ON m-COVERING FAMILIES OF BEATTY SEQUENCES WITH
IRRATIONAL MODULI

PETER HEGARTY

ABSTRACT. We generalise Uspensky’s theorem characterising eveakaat (e.e.)
covers of the positive integers by homogeneous Beatty seggeto e.em-covers, for
anym € N, by homogeneous sequences with irrational moduli. We alssider in-
homogeneous sequences, again with irrational moduli, btadroa purely arithmetical
characterisation of e.en-covers. This generalises a result of Grahamrfor= 1, but
whenm > 1 the arithmetical description is more complicated. Finallyspeculate on
how one might make sense of the notion of an exadover whenn is not an integer,
and present dractional version’ of Beatty’s theorem.

1. INTRODUCTION AND STATEMENT OF RESULTS

Throughout this paper, the integer and fractional parts oéad numberz will be
denoted by = | and{x} respectively. Hence

{z} =2 — |z]. (1.1)
We trust that no confusion will arise from using the same taafor sets as for frac-
tional parts of numbers.

Next, we define the terms in the title of the article.

Definition 1.1. Let o, 5 € R with o > 0. Denote
S(a, B) == {|na+ 3] :n e N}. (1.2)

We wish to think ofS(«, 5) as a multiset of integers : in other words, if some integer
appears more than once (which will be the case wheneverl), then we take account
of the number of times it appears. The multis&ty, 5) is called aBeatty sequence
The numbew is called themodulusof the sequence. I# = 0 we say that the Beatty
sequence isomogeneoy®therwisdnhomogeneous\ote that, ifa € N, thenS(a, 3)

is an arithmetic progression (AP).

Definition 1.2. Let m be a positive integer] a finite index set andsS; : i € I} a
family of multisets of integers. The family is said to be @mncoverif every integer
appears at least: times in the union of the&;, counting multiplicities. If every inte-
ger appears exactly. times, we say that the:-cover isexact A little more generally,
if every sufficiently large positive integer appears at tdessp. exactly)n times, we
speak of areventual (exactin-cover Eventual exacitn-covers are the primary objects
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of study in this paper, and we shall henceforth use the aonanyEEC for these. In
addition, we shall always drop the prefix when= 1.

Remark 1.3. It is not hard to see that an eventual (exagtrovering family of APs is
in fact an (exact)n-cover. However, the same need not be true of more generétyBea
sequences.

Definition 1.4. Letm > 1 and{S; : ¢« € I} be anm-EEC. We say that this cover-
ing family is reducibleif there exist positive integers.;, mo satisfyingm; + ms = m
and a partition/ = J U K, such thafs; : i € J} isanm;-EEC and{S; : i € K} isan
msy-EEC. Otherwise, the cover is call@deducible

The basic problem of interest is to characteriser@lEEC’s consisting of Beatty
sequences. The main new results of this paper provide sumiactierisations for all
m € N, when the moduli of the sequences are all irrational.

We begin with a brief survey of the existing literature. Hefwath, it is to be under-
stood thatcover’ always refers to a covering family of Beatty sequendtis clear that
a necessary condition for the famifyb (a;, 5;) : i = 1, ..., k} to be anm-EEC is that

G
Y —=m. (1.3)
i— %

There is a considerable literature on the case: 1 - for a recent overview and a much
more exhaustive list of references than those given heee$setion 10 of [F09]. In the
case of homogeneous sequences, there is a classical result :

Theorem 1.5. Let ay, ..., ;. be positive real numbers. Thd(ay,0), ..., S(ax,0)}
is an EEC if and only if (1.3) holds and either

() k=1anda; =1, 0r

(i) k=2ando; ¢ Q.

The sufficiency of condition (i) is trivial, that of (ii) is lown as Beatty’s theorem,
though it was first discovered by Lord RaylefghThatk < 2 is necessary was first
proven by Uspensky [U], using Kronecker's approximatioadiem. A more elemen-
tary proof was later provided by Graham [Gr63].

When one allows inhomogeneous sequences, there is no sugle silassification.
However, a certain amount is known. In the case of two seqgewdh irrational mod-
uli, there is the following generalisation of Beatty's them :

Theorem 1.6. (Skolem[S], Fraenkel [F69]) Let a, 31, as, B2 be real numbers, with
a1, ap positive, irrational and satisfying (1.3). The (a4, £1), S(az, B2)} is an EEC
if and only if

2i2cz (1.4)

Condition (i) guarantees thaverypositive integer occurs exactly once in the multi§ét;, 0) U
S(az,0), and Beatty’s theorem is usually stated in this form.



ON m-COVERING FAMILIES OF BEATTY SEQUENCES WITH IRRATIONAL MOMDILI 3

Let {S(a1, (1), S(az, 52)} be an EEC and suppogeé(a;, ¢;) : i = 1,...,u} and
{S(c;,v;) : j =1,...,v} are exact covering families of arithmetic progressionserT,h
clearly,

{U S(aai, ¢ + 51)} U {U S(agcy, aty + ﬁ2)} (1.5)

is also an EEC. Graham [Gr73] proved that any EEC in which @t le@ae of the moduli
is irrational must have the form (1.5). In particular, thisplies that the moduli in an
EEC are either all rational or all irrational. It also redadie classification of EEC’s
with irrational moduli to that of EEC’s with integer modulhat is, of exact covering
families of APs. The latter problem has a long history but aem inadequately re-
solved. For an introduction to known results and open probleoncerning covers and
exact covers by APs, see Problems F13-14 in [Gu]. One notewdact is that the
moduli in a covering family of APs cannot all be distinct. Aabiful proof of this,
using generating functions, can be found in [E]. GrahamB31@sult implies that the
same is true of EEC’s with irrational moduli. An important opgroblem in this field
concerns EEC’s with distinct rational moduli. Fraenkel [Fé8njectured the
following :

Fraenkel's Tiling Conjecture. Letk > 3, let0 < a7 < --- < i and letj,, ..., 6;, be
any real numbers. Then the famil§(«;, 5;) : i = 1, ..., k} is an EEC if and only if

2k —1

i=1,..k (1.6)

o =

So let us turn taon > 1. Now one is interested in characterising irreducibte
EECs. In the case of APs, the existence of irreducible exacbvers, for everyn > 1,
was first demonstrated by Zhang Ming-Zhi [Z]. Graham and @&t [GrOB] stud-
ied m-EEC’s with rational moduli, and proposed a generalisatibRraenkel’s Tiling
Conjecture. The remainder of this paper is concerned wigttiomal moduli. The only
result we could find in the literature is the following gernesation of Beatty’s theorem :

Theorem 1.7.Letm € N and«;, as be positive irrational numbers satisfyirgoa; +
1/as = m. Then every positive integer appears exaetlyimes in the multiset union
S(Oél, 0) U S(Oég, O)

This result seems to first appear in [OB]. The proof givenghsrmot difficult, but
employs generating functions. A completely elementarnpopwmas given by Larsson
[L], whose motivation for studyingn-covers came from combinatorial games. Note
that Theorem 1.7 implies that irreducible, homogeneauSEC’s with irrational mod-
uli do exist for everym > 1. It turns out, however, that Theorem 1.7 describes all of
them. The first main result of this paper is the following :

Theorem 1.8. Letm € N. Letay,...,a; be positive irrational numbers satisfying
(1.3). Then{S(a4,0),...,S(a,0)} is anm-EEC if and only ifk is evenki = 2[ say,
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and theo; can be re-ordered so that

1 1

_|_
Qg1 Qg

€7, i=1,..,1 (1.7)

From this we shall deduce the following generalisation oédtem 1.5 :

Theorem 1.9. Letm € N and ay, ..., a;, be positive real numbers, not all rational.
Then{S(a4,0),...,S(ax,0)} is an irreduciblem-EEC if and only ift = 2 and (1.3)
holds.

Turning to the inhomogeneous case, Theorem 1.6 generaksbatim tom > 1.
Since we could not find this fact stated explicitly anywherdhe literature, and our
proof of it follows a different approach from that in [F69] evetate it as a separate re-
sult:

Theorem 1.10.Letm € N. Letay, (1, as, f2 be real numbers, witlv;, a, positive,
irrational and satisfying (1.3). The{\S(a1, 51), S(as, 52)} is anm-EEC if and only if
(1.4) holds.

Given the previous three results, it is natural to ask if Grals 1973 result gener-
alises as follows :

Question 1.11.Letm € N. Is it true that everyn-EEC with irrational moduli has
the form

t Mk Vi
U { {U S(ook—10; 1, Cop—10ik + 52k—1)} U {U SRt ks ok k + Bok) } }

k=1 i=1 j=1
(1.8)
where there are positive integers,, ..., m;, dy, ..., d; satisfyingmd, +- - - +m;d; = m,
and, foreachk =1, ..., ¢, one has
(i)
1 1
Qgf—1 Qo
(i) {S(aig, dix) =7 =1,y and{S(c;p, Vi) : j = 1,...,v} are exactd;-
covering families of APs

(iii)

Py Pk g (1.10)

QoK1 Qog

The second main result of our paper is a negative answergajttastion. We shall
give explicit counterexamples and provide a descriptiarterms of APs, of the most
general possible form of an-EEC with irrational moduli (see Section 4 below). While
this provides apurely arithmetical/combinatorial’ characterisation safchm-EECs,
generalising [Gr73], we do not find our result satisfactonygl #eel that a simpler and
more explicit description may be possible. This point wél discussed again later on.
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The rest of the paper is organised as follows. In Section 2giwe prerequisite
notation, terminology and background results. As well agming known theorems,
a secondary purpose of our paper is to provide a uniformrtreat of this material,
something which we have found lacking in the existing litere. Our approach is
based on Weyl's equidistribution theorem, and is thus miostay in spirit to that fol-
lowed by Uspensky [U]. However, he only employed a weakeidsgjuibution result
(Kronecker’s theorem), and we also make more explicit thntda for the represen-
tation functionr(XNV), which counts the number of occurrences of the inte§ein a
covering family, in terms of sums of fractional parts (see @j12) below). Already in
Section 2, we will prove Theorem 1.10 - this proof is extreyr@iple and provides the
reader with a quick glimpse of our method. Section 3 dealb Wvitmogeneous Beatty
sequences and the proof of Theorems 1.8 and 1.9. This sestiba heart of the pa-
per. In Section 4, we turn to the inhomogeneous case andghe &f how to properly
generalise [Gr73]. In Section 5, we briefly broach the questif how one might make
sense of the notion of.-cover, whenm is not an integer. What we will actually prove
is a fractional version of Beatty’s theorem. This followsuggestion of Fraenkel, who
was also interested in possible connections to combirsdtgames. Further develop-
ment of this line of investigation is left for future work,dhpossibilities for which we
summarise in Section 6.

2. PRELIMINARIES AND PROOF OFTHEOREM1.10

Our approach is based on standard results concerning styibdtion of sequences.
We have chosen the following formulation as it seems the mastral one, even if we
could get away with something less (see Remark 2.2 below) :

Lemma 2.1. Letr; = %, oy Tl = ’q’—: be rational numbers written in lowest terms,
whose denominators are co-prime, i.e.: GEDg;)

=1fori=1,..,kand GCQg,q;) = 1fori # j. Letb,, ..., 6, be irrational numbers
which are affine independent ov€r, i.e.: the equation

CO+0191+"'+0lel:07 €0, C15 .-+, C er (21)

has only the trivial solutiony =c; =---=¢ = 0.

For eachi = 1,..., k, let u; be the measure oft), 1) which gives measurég/g; to
each point mass/q;, v = 0,1, ...,q; — 1. Letu, be Lebesgue measure and jebe the
measure o0, 1)¥*! given by the product

[L= i X X g X . (2.2)
Then, as ranges over the natural numbers, thie+ [)-tuple
({nm},....{n7m}, {nb:},...,{nb;}) (2.3)

is equidstributed o0, 1)**! with respect tqu.

Proof. When all the moduli are rationdl = 0), this is just the Chinese Remainder
Theorem. For general> 0, the lemma thus asserts that thieiple

({nb:},...,{nb;}) (2.4)
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is equidistributed ori0, 1)}, whenn runs through any infinite arithmetic progression.
This fact can be immediately deduced from the multi-dimenai Weyl criterion - see
[KN], for example. g

Remark 2.2. As previously noted, we will not be needing the full force bétlemma.
What we will use is the consequence that, for any subinteti4als, 7; of [0,1) and
any arithmetic progressiofi(a, b), there are arbitrarily large € S(a, b) for which the
[-tuple (2.4) liesinly x --- x I,.

Fix m,k € N. Let real numbersy;, 5;,, i = 1,..., k, be given with they; positive,
irrational and satisfying (1.3). To simplify notation, put

91' = Y=, 1= 1, ,k (25)
@.
Hence,
> b =m. (2.6)

ForN € Nand: € {1, ..., k}, set
ri(N) :=#{neN:|na;,+ ] =N} (2.7)

Setting
k

r(N) = ri(N), (2.8)
i=1
we note that the familf S(«;, 5;) : i = 1, ..., k} is anm-EEC if and only ifr(N) = m
for all N > 0. The functionr(-) will be called therepresentation functioassociated
to the family{S(«;, 3;) : i = 1,..., k}.
For each, sinceq; is irrational, there is at most one integersuch that; o, +; € Z.
Hencenao,; + 3; ¢ Z for all n > 0 and alli. It follows that, for NV >> 0,

ri(N)=#{neN: N <na; + 3, < N + 1}, (2.9)
the point being that both inequalities are strict. One gai@duces that
ri(N) = [(N + 1)0; + 7] — [N0; + 7). (2.10)

Define the functior : Z — R by
k

¢(N) := Z{N@i + i} (2.11)
From (1.1), (2.6) and (2.10) one easily;deduces that
r(N)=m+ (e(N) —e(N + 1)). (2.12)

Hence, the Beatty sequences formmaiEEC if and only if the functior(NV) is constant
for all N > 0. We can already quickly deduce Theorem 1.10. For if we haletor
sequences, then sinée+ 6, € Z one has

A+ b if {NO1 + 71} <A{m + 72},
e(NV) = { 14+ {v + 2}, otherwise (2.13)
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It follows that, ify; +v2 € Z, thene(N) = 1 forall N € Z, whereas ify; +v» ¢ Z then,
sinced; ¢ Q, a very weak form of Lemma 2.1 (already known to Dirichletpimas that
{N0; + v} — {71 + 12} will be both positive and negative for arbitrarily largé.

3. THE HOMOGENEOUS CASE PROOFS OFTHEOREMS1.8 AND 1.9.

The proof of Theorem 1.8 will exhibit the main ideas of thippg so we will present
it in detail, which will allow us to be more brief with all subguent proofs. So let’s now
assume that all our sequences are homogeneous. Herace; = 0fori =1, ...,k and

€(N) =D _{NO}. (3.1)

Let V' be the vector space ov@r spanned by, 6, ..., 0,.. Since the); are irrational,
we know that dingV’) > 1. Letdim(V') := d+1 and, without loss of generality, assume
thatl, 6, ...,0, form a basis folV. Hence there exist rational numbets, 0 < j < d,

1 < ¢ < k such that

d
62’ :q0,i+ZQj,i0j7 1= 17"'7k7 (32)
j=1
where
. 1, ifi=1,
and
k .
| m, ifj=0,
Zoqﬂ%i = { 0, ifj>0 (3-4)
Set
o {qj}i}a if j = 07
Qji = { g if 5> 0. (3.5)
We may write each of the numbe(i;; as a fraction in lowest terms, say
Qj,i = Zj7i, Ujﬂ' - Z, Uj’i - N, GCD(uj,i;Uj,i) = 1 (36)
y

We shall prove Theorem 1.8 by induction en The casen = 1 follows from
Theorem 1.5. Ifim > 1 then, in order to apply the induction hypothesis, it suffices
by Theorem 1.7, to find any paif,i; € {1,...,k} such that,, + 6;,, € Z. Hence
this is all we need to do to finish the proof. Using Lemma 2.1,shall deduce it as
a consequence of the requirement that the function), given by (2.11), be constant
for all N > 0. In a way which we will make rigorous in what follows, that lera
will allow us to ignore the influence of all but one &f, ..., 6, - for simplicity, we select
0: (see egs. (3.11) and (3.28)) - and then reduce the proof dh#wem to a purely
combinatorial problem (Proposition 3.3 below).

To begin with, define positive integefs, L by

LO = LCM{’UOJ‘ . (]171‘ 7é 0}, L = LCM{|U17Z| . qui 7é 0} (37)
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For eachi such that; ; # 0, define the numbers;, V; by
U; L

QO,i = L_o’ i =: Vz (3.8)
Finally, we set
a; == LoV, b := =U;Vj, if g1; >0, (3.9)
_LU‘/ja dj = _Uj‘/ja if qi,; < 0. '

We shall use Lemma 2.1 to establish the following claim :

Claim 3.2. If the functione(N) is constant for allN > 0, then for everyt € Z,
we have an equality of multisets

q1,;>0 q1,5<0

Suppose the claim were false. Then clearly it must fail faneamon-negative.
Choose such aand letn, be an element of the multiset difference. Without loss of
generality,n; occurs more often on the left-hand side of (3.10), séiynes on the left-
hand side and times on the right-hand side, with> s. Now leté be a sufficiently
small, positive real number - how small it should be will bemclear below. By
Lemma 2.1, we can find arbitrarily large integersatisfying

n=1(modLyL), §<{nb}<ds+e % {nh}<d® i=2..,d (3.11)

Let ny be any positive integer satisfying (3.11). L&t (resp./V_) be the least positive
integer which is divisible by.y, congruent ta modulo Ly L and greater thalgl—nom
(resp 5L Lnom) Then the point is that, providedl is sufficiently small, for every
i=1,. k we have

1, if qii > 0 andﬁt S S(ai,tbi),
[N {0} +{N1qo | = [N-{0:}+{N-qo;}] = { —1, if ;s <Oandn € S(c;,td;),
0, otherwise
(3.12)
This in turn is easily seen to imply that

e(Ny)—e(N_)=s—r#0. (3.13)

Since the number®&/, and N_ can be made arbitrarily large, this would mean that
the functione(V) could not be constant fa¥ >> 0, a contradiction which establishes
Claim 3.2.

We state the next assertion as a separate proposition, asdther may find it inter-
esting in its own right. It is also the crucial combinatoiiagredient in this section :

Proposition 3.3. Letay, ..., a,, c1, ..., ¢, be positive integers and , ..., b,,, ds, ..., d, be
any integers. If, for every € Z, we have an equality of multisets

o

| S(as, th:) U (¢;, td;), (3.14)

i=1 j=1
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theny = v, and we can reorder so that, for ea¢h= 1,....u, a; = ¢; andb; =
d,’ (mOdCLi).

The proof of the proposition will employ the following facts

Lemma 3.4. Letp be a prime/ a non-negative integet;, ..., [, integers each strictly
greater thart andb, d,, ..., d, any integers. Suppose that, as sets,

S('b) < | S, dy). (3.15)

Then,

(i) S(p',b) equals the disjoint union of some subset of the terms on ¢e-hiand
side of (3.15),

(ii) Let L be the maximum of tHe. Then for some, € {0, 1, ..., p» — 1} there exists,
for eaché, € {0,1,...,p — 1}, somej such that

;=L and d; =¢& + &p™ !t (modph). (3.16)

Proof. of Lemma 3.4These are standard observations which can be proven inugario
ways. For example, one can consider thary rooted tre€/, whose nodes are all the
progressionsS (p’, u), where0 < i < L and0 < u < p%, and in which, fori < L,

the nodeS(p’, u) has thep daughtersS(p'™, u + vp'), v = 0,1,...p — 1. EQ. (3.15)
expresses the hypothesis that the rooted sulitye@der a certain nodeis, apart from

the noder itself, entirely contained inside the union of a collectibn..., T, of rooted
subtrees at strictly lower levels. Part (i) then assertsdbae subset of thg,, ..., T}, are
pairwise disjoint and their union equéil$\{z}. This is simple to prove, for example
by induction on the depth df. Part (ii) is then also an immediate consequence of the
rooted tree structure. O

Proof. of Proposition 3.3We shall perform an induction on several different parame-
ters. First of all, letn be the total number of distinct primes which divide at least o
of the modulia; or ¢;. If n = 0 then each individual AP is just and the proposition
simply asserts the obvious fact that they must then be equmimber, i.e.: that = v.

So now suppose > 0 and that the proposition is true for all smaller values:oflet
p:=p < --- < p, be the distinct primes which divide at least one modulus. Let
p* denote the highest power pfdividing any modulus and partition the moduli into
subsets\y, My, ..., My, Mj,, where

M= {i:p |ai}, M :={j:p" || ¢;}, 1=0,...,k (3.17)
By the Chinese Remainder Theorem, for each 1, ..., (resp. eacly = 1,...,v)
we can write
S(ai, tbz) = S(pli, tbz) N S(Al, tbz) (resp.S(cj, tdj) = S(pl;,tdj) N S(Cj, tdj)),
(3.18)
wherep' || a; andA; = a;/p" (resp.p'i || ¢; andC; = ¢;/p%). Lete € {0,1, ..., p"—1}
and lett be any integer s.t. = 1 (modp*). Considering the intersection of both sides
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of (3.14) with S(p*, ¢) we find that, as multisets,

U s@aw)= |J  S(Ctdy). (3.19)
ibi=¢ (Mod p*) j:d;=¢(modp”)

Now note that a necessary and sufficient condition for (3td4pld for everyt € Z
is that it do so for any divisible only by those primes dividing sonagor c;. Applying
this observation to (3.19) instead, we deduce that therlatigality holds for every
t € Z. Since there are exactly — 1 primes dividing some4,; or C;, we can apply the
induction hypothesis to conclude that, for easuch that; = ¢ (modp*), there exists
aj such thatS(A;, b;) = S(C},d;). For such a paifi, j) it follows that

Now we introduce the second induction parameter, whichadakal number of APs
involved in (3.14), i.e.: on the quantiy + v. It is clear that Proposition 3.3 holds if
i =v =1, sosuppos@ + v > 2 and that the proposition holds for any smaller value
of i + v. If there were any paifi, j) whatsoever such that(a;, b;) = S(c;,d;), then
we could immediately cancel this pair from (3.14) and appby induction oru + v to
deduce the proposition. Hence, we may assume no such psiis.exi

Let [,,in (resp. I/;,) denote the smallest value bf(resp. I') such that the set/,
(resp. M) is non-empty. We claim thdt,;,, = /.. To see this, set:= p* in (3.14)
and consider the contribution of both sides to numbers waielhdivisible byp' but not
Pt wherel = min{lu, . }. These contributions cannot be equal,if, # ..,
since then only one side would give a nhon-empty contributiorfact, we can deduce
much more. Let := [,,;,. Itis clear that, for every* € 7Z, we have equality of multisets

U S tb) = | S(Cy,t°dy). (3.21)
Pllai Plles
By induction on the first parameter, the total number of prime divisors of the and
cj, we can deduce that the progressiétis;, b;) for whichp! || a; and the progressions
S(C;y,d;) for whichp' || ¢; are equal in pairs. This fact will be exploited later on.

For the next step in the argument, consider afor whichl; = [,,;,. For eacht such
that S(p', b;) 2 S(pk, &) we can find, as shown earlier, somauch thatS(4;, b;) =
S(Cj,d;) andS(a;,b;) O S(cj,d;). Clearly, the multiset union of all thes®(c;, d;)
must containS(a;, b;) and thus (3.20) and Lemma 3.4(i) imply that some subset of the
S(cj,d;) are pairwise disjoint and their union equal&;, b;). To summarise, for any
such that; = [,,;,, we can find a set of's such that

S(Cy,dj) = S(A;,b;) for eachj andS(a;, b;) =| | S(c;, d;). (3.22)
J

These conditions imply that
S b)) = | S, d). (3.23)
J

If, in (3.22), we hadS(a;, b;) = S(c;,d;) for somej, then we could apply the induc-
tion onp + v. Hence we may assume that> [; for eachj in (3.23), and therefore
Lemma 3.4(ii) applies to the; in this union.
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Now taket = p in (3.14) and assume for the moment that there is some({aii; )
such thatS(a;,, pb;,) = S(c;,, pbj,) andp'=i» || a;,. Then from (3.14) it would follow
that, for everyt € Z, we have the equality of multisets

U S(ai,t(pbi)) = | S(es.t(pby)). (3.24)
i#i1 J#i
Applying the induction hypothesis gn+ v/, we could then conclude that the arithmetic
progressionsS(a;, pb;),1 # i1 andS(c;,pd;), j # ji are equal in pairs. But then, by
applying Lemma 3.4(ii) to any union of the type (3.22)-(3,28e would find that there
must, after all, be a paifi, j) such thatS(a;,b;) = S(c;,d;), so that the induction on
i + v yields the proposition.

Thus, finally, we may assume there is no pair, j;) satisfying the above require-
ments. But, from (3.21) we know that the progressiSis;, p'b;) for whichp' || a; and
the progreesions(c;,p'd;) for which p' || ¢;, are equal in pairs. So we introduce a
third and final induction parameter, namely the smallegtgatm such that there exists
at least one paifiy, j;) such thatS(a;,, p™b;,) = S(c;,, p™d;,) andp' || a;,. We know
thatm is finite. But, if m > 1, then applying the previous argument for= 1 to the
multiset relation

I v
U S(ai t™'0) = | S(ej. t(p™"dy)), forallt €z, (3.25)
i=1 j=1

we could conclude that the progressidh@:;, p™ 'b;) andS(c;,p™ *d;) are equal in
pairs, thus contradicting the definition of.
This final contradiction completes the proof of Propositio8. O

We can now complete the proof of Theorem 1.8. Lgt.., i, be the indices for
which ¢, ; # 0. Our goal is to find a pait, v such that;, + 6;, € Z. Claim 3.2 and
Proposition 3.3 already imply that we can pair off the such that the sum of each
pair is in Z, modulo their dependence @h, ..., 0,. Precisely, letl; be theQ-vector
subspace oV spanned by, ...,0,. Then Claim 3.2 and Proposition 3.3 imply that
is even, say = 2s, and the indice$,, ..., i, can be reordered so that, foe 1, ..., s,

Qiser >0, Quiny = —Quine_1s  Qjine—y T+ Q0,ine € Z (3.26)
and hence
Oin, o + 0iy, = 2z +v1,, forsomez, € Z andv,, € V. (3.27)
Hence we would be done if we could find ahfor whichv; , = 0. We can locate such
at by a more refined application of Lemma 2.1. ldebe a very small positive real
number - how small is necessary will again become clear inctwese. By Lemma
2.1, we can find arbitrarily large integenssatisfying
n=0(modLy) and 6* ' < {;} <6* 1 4V fori=1,...d. (3.28)
Let M, be the maximum of the numbeys;,, ,,t=1,...,s,andletl; .= {t: ¢, , =
M;}. Now let
My == max{qe,, , :t €1}, Mso_ :=min{qgas, :t € 71} (3.29)

We claim that\/, - = —M, . Suppose this is not the case, and without loss of gen-
erality thatM, . > —M, . LetTy .= {t € T : q24,,, = M5 }. We shall prove a
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contradiction to the assumption that the functidV) is constant forV > 0. Fix a
very small§ > 0, letn, be any integer satisfying (3.28) and take

1 _ Noy

N2’+ = 2n2 . ’72(6M1 n 63M27+)-‘7 NQ’_ = 9 (330)
Then the point is that, providetis small enough,
| (1,0), if 1 = i, for somet € 75,
(N2 {0i1), [No40:1]) = { either(0,0) or (—1, —1), otherwise
(3.31)
Hence,
€(No,—) — €(No ) = |To| # 0, (3.32)

giving the desired contradiction, since the numhb¥ss. can be made arbitrarily large.
So we have shown thatl; . = M, _. Let M, := M, . With 7, as defined above
we have, for each € 75, that

Qg ing_1 = M& = =t in, for{' = 17 2, (333)

which in turn implies that, ifi; is the Q-vector subspace df spanned by, ..., 6,,
then, for each € 75,

Oin,  + 0iy, = 24 + v2y, fOrsomez, € Z andvy, € Vs. (3.34)

The idea now is to iterate the same kind of argument to produsequence of non-
empty sets of indices
T 2%2---2T, (3.35)

such that, forany =1, ...,d and anyt € 7;,
iy, + 0iy, = 2 +v;,, forsomez, € Zandv,, € V. (3.36)

SinceV,; = {0} we will be done at the:th and final step of this process.
We have already described in detail the first two steps of thegss, but for the sake
of completeness, let us describe just one further step. Let

M; == max{qs, , :t € o}, M;_ :=min{qs,,, :t € To}. (3.37)
We claim thatM/; - = —M; . Suppose this is not the case, and without loss of gen-
erality thatM; . > —M;_. LetT; .= {t € T5 : ¢34, , = M;+}. We shall prove a

contradiction to the assumption that the functidtV) is constant forN > 0. Fix a
very small§ > 0, letns be any integer satisfying (3.28) and take

o 1 N3y
N3’+ = 2n3 ’—2(5M1 i (SSMQ T (55M37+)-|’ Ng,_ = 5 . (338)
Then the point is that, providetlis small enough,
' A ) (1,0), if 1 = i, for somet € 73,
(N340}, [Ns.-{0}]) = { either(0,0) or (—1,—1), otherwise
(3.39)
Hence,
e(Ns_) — e(Ns1) = | T3] #0, (3.40)

giving the desired contradiction, since the numh¥xs. can be made arbitrarily large.
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So we have shown that; . = M; _. Letting M; := M; ;. and with7; as above, we
have shown that

t €T3 = Qe = Me = —qeip,, fOré=1,2,3, (3.41)

from which (3.36) immediately follows fof = 3.

Hence, as we have already noted, by iterating the argumedat asj = d we will
find that, for anyt € 73, 0,,, , + 0,,, € Z. Since the sef; will certainly be non-empty,
the proof of Theorem 1.8 is complete.

We close this section by indicating how to prove Theorem h%he notation of the
statement of that theorem, if all tlag are irrational, then the result follows immediately
from Theorem 1.8. So it suffices to show that we cannot haveraduciblem-EEC
in which there are both rational and irrational moduli prgseTo accomplish this,
it suffices to show that the irrational moduli must themssgleenstitute am»’-EEC for
somem’. Letthe representation functietV) be as in (2.8). As before, the requirement
is thatr(N) = m for all N > 0. Let us separate representationsh\oicoming from
irrational and rational moduli separately and write

T(N) = T’irr (N) -+ T‘rat(N). (342)

Now the point is that, no matter what the rational moduli #nrere must be somec N
such that the functionrg¢(/V) is constant on any congruence class moduldience,
the same must be true af, (), for all N > 0. But now one may check that this is
enough to be able to push through the entire proof of Theor@&aidd deduce that the
irrational moduli can be paired off so that each pair sumsntingeger. Theorem 1.9
follows at once.

4. THE INHOMOGENEOUS CASE

In the previous section, we employed Weyl equidistribufjpemma 2.1) to reduce
the characterisation of homogeneousEEC’s with irrational moduli to a purely com-
binatorial problem about multiset unions of arithmetic gnessions (Proposition 3.3).
The first part of this approach carries over to the inhomogaaaetting, but the second
part seems to be more difficult and we do not resolve it to otisfsation in this paper.
Nevertheless, we can at least explain why Question 1.11 haegative answer and why
families of inhomogeneous-EEC’s may have additional structure.

We begin with some terminology :

Definition 4.1. A system of parametelS = (u,a, b, ¢) shall consist of a positive
integery and threeu-tuples

a=(ay,..,a,), b= (b1,....,0.), ¢=(¢1,....,0,), (4.2)

where theu,; are positive integers and tlhg ¢; any integers. We consider all the tuples
as unordered, i.e.: we do not distinguish between systesedban the same three tu-
ples but with the entries reordered. The numpes called thesizeof the system. We
say that the aystem lfomogeneous ¢ = 0, otherwisenhomogeneous
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Definition 4.2. Let S = (u,a,b,¢) andS’ = (v,¢,d, 1)) be two systems of pa-
rameters. We say that these two systemscaraplementaryf, for everyt € 7Z, we
have an equality of multisets
USaz,qﬁﬂrtb :U (¢;, 5 + td;). (4.2)
=1 j=1
The study ofm-EEC’s of Beatty sequences can be reduced to that of complemen
tary systems of parameters. In the case of homogeneousrsmguand systems, this
reduction was established in Claim 3.2. The same argumemnismaer to the inhomo-
geneous setting. Indeed, let notation be as in egs. (3.8)48d assume that all € Q
- the general case can also be reduced to this one. \Mn:te Ji - a fraction in lowest
terms, and set

H :=LCM{h;:i=1,...k}, ~ = % (4.3)
Then the analogoue of (3.9) in the inhomogeneous setting is
a; := LoViH, b;= U ViH, ¢; :=—LoV;G, if g1 >0, (4.4)
Cj = —LQ‘/}H, dj = —Uj‘/jH, 1/Jj = —L()V}Gj, if q1; < 0. '

Using the same methods as in Section 3, one may show that fitte¢ion (V) of
(2.11) is constant foN > 0, then for allt € Z we must have equality of multisets

U S(ai i +thi) = | S(ej, v+ tdy). (4.5)
q1,:>0 q1,;<0
In fact, it is not hard to see from our earlier analysis thaewth = 1, i.e.: dimV') = 2,
then equality in (4.5) for alt € Z is also sufficient for constancy ef/V).

At this point, there remains a gap in our understanding,esime do not know what
is the‘right’ generalisation of Proposition 3.3 to inhmogeneoystams of parameters.
However, we shall explain why Question 1.11 has a negatigsvan We need some
more termoinology.

Definition 4.3. LetS = (u,a,b,¢) andS’ = (v,¢,d, ) be two systems of pa-
rameters. We say th&' is asubsystenof S if v < i and there is a-element subset
{i1,...,3,} of {1,..., u} such that

C = (ail, ey CL@/), d= (bi17 ey biy), ’l/) = (¢i17 ey ¢zy) (46)
A decompositiomf S is a collectionS?, ..., S* of subsystems af based on index sets
whose disjoint union i§1, ..., u}. We write

k
S=|]s" (4.7)

The decomposition is said to bevial if £ = 1, otherwisenon-trivial. It is completaf
eachS? has size one.

Definition 4.4. A system of parameterS = (u,a,b, ¢) is said to beexactif, for
eacht € Z, the multisetJ!’_, S(a;, ¢; + tb;) is an exact cover of the underlying set, in
other words, if every integer occurring in the multiset occtine same number of times.
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A decomposition (4.7) of is calledexactif eachS® is exact. Note that any complete
decomposition is exact, but the converse need not be true.

Drfinition 4.5. A pair (S, S’) of complementary systems is said toreducible/exact/
completely reducibld there are non-trivial/exact/complete decompositions
k k
S=|]s, §=|]|s) (4.8)
=1 =1
for which the pairdS?, (§')Y), i = 1, ..., k, are each complementary/exact/equal.

Proposition 3.3 states that any complementary pair of h@megus systems of pa-
rameters is completely reducible. In general, however,ragtementary pair need be
neither reducible nor exact - see Example 4.8 below. Togettth the following fact,
this explains why Question 1.11 has a negative answer :

Proposition 4.6. If an (irreducible)m-EEC with irrational moduli has the form (1.8)
then, with notation as in Sections 2-4, the systems of pammét = (u,a,b, @)
and 8’ = (v,c¢,d,v) defined by (4.4) form an exact (irreducible) complementary
pair. The latter condition is also sufficient when dify = d + 1 = 2. In fact,

the notations in (1.8) and (4.4) are consistent, up to a ndisimay factor and shifts

(¢ — @+t — 1) +td).

The verification of these assertions is a tedious recapibumaf earlier work. We
shall therefore content ourselves with giving two furtheamples. The first illustrates
the correspondences in Proposition 4.6, the second deratessthe existence of inex-
act complementary pairs and hence:ofEEC’s not of the form (1.8).

Example 4.7. Let a € (1,00)\Q. Then{S(c,0),S(-%;,0)} is an EEC by Beatty’s
theorem. Two exact covers @fby APs are given by
{5(3,0),5(3,1),5(3,2)} and {5(2,0),5(4,1),5(4,3)}. (4.9)

From this data we can build, as in (1.8), the following irreitile, inhomogeneous
EEC:

200 ! 4o o 4o 3
{5(30470),S(SO&,O&),S(?)O[,QOC)}U {S (a_lam) 7S(F7O[—]_> 7S<Oé—]_704—1)}.

(4.10)
In the notation of (2.5), we have= 6 and the following table of values

il 6 [ % |
[ L] 0

2] o+ [-1/3
3] &= | —2/3
4]2=L1-1/2
5]t -1/4
62t ]-3/4
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Then (3.2) will become
3 1 1
91 = 92 = 93, 94 - —561 + 5, 95 = 96 = 591 (411)

In (3.7) and (4.3) we’ll obtain the values
Lo=4, L=3, H=12, (4.12)
and for the remaining variables in (3.8), (4.3) and (4.4)tdide of values

U | Vi [Gi| ai [bi] & | e [di] i ]
1101 3]0 144/0| O

210 3 | 8 [144]10 | —-96

3101 3|4 ]144 |0 | —48

412 1-2]0 96 |48 | O
5|1 |—-419 192 148 | 144
611 ]|—-4] 3 192 148 | 48

Dividing everything by the normalising factor @i, we see that (4.5) becomes the
assertion that, for everyc Z,

S(3,00US(3,-2)US(3,-1)=S5(2,t) US4,3+t)US(4,1+1). (4.13)

Notice that this equality is irreducible and that, whe# 0, it coincides with that be-
tween the pair of exact covers we started with in (4.9).

Example 4.8.LetS = (i, a,b, ¢) andS’ = (v, ¢, d, 1) be systems for which
b;=0(moda;), i=1,...,4, ¢;=0(modd;), j=1,..,r. (4.14)

Then both sides of (4.5) are independent,o it suffices for complementarity to have
the multiset equality

1% v
| S(ai é:) = U (¢, 1) (4.15)
=1 7=1
Consider the solution of (4.15) given by
S(1,0) U S(6,0) = S(2,0) US(3,0)US(6,1)US(6,5). (4.16)

One readily checks that this equality is irreducible andaw. Hence any correspond-
ing complementary pair of systems satisfying (4.14) willdmh irreducible and inex-
act. This is the simplest example we found of an inexact cemphtary pair, in that the
value ofu + v = 6 is minimal (note that one must hawein{y, »} > 1), and likewise
with the modulia;, c;.

We can use this data to construct an irreduciblEEC of Beatty sequences with
irrational moduli, which does not have the form (1.8). In thatation of (3.2), we
choosed = 1, k = 6. Condition (4.14) will be satisfied if,;, € Z for all i. Then it is
easy to check that, with the following assignments, (4.dyoes (4.15) to (4.16) :
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il 6 [ ]
1 01 0
2 ZQ+691 0
3 23—291 0
4 24—391 0
5 2’5—91 1/6
6 2’6—01 5/6

Here ¢, is any positive irrational and the are integers. By (3.4), we have =
z9 + -+ + zg. Since eacly; > 0, the minimum possible value of. is thusm = 4,
obtained by choosing; = 0, z3 = 24 = 25 = 25 = 0 andf; < 1/3. This will
yield an irreduciblet-EEC of Beatty sequences with irrational moduli, which does
have the form (1.8). However, as promised above, we can derkstd construct an
irreducible2-EEC instead. The point is that, formally, in the proof of Gia8.2, there
is no requirement that th& in (3.2) be positive, and also nothing changes if we shift
any f; by an integer. So, if we sét := —60;, we can define a new family of Beatty
sequences by

il 8 [ ]
1[1+6] 0
2[1+60] 0
3] =26 | 0
1] =30 | 0
5] -6 [1/6
6] -0 |5/6

This yields an irreducible-EEC provided—1/6 < 6 < 0. By the way, consider the
functione(N) of (2.11). Letr := {N#}. Then

€(N) = f(z) ={a} + {6} + {22} + {32} +{-2+1/6} +{—2x+5/6}. (4.17)

Since{ N6} is equidistributed irj0, 1), constancy ot(N) for N > 0 is equivalent to
constancy off (z) for z € [0,1). One readily checks thgt(x) = 2 for all = € [0, 1).

In general, given an irreducible and inexact solution td%4,. one can construct,
as in Example 4.8, a corresponding irreducibleEEC not of the form (1.8), where
m = min{y, v}. Itis easy to see how (4.16) can be generalised to give exanqbl
irreducible and inexact solutions of (4.15), for any valdierdon{x, v} > 1. Hence we
deduce

Theorem 4.9. For everym > 1, there exist irreduciblen-EEC’s of Beatty sequences
with irrational moduli, not having the form (1.8)
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5. AFRACTIONAL BEATTY THEOREM

The notion of exactn-cover in Definition 1.2 clearly does not make senseifs
not an integer. However, one might imagine various ways ¢éreding the notion to
non-integerm. Here, we only take a first tentative step, which nevertisaheay prove
instructive. We shall prove dractional version’ of Beatty’s theorem.

Let p, g be relatively prime positive integers. Let, a, be positive irrationals satis-
fying

LI (5.1)
Qo q
As in Section 2, denot8; := 1/«;, i = 1,2. Letpy,p1 € {0,1,...,¢ — 1} be the
integers defined by

+1
p =po (Modg), %<{01}<p1q : (5.2)

Let (V) be the representation function of (2.8) and set

N
R(N):=Y_r(M). (5.3)
M=1
We will prove the following result :

Theorem 5.1.For everyN € N one has
pN —[p/q], if p1 <po,
R(gN —1) = . 54
(4 ) {pN—Lp/qj, if p1 > po. (®-4)
Moreover,
(A) If ¢ = 1, thenr(N) = p for everyN € N.

(B) If ¢ = 2, thenr(N) € {|p/2], [p/2]} for everyN € N.
(C.)) If ¢ > 2 andp; < po, then

r(N) e {lp/al,[p/ql, [p/q] +1}, foreveryN € N. (5.5)
If, for eachi = 0, 1, 2, we let
S;:={N eN:r(N)=|p/q| +i}, (5.6)
then eachs; has asymptotic density, sdysS;) = d;, where
dy = (1 - @) T, (5.7)
q
dpz%—a@, (5.8)
1 2 + 2 _ _
e A (59)
q 2q

(C.ii) If ¢ > 2 andp, > po, then
r(N) € {lp/a] —1,|p/al,[p/q]}, foreveryN € N. (5.10)
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If, for eachi = 0, 1, 2, we let
Ti :={N eN:r(N) = [p/q] — i}, (5.11)
then eachl; has asymptotic density, say7;) = ¢;, where

So="22106, (5.12)
q

5y = (1 - %) —25,,  (5.13)
4popr + (p1 — po) — (P} + p?)

1
by = =
27y 2q

— (2p1—po) + (a — p1>{91}] . (65.14)

Remark 5.2. The interesting thing in this result is that, whern> 2, the function
r(NN) cannot take on just the valués/q| and|[p/q|. Nevertheless;(N) never takes
on more than three distinct values, and each value is assamedairly regular set.
Thus the family{S(a4,0), S(as,0)} is always, in some senseglose to an exagt/q-
cover’.

Proof. Egs. (2.11) and (2.12) here become

e(N) = {NO,} + {Nb,}, (5.15)
r(N) = g + (e(N) — e(N +1)). (5.16)
Definecy € {0,1,...,¢ — 1} by cy = Np (modg). Since (5.1) implies that
NG, + No = Y (mod1), (5.17)
q
it follows that / y } /
— CN Q7 I N91 < CN Q7
In particular,
Po/q; if p1 < po,
Ve i 1
i { L+ po/q, if p1 = po, (5.19)
whereas

if ¢|N, thency = 0 ande(NV) = 1. (5.20)
From (5.16) it follows that, for any; > N,

R(N) — R(Ny) = (g) (N = No)— (e(Ny + 1) —e(Ny + 1)) (5.20)

In particular, if N = —1 (modg), then (5.20) implies that
R(N +q) — R(N) = pN. (5.22)
Furthermore,

Rg -1 = Y () = 1) = p— Ip/a] —pofa+ () —1).  (5.23)

From (5.19), (5.22) and (5.23), one easily deduces (5.4yv WNe turn to the proofs of
statements (A), (B) and (C). The first of these is just Theorémdnd it is immediately
implied by (5.16) and (5.20). Using (5.18) we also quicklyddee (B). For (C) we
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need to work a little more. We shall prove the statements aj ([@orously - similar
arguments give (C.ii). It is already clear from (5.16) thé&fV) must be one of the
four numbers|p/q| + 4,1 € {—1,0,1,2}. If »(N) = [p/q] — 1 then it means that
e(N +1) —e(N) =1+ E. By (5.18), this happens if and only if

C C
{N6,} < 7N {(N+1)6,} > Nq“, cN41 = CN + po < q. (5.24)

In particular, these conditions are unsatisfiablfiff < £, in other words ifp; < po.

This proves (5.5). The sét, consists of all thos&/ € N for whiche(IN +1) —¢(N) =
% — 2. By (5.18), we have explicitly,

SQZ{NEN:{N01}>%, {(N+1)01}<C]\;H, cNs1=Ccn+po—g>0V.

(5.25)
That this set has an asymptotic density follows from Lemmawhich we can also use
to computed, explicitly. Note that (5.7) and (5.8) would follow from (5.8nd the fact
that

Hence, it just remains to compuie. From (5.25) we deduce that € S, if and only if
¢q—po<cy<qg-—1 (5.27)

and

max{%v, 1 {91}} < (N} <X ;pﬁ —{6,}. (5.28)

By Lemma 2.1, we thus have

-1

sA[E ) £ (om)] e

J=4—po Jj=q—p1

It is now just a tedious exercise to verify (5.9). O

6. OPEN QUESTIONS

In this paper we showed how the classificatiomBEEC’s of Beatty sequences with
irrational moduli can be reduced to that of complementaiyspa systems of parame-
ters, the latter problem being purely arithmetical. We gebthat every homogeneous
complementary pair is completely reducible, but that trexist inhomogeneous com-
plementary pairs which are neither reducible nor exactr&lbae might let things rest,
but we feel that something is still missing, that it shoulgbssible to prove some more
insightful structural result for arbitrary complementggirs. This is admittedly a vague
hypothesis. Equally vague, but still enticing, is the gisesof how to push further the
notion of m-cover, whenn is not an integer. Theorem 5.1 may provide some hints, but
let us stop before we cross over the threshold into the re&lidiespeculation !
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