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I Graph G , whose nodes are the opinionated agents.

I Opinions are real numbers in [0, 1].

I At discrete time steps, a random pair of neighbors in G “meet
and discuss”.

I Parameters θ ∈ [0, 1] and µ ∈ (0, 1/2] such that, if agents
with opinions (a, b) meet, then afterwards their opinions will
have changed to{

(a + µ(b − a), b − µ(b − a)), if |a− b| ≤ θ,
(a, b), if |a− b| > θ.

A beautiful result is that, if G = Z and initial opinions are i.i.d. in
[0, 1], then
(i) If θ > 1/2 then, for any µ, almost surely all opinions converge
to 1/2.
(ii) If θ < 1/2 then, for any µ, almost surely disagreement persists.
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I Finite number, n say, of agents, indexed by the integers
1, 2, . . . , n.

I Time is discrete: t = 0, 1, . . .
I A real number xi (t) represents the opinion of agent i at time

t.
I There is a confidence bound r > 0, which is the same for all

agents.
I Opinions are updated synchronously according to

xi (t + 1) =
1

|Ni (t)|
∑

j∈Ni (t)

xj(t),

where
Ni (t) = {j : ||xj(t)− xi (t)|| ≤ r}.

I The dynamics are unaffected by rescaling (update rule is
linear), so WLOG r = 1.
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Figure: Evolution for 5 equally spaced agents, initially placed at
0, 1, 2, 3, 4.
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Figure: Evolution for 6 equally spaced agents, intitally placed at
0, 1, 2, 3, 4, 5.
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The model makes sense if opinions are drawn from any set V with
enough structure to make sense of the command to:

“Move to the average of a finite collection of points within distance
one of your present location.”

Example 1. Higher dimensional Euclidean space V = Rk .

Interpretation: There are k issues, and two agents must be close
on all issues for compromise to occur. Note that a priori no reason
to favour L2-norm over any other in this interpretation. However,
it gives the most natural geometrical interpretation, and is the one
used in robotics applications (multi-agent rendezvous).

Example 2. The circle V = T1, of diameter greater than 2.

Interpretation: Imagine, for example, that the issue under
discussion is the time of day or year for holding some event.
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Convergence in R:

I Very easy to show that opinions converge to limiting values
(general nonsense, Banach Fixed Point Theorem blah blah ...)

I In fact quite easy to show that opinions freeze, i.e.: there is
always some T > 0 such that xi (t) = xi (T ) for all i and all
t ≥ T .

I Still quite easy to show that the freezing time is bounded by a
universal polynomial function of the number of agents:
⇒ Can get a bound of around O(n5) from general theory of
Markov chains on graphs.
⇒ Best to date is O(n3). Elementary argument which
considers the behaviour of the extremal agents (Bhattachrya
et al, 2013).
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Lower bounds on a universal freezing time first studied in any
seriousness by Wedin and myself [WH2, HW].

I Easy to see that n agents placed distance one apart will take
time Ω(n) to freeze.
We proved [HW] that this configuration evolves periodically,
with groups of 3 agents breaking loose at each end every 5th
time step.
In particular, the freezing time is 5n/6 + O(1).

I We were surprised to discover a configuration which takes
time Ω(n2) to freeze: Dumbbell graph

I We believe that the freezing time is always O(n2), but this
remains open.
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Figure: Schematic representation of the configuration Dn. Each dumbbell
has weight n.
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Convergence in Rk , k > 1:

I Opinions still freeze in finite time: this just requires a
“convexity argument”, which works in any Euclidean space.

I Method of Bhattachrya et al does not generalize.
Moral: The jump from one to two dimensions is key.

I Instead, state-of-the-art for k > 1 is an energy reduction
argument.
The energy of a Hegselmann-Krause system x = (x1, . . . , xn)
is given by

E(x) =
n∑

i , j=1

max{1, ||xi − xj ||2}.

Basic Result: The dynamics always decrease the energy.

E(x(t))− E(x(t + 1)) ≥ 4 ·
n∑

i=1

||xi (t)− xi (t + 1)||2.
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Convergence in Rk , continued:

I Martinsson [M, 2015] proved a bound of O(n4), valid in all
dimensions.
His result is in a sense best-possible. No better bound can be
obtained using just the energy reduction technique.

I N.B. The above only works for the L2-norm.

I For lower bounds, n agents placed equidistantly around a
circle will also require time Ω(n2) to freeze.
This is a genuinely 2-dimensional example. Also, in contrast
to the dumbbell, this configuration reaches consensus.

I We believe that the freezing time is O(n2) in all dimensions.
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Convergence on T1:

I In contrast to the Euclidean case, configurations no longer
need to freeze in finite time.

I Moreover, in a frozen configuration, no cluster need be
isolated.
E.g.: agents spaced equally around the circle at distance one.
However, there are even non-periodic frozen configurations.

I Hendrickx et al (2009) asked if opinions must always converge
on the circle.
Proven by us [HMW]. Proof uses both the energy reduction
technqiue and a modification of the idea in Bhattachrya et al,
both suitably modified for the circle.

I The influence digraph can change at most O(n4) times.
However, it can take arbitrarily long for these changes to
occur.

I Can also prove convergence in Tk for all k ≥ 1 (technical).
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In the simplest case, initial opinions are drawn independently
from some probability distribution with compact support.

Two basic principles, if applicable here, would together lead us to
expect typical phase transition behaviour.

I Monotonicity: Dilating the opinion space without changing
the “relative distribution” of opinions should always make
consensus less likely.

I Zero-One Law: Suppose initial opinions are chosen
independently from some fixed distribution with compact
support. As n→∞, the probability of reaching consensus
should go to 0 or 1, i.e.: there should be a “typical behaviour”.

Nothing is yet proven. Indeed, evidence against monotonicity is
the fact that increasing the confidence bound r can sometimes
destroy consensus.
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Simulations:

I Many simulations performed in [DEJK, 2015] for uniform
distributions of agents in regions of R1 and R2.

I In R1 there is only one “region”, namely an interval.
Simulations give evidence for existence of a critical length,
slightly above 5.
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In any case, one approach is to study exhaustively a simpler class
of configurations and then develop some
approximation/interpolation theory.

There exist two basic ideas here:

Idea 1: Go to the limit of a continuum of agents.

Idea 2: Study configurations of equally spaced agents.
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Idea 1: The Continuous Agent Model (CAM)

I Basic Idea: Instead of drawing opinions independently from a
(continuous) distribution f (x), consider a continuum of
agents with f (x) describing an opinion density function.

I Simplest example: Uniformly independent opinions on [0, L]
corresponds to the opinion function x0 : [0, 1]→ R,
x0(α) = Lα.

I The dynamics:

xt+1(α) =
1

µ(Nt(α))

∫
Nt(α)

xt(β) dβ,

where Nt(α) = {β : ||xt(β)− xt(α)|| ≤ 1} and µ is Lebesgue
measure.

I Approximation between DAM and CAM: Hendrickx et al
(2009) have results which are probably strong enough for
most purposes. So it remains to study the CAM-model.
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Idea 1: The Continuous Agent Model (CAM)

I Basic Idea: Instead of drawing opinions independently from a
(continuous) distribution f (x), consider a continuum of
agents with f (x) describing an opinion density function.

I Simplest example: Uniformly independent opinions on [0, L]
corresponds to the opinion function x0 : [0, 1]→ R,
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I However, this doesn’t seem to be at all straightforward. Not
clear if we’re really simplifying things with CAM.

I It is not even known in general if a configuration of opinions in
CAM always converges to something (Hendrickx et al, 2009).

I Wedin and I [WH1] gave the first example of a regular
opinion function (piecewise differentiable, with positive lower
and upper bounds on the derivative) which never reaches
consensus. Even this is a non-trivial task.

I Our example is a kind of double-S.

I Problem remains open for linear functions (those
corresponding to a uniform distribution of opinions).
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Idea 2: Equally spaced agents

I Recall that in [HW] we proved that a configuration of n
agents, with initial opinions 0, 1, . . . , n − 1, evolves
periodically, with groups of 3 agents breaking loose at each
end every 5th time step.

I It is conceptually easier to consider a semi-infinite
configuration of equally spaced agents, with initial opinions at
all non-negative integers.
The first (and main) step in [HW] was to prove that this
configuration evolves periodically, with a group of 3 agents
breaking loose on the left after every 5th time step.

I Now one should consider a general inter-agent spacing
d ∈ (0, 1] - ultimately we are interested in letting d → 0.
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I The previously described behaviour actually occurs for any
d > 72/79.

I We don’t know any value of d where the evolution does not
appear to be ultimately periodic. We can prove that this is
always so when d > 1/2, where basically only 12 different
“kinds of behaviour” are possible, though a system may jump
from one kind to another before settling down (hence an
ultimately periodic, but not periodic evolution).

I Wedin is working on developing an appropriate
approximation/interpolation theory.

I Most intriguingly, simulations suggest a possible triple phase
transition !
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