latter, we deduce
as before that GG is embeddable in S;y. But then any cyclic subgroup of order 14 is
self-centralising, so |G| < 14 x 10 = 140, and we’re home and dry.

r

At this point we can assume that any non-identity element of 73, has order 2,4, 5,7
or 8.

Step 6 : 75 , contains no elements of order 5.

Since 75 = 2/5 > 4/15, we cannot apply the method of Step 1 directly. Let H = < h >
with h € T3, and |h| = 5. I claim that, if 7} , contains no elements of order greater
than 8, then for any z € T3, with [h,z] # 1 we have in fact that 7 (H,z) = {0}.
Assuming this to be the case, we can then indeed apply the method of Step 1, inserting
1/5 in place of 2/5 in eq. (4.1). This yields either an abelian subgroup S of index at
most 12, which is dealt with as before, or a solvable subgroup S of index at most 8 such
that H C Z(S). In the latter case, G is embeddable in Sg and so |Ci(H)| < 30. Thus
|G| < 240 and we obtain no new possibilities for G here either.

It thus remains to prove our claim. Suppose on the contrary that x € T5 ,, [h, ] # 1
and hx € T3,. Then (hz)a? = h%2° € Ts,. If |z| € {2,4,8} this implies that
h~'z € Tj,, a contradiction by Lemma 2.5. If |z| = 5 it implies that h~'z™! € T3 ,,
contradicting Lemma 2.4. Finally, if |z| = 7 then instead consider (hz)a? = h81z8L.
This is in 73 4, hence so also is hz*. But now each of z, hx, ha* and hz' is in T3 ,,
which contradicts Proposition 2.9 since (1, 4, 7) is an arithmetic progression.
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So now every non-identity element of 75 , may be assumed to have order 2,4, 7 or 8.
Step 7 : T3 , contains no elements of order 7.

We proceed as above. Assume h € T3, with |h| = 7. Let z € T3, and suppose
that also hz € Tz ,. If |z] € {2,4,8} then considering (hz)a? = h%z® we have that
h*z € T34, which forces [h, z] = 1 by Proposition 2.9. If instead |z| = 7 then consid-
ering (hx)a?® = h?"2*" yields that h 'z ~! € Ty ,, again forcing [h, z] = 1 by Lemma
2.4.

Thus we can run through the method of Step 1, replacing 7, = 2/7 by the better
constant 1/7. We omit further details.

We now come to the final step. Every element of 73, may be assumed to have or-
der 2, 4 or 8. In particular, every element of 73 , has 2-power order.

Step 8 : T3 , contains no elements of order 8.

Suppose the contrary and consider the subgroup S produced by the method of Step
1. Since 73 = 1/4, one easily checks that the following two possibilities arise :

) r3(S,a) <1/2and (G : S) < 14.
(i) 73(S,a) > 1/2 and (G : S) < 44.

First suppose (i) holds. Since (G : S) < 25 we can first apply Lemma 4.5 to con-
clude that GG is isomorphic to a subgroup of Aut(/V), where N is a non-abelian simple
subgroup of GG isomorphic to one of the groups in Table 1. But now each of the groups
in this table has outer automorphism group of order at most 4 (see [CCNPW]). Since
Z(S) has non-trivial intersection with a cyclic group of order 8, this implies that the
group N N S also has a non-trivial center. But then Lemma 4.4(i) implies that N = Aj,
which we’ve already dealt with.

Finally suppose (i1) holds. Since every element of 75 , has 2-power order, Theorem
3.1 now implies that either S is a 2-group or possesses an abelian subgroup of index
2. In the former case, Lemmas 4.4(ii) and 4.5 leave only the same three possibilies for
G which were already encountered in Step 1, along with Aut(Ly(7)). This group is
also eliminated from consideration by direct calculation. In the latter case, if S is not a
2-group then we must have r3(S, ag) < 2/3, so that (4.1) in fact yields (G : S) < 24.
Thus GG possesses an abelian subgroup of index at most 48, which leaves one more
possibility to rule out by direct calculation, namely L,(9) = Ag. Having done so, the
proof of Theorem 4.1 is complete.

5. CONCLUSIONS

By establishing a connection to a well-studied problem in combinatorial number the-
ory, Proposition 2.9 essentially forces one of two alternatives on a finite group G pos-
sessing an automorphism which cubes a large fraction of its elements : either a large
fraction of pairs of elements in fact commute, or a large fraction of elements have small
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order. The connection to number theory may be interesting in its own right for other
reasons of which we are not aware. Also intruiging is whether Proposition 2.9 captures
the full essence of this connection, or whether there is more to be said. For example
one could ask to classify all minimal sets . of words in two letters a and b such that,
if an automorphism of a finite group G cubes every element corresponding to a word in
#, then a and b must commute. Are there any such sets other than those identified in
Section 2 ? Also intruiging is whether Lemma 2.5 holds in all infinite groups. We leave
these matters for future investigation.
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