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Abstract

We prove a result concerning the possible orders of a basis for the cyclic groupZn,
namely: For eachk ∈ N there exists a constantck > 0 such that, for alln ∈ N, if A ⊆ Zn

is a basis of order greater thann/k, then the order ofA is within ck of n/l for some integer
l ∈ [1, k]. The proof makes use of various results in additive number theory concerning the
growth of sumsets. Additionally, exact results are summarized for the possible basis orders
greater thann/4 and less than

√
n. An equivalent problem in graph theory is discussed,

with applications.
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1 Introduction

Let G be an abelian group, written additively, andA a subset ofG. For a positive integerh
we denote byhA the subset ofG consisting of all possible sums ofh not necessarily distinct
elements ofA, i.e.:

hA = {a1 + · · ·+ ah : ai ∈ A}. (1.1)

This set is called theh-fold sumsetof A. We say thatA is abasisfor G if hA = G for some
h ∈ N. Define the functionρ : 2G → N ∪ {∞} as follows:

ρ(A) :=

{

min{h : hA = G}, if A is a basis forG,
∞, otherwise.

(1.2)

In the case whereρ(A) < ∞, this invariant is usually referred to as theorder1 of the basisA.

Now let us specialise to the caseG = Zn, a finite cyclic group. Throughout this paper we
will write ρn(A) when referring to a subsetA of Zn. Clearly a subsetA ⊆ Zn is a basis if and
only if the greatest common divisor of its elements is relatively prime ton. Also, it is easy to
see that, ifρn(A) < ∞ thenρn(A) ≤ n − 1, with equality if and only ifA = {a1, a2} is a
2-element set withgcd(a2 − a1, n) = 1. Hence the range of the functionρn is contained inside
[1, n − 1] ∪ {∞}. It has been known for some time that, for large enoughn, the range ofρn

does not contain the entire interval of integers[1, n − 1]. For instance, in somewhat different
language, it was shown in [D] that roughly half of this interval, specifically[⌊n

2
⌋ + 1, n − 2],

is disjoint from the range ofρn. An additional gap[⌊n
3
⌋ + 2, ⌊n

2
⌋ − 2] in the range ofρn was

discovered by Wang and Meng in [WM]. These gaps, when considered in light of earlier work
on sumsets (see Section 2) and exponents of primitive digraphs (see Section 5), led us to believe
in an infinite sequence of gaps, between aboutn

k+1
and n

k
. This is essentially our main result,

stated precisely below.

Theorem 1.1.For eachk ∈ N there exists an absolute constantck > 0 such that the following
holds:

For anyn ∈ N, if A is a basis forZn for whichρn(A) ≥ n/k, then there is some integer
l ∈ [1, k] such that|ρn(A) − n/l| < ck.

Observe that Theorem 1.1 implies the somewhat surprising fact that the range ofρn is
asymptotically sparse.

Corollary 1.2.

lim
n→∞

|{ρn(A) : A ⊆ Zn}|
n

= 0. (1.3)

Theorem 1.1 is a negative result for basis orders. It is not hard to explicitly construct certain
basesA of Zn with ρn(A) achieving various special values. For instance, it was previously
mentioned thatn − 1 is realizable as a basis order for everyn ∈ N. If n ≥ 3, we have

1In [KL] the termpositive diameterappears, with different notation.
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ρn({0, 1, 2}) = ⌊n
2
⌋. And in the recent manuscript [HMV], the interval[1,

√
n] of small basis

orders are obtained.
The primary purpose of our note is to prove Theorem 1.1. The background results from

additive number theory are given in Section 2. These concernthe structure of sets with small
doubling. The technical aspects of the proof are given in Section 3, roughly as follows. On
the one hand, the statement of the theorem says something about the possible orders of a basis
for Zn when that order is large, namely of ordern. On the other hand, various results from
additive number theory imply that ifA is a basis forZn, then the iterated sumsetshA cannot
grow in size‘too slowly’ and, if the growth rate is close to the slowest possible, thenA has
a very restricted structure. Putting these two things together allows us to describe closely the
structure of (a small multiple of) a basisA of large order, and from there we can establish the
result.

Despite our main theorem and previous existence results, weremain far from a complete
characterization of the possible basis orders forZn. However, in Section 4, we give a sum-
mary of known results leading to an exact list for alln ≤ 64. Section 5 concludes with some
applications in the language of graph theory.

2 Preliminaries

Here we state three results from the additive number theory literature which will be used in our
proof of Theorem 1.1.

The first result is part of Theorem 2.5 of [KL]:

Theorem 2.1. (Klopsch-Lev)Letn ∈ N andρ ∈ [2, n − 1]. LetA be a basis forZn such that
ρn(A) ≥ ρ. Then

|A| ≤ max

{

n

d

(⌊

d − 2

ρ − 1

⌋

+ 1

)

: d | n, d ≥ ρ + 1

}

, (2.1)

In particular, for each fixedk ∈ N, if ρn(A) ≥ n/k andn is large enough, then|A| ≤ 2k.

The second result concerns the structure of subsets ofZn with small doubling and is Theo-
rem 1 of [DF]:

Theorem 2.2. (Deshouillers-Freiman)Let n ∈ N and A be a non-empty subset ofZn such
that |A| < 10−9n and |2A| < 2.04|A|. Then there is a subgroupH $ G such that one of the
following three cases holds:

(i) if the number of cosets ofH met byA, let us call its, is different from1 and3, thenA is
included in an arithmetic progression ofl cosets moduloH such that

(l − 1)|H| ≤ |2A| − |A|. (2.2)

(ii) if A meets exactly three cosets ofH, then (2.2) holds withl replaced bymin{l, 4}.
(iii) if A is included in a single coset ofH, then|A| > 10−9|H|.

Furthermore, whenl ≥ 2, there exists a coset ofH which contains more than2
3
|H| elements

fromA, a relation superseded by (2.2) whenl ≥ 4.
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Remark 2.3. In [DF] the authors remark that they expect that the same structure theorem holds
for larger constants than2.04 and10−9 respectively. This is known to be the case whenn is
prime, according to the so-calledFreiman-Vosper theorem. For a proof of that‘classical’ result,
see Theorem 2.10 in [N].

The third and last result from the literature that we shall use is a special case of a result of
Lev [L], generalising an earlier result of Freiman [F], concerning the growth of sumsets of a
large subset of an arithmetic progression of integers:

Theorem 2.4. (Freiman, Lev)LetA ⊆ Z satisfy

|A| = n, A ⊆ [0, l], {0, l} ⊆ A, gcd(A) = 1. (2.3)

If 2n − 3 ≥ l then, for everyh ∈ N one has

|hA| ≥ n + (h − 1)l. (2.4)

3 Proof of the main theorem

First some notation. LetG be an abelian group andA ⊆ G. Forg ∈ G we denote

A + g := {a + g : a ∈ A}, (3.1)

and forh ∈ Z we denote
h · A := {ha : a ∈ A}. (3.2)

Lemma 3.1. LetA ⊆ Zn andu, v ∈ Z such thatgcd(u, n) = 1. Thenρn(A) = ρn[(u ·A) + v].

Proof. This is clear.

Lemma 3.2. Theorem 1.1 holds for bases consisting of at most3 elements.

Proof. Let n ∈ N andA be a basis forZn such that|A| ≤ 3. If |A| = 1 thenn = 1, so the
Theorem is vacuous. If|A| = 2 thenρn(A) = n − 1, as already noted in the Introduction. The
Theorem clearly holds in that case (say withk = 2, l = 1, c2 = 2). Suppose|A| = 3. By
Lemma 3.1, there is no loss of generality in assuming thatA = {0, a, b} for somea, b ∈ Zn.
First suppose that at least one ofa, b andb − a is a unit inZn (we will see later that the general
case can essentially be reduced to this one). By Lemma 3.1 again, we may assume without
loss of generality thatA = {0, 1, t} for somet ∈ Zn. In what follows we adopt the following
notation: Ifx ∈ Z andn ∈ N then||x||n denotes the numerically least residue ofx modulon,
that is, the unique integerx0 ∈ (n/2, n/2] such thatx ≡ x0 (modn).

So fix k, t ∈ N>1 and considerA = {0, 1, t}. Let n ∈ N, which we think of as being
very large. We suppose thatρn(A) > n/k and shall show that Theorem 1.1 holds. First of
all, by the pigeonhole principle, there must exist distinctintegersj1, j2 ∈ {1, ..., k} such that
||j1t − j2t|| = ||(j1 − j2)t|| ≤ n/k. Hence, there is an integerc ∈ [1, k − 1] such that
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||ct||n ≤ n/k. Putr := ||ct||n ands := |r|. Clearly, ifs 6= 0 then the order of the basis{0, 1, s}
is at mosts + n/s, whereas ifs = 0 then its order isn − 1. In terms ofA, this implies that

ρn(A) ≤ min{n − 1, s +
cn

s
}. (3.3)

The functionf(s) = s + cn/s has a local minimum ats =
√

cn. Note also thatf(ck) =
f(n/k) = n/k + ck. It follows that, forn ≫ 0, if ρn(A) > n/k + ck thens ≤ ck. In terms of
t, the latter implies that

t =
dn + e

c
, (3.4)

for some integersd ∈ [0, c), e ∈ [−ck, ck]. In this representation oft, we may assume that
gcd(d, c) = 1. The important point is that each ofc, d, e is O(k). First supposee ≥ 0. Clearly
then, the number of terms fromA needed to represent every number from0 throughn − 1 is at
mostO(k) greater than the number of terms needed to represent every number from0 through
⌊n/c⌋. But sincect ≡ e (mod n) it is easy to see in turn that the latter number of terms is within
O(k) of n/l, wherel = max{c, e}. Thus|ρn(A) − n/l| = O(k), which implies Theorem 1.1.

If e < 0, then replaceA by 1 − A = {0, 1, 1 − t} (modn) and argue as before. This
completes the proof of the lemma for bases{0, 1, t}.

Now let us deal with the general case of a3-element basisA = {0, a, b}. Again, fixk ∈ N, let
n be very large and assume thatρn(A) > n/k. Let a1 := GCD(a, n). SinceA is a basis we
must have GCD(a1, b) = 1. Then noting that, asm runs from1 througha1 − 1, the numbers
mb run through all non-zero congruence classes moduloa1, we easily deduce that

a1 − 1 ≤ ρn(A) ≤ n

a1

+ (a1 − 1). (3.5)

Clearly, then, we will be done unlessa1 < k. Supposing that this is the case, we wish to give
a more precise inequality than (3.5), as follows. Leta′ := a/a1 and letb′ be the unique integer
in [0, n/a1) such thatb′ ≡ b (modn/a1). Let A′ := {0, a′, b′}. This set can be considered as
a basis forZn/a1

, and the latter can be naturally identified with the subring of Zn consisting of
the multiples ofa1. Then we have the inequality

ρ′(A′) ≤ ρn(A) ≤ ρ′(A′) + (a1 − 1), (3.6)

whereρ′(A′) denotes the order of the basisA′ for Zn/a1
, but with the twist that every use of the

numberb′ is weighted by a factor ofa1 (see the example below). Recall thata1 < k, so that if
ρn(A) > n

k
+ (k − 2) thenρ′(A′) > n

k
. So we may assume the latter. Also, sincea′ is a unit

in Zn/a1
, there is no loss of generality (by Lemma 3.1) in assuminga′ = 1. We now complete

the proof of Lemma 3.2 by imitating the argument given to dealwith the special case of bases
{0, 1, t} above (nowt = b′). The weighting mentioned above in fact implies that that argument
goes through verbatim in the current setting, and this suffices to complete the proof of Lemma
3.2.
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Example 3.3.Let n = 30, a = 4, b = 9 andA = {0, 4, 9}. Thenρ30(A) = 9 since, for exam-
ple, the number11 ∈ Z30 can most efficiently be represented as11 ≡ 8 · 4 + 1 · 9 (mod30).
We havea1 = GCD(4, 30) = 2, a′ = a/a1 = 2 andb′ = b = 9. ThenA′ = {0, 2, 9} is a basis
for Z30/2 = Z15. Multiplying by the unit8 ∈ Z15, let’s work instead with the equivalent basis
A′′ = {0, 1, 12} ≡ {0, 1,−3}. One readily verifies thatρ15(A

′′) = 5, and that the most difficult
element ofZ15 to represent with this basis is8 ≡ 2 · 1 + 3 · (−3). When computingρ′, each
use of the number−3 must be weighted bya1 = 2, hence this same representation of8 is now
given total weight2 + 2 · 3 = 8. Henceρ′(A′′) = ρ′(A′) = 8, and the right-hand inequality of
(3.6) is satisfied (with equality).

We can now complete the proof of Theorem 1.1. Fixk ∈ N. All constantsci,k appearing
below depend onk only. Letn be a positive integer which we think of as being very large. Let
A be a basis forZn such thatρn(A) > n/k. By Lemma 3.1 we may assume, without loss of
generality, that0 ∈ A. This is a convenient assumption, as it implies thathA ⊆ (h + 1)A for
everyh. From Theorem 2.1 it is easy to deduce the existence of positive constantsc1,k, c2,k,
such that

|A| ≤ c1,k (3.7)

and, for some integerj ∈ [1, c2,k] one must have

|2j+1A| < 2.04|2jA|. (3.8)

Seth := 2j . Forn sufficiently large, we’ll certainly have|hA| < 10−9n and so we can apply
Theorem 2.2. LetH be the corresponding subgroup ofZn andπ : Zn → Zn/H the natural
projection. We can identifyH with Zm for some proper divisorm of n, and then identifyZn/H
with Zn/m. Let B := hA. SinceA is a basis forZn, then so isB and henceπ(B) is a basis for
Zn/m. This means that either case (i) or case (ii) of Theorem 2.2 must apply. Moreover, since
some coset ofH contains at least2

3
|H| elements fromB, it follows thatm = |H| = O(|B|) =

O(k). Thus
m ≤ c3,k, (3.9)

say. Since
ρn/m(π(A)) ≤ ρn(A) ≤ ρn/m(π(A)) + m, (3.10)

this together with (3.8) and (3.9) imply that

|ρn(A) − hρn/m(π(B))| ≤ c4,k. (3.11)

To prove Theorem 1.1, it thus suffices to show that

|ρn/m(π(B)) − n/q| ≤ c5,k, for some multipleq of h. (3.12)

Let s be the number of cosets ofH met byB ands′ the number met byA.

CASE 1: s = 3.
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Thens′ ≤ 3. We don’t need (3.12) in this case and can instead deduce Theorem 1.1 directly
from (3.10) and Lemma 3.2.

CASE 2: s 6= 3.

Then Case (i) of Theorem 2.2 must apply. Letl be the minimum length of an arithmetic pro-
gression inZn/m containingπ(B). Note thatl ≤ c6,k, by (2.1). By Lemma 3.1, there is no
loss of generality in assuming thatπ(B) is contained inside an interval of lengthl − 1. Since
π(A) ⊆ π(B) andl = O(k) we can now also see thatl − 1 is a multiple ofh, providedn is
large enough. Thus it suffices to prove that

∣

∣

∣

∣

ρn/m(π(B)) − n

l − 1

∣

∣

∣

∣

≤ c7,k. (3.13)

It is here that we use Theorem 2.4. Indeed (3.13) is easily seen to follow from that theorem
provided that2s − 3 ≥ l − 1. But this inequality is in turn easily checked to result from(2.1)
(as applied toB), (3.8) and the fact that|B| ≤ s|H|.

Thus the proof of Theorem 1.1 is complete.

Remark 3.3. Explicit values for each of the constantsci,k, i = 1, ..., 7, can easily be obtained
from the argument given above. Similarly, one can obtain bounds for all theO(k) terms in the
proof of Lemma 3.2. All of this will in turn yield explicit constantsck in Theorem 1.1. We
refrain from carrying out this messy procedure, however, since the more interesting question
is what the optimal values are for theck. Note thatck ≥ (k − 2) + 1

k
, which can be seen by

considering the basis{0, 1, k} for Zn, whenn ≡ −1 (mod k).

4 Some specific basis orders and gaps

It remains to determine exactly which integers are in the range ofρn. (Theorem 1.1 essentially
finishes this question ‘up to constants’.) It is worth brieflysummarizing the known basis orders
and exact gaps. The first two gaps were separately discoveredin [D, WM].

Theorem 4.1. (Daode, Wang-Meng)LetA be a basis forZn. Then

ρn(A) 6∈
[⌊n

3

⌋

+ 2,
⌊n

2

⌋

− 2
]

∪
[⌊n

2

⌋

, n − 2
]

.

In fact, the arguments for these gaps actually apply more generally to finite abelian groups
G of ordern.

Extending the argument in [WM], it is possible to exactly determine a third gap. We only
outline the proof, leaving details to the interested reader.

Theorem 4.2.LetA be a basis forZn. Then

ρn(A) 6∈
[⌊n

4

⌋

+ 3,
⌊n

3

⌋

− 2
]

.
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Proof. By Lemma 3.1, assume0 ∈ A. We may suppose that the only other elements inA have
orders in{2, 3, n/3, n/2, n}. Elements inA of order2 or 3 lead toρn(A) ≥ n

2
− 1 or n

3
− 1,

respectively. IfA contains an element of ordern, use Lemma 3.1 to assume without loss of
generality that{0, 1, t} ⊆ A, t ≤ n

2
. After some arithmetic, one hasρn(A) ≤ ρn({0, 1, t}) ≤

n
4

+2, unlesst ∈ {2, 3, ⌊n
3
⌋, ⌊n

3
⌋+1, ⌊n

2
⌋}. If 2 or 3 | n, the casest = n

2
, n

3
produce an element

of order2 or 3, respectively. If3 | n andt = n
3
+1, one has2n

3
∈ (−1) ·A+1, again an element

of order 3. Otherwise, consider either2 · A or 3 · A and arrive at a case equivalent to one of

• A = {0, 1, 2}, with order⌊n
2
⌋,

• A = {0, 1, 3}, with order⌊n
3
⌋ + 1, or

• A = {0, 1, 2, 3}, with order⌈n−1

3
⌉ ≥ ⌊n

3
⌋ − 1.

Finally, suppose that all nonzero elements ofA have orders in{n/2, n/3}. ForA to be a basis,
we must have an element of each of these orders. Therefore,6 | n. Multiplying by a unit, we
may assume{0, 2, 3t} ⊆ A. ThenA − 2 contains3t − 2, reducing to a previously considered
case.

Table 1: Basis orders forZn, 5 ≤ n ≤ 64.
n basis orders n basis orders n basis orders
5 1 2 4 25 1..9 12 24 45 1..16 22 44
6 1 2 3 5 26 1..9 12 13 25 46 1..13 15 16 22 23 45
7 1 2 3 6 27 1..10 13 26 47 1..13 16 23 46
8 1..4 7 28 1..10 13 14 27 48 1..17 23 24 47
9 1..4 8 29 1..10 14 28 49 1..14 16 17 24 48
10 1..5 9 30 1..11 14 15 29 50 1..14 17 24 25 49
11 1..5 10 31 1..11 15 30 51 1..14 16 17 18 25 50
12 1..6 11 32 1..11 15 16 31 52 1..15 17 18 25 26 51
13 1..6 12 33 1..12 16 32 53 1..15 18 26 52
14 1..7 13 34 1..12 16 17 33 54 1..15 19 26 27 53
15 1..7 14 35 1..10 12 17 34 55 1..15 19 27 54
16 1..8 15 36 1..13 17 18 35 56 1..16 19 27 28 55
17 1..6 8 16 37 1..13 18 36 57 1..16 19 20 28 56
18 1..9 17 38 1..11 13 18 19 37 58 1..16 20 28 29 57
19 1..7 9 18 39 1..14 19 38 59 1..16 20 29 58
20 1..7 9 10 19 40 1..14 19 20 39 60 1..17 21 29 30 59
21 1..8 10 20 41 1..12 14 20 40 61 1..17 20 21 30 60
22 1..8 10 11 21 42 1..15 20 21 41 62 1..17 21 30 31 61
23 1..8 11 22 43 1..12 14 15 21 42 63 1..17 21 22 31 62
24 1..9 11 12 23 44 1..13 15 21 22 43 64 1..18 22 31 32 63

In Table 1, we summarize the situation for small finite cyclicgroups. The realizable basis
orders are obtained in many cases by easy constructions, while in some cases by a very short
computer search. The non-realizable basis orders are thoseresulting from Theorems 4.1 and
4.2.
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5 Applications and Concluding Remarks

A directed graph, or digraph is an ordered pairD = (V, E) whereV is a nonempty set of
vertices, andE ⊆ V × V is a set ofarcs. In most investigations,V is taken to be a finite set. If
V is a set of points, the arc(x, y) is drawn as an arrow fromx to y. A loop is an arc of the form
(x, x). Among other things, digraphs are used to model finite networks.

A (directed) walk in D from vertexx to vertexy is a sequence of vertices

x = x0, x1, x2, . . . , xL = y

where(xi, xi+1) ∈ E for all 0 ≤ i < L. Such a walk haslengthL. A walk with no repeated
vertices is called apath; clearly, the shortest walk fromx to y is always a path.

A digraphD is primitive if, for some positive integerk, there is a walk inD of lengthk
between any pair of verticesu andv in D. The smallest suchk is theexponentof D, and is
denoted byγ(D). A related notion is thediameterdiam(D), defined to be the maximum, over
all x, y ∈ V , of the shortest path (walk) fromx to y, this taken to be∞ if some pair of vertices
are not joined by a walk.

If D is primitive, one obviously has diam(D) ≤ γ(D). Conversely, ifD has finite diameter
and loops at every vertex, thenγ(D) = diam(D).

There is a history of research on exponents of digraphs. In 1950, Wielandt [W] stated that
for primitive digraphsD onn vertices,

γ(D) ≤ wn := (n − 1)2 + 1. (5.1)

Later, Lewin and Vitek [LV] found a sequence of gaps in[1, wn] as non-realizable exponenets
of primitive digraphs onn vertices.

Let n ∈ N andA ⊆ Zn. Thecirculant C = Circ(n, A) is a digraph with vertex setZn

and(x, y) an arc if and only ify − x ∈ A. Bounds on the diameter of certain circulants has
proved useful in quantum information theory; see [BPS]. Other applications can be found in
the references of [LV, WM].

In any case, the connection with basis orders inZn is now clear.

Proposition 5.1. γ(Circ(n, A)) = ρn(A).

There exists a similar connection between the possible basis orders for general finite groups
G and the possible exponents ofCayleydigraphs. Therefore, the problem of extending Theo-
rem 1.1 to general groups merits some attention.
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