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Abstract

We prove a result concerning the possible orders of a basithéocyclic groupZ,,
namely: For eaclt € N there exists a constanf > 0 such that, foralh € N, if A C Z,
is a basis of order greater tharik, then the order ofl is within ¢, of n/I for some integer
[ € [1, k]. The proof makes use of various results in additive numbssrghconcerning the
growth of sumsets. Additionally, exact results are sumeeatifor the possible basis orders
greater tham /4 and less thar/n. An equivalent problem in graph theory is discussed,
with applications.
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1 Introduction

Let G be an abelian group, written additively, aridda subset of5. For a positive integekh
we denote by, A the subset ofr consisting of all possible sums afnot necessarily distinct
elements of4, i.e.:

hA:{a1+~~+ah:ai6A}. (11)

This set is called thé-fold sumsebf A. We say thatd is abasisfor G if hA = G for some
h € N. Define the functiom : 2¢ — N U {oco} as follows:

| min{h: hA =G}, if AisabasisfoG,
pA) = { 00, otherwise (1.2)

In the case wherp(A) < oo, this invariant is usually referred to as thedef] of the basisA.

Now let us specialise to the caée = Z,, a finite cyclic group. Throughout this paper we
will write p, (A) when referring to a subset of Z,,. Clearly a subsefl C Z, is a basis if and
only if the greatest common divisor of its elements is rgkdti prime ton. Also, it is easy to
see that, ifp,(A4) < oo thenp,(A) < n — 1, with equality if and only ifA = {a;,as} is a
2-element set witlged (a2 — a1, n) = 1. Hence the range of the functigr is contained inside
[1,n — 1] U {oco}. It has been known for some time that, for large enougthe range op,
does not contain the entire interval of integérs» — 1]. For instance, in somewhat different
language, it was shown ifi[D] that roughly half of this intalvspecifically[| 5 | + 1,n — 2],

is disjoint from the range of,,. An additional gag|% | + 2, 5] — 2] in the range o, was
discovered by Wang and Meng in [WM)]. These gaps, when coreilde light of earlier work
on sumsets (see Section 2) and exponents of primitive digrégee Section 5), led us to believe
in an infinite sequence of gaps, between abgygtand ;. This is essentially our main result,
stated precisely below.

Theorem 1.1. For eachk € N there exists an absolute constapt> 0 such that the following
holds:

For anyn € N, if A is a basis forZ,, for which p,,(A) > n/k, then there is some integer
[ € [1, k] such thatp,(A) — n/l| < c.

Observe that Theoreln1.1 implies the somewhat surprisiogtfat the range op,, is
asymptotically sparse.

Corollary 1.2.
A ACZ
lim [{pn(4) € Zu} =0

n—0o00 n

(1.3)

TheorenLll is a negative result for basis orders. It is nat taexplicitly construct certain
basesA of Z, with p,(A) achieving various special values. For instance, it wasipusly
mentioned that: — 1 is realizable as a basis order for everye N. If n > 3, we have

LIn [KL] the term positive diameteappears, with different notation.
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pn({0,1,2}) = [%]. And in the recent manuscrigf [HMV], the intervdl, /n] of small basis
orders are obtained.

The primary purpose of our note is to prove Theolen 1.1. Thekdpaund results from
additive number theory are given in Section 2. These conttexrstructure of sets with small
doubling. The technical aspects of the proof are given irti®e®, roughly as follows. On
the one hand, the statement of the theorem says somethingtalegossible orders of a basis
for Z, when that order is large, namely of order On the other hand, various results from
additive number theory imply that if is a basis folZ,,, then the iterated sumseis! cannot
grow in size‘too slowly’ and, if the growth rate is close to the slowestgbke, thenA has
a very restricted structure. Putting these two things togreallows us to describe closely the
structure of (a small multiple of) a basis of large order, and from there we can establish the
result.

Despite our main theorem and previous existence resultsemain far from a complete
characterization of the possible basis ordersZgr However, in Section 4, we give a sum-
mary of known results leading to an exact list foralk< 64. Section 5 concludes with some
applications in the language of graph theory.

2 Preliminaries

Here we state three results from the additive number thetmature which will be used in our
proof of Theoreni_Tl1.
The first result is part of Theorem 2.5 ot [KL]:

Theorem 2.1. (Klopsch-Lev)Letn € N andp € [2,n — 1]. Let A be a basis fofZ,, such that
pn(A) > p. Then

|A\§max{ﬁ<{uJ+l):d|n,d2p+1}, (2.1)
d\|p—1
In particular, for each fixed € N, if p,,(A) > n/k andn is large enough, thefd| < 2k.

The second result concerns the structure of subséfs @fith small doubling and is Theo-
rem 1 of [DF]:
Theorem 2.2. (Deshouillers-Freiman)etn € N and A be a non-empty subset @f, such
that |A| < 107?n and|2A| < 2.04|A|. Then there is a subgroufi ¢ G such that one of the
following three cases holds:

(i) if the number of cosets df met byA, let us call its, is different froml and3, thenA is
included in an arithmetic progression btosets moduld/ such that

(1= 1)|H| < |24] — |A]. (2.2)
(i) if A meets exactly three cosetsif then (2.2) holds witlh replaced bymin{/, 4}.
(iii) if Aisincluded in a single coset df, then|A| > 107%|H|.

Furthermore, wheri > 2, there exists a coset df which contains more tha#|H| elements
from A, a relation superseded by (2.2) when 4.
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Remark 2.3. In [DH] the authors remark that they expect that the sametsire theorem holds
for larger constants thatn04 and 10~ respectively. This is known to be the case wheis
prime, according to the so-call&geiman-Vosper theorenfror a proof of thatclassical’ result,
see Theorem 2.10 inN].

The third and last result from the literature that we shadl issa special case of a result of
Lev [LC], generalising an earlier result of Freimdn [F], cenaing the growth of sumsets of a
large subset of an arithmetic progression of integers:

Theorem 2.4. (Freiman, Lev)Let A C Z satisfy
[Al=n, AC[0,1], {01} CA, ged(A)=1 (2.3)
If 2n — 3 > [ then, for every, € N one has

|hA| > n+ (h — 1)L, (2.4)

3 Proof of the main theorem
First some notation. Let be an abelian group andl C G. Forg € G we denote
A+g:={a+g:ac A}, (3.1)

and forh € Z we denote
h-A:={ha:ac A}. (3.2)

Lemma3.1.Let A C Z,, andu, v € Z such thatged(u,n) = 1. Thenp,(A) = pu[(u - A) + v].
Proof. This is clear. O
Lemma 3.2. Theoreni_Ll1 holds for bases consisting of at Badements.

Proof. Letn € N and A be a basis foZ,, such thatA| < 3. If |A| = 1 thenn = 1, so the
Theorem is vacuous. |A| = 2 thenp, (A) = n — 1, as already noted in the Introduction. The
Theorem clearly holds in that case (say with= 2, [ = 1, ¢; = 2). SupposeA| = 3. By
Lemma 3.1, there is no loss of generality in assuming that {0, a,b} for somea,b € 7Z,.
First suppose that at least oneagb andb — a is a unitinZ, (we will see later that the general
case can essentially be reduced to this one). By Lemma 3ifh,aga may assume without
loss of generality thatl = {0, 1,¢} for somet € Z,. In what follows we adopt the following
notation: Ifz € Z andn € N then||z||,, denotes the numerically least residuerahodulon,
that is, the unique integey, € (n/2,n/2] such thatt = z, (modn).

So fix k,t € N.; and considetA = {0,1,t}. Letn € N, which we think of as being
very large. We suppose that(A) > n/k and shall show that Theorem1l.1 holds. First of
all, by the pigeonhole principle, there must exist distimtegersji, jo € {1, ..., k} such that
g1t — Jotl| = ||(j1 — j2)t|| < n/k. Hence, there is an integer € [1,k — 1] such that
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l|ct||n < n/k. Putr :=||ct||,, ands := |r|. Clearly, if s # 0 then the order of the bas{9, 1, s}
is at mosts + n/s, whereas ifs = 0 then its order is: — 1. In terms ofA, this implies that

pn(A) <min{n —1,s+ %} (3.3)

The functionf(s) = s + ¢n/s has a local minimum at = /cn. Note also thatf(ck) =
f(n/k) =n/k + ck. It follows that, forn > 0, if p,,(A) > n/k + ck thens < ck. In terms of

t, the latter implies that

d
poante (3.4)

C

for some integerd € [0,¢), e € [—ck,ck]. In this representation of we may assume that
ged(d, ¢) = 1. The important point is that each ofd, e is O(k). First suppose > 0. Clearly
then, the number of terms from needed to represent every number frotroughn — 1 is at
mostO(k) greater than the number of terms needed to represent everigarnifrom0 through
|n/c|. Butsincert = e (mod n) itis easy to see in turn that the latter number of terms isiwith
O(k) of n/l, wherel = max{c, e}. Thus|p,(A) —n/l| = O(k), which implies Theorerfi I} 1.

If e < 0, then replaced by 1 — A = {0,1,1 — ¢t} (modn) and argue as before. This
completes the proof of the lemma for bagés1, ¢}.

Now let us deal with the general case df-alement basist = {0, a, b}. Again, fixk € N, let
n be very large and assume that(A) > n/k. Leta, := GCD(a,n). SinceA is a basis we
must have GCIy;, b) = 1. Then noting that, as: runs from1 througha, — 1, the numbers
mb run through all non-zero congruence classes modylave easily deduce that

a1 =1 < pu(A) < =+ (ar — 1), (3.5)
1

Clearly, then, we will be done unleas < k. Supposing that this is the case, we wish to give

a more precise inequality than (3.5), as follows. tet= a/a; and lett’ be the unique integer

in [0,n/a;) such that! = b (modn/a,). Let A’ := {0,d/,b'}. This set can be considered as

a basis folZ,,,, and the latter can be naturally identified with the subrih@.p consisting of

the multiples ofz;. Then we have the inequality

PA) < pu(A) < p/(A) + (a1 = 1), (3.6)

wherep’(A’) denotes the order of the baslsfor Z,,,,, but with the twist that every use of the
numberd’ is weighted by a factor od; (see the example below). Recall that< &, so that if
pn(A) > 7 + (k —2) thenp'(A") > 7. So we may assume the latter. Also, sintés a unit

iN Zy,/q,, there is no loss of generality (by Lemma 3.1) in assuming 1. We now complete
the proof of Lemma 3.2 by imitating the argument given to deigth the special case of bases
{0,1,t} above (now = b¥'). The weighting mentioned above in fact implies that thgtarent
goes through verbatim in the current setting, and this ®sfto complete the proof of Lemma
3.2. O
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Example 3.3.Letn = 30,a =4,b =9andA = {0,4,9}. Thenpsy(A) = 9 since, for exam-
ple, the numbet1 € Zs, can most efficiently be representedlds= 8 -4 + 1 -9 (mod30).
We havea; = GCD(4,30) = 2,d = a/a; =2andt = b =19. ThenA’ = {0,2,9} is a basis
for Zsy» = Zy5. Multiplying by the unit8 € Z;5, let's work instead with the equivalent basis
A" ={0,1,12} = {0, 1, —3}. One readily verifies thai;s(A”) = 5, and that the most difficult
element ofZ,; to represent with this basis = 2 -1 + 3 - (—3). When computing’, each
use of the number3 must be weighted by; = 2, hence this same representatiorsa$ now
given total weight + 2 - 3 = 8. Hencep'(A”) = p'(A’) = 8, and the right-hand inequality of
(3.6) is satisfied (with equality).

We can now complete the proof of Theoréml1.1. Eixc N. All constantsc; , appearing
below depend ot only. Letn be a positive integer which we think of as being very larget. Le
A be a basis foZ,, such thatp,(A) > n/k. By Lemma 3.1 we may assume, without loss of
generality, thad € A. This is a convenient assumption, as it implies thatC (h + 1)A for
everyh. From Theorem 2.1 it is easy to deduce the existence of pesitnstants; ;, c, 1,
such that

Al < e (3.7)

and, for some integer € [1, c2 ;] One must have
|27T1 A < 2.04|27 Al (3.8)

Seth := 27. Forn sufficiently large, we'll certainly havéh A| < 10~n and so we can apply
Theorem 2.2. Lef{ be the corresponding subgroup®f andr : Z, — Z,/H the natural
projection. We can identify{ with Z,,, for some proper divisom of n, and then identifyZ,,/ H
with Z,,/,,,. Let B := hA. SinceA is a basis fo#Z,, then so isB and hencer(B) is a basis for
Znm- This means that either case (i) or case (ii) of Theorem 2.&trapply. Moreover, since
some coset off contains at leas}| H| elements fromB, it follows thatm = |H| = O(|B|) =
O(k). Thus

m < C3, (3.9)

say. Since
Pr/m(T(A)) < pn(A) < ppjm(T(A)) +m, (3.10)

this together with (3.8) and (3.9) imply that
|on(A) = hpp/m(7(B))] < cap- (3.11)
To prove Theoreri 111, it thus suffices to show that
|pnjm(m(B)) —n/q| < csy, for some multipley of h. (3.12)

Let s be the number of cosets éf met by B ands’ the number met byl.

CASE1l: s = 3.
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Thens’ < 3. We don't need (3.12) in this case and can instead deducerdin€ll directly
from (3.10) and Lemma 3.2.

CASE 2: s # 3.

Then Case (i) of Theorem 2.2 must apply. Léte the minimum length of an arithmetic pro-
gression inZ, ,, containingr(B). Note that! < ¢y, by (2.1). By Lemma 3.1, there is no
loss of generality in assuming thatB) is contained inside an interval of length- 1. Since
m(A) C n(B) andl = O(k) we can now also see that- 1 is a multiple ofh, providedn is
large enough. Thus it suffices to prove that

n

pn/m(ﬂ'(B)) — m S C77k. (313)

It is here that we use Theorem 2.4. Indeed (3.13) is easily geéllow from that theorem
provided thas — 3 > [ — 1. But this inequality is in turn easily checked to result fr¢2al)
(as applied taB), (3.8) and the fact thaB| < s|H|.

Thus the proof of Theorefn.1 is complete.

Remark 3.3. Explicit values for each of the constants;, : = 1, ..., 7, can easily be obtained
from the argument given above. Similarly, one can obtaimiisufor all theO (k) terms in the
proof of Lemma 3.2. All of this will in turn yield explicit castantsc;, in Theorem 1.1. We
refrain from carrying out this messy procedure, howevercasithe more interesting question
is what the optimal values are for the. Note thatc, > (k — 2) + &, which can be seen by
considering the basi®, 1, £} for Z,,, whenn = —1 (mod k).

4 Some specific basis orders and gaps

It remains to determine exactly which integers are in thgeaof p,,. (Theoreni_L1l essentially
finishes this question ‘up to constants’.) It is worth brieflymmarizing the known basis orders
and exact gaps. The first two gaps were separately discoiefB{iWM].

Theorem 4.1. (Daode, Wang-Mengl.et A be a basis fo#Z,. Then
g [[5] 42 5] -2]u[|3] 2]

In fact, the arguments for these gaps actually apply morergdig to finite abelian groups
G of ordern.

Extending the argument in_[WWM], it is possible to exactlyetetine a third gap. We only
outline the proof, leaving details to the interested reader

Theorem 4.2.Let A be a basis fo#Z,,. Then
g [[5]+2 (3] -2
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Proof. By Lemma3.ll, assunec A. We may suppose that the only other elementd imave
orders in{2,3,n/3,n/2,n}. Elements in4 of order2 or 3 lead top,,(A) > § —1or % — 1,
respectively. IfA contains an element of order use Lemma&3]1 to assume without loss of
generality thaf{0,1,t} C A, ¢ < 5. After some arithmetic, one hag(A) < p,({0,1,t}) <
42, unless € {2,3, | 5], [5] +1,[5]}. If 20r3 | n, the cases = %, & produce an element
of order2 or 3, respectively. I8 | n andt = 2 + 1, one hasy* € (—1)- A+ 1, again an element
of order 3. Otherwise, consider eithzr A or 3 - A and arrive at a case equivalent to one of

o A=1{0,1,2}, with order|% |,
o A=1{0,1,3}, withorder| %] + 1, or
o A={0,1,2,3}, withorder[21] > |2| — 1.

Finally, suppose that all nonzero elementsidfave orders i{n/2,n/3}. For A to be a basis,
we must have an element of each of these orders. Ther&fore, Multiplying by a unit, we
may assumeo, 2,3t} C A. ThenA — 2 contains3t — 2, reducing to a previously considered
case. O

Table 1: Basis orders fdf,,, 5 < n < 64.

n basisorders | n  basis orders n  basis orders

5 124 25 1.91224 45 1..162244

6 1235 26 1.9121325 46 1..131516 22 2345
7 1236 27 1..101326 47 1..1316 2346

8 1.47 28 1..10131427 |48 1..17232447

9 1.48 29 1..101428 49 1..141617 24 48
10 1.59 30 1..11141529 |50 1..1417242549
11 1.510 31 1..111530 51 1..141617 18 2550
12 1.611 32 1.11151631 |52 1.151718252651
13 1.612 33 1..121632 53 1..1518 2652

14 1..713 34 1.12161733 |54 1..1519262753
15 1.714 35 1..10121734 |55 1.15192754

16 1..815 36 1..13171835 |56 1..161927 2855
17 1..6816 37 1..131836 57 1..161920 28 56

18 1.917 38 1..111318193758 1..162028 2957
19 1.7918 39 1..141938 59 1..16 202958

20 1.791019 |40 1..14192039 |60 1..1721293059
21 1.81020 41 1.12142040 |61 1.1720213060
22 1.8101121 42 1.15202141 |62 1.1721303161
23 1.81122 43 1..121415214263 1..1721223162
24 1.9111223 44 1.131521224364 1..1822313263

In Table[l, we summarize the situation for small finite cygioups. The realizable basis
orders are obtained in many cases by easy constructionke imlsome cases by a very short
computer search. The non-realizable basis orders are thes#ing from TheoremiS-4.1 and
22
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5 Applications and Concluding Remarks

A directed graph or digraphis an ordered paiD = (V, E) whereV is a nonempty set of
verticesandE C V x V is a set ofarcs In most investigationd; is taken to be a finite set. If
V' is a set of points, the al@, y) is drawn as an arrow from to y. A loopis an arc of the form
(xz, ). Among other things, digraphs are used to model finite neksvor

A (directed walkin D from vertexz to vertexy is a sequence of vertices

T =20,21,T2,..., T =Y

where(x;,z;41) € Eforall 0 < ¢ < L. Such a walk hagength .. A walk with no repeated
vertices is called gath clearly, the shortest walk from to y is always a path.

A digraph D is primitive if, for some positive integek;, there is a walk inD of lengthk
between any pair of verticas andv in D. The smallest such is theexponenbf D, and is
denoted byy(D). A related notion is theliameterdiam(D), defined to be the maximum, over
all z,y € V, of the shortest path (walk) fromto y, this taken to bex if some pair of vertices
are not joined by a walk.

If D is primitive, one obviously has diai®v) < (D). Conversely, ifD has finite diameter
and loops at every vertex, thetiD) = diam(D).

There is a history of research on exponents of digraphs. &9 1@/ielandt[W] stated that
for primitive digraphsD onn vertices,

(D) < w, = (n—1)*+ 1. (5.1)

Later, Lewin and Vitek[[LV] found a sequence of gapginw,| as non-realizable exponenets
of primitive digraphs om vertices.

Letn € NandA C Z,. ThecirculantC' = Circ(n, A) is a digraph with vertex sét,,
and(z,y) an arc if and only ify — x € A. Bounds on the diameter of certain circulants has
proved useful in quantum information theory; see [BPS]. édipplications can be found in
the references of [LM, WM].

In any case, the connection with basis orderg,jris now clear.

Proposition 5.1. v(Ci r c(n, A)) = pn(A).

There exists a similar connection between the possiblsloaders for general finite groups
G and the possible exponents ©&yleydigraphs. Therefore, the problem of extending Theo-
rem[L1 to general groups merits some attention.
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