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Abstract

We classify all finite 2-groups G for which the maximum proportion
of elements inverted by an automorphism of G is a half. These groups
constitute 10 isoclinism families.

1 Introduction

Let [ be a rational number in (0, 1]. We call the finite group G an [-group if
the maximum proportion of elements inverted by an automorphism of G is
I =1(G). A good deal of work has been done in investigating the structure of
[-groups for various values of [ (see [3] [4] [5] [6]). In this paper we complete
the classification of %—groups, begun by Fitzpatrick in [1], who considered
the case where G is not a 2-group, obtaining the following classification:

THEOREM 1.1 [1] Let G be a finite group which is not a 2-group, and

which has no abelian direct factor. Then G is a %—group if and only if it is
one of the following types:
Type L. | G | = 23°, G/Z(G) = Ay.
Type IL. | G | =2%3, G/Z(G) = Cy x Cy x S3, G is generated modulo Z(Q)
by {w,v,u,t} where [w,u] = [v,u] = [w,t] = [v,1] = = 1, [t,u] =t,
[v,w] # 1 and [v,w],u?,v?,w? all lie in Z(Q).

The classification in the 2-group case involves many more types of groups,
which in fact constitute 10 isoclinism classes. We are not aware of any simple
conceptual ‘reason’ as to why our groups should constitute isoclinism classes



- this just seems to come out from the proof. Before stating the theorem,
a couple of remarks on notation : CF will denote the elementary abelian
2-group of rank n. The identifiers used below for groups of order 16, 32 and
64 are taken from the CAYLEY library of finite groups'. The numbering of
the isoclinism families of groups of order 128 is taken from [2].

THEOREM 1.2 Let G be a finite 2-group. Then G is a %—group if and
only if it belongs to one of the following isoclinism families:

Family I. G/Z(G) = G' = C3. A stem group for the family is the group
64/73.

Family II. G/Z(G) = C5 and G' = C3, where G/Z = < Zu, Zv, Zw, Zx >
and G' = < 21, 29,23 > and the following relations hold:

[u,w] = [u,z] = 21 ; [v,w] =22; [v,2] = 23 ; [u,v] = [w,z] =1

A stem group for the family has order 128 and belongs to isoclinism family
no. 29 among groups of that order.

Family II1. G/Z(G) = C§ and G' = C3, where G|Z = < Zu, Zv, Zw, Zz >
and G' = < 21,22 > and the following relations hold:

[u,w] = [u,x] = 21 ; [v,w] =225 [v,2] = 2z129 5 [u,v] = [w,z] =1

A stem group for the family is the group 64/214.

Family IV. G/Z(G) = Dy x Cy and G' = Cy x C4, where G/Z = <
Zu, Zv, Zw | v,vtw? € Z> and G' =< z,a | 2=a*=1,2€ Z >
and the following relations hold:

[a,v] = [u,w] = 1; [a,u] = [a,w] =a?; [v,w] =a; [v,u] =az; [u,vw] = 2
A stem group for the family is the group 64/128.

Family V. G/Z(G) = C3 and G' = C2, where G/Z = < Zu, Zv, Zw, Zx, Zy
and G' = < 21,29 > and the following relations hold:

[u,v] = [u,w] = [v,w] = [u,z] = [v,y] = [w,y] = [z,y] =1 [v,7] =
21 [w,z] = 295 [u,y] = 2129

A stem group for the family has order 128 and belongs to isoclinism family
no. 34 among groups of that order.

'This can be accessed using GAP. For all information about GAP, one may consult its’
home page at http://www.math.rwth-aachen.de/LDFM/GAP/



Family VI. G/Z(G) = Dy x Cy x C2 and G' =2 Cy, where G/Z = <
Zu, Zv, Zw, Zz | u?vt,w? 22 € Z > and G' = < a > and the following
relations hold:

[u,v] = [u,w] = [w,z] = [u,a] = [v,a] =1 [u,z] = [w,a] = [z,a] =
a®; [v,w] =,z =a

A stem group for the family is the group 64/257.

Family VII. G/Z(G) = D4 x Cy and G' = Cy x Cy, where G|Z = <
Zu, Zv, Zw | vt w?P € Z > and G'=<za | 22=a'=1,2€ Z >
and the following relations hold:

[a,u] = [a,w] = [u,v] = 1; [a,v] =a?; [u,w] =z ; [v,w] = a

A stem group for the family is the group 64/140.

Family VIIL. G/Z(G) is isomorphic to the group 16/3 and G' = Cy x Cj.
G|Z =< Zu,Zv and G' = < z,a | 22> =a* =1, 2z € Z > and the following
relations hold:

[u,v] = a; [a,u] = 2z ; [a,v] = a®2
A stem group for the family is the group 64/8.

Family IX. G/Z(G) =2 DyxCy and G' = Cy, where G/Z = < Zu, Zv, Zw |
u?, vt w? € Z > and G' = < a > and the following relations hold:

[a,v] = [a,w] = [u,w] =1; [a,u] = [v,w] = a? ; (0] =a

A stem group for the family is the group 32/43.

Family X. G/Z(G) = 16/3 and G' = C2, where G/Z = < Zu,Zv >
and G' =< z,a | z € Z > and the following relations hold:

[a,u] =[a,v] =z [u,v] =a

A stem group for the family is the group 32/6.

In each case, the mapping o : G — G which sends every element of Z(G),
and each of the representatives of the cosets in the given generating system
of G/Z, to its inverse, can be extended to an automorphism of G which in-
verts precisely half its elements.

We note that all of the groups of types I-X are metabelian and of nilpo-
tency class at most three.



2 Notation and Terminology

Most of the notation is standard. Here we list those terms which may not
be so, many of which are taken from [1].

Forz € G, Cq(z) = {g€G | [z,9] =1}.

For HCG,Cqg(H)= {9€G | [g,H] =1}.

Similarly, N¢(z) and Ng(H) denote the normalizers of  and H respectively.
I, will denote the inner automorphism sending g to =gz (g € G).

For a € Aut(G), Ig(a) = {g€ G| ga=g71}.

3 Proof of Theorem

One may check that all of the groups of types I-X possess an abelian sub-
group of index 4. We make this the starting point of the proof :

LemMMA 3.1 IfG isa %—group, then G possesses an abelian subgroup of
index 4, but no abelian subgroup of smaller indez.

Proof. We shall be referring extensively to the classification of > %-
groups, given as Theorem 4.13 in [3]. This class of groups contains all
groups containing an abelian subgroup of index 1 or 2, from which the
second statement of the lemma immediately follows.

Let G be a %—group and o a %—automorphism of G. Then the set S =
{Iyaly-1 | g € Ig(a)} consists entirely of -automorphisms. Let A be a
subgroup of G of largest possible order which is inverted elementwise by (3,
as (8 ranges over S. Obviously, A is abelian. Let (G : A) = 2¥ and write a

coset decomposition of G relative to A as follows:
G:AUA.'L'QU...UA.’EQk (1)
By Lemma 2.2 of [1], two cases arise :

Case I. Each z; can be chosen to lie in Ig(a). Relative to a suitable or-
dering of the cosets, (A : Ca(z2)) = (A: Ca(z3)) =4 and (A: Ca(z;)) =2
for 1 > 3. We call Azy and Axs the ‘%—cosets’ and all the other cosets ‘%—
cosets’.

Case II. Relative to a suitable ordering of the cosets, all z; (i # 2) can be
chosen to lie in Ig(«), and Aze N Ig(a) = ¢. Then (A : Cy(z;)) = 2 for all



7 > 2. We shall term Az, the ‘blank’ coset in this case.

Suppose, in either case, that (A : Ca(z;)) = 2 and let g = az; € Ax;.
Then < C4lg),g > C Ig(I,-1a) so, by maximality of | A |, it follows in
particular that g € A and that g € Ng(A).

Now suppose Case I applies. (G : Ng(A4)) < %
that A << G. Let Azo and Azs be the i-cosets. Then Azsozs is a %-coset.
Suppose there exists x4 € < A, x2,x3 >. Clearly, < A, zox3, x4 > is of type
IT and < A, zoz4,z4 > of type III as listed in [3], whence there exist distinct

elements z1,z9 of Z(G) such that

S0 we Can assumme

[A,zozs]) = [A,z4) = < 21 > [A,z0m4] = < 29 > (2)

But < A, z9x3,zox4,z324 > is also of type II in [3] and thus [A, zez4] =
[A, zox3] which contradicts (2), thus establishing that (G : A) = 4.

Next suppose Case II applies. It is clear that A < G and that G/A is
elementary 2-abelian. It is convenient to refine the notation in (1) slightly
and write G/A = < Azy,..., Az, > with Az 1z, as the blank coset. Also
set B = < A,z1x9 >. Suppose Ca(z1) # Ca(z2). Replace A by A* = <
Ca(z1),z1 > whence, since Azizo is blank, the coset decomposition of B
relative to A*, and hence of G relative to A*, must involve two i-cosets, SO
that (G : A*) = (G : A) = 4.

We may thus assume that C4(z1) = Cy(x2). It is our aim to show that
if (G:A) >4, then G isa > %—group of type I in [3].

So suppose that (G : A) > 4. Let

Gi=<A,x1,23,...,01, > Go=<A,T9,%3,-.., T, > (3)

Clearly, each G; is of type II in [3], so there exist z1,22 of order 2 in
Z(@) such that G} = < z; >. But, writing A = < Cy(z3),a3 >, it fol-
lows from [3] that [a3,z3] = 21 = 22 = z, say. It is now easy to deduce
that G’ = < z > and that G/Z is elementary abelian. It remains to
show that a generating system may be chosen for G/Z whose coset rep-
resentatives satisfy the same commutator relations as the groups of type
IT in [3]. Let A = Cy(z1) U Cu(z1)a and A = Cu(z;) U Ca(z;)a; for
3 < i < k. The centre of < A,z1,22 > is Ca(z1) U Cy(z1)axiz2. Since
< A,z1,z3 > is of type II in [3], Ca(z1) # Ca(zs) and it follows that we
can choose ag such that [ag,z1] = 1. If [z1,23] = z then [aszi,z3] = 1
and we may choose the coset representative x1, and similarly z3, to com-
mute with z3. It is now clear that Cp(z3) = Ca(z3) U Cy(x3)aziz2 and



that the centre Z* of the group < A,z1,z9,23 > = < B,z1,23 > is
(Ca(z1) UCa(z1)azize) N (Ca(zs) U Ca(zs)axix2), with B/Z* elementary
abelian of order 4. It is easy to see how this line of reasoning may be pursued
to obtain G/Z(G) = < Za, Zas, ..., Zay, Zz1, ..., Zx, > elementary abelian
of order 222 with the appropriate commutator relations being satisfied by
the coset representatives.

We have now completed the proof of Lemma 3.1.

We now divide the proof of the theorem into two parts, as suggested by the
two cases which arose in the proof of Lemma 3.1. So let G be a %—group,
and a subgroup A of G be defined as in the proof of the lemma. Let a be a
%—automorphism which inverts A elementwise.

Assume first that Case I of the lemma applies when G is decomposed
relative to A and, in addition, that A<<G. Then for allz € I(a) anda € A
we have that 2 'az € A, so an application of «a gives 22 € Cg(4) = A.
Thus G/A =2 Cy x Cy. Write G = < A, z1,z9 > with Aziz9 the %—coset and
z1,z2 € Ig(a).

Assume firstly that Cy(z1) = Ca(z2) = Z(G). Then A/Z, being of order
4, has 2 possible structures, each of which leads to a family of %-groups.

If A/Z = < Za,Zb > is elementary abelian, with [a,z122] = 1, then
[a,22] = [a®,x;] = 1 implies that [a,z;] = z of order 2 in Z, for i = 1,2.
Similarly, [b, 7] = [b%, x;] = 1 gives [b,z;] = 2; of order 2 in Z, with 21 # 2.
If [x1,x2] # 1 then bzizs € Ig(a). An easy calculation gives [z1,z2] = 2122
and hence [bz1,bxrs] = 1. Thus we may choose the coset representatives of
Azy and Azg to commute. Clearly z # z;, since [ab,z;] # 1, for i = 1,2.
However z may equal z129, in which case it is now clear that G belongs to
Family IIT in the theorem. Similarly, if z # 229, then G is easily seen to
belong to Family II.

If A/Z = < Za > is cyclic, the relations [a,z?] = 1 # [a?, ;] imply
that [a, z;] = a®z; for some z; € Z, for i = 1,2. Easy calculations show that
[a,z122] # 1 implies [a, z1] # [a, T2], whereas [a?, £125] = 1 implies [a, 21]? =
[a, z2)%. Next, since (z122)? € A, an application of a gives [(z122)?,21] = 1
and hence (z1z2)? € Z. Thus, since both z? and x3 belong to Z, we also
have [z1,z2] € Z. Since z1 and z2 are both in Ig(«) it is easily deduced
that they commute. It is now easily verified that G belongs to Family IV
in our classification theorem.

We now assume that Cy(x1) # Ca(ze). It is easy to see that A/Z is
abelian, and non-cyclic, of order 8.

First we take A/Z = Cy x Cy x Cy. Write A/Z = < Za,Zb,Zc >. Put



Ca(r1) = < Z,a >, Cg(z112) = < Z,b,c > and Cy(x2) = < Z,abc >. The
relations [a, 23] = [a?,72] = 1 imply that [a,z2] € Ca(z2) and hence that
[a,z2] € Ca(z1). Thus [a,z2] = z3 of order 2 in Z. By a similar argument,
[b, z;] = z; of order 2 in Z (i = 1,2). Since [b, z122] = 1 we have z; = 29 = z.
Similarly [¢, z;] = z* of order 2 in Z and clearly z # z*. However [abc, 23] = 1
so z3zz* = 1. Now if [z1,z2] # 1 then az1z2 € Ig(a), so [x1,x2] = z3 which
in turn implies that [azi,z2] = 1. Hence the coset representatives of Ax;
and Az, may be chosen to commute. Since (z172)? € A, an application of
a gives (z129)? € Ca(z1) N Ca(ze) = Z. Since [x1,22] € Z, we also have
z? € Z and 22 € Z. Thus G belongs to Family V in the theorem.

Secondly, we take A/Z = Cy x Cy and write A/Z = < Za,Zb | a® €
Z, b* € Z >. Let Cy(z1) = < Z,a >, Ca(x2) = < Z,ab® > and Cy(z112) =
< Z,b >. Now [a?,z2] = [a,73] = 1 tells us that [a, 2] = 22 of order 2 in
Z. Since [ab?, 73] = 1 we have [b?, z5] = 20and since [b?, z172] = 1 we have
[b%,71] = z2. Next, easy calculations give [b,z;] = b%2F 3 2F € Z,i = 1,2.
The relations [b,7175] = 1 and [b?,z1] = 23 give 2f = 25 = z, and hence
[b, z1] = [b, z2] of order 4. Finally, if [z1,z2] # 1 we have az1z9 € I¢(a) and
hence [az1,22] = 1, showing that once again the coset representatives of Az,
and Az, may be chosen to commute. Summarising, we have G' = < b2z >
cyclic of order 4, and G/Z = < Za,Zb,Zx1, Zxo | a?,b*, 23,23 € Z > of
order 32 subject to the following commutator relations :

[a’xl] = [a’b27$2] = [b7$1$2] = [xlafEZ] =1 ;
[a,5] = [, 23] = 1] = 25 ;
[b,z1] = [b,z2] = b%2, and b*2? = 2.

Thus G belongs to Family VT in the theorem.

We now remain with Case I but assume that A is not normal in G.
There is a homomorphism of G into S; whose kernel is K = Core A. It
is easy to see that G/K = D, and that G/Z is non-abelian of order 16,
with (K : Z) = 2. Write G/K = < Kz1,Kzy | 22 € K, 3 € K > and
let B = < K,z2 >. Then B is elementwise inverted by «, B < G with
G/B = Cy x Cy, and Bzyzo is a blank coset since Bz and Bzy are clearly
%—cosets. Thus Cases I and IT overlap here. We aim to show that G belongs
to one of the families VII-X in the theorem. Clearly Cp(z1) # Cp(z2)-
Since (G : Z) = 16, the analysis divides into 2 cases according as to whether
(B : Cp(z1z2)) = 2 or 4. Tt further subdivides according as to whether

z? € Z or not. Hence there are 4 cases in all to consider and, as we shall



see, each will give rise to a single family of %-groups.

Firstly, we assume that (B : C(z172)) = 4 and z? € Z. Obviously
Z = Cp(z1z2) and B/Z is elementary abelian of order 4. Write B/Z =
< Za,Zc > where [c,z2] = [a,71] = 1. [a,z2] and [c,z1] are thus distinct
elements z1, 2o respectively of order 2 in Z. We have 22 = 23 and 75 = cz,
for some 23,24 € Z. Since (r1z2)?> € Z it follows that [z1,z2] = cz12
for some z12 € Z. The relation [22,75] = 1 now gives (cz12)? = 21, and
thus G’ = < z9,cz19 > is isomorphic to Cy x Cy. It is also clear that
G/Z = Dy x Cy and now easily verified that G belongs to Family VII.

Secondly we assume that (B : Cg(zi122)) = 4 and that 22 ¢ Z. As
before B/Z is elementary abelian and we can write A/Z = < Za,Zc >
so that [a,z1] = [c,z2] = 1 and [c, z1],[a,z2] are distinct elements z, zo
respectively of order 2 in Z. We have 72 = az3 and 73 = cz4 for some
23,24 € Z. It follows that [z1,x2] = aczo for some 219 € Z. By expressing
the commutator [r1,z3] in two different ways we find that (acz12)? = 2129
Thus G' = < z1,acz1a > is once again isomorphic to Co x Cy. It is now
easily concluded that G belongs to Family VIII.

Thirdly, we assume that (B : Cg(z172)) = 2 and 2?2 € Z. (z172)? € B
so an application of o shows eventually that (z179)? € Z. Write B/Z =
< Za,Zc > with [a,z1] = [¢,z2] = 1. Then [z1,z2] = cz12 for some z12 €
Z. The relation [z?, 2] = 1 implies that (cz12)? = z = [¢,z1] = [a, z2].
Thus G’ = < ¢z12 > is cyclic of order 4 and G/Z = < Za,Zz1,Zxs > is
isomorphic to Dy X Cy. G obviously belongs to Family IX.

Fourthly, we assume that (B : Cp(z122)) = 2 and 2? ¢ Z. Again write
B/Z = < Za, Zc > with [a, 1] = [c,z2] = 1. Then [z1,z2] = acz;2 for some
219 € Z. The relation [z1, 23] = z = |11, c] = [r2,a] gives (acz12)? = 1. Thus
G' = < z,acz12 > is elementary abelian of order 4. G/Z = < Zxz1,Zxo >
with 2,25 € Z and [z1, 2] € Zz?x3. G clearly belongs to Family X.

At this stage, we have obtained all of the groups appearing in our clas-
sification theorem except those from Family I. Referring to Lemma 3.1,
we have also analysed only the situation which pertains when Case I of the
lemma applies. It remains, therefore, to analyse the situation when Case I
of the lemma, applies.

It is clear, first of all, that G/A =2 Cy x Co. We write G = < A, z1,z9 >
where Azizo is the blank coset and z1,z2 € Ig(a). It is not too diffi-
cult to see that the groups of types II-X already investigated will arise
again if Ca(z1) # Ca(z2). This is because we can replace A by A* = <
Ca(z1),z1 >, so that the decomposition of G relative to A* involves two



1

Z-cosets.

So we can assume that Cu(z1) = Ca(z2) = Z(G). Clearly, G/Z =

Cy x Cy x Cy. Thus G' =2 Cy x Cy or Cy x Cy x Co. But since the coset
Azx1x9 is blank, it is quite easy to see that G' = Cy x Cy would imply that G
had an abelian subgroup of index 2, in which case G would be a > %—group.
Thus G' = Cy x Cy x Cy and G belongs to Family 1.

We have now completed the proof of our classification theorem in full.
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