LIMIT POINTS IN THE RANGE OF THE COMMUTING PROBABILITY
FUNCTION ON FINITE GROUPS

PETER HEGARTY

ABSTRACT. If G is a finite group, then P&) denotes the fraction of ordered pairs
of elements of7 which commute. We show thatife (2,1] is a limit point of the
function Pr on finite groups, theh € Q and there exists an = ¢; > 0 such that
PrG) & (I — ¢,1) for any finite groupG. These results lend support to some old
conjectures of Keith Joseph.

1. INTRODUCTION

Let G denote the family of all finite groups and define the functiondP— QN (0, 1]
as follows: for G € G,

#{(z,y) € G x G : vy = yx}
G2 '

We call PfG) the commuting probability for G, in other words it is the probability
that a uniformly random ordered pair of elementbtommute. It is easy to see that
Pr(G) = k(G)/|G|, wherek(G) denotes the number of conjugacy classe§ inThere

is quite a lot of literature on the properties of the functfmn Much of this dates from
a decade-or-so long period from the late 1960s to the lat@d.9lh 1968, Erds and
Turan [ET] and, independently, Newman [New], proved thaitany finite group,

Pr(G) =

(1.1)

log, log, |G

PriG) > —=——.
=g

This is a quantitative version of the classical fact thaterege only finitely many finite
groups with a given number of conjugacy classes. There haga karious improve-
ments on (1.2) since, as well as improved lower bounds fdrquaar classes of groups:
see [Ke] and the references therein. It is easy to prove,ggested by (1.2), that RF)
can be arbitrarily close to zero. On the other hand, it is obsithat P(G) = 1 if and
only if GG is abelian. Gustafson [G] seems to have been the first toderol 973, the
fact that, if G is non-abelian, then R&) < 5/8, with equality being achieved if and
only if G/Z(G) = Cy x Cy. The intervening years have witnessed a minor flood of
papers whose common theme is to show that, {f-Rris sufficiently large, ther is

(1.2)
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lvarious alternative notations for this function appeartia titerature, for example: ¢f), mo(@),
d(Q).

2Some authors, including for example Lescot, who has writenmber of papers about this function
(see [L]), calls it thecommutativity degreeather than the commuting probability.
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“close to abelian” in some well-defined structural senseeré&lare basically two types
of results here:

(i) Rusin [R] completely classifies all finite groups for whi€r(G) > 11/32. A
recent work of Das and Nath [DN] does the sdrfee all odd order groups satisfying
Pr(G) > 11/75. The point here is that one can completely determine alkfigibups
G for which P(G) lies above a certain threshold.

(i) There are also results of a more general character, evpagpose is to determine
some general “abelian-like feature” of a groapfor which Pi(G) is bounded away
from zero. A fairly recent work of Guralnick and Robinson [&®dntains a number of
impressive such results. In particular, they prove ([GRigdrem 10) that

Pr(G) < (G : F)™1/2, (1.3)

whereF is the Fitting subgroup of/. Hence, if P¢(G) is bounded away from zero, then
G contains a normal, nilpotent subgroup of bounded index. nailar, but even more
striking result was shown much earlier by Peter Neumann:

Theorem 1.1 (P.M. Neumann[Neu]). For eache > 0, there exist positive integers
n1(€), na(€) such that the following holds: Iff is a finite group satisfying R&) > e,
thenG possesses normal subgroufis K such that

() K C H,

(i) K] < ma(e),

(i) (G : H) < na(e),

(iv) H/K is abelian.

In this paper we are basically interested in the followingsfion:
What is the range of the function Pr insi@@en (0, 1] ?

Gustafson’s observation makes this question very natasit implies that the range
is not the whole ofQ N (0, 1]. This is in stunning contrast to the situation for semi-
groups: see [PS]. In the case of groups, further insight ihtorange of Pr can be
gleaned, if indirectly, from the various papers cited abd®far as we know, however,
only one person ever seems to have seriously consideredaystreictural properties
of Pr(G) as a set. Keith Joseph wrote his Ph.D. thesis [J1] in 1969 @admmuting
probability, but it was never published. Eight years latexvever, in a short note in the
Monthly [J2], he posed three very interesting conjectutesua the range of Pr, which
we reproduce belofv Note that, by dimit point of a setS C R, we mean an element
[ € R such that there is a sequengg) of elements ofS tending tol. In particular,
every element ob itself is a limit point ofS.

Joseph’s first conjecture.Every limit point of P(G) is rational.
Joseph’s second conjecturelf [ is a limit point of P{G), then there exists = ¢, > 0
such that P(G) N (I — ¢, 1) = ¢.

3There were some errors in Rusin’s paper, which were pointgchod corrected by Das-Nath. See
also the proof of Lemma 2.1 below.

“The second and third conjectures were stated slightlyreiffiy by Joseph.
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Joseph’s third conjecture.Pr(G) U {0} is a closed subset @.

Unfortunately, and despite the large amount of literatarexistence today on the com-
muting probability, Joseph’s conjectures seem to haveredfthe same fate as the rest
of his work and been thoroughly neglectedhere seems to have been essentially no
progress on any of them, and we found only a handful of refaeno his work. For
example, Rusin [R] refers to Joseph’s questions at the ehisgfaper. He notes that,
since his methods rely heavily on the elementary estimate

1 31
PriG) < -+ -— 1.4
(G) < 3+ Jir (14)
they cannot, even in principle, yield any insight into thega of Pr inside0, 1/4].
Rusin wonders explicitly whether the range is dense in§idg, 1/4). In a recent Mas-
ter's thesis, Castel8£[C], end of Chapter 5) essentially repeats Joseph’s questimut
does not provide any new insights. Only the following fa@sra to be known, and all

but the last appear to have been already known to Josephrdaisf (i)-(iv), see [C]:

(i) zero is a limit point, not in the range of Pr.

(i) for each primep, 1/p is a limit point of P(G) and there exists a grou with
Pr(G) = 1/p.

(iii) since the function Pr is multiplicative, i.e.:

Pr(G1 X GQ) = Pr(Gl) X Pr(GQ), (15)

it follows that the same is true as in (i) for every numhén € (0, 1], such that, € N
anda € Pr(G).

(iv) Joseph’s second conjecture is known to holdder 1/2 (with ¢/, = 1/16).

(v) The following is a corollary of a result of Gavioli et al:

Theorem 1.2 (Corollary to Theorem 3 in[GMMPS]). Letp > 7 be a prime and
let G be ap-group. Then
5 1
Pr(G) ¢ Lﬁ’ﬁl : (1.6)
In this paper we shall provide some new evidence for Josdjpsidwo conjectures by
proving the following result:

Main Theorem. If [ € (2,1] is a limit point of the set RG), then

i)l €Q,
(i) there exists art = ¢, > 0 such that P(G) N (I — ¢, 1) = ¢.

Note that, as stated in (iv) above, the second assertionrithearem is already known
fori = 1/2. As well as giving a bit of new evidence in support of Josefiirig-dormant
program, our result provides the first insight into the raafer belowl /4, for arbitrary

5As already mentioned, his Ph.D. thesis was never publisiNsither is he listed as an author on
MathSciNet. His Monthly article appeared as a “researciblpra”, not as a regular paper.

Swho has since married and appears on MathSciNet as Annarkeae:

https://mthsc.clemson.edu/directory/viewperson.py8pnid=198
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groups (Theorem 1.2 gives some insight fegroups, and the results in [DN] for odd
order groups), as sought by Rusin. After some preliminané&®ection 2, we will prove
our theorem in Section 3. In Section 4 we will discuss the jpeass for extending our
methods in the hope of answering Joseph’s questions dedilyiti

2. PRELIMINARIES

Throughout the rest of this paper, all groups are finite uneglicitly stated other-
wise. Recall that groupS; andG, are said to beésoclinicif there are isomorphisms

¢ : Gl/Zl - GQ/ZQ, w : Gll — G/2 (Zl = Z(Gl), ZQ = Z(Gg)), (21)
such that, for alle, y € G4,

b ([Z1z, Z1y]) = [0(Z12), 6(Z1y)] - (2.2)

Isoclinism is an equivalence relation on the set of all figiteups and each equivalence
class contains a so-callstem groupi.e.: a group’s such thatZ(G) C G.

First, we collect a number of facts about the function Pr:

Lemma 2.1. (i) If G is a non-abelian group then P&) < 5/8. Moreover, if P(G) >
11/32 then one of the following must hold :

(@) |G'| =2,G/Z(G) = C3° for somes € Nand P(G) = 1 - (1 +27%).

(b)G' = C5,G/Z(G) = S;and PG) = 1/2.

() Pr(G) < 7/16 and|G/Z(G)| < 16.
(i) Let p be a prime and~ a p-group satisfying=' C Z(G). Then

Pr(G) = |C1J’| (1 + g (p —plsgl((i'lz K)) 7 2.3)

where the sum is taken over all subgrougsof G’ for which G’/ K is cyclic and the
integers(K) is defined by

o I
A AT ] (2.4)

In particular, if G’ = C), andG//Z(G) = C7*, then

PI(G) = (1 + B ;1) . (2.5)
p p
(i) If |G'] = 4:and |G N Z(G)| = 2 then
1/ 1,1
Pr(G) = 1 (1 + 1 + 22S+1) : (2.6)

where2% = [Co(G') : Z(Cq(G))].

(iv) If G’ = Cs andG' N Z(G) = Cy then P(G) = 1/4 + 1/2° for somes > 3.

(v) For any fixed grougy, there are only finitely many grougssatisfyingG’ = K and
Z(G) = {1}. In particular, there are only finitely many possibilitiesr fPr(G) under
these conditions.
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(vi) Let G be a non-abelian group and let be the minimum degree of a non-linear
irreducible representation afr. Then

1 1 1 1
e < Pr(G) < p7 + (1 d2) o (2.7)
(vii) If H is a subgroup o7 then P(H) > Pr(G).

(viii) If NV is a normal subgroup of7, then P(G) < Pr(N) - Pr(G/N).

(i) Let N be a normal subgroup aF. Letc be an integer such that every subgroup of
G/N contains at most conjugacy classes. Lét;(N) denote the number @f-orbits
of N, whenG acts onN by conjugation. Thek(G) < c¢- kg(N) and hence

Cc kig(N)
P& < Gm TN

(x) If the groups7; and G-, are isoclinic, then P{G,) = Pr(Gs).
(xi) Letn € N and letZ,, denote the collection of all finite grougsfor which
(G : Z(G)) < n. Then PtZ,) is afinite set.

(2.8)

PROOF Parts (i),(ii),(iv) and (v) can be found in [R]. Part (iiis iproven in [DN],
and they correct an erroneous form of (2.6) which appeargRJinParts (vi)-(ix) can
be found in [GR] and part (x) in [L]. We have not seen part (xijtt@n down anywhere
(though similar statements appear in [NiS]), so we give tsygroof. Letn be given
and pickG such that G : Z(G)) < n. Then|G'| is bounded in terms af, by Schur’s
classical result [S]. Now, by part (vi), we may assu@es a stem-group, in which case
it follows that|Z(G)| is also bounded. Thug| is bounded, and hence there are only
finitely many possible values of R¥).

Lemma 2.2.For elements:, y, z, w in a groupG one has
[zy, zw] = [z, w)[z, 2] [y, w]ly, 2]". (2.9)
PROOF. Simple exercise.

Lemma 2.3.Let G be a finite subgroup of PGR, C). ThenG is isomorphic to one of
the following:

() a cyclic groupC,,, for somen € N,

(i) a dihedral groupD,, of order2n, for somen > 2,

(iii) the tetrahedral groupA,,

(iv) the octahedral group,,

(v) the icosahedral groups.

Moroever, we have that

o6 i n is even 1 5 1
_ 4n ) ) — — R
Pr(D,) = { n&g’ if n is odd, Pr(Ay) = 3 Pr(Sy) = 5’ Pr(As) = 13"
(2.10)

PROOF The classification of the finite subgroups of PGLC) is classical; see, for
example, [KI]. The values of Pr for these groups can be easilified.
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Before stating our last preliminary result, let us introdusome terminology which
will simplify the statement of this and succeeding results:

Definition 2.1. A subsetS C R will be calledgoodif, for every limit point/ of S,
the following hold:

) leQ,
(ii) there exists = ¢, > O such thatS N (I — ¢, 1) = ¢.

Observe that any subset of a union of finitely many good setistsgood.

Lemma 2.4.Letn be a fixed positive integer and let

S, = {z”:% :xiEN}. (2.11)

=1

ThensS,, is a good set.

PROOF ltis a classical fact that, for every fixede N andq € Q. , the equation

> 1 q (2.12)

:,U‘
i=1 "

has only finitely many positive integer solutiofs, ..., z,,). If one examines the stan-
dard proof of this fact (which is basically just an inductimmn), one easily sees that it
in fact implies what is claimed in the lemma.

3. PROOF OFMAIN THEOREM

The following lemma is the crucial ingredient in our proofidawe have not seen it
written down before. The reader should observe the cormetti Theorem 1.1, more
about which will be said in the next section.

Lemma 3.1. Letn € N and let.4, be the collection of all finite groups possessing
a normal, abelian subgroup of index Then P(.A,,) is a good set.

PROOFE Fixn € N, a group& and a normal abelian subgrodépsuch thatG : H) = n.
Let

be a decomposition d@f into cosets of. For each ordered paji, j) of indices from
the set{1,...,n}, let

Sij = {(hl, hg) € Hx H: [hll'i, hg.’L’j] = 1} (32)
Thus

n

PHG) = g D 19 33)

ij=1



LIMIT POINTS IN THE RANGE OF THE COMMUTING PROBABILITY FUNCTON ON FINITE GROUPS

Since H is abelian, it follows easily from Lemma 2.2 that, for anye G the map
h +— [h, g] is an endomorphism aoff, whose kernel i€y (g). Let H, := [H, g] and
ng = (H : Cy(g)). ThusH, is a subgroup of{ of ordern,. Foreachi = 1,....,n
above, letd; := H,, andn, := n,,. For each ordered pait, j), setH;; := H; N H;
andn;; := |H,;|. Thusn;; is a common divisor ofi; andn,;. Now fix a pair(z, j) and
seth;; := [z;, x;|. Thisis a fixed element ofl. If hy, h, € H then, using Lemma 2.2,
it is easy to check that

[hlfﬂi, hgi[)j] =1 [h:f, y] = h”[héj,fﬂ] (34)
Let

~

H;; == H;N (hi;H;) ={h € H; : h = h;;u, forsomeu € H,}. (3.5)
It's easy to see that eithefL-j = ¢ oris a single coset it/ of the subgroup;;. In
the former case, the right-hand side of (3.4) has no solstiobmthe latter case, we can
count the number of solutions as follows: first, we pigksuch thafh?, y] € FIZ-j. The
number of possible choices is just| - ||I;I_7J\| = |H|- Z—JJ Having choser,, we pickh;
so that the right-hand equation in (3.4) is satisfied. Thelremof choices foh, is just
(H : H;) = |H| - -. Summarising, we have shown that

i

951 = { |H|? - = otherwise (3.6)
Hence, the expression (3.3) for(Bf) has the form
1 &1

PrG) = — - — 3.7

(G) = — Z - (3.7)

where each;, is a positive integery; = 1 and1 < L < n?%. Here,z; corresponds to
the termS;; and the fact thaf. may be less than? corresponds to the fact that some
of the S;; may be empty. Further, note that the numbersre not independent of one
another, since the same can be said of the numbgts However, this just makes our
life easier. We conclude that the set of possible values fo&F in the notation of
Lemma 2.4, is contained in the set

2
1 n
5 <U Sk> . (3.8)
Lemma 2.4 thus directly implies the claim of Lemma 3.1.

Corollary 3.2. For eachn € N, let A" denote the collection of all finite groups pos-
sessing an abelian subgroup of index at masthen Pf.A") is a good set.

PROOF If A is an abelian subgroup @¥ of index at most., then Corg/(A) is an
abelian, normal subgroup of index at mast HenceA™ C U | A, and we can apply
Lemma 3.1.

We are now ready to prove the Main Theorem in a sequence of.stept G be a
non-abelian group satisfying @) > 2/9. By Lemma 2.1(x), we may assume that
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Z(G) C G,

Step 1:Let d be the minimum degree of a non-linear irreducible represdent of GG.
From Lemma 2.1(vi) we deduce that eithéf| < 8 or d = 2.

Step 2: First supposeG’| < 8. SinceZ(G) C G, it is easy to check that either
G is covered by parts (iii), (iv) and (v) of Lemma 2.1, 6¥is nilpotent and a direct
product ofp-groups satisfying (2.5). It's then just a matter of venifgithat the Main
Theorem is satisfied in these cases.

Step 3:So we may supposé = 2. Let ¢ be an irreducible representation Gfof de-
gree2. Letr : GL(2,C) — PGL(2,C) be the natural projection and skt := ker(¢),
L := ker(m o ¢). ThenG/L is isomorphic to a finite subgroup of PGL, C), hence to
one of the non-cyclic groups listed in Lemma 2.3.

First suppose that'/L = A4, S, or A;. Since P(G) > 2/9, the second and third
options are immediately ruled out by (2.10) and part (viiLemma 2.1. In the case
of A4, the same analysis, together with Lemma 2.1(i), implies fhanust be abelian.
But then we can apply Lemma 3.1, and the Main Theorem is satisfi

So we may suppose that

G/K = Z-2D,, forsomen > 2, (3.9)

whereZ is a finite cyclic group andD,, denotes the binary dihedral group of order.
First suppose. > 3. ThenG/L = D,, say

G/L = < La, Lbya”,bQ, (ab)2 el >. (3.10)
We now consider two separate cases:

CAsel: n > 15.

Since? (%) < 2 for all n > 15, we can argue as before thatmust be abelian.
By Lemma 2.1(ix),
C /{ig(L) 2
— — 3.11
on L] 9 3.11)
where the number is such that every subgroup @, contains at most conjugacy
classes. Clearly we can take= n, whence (3.11) becomes
k(L) 4
> —. 3.12
I 9 (3.12)
In other words, the average size ofsaorbit in L is less tha®/4. It follows easily that
a* € Cg(L) for somek = O(1), independent ofi. Let N := < L,a” >. ThenN is
an abelian, normal subgroup 6f of bounded index, so the Main Theorem holds, by
Lemma 3.1.

CASE2:3 < n < 14.

Then|G/L| is bounded. If(L : Z(L)) were also bounded, the#i(L) would be a
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normal, abelian subgroup ¢f of bounded index and we could apply Lemma 3.1 again.
So we may supposg is non-abelian. Since R&#/L) < 2 and sincez; x 2 < 2,
Lemma 2.1(i) would still imply thatZ : Z(L)) were bounded, unlegg’| = 2 and
L)Z(L) = C% for somes € N. Thus,L’ C Z(G). We can still apply Lemma 2.1(ix)

to conclude that

k(L) 2 16
g 3.13
9 45 (3.13)

L]

>8><
5

In other words, the average size ofzaorbit in L is less thant5/16. This must imply
that(L : L,) is bounded, wheré, = {r € L : [G,z] C L'}. NowG'/L" = (G/L,)".
By Lemma 2.1(i), eithetG’| < 6 or P{G/Ly) < {=. The first alternative takes us
back toStep 2 From the second alternative and Lemma 2.1(viii) we coreltidht
Pr(L,) > 2 = ;4 73z and hence, by Lemma 2.1(i), tht; : Z(L,)) is bounded. But
since(G : L) and(L : L,) are also bounded, we conclude thét: Z(L,)) is bounded
and we can apply Lemma 3.1 one more time to conclude the asaly€ASE 2.

We are now left with the possibility that = 2 in (3.9). SetG/K := Q. Then|Q'| = 2,
Q/Z(Q) = Cy x Cy and Z(Q) is a cyclic group. A priori, the order of) may be
unbounded, but the crucial thing is th@thas a cyclic subgroup of bounded index. Let
q € G be such thaf{q generate</ (()). Since Pf()) = 5/8 we can repeat the analysis
from CASE 2 above to conclude that eithg¥’| < 6 or K contains an abelian subgroup
K, of bounded index such th&f, <t G. So we may suppose the latter holds. Lemma
2.1(ix) still applies and, as in (3.13), we have that the agersize of & -orbit in K,

is less thant5/16. Let K3 := {z € Ky : (G : Cg(x)) < 2}. A priori, K3 may not be

a subgroup ofK,, however we must have thék’;| /| K| is bounded away from zero.
In addition, sinceG : Cg(x)) < 2 for all z € K, it follows that K3 C C,(¢?). Let
Ky = Cgq(¢®) N Ky and A := < Ky4,¢* >. ThenA is an abelian subgroup @f of
bounded index, and hence we can apply Corollary 3.2. This teiegpthe proof of the
Main Theorem.

4. DISCUSSION

It is not true that if P{G) is bounded away from zero, then contains a (normal)
abelian subgroup of bounded index. Indeed, by Lemma 2ué)see that this already
fails for groups satisfying RP€) > 1/2. So we cannot prove Joseph’s first two con-
jectures simply by using Lemma 3.1. Indeed, Theorem 1.1 séemive the strongest
possible structural result about groups for which@Pris bounded away from zero.
Note that the structure described there includes the case \@#| is bounded. Indeed,
the strategy of our proof in the previous section began byalipg to Lemma 2.1(vi),
which says that if RiG) is bounded away from zero, then eithéf | or the minimum
degree of a non-linear irreducible representatiorGols bounded. In the latter case,
it is also interesting that a classical result of Jordan (§edheorem 14.12) says that
there is a functiory’ : N — N such that a finite subgroup of Gk, C) must contain
an abelian, normal subgroup of index at mggt). However, it is unlikely that we can
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say anything more than Theorem 1.1 about the structué@iofgeneral. Therefore, it
seems a crucial step in the analysis of Joseph’s conjedtitessee if the sets RF,,)
are good, wheré€,, is the collection of all finite group& for which |G| < n. Itis
still not obvious to us how one would get from there and Lemniat@ a full proof of
Joseph'’s first two conjectures, but at least we have provedaoksible roadmap.

Finally, we have not said anything in this paper about Josépind conjecture, which
seems more mysterious to us.
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