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ABSTRACT

We give a short proof that the largest component C1 of the random graph

G(n, 1/n) is of size approximately n2/3. The proof gives explicit bounds

for the probability that the ratio is very large or very small. In particular,

the probability that n−2/3|C1| exceeds A is at most e−cA3
for some c > 0.

1. Introduction

The random graph G(n, p) is obtained from the complete graph on n vertices,

by independently retaining each edge with probability p and deleting it with

probability 1 − p. Erdős and Rényi [8] introduced this model in 1960, and

discovered that as c grows, G(n, c/n) exhibits a double jump: the cardinality

of the largest component C1 is of order log n for c < 1, of order n2/3 for c = 1

and linear in n for c > 1. In fact, for the critical case c = 1 the argument in [8]
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only established the lower bound on P(|C1| > An2/3) for some constant A > 0;

the upper bound was proved much later in [4] and [12].

Short proofs of the results stated above for the noncritical cases c < 1 and

c > 1 can be found in the books [2], [5] and [10]. However, we could not find a

short and self-contained analysis of the case c = 1 in the literature. We prove

the following two theorems:

Theorem 1 (see [16] and [17] for similar estimates): Let C1 denote the largest

component of G(n, 1/n), and let C(v) be the component that contains a vertex

v. For any n > 1000 and A > 8 we have

P(|C(v)| > An2/3) ≤ 4n−1/3e−
A2(A−4)

32 ,

and

P(|C1| > An2/3) ≤ 4

A
e−

A2(A−4)
32 .

Theorem 2: For any 0 < δ < 1/10 and n > 200/δ3/5, the random graph

G(n, 1/n) satisfies

P
(

|C1| < bδn2/3c
)

≤ 15δ3/5 .

While the estimates in these two theorems are not optimal, they are ex-

plicit, so the theorems say something about G(n, 1/n) for n = 109 and not

just as n → ∞. The theorems can be extended to the “critical window”

p = 1/n + λn−4/3, see Section 6. As noted above, Erdős and Rényi [8] proved a

version of Theorem 2; their argument was based on counting tree components

of G(n, 1/n). However, to prove Theorem 1 by a similar counting argument

requires consideration of subgraphs that are not trees. Indeed, with such con-

siderations, Pittel [16] proves tail bounds on n−2/3|C1| that are asymptotically

more precise than Theorems 1 and 2. For a probabilistic approach to Theorem

1 which does not use martingales, see Scott and Sorkin [17].

The systematic study of the phase transition in G(n, p) around the point

p ∼ 1/n was initiated by Bollobás [4] in 1984 and an upper bound of order n2/3

for the median (or any quantile) of |C1| was first proved by  Luczak [12].  Luczak,

Pittel and Wierman [13] subsequently proved the following more precise result.

Theorem 3 ( Luczak, Pittel and Wierman 1994): Let p = 1/n + λn−4/3 where

λ ∈ R is fixed. Then for any integer m > 0, the sequence

(n−2/3|C1|, n−2/3|C2|, . . . , n−2/3|Cm|)
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converges in distribution to a random vector with positive components.

The proofs in [12], [13] and [16] are quite involved, and use the detailed

asymptotics from [19], [4] and [3] for the number of graphs on k vertices with

k+` edges. Aldous [1] gave a more conceptual proof of Theorem 3 using diffusion

approximation, and identified the limiting distribution in terms of excursion

lengths of reflected Brownian motion with variable drift. The argument in [1]

is beautiful but not elementary, and it seems hard to extract from it explicit

estimates for specific finite n. A powerful approach, that works in the more

general setting of percolation on certain finite transitive graphs, was recently

developed in [6]. This work is based on the lace expansion, and is quite difficult.

Our proofs of Theorems 1 and 2 use an exploration process introduced in [14]

and [11], and the following classical theorem (see, e.g., [7, Section 4], or [18]).

Theorem 4 (Optional stopping theorem): Let {Xt}t≥0 be a martingale for

the increasing σ-fields {Ft} and suppose that τ1, τ2 are stopping times with

0 ≤ τ1 ≤ τ2. If the process {Xt∧τ2}t≥0 is bounded, then EXτ1 = EXτ2 .

Remark: If {Xt}t≥0 is a submartingale (supermartingale), then under the same

boundedness condition, we have EXτ1 ≤ EXτ2 (respectively, EXτ1 ≥ EXτ2).

The rest of the paper is organized as follows. In Section 2, we present the

exploration process mentioned above. In Section 3, we present a very simple

proof of the fact that in G(n, 1/n) we have P(|C1| > An2/3) ≤ 6A−3/2. The

proofs of Theorems 1 and 2 are then presented in Sections 4 and 5. The technical

modifications required to handle the “critical window” p = 1/n + λn−4/3 are

presented in Section 6.

2. The exploration process

For a vertex v, let C(v) denote the connected component that contains v. We

recall an exploration process, developed independently by Martin-Löf [14] and

Karp [11]. In this process, vertices will be either active, explored or neutral.

At each time t ∈ {0, 1, . . . , n}, the number of active vertices will be denoted Yt

and the number of explored vertices will be t. Fix an ordering of the vertices,

with v first. At time t = 0, the vertex v is active and all other vertices are

neutral, so Y0 = 1. In step t ∈ {1, . . . , n}, if Yt−1 > 0 let wt be the first active

vertex; if Yt−1 = 0, let wt be the first neutral vertex. Denote by ηt the number
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of neutral neighbors of wt in G(n, 1/n), and change the status of these vertices

to active. Then, set wt itself explored.

Write Nt = n− Yt − t− 1{Yt=0}. Given Y1, . . . , Yt−1, the random variable ηt

is distributed Bin(Nt−1, 1/n), and we have the recursion

(1) Yt =







Yt−1 + ηt − 1, Yt−1 > 0

ηt, Yt−1 = 0.

At time τ = min{t ≥ 1 : Yt = 0} the set of explored vertices is precisely C(v),

so |C(v)| = τ .

To prove Theorem 1, we will couple {Yt} to a random walk with shifted bino-

mial increments. We will need the following lemma concerning the overshoots

of such walks.

Lemma 5: Let p ∈ (0, 1) and {ξi}i≥1 be i.i.d. random variables with Bin(n, p)

distribution and let St = 1 +
∑t

i=1(ξi − 1). Fix an integer H > 0, and define

γ = min{t ≥ 1 : St ≥ H or St = 0} .

Let Ξ ⊂ N be a set of positive integers. Given the event {Sγ ≥ H, γ ∈ Ξ}, the

conditional distribution of the overshoot Sγ −H is stochastically dominated by

the binomial distribution Bin(n, p).

Proof. First observe that if ξ has a Bin(n, p) distribution, then the conditional

distribution of ξ − r, given ξ ≥ r is stochastically dominated by Bin(n, p). To

see this, write ξ as a sum of n indicator random variables {Ij}n
j=1 and let J be

the minimal index such that
∑J

j=1 Ij = r. Given J , the conditional distribution

of ξ − r is Bin(n − J, p) which is certainly dominated by Bin(n, p).

For any ` ∈ Ξ, conditioned on {γ = `} ∩ {S`−1 = H − r} ∩ {Sγ ≥ H}, the

overshoot Sγ −H equals ξ`−r where ξ` has a Bin(n, p) distribution conditioned

on ξ` ≥ r. The assertion of the lemma follows by averaging.

Corollary 6: Let X be distributed Bin(n, p) and let f be an increasing real

function. With the notation of the previous lemma, we have

E [f(Sγ − H) | Sγ ≥ H, γ ∈ Ξ] ≤ E f(X) .
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3. An Easy Upper Bound

Fix a vertex v. To analyze the component of v in G(n, 1/n), we use the nota-

tion established in the previous section. We can couple the sequence {ηt}t≥1

constructed there, to a sequence {ξt}t≥1 of i.i.d. Bin(n, 1/n) random variables,

such that ξt ≥ ηt for all t ≤ n. The random walk {St} defined in Lemma 5

satisfies St = St−1 + ξt − 1 for all t ≥ 1 and S0 = 1. Fix an integer H > 0

and define γ as in Lemma 5. Couple St and Yt such that St ≥ Yt for all t ≤ γ.

Since {St} is a martingale, optional stopping gives 1 = E [Sγ ] ≥ HP(Sγ ≥ H) ,

whence

(2) P(Sγ ≥ H) ≤ 1/H .

Write S2
γ = H2 + 2H(Sγ −H) + (Sγ −H)2 and apply Corollary 6 with f(x) =

2Hx + x2 to get for H ≥ 2 that

(3) E [S2
γ | Sγ ≥ H ] ≤ H2 + 2H + 2 ≤ H2 + 3H .

Now S2
t − (1 − 1/n)t is also a martingale. By optional stopping, (2) and (3),

1 + (1 − 1/n)E γ = E (S2
γ) = P(Sγ ≥ H)E

[

S2
γ | Sγ ≥ H

]

≤ H + 3 ,

hence we have for 2 ≤ H ≤ n − 3 that

(4) E γ ≤ H + 3 .

We conclude that for 2 ≤ H ≤ n − 3

P(γ ≥ H2) ≤ (H + 3)/H2 ≤ 2/H .

Define γ∗ = γ ∧ H2, and so by the previous inequality and (2) we have

(5) P(Sγ∗ > 0) ≤ P(Sγ ≥ H) + P(γ ≥ H2) ≤ 3/H .

Let T = H2 and note that if |C(v)| > H2 we must have Sγ∗ > 0 so by (5)

we deduce P(|C(v)| > T ) ≤ 3/
√

T for all 9 ≤ T ≤ (n − 3)2. Denote by NT the

number of vertices contained in components larger than T . Then

P(|C1| > T ) ≤ P(|NT | > T ) ≤ ENT

T
≤ nP(|C(v)| > T )

T
.

Putting T = (b
√

An2/3c)2 for any A > 1 yields

P(|C1| > An2/3) ≤ P(|C1| > T ) ≤ 3n

(b
√

An2/3c)3
≤ 6

A3/2
,
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as (b
√

An2/3c)3 ≥ (
√

An2/3 − 1)3 ≥ nA3/2(1 − 3A−1/2n−1/3) ≥ A3/2n
2 .

4. Proof of Theorem 1

We proceed from (5). Define the process {Zt} by

(6) Zt =

t
∑

j=1

(ηγ∗+j − 1) .

The law of ηγ∗+j is stochastically dominated by a Bin(n − j, 1/n) distribution,

for j ≤ n. Hence,

E [ec(ηγ∗+j−1) | γ∗] ≤ e−c[1 + 1/n(ec − 1)]n−j ≤ e(c+c2) n−j
n −c ≤ ec2− cj

n ,

as ec − 1 ≤ c + c2 for any c ∈ (0, 1) and 1 + x ≤ ex for x ≥ 0. Since this bound

is uniform in Sγ∗ and γ∗, we have

E
[

ecZt | Sγ∗

]

≤ etc2− ct2

2n .

Write PS for the conditional probability given Sγ∗ . Then for any c ∈ (0, 1), we

have

PS

(

Zt ≥ −Sγ∗

)

≤ PS

(

ecZt ≥ e−cSγ∗

)

≤ etc2− ct2

2n ecSγ∗ .

By (1), if Yγ∗+j > 0 for all 0 ≤ j ≤ t−1, then Zj = Yγ∗+j−Yγ∗ for all 1 ≤ j ≤ t.

It follows that

P
(

∀j ≤ t Yγ∗+j > 0 | Sγ∗ > 0
)

≤ E [PS(Zt ≥ −Sγ∗) | Sγ∗ > 0]

≤ etc2− ct2

2n E [ecSγ∗ | Sγ∗ > 0] .(7)

By Corollary 6 with Ξ = {1, . . . , H2}, we have that for c ∈ (0, 1),

(8) E [ecSγ∗ | γ ≤ H2, Sγ > 0] ≤ ecH+c+c2

.

Since {Sγ∗ > 0} = {γ > H2} ∪ {γ ≤ H2, Sγ > 0} (a disjoint union), the

conditional expectation E [ecSγ∗ | Sγ∗ > 0] is a weighted average of the con-

ditional expectation in (8) and of E [ecSγ∗ | γ > H2] ≤ ecH . Therefore

E[ecSγ∗ | Sγ∗ > 0] ≤ ecH+c+c2

, whence by (7),

(9) P(∀j ≤ t Yγ∗+j > 0 | Sγ∗ > 0) ≤ etc2− ct2

2n +cH+c+c2

.
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By our coupling, for any integer T > H2, if |C(v)| > T then we must have

Sγ∗ > 0 and Yγ∗+j > 0 for all j ∈ [0, T − H2]. Thus, by (5) and (9), we have

P(|C(v)| > T ) ≤ P(Sγ∗ > 0)P(∀j ∈ [0, T − H2] Yγ∗+j > 0 | Sγ∗ > 0)

≤ 3

H
e(T−H2)c2− c(T−H2)2

2n +cH+c+c2

.(10)

Take H = bn1/3c and T = bAn2/3c for some A > 4; substituting c which attains

the minimum of the parabola in the exponent of the right hand side of (10) gives

P(|C(v)| > An2/3) ≤ 4n−1/3e
− ((T−H2)2/(2n)−H−1)2

4(T−H2+1)

≤ 4n−1/3e
− ((A−1−n−2/3)2/2−1−n−1/3)2

4(A−1+2n−1/3+n−2/3)

≤ 4n−1/3e−
(
(A−2)2

2
−2)2

4(A−1/2) ,

since H2 ≥ n2/3(1−2n−1/3) and n > 1000. As [(A−2)2/2−2]2 = A2(A/2−2)2

and (A/2 − 2)/(A − 1/2) > 1/4 for A > 8 we get

P(|C(v)| > An2/3) ≤ 4n−1/3e−
A2(A−4)

32 .

Denote by NT the number of vertices contained in components larger than

T . Then

P(|C1| > T ) ≤ P(|NT | > T ) ≤ ENT

T
≤ nP(|C(v)| > T )

T
,

and we conclude that for all A > 8 and n > 1000,

P(|C1| > An2/3) ≤ 4

A
e−

A2(A−4)
32 .

5. Proof of Theorem 2

Let h, T1 and T2 be positive integers, to be specified later. The proof is divided

into two stages. In the first, we ensure, with high probability, ascent of {Yt} to

height h by time T1. In the second stage we show that Yt is likely to remain

positive for T2 steps.

Stage 1: Ascent to height h: Define

τh = min{t ≤ T1 : Yt ≥ h}
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h

τ τ
h 0

T2

Yt

Figure 1. τ0 ≥ T2.

if this set is nonempty, and τh = T1 otherwise. If Yt−1 > 0, then Y 2
t − Y 2

t−1 =

(ηt − 1)2 + 2(ηt − 1)Yt−1. Recall that ηt is distributed as Bin(Nt−1, 1/n) condi-

tioned on Yt−1, and hence if we also require Yt−1 ≤ h then

E
[

Y 2
t − Y 2

t−1 | Yt−1

]

≥ n − t − h

n
(1 − 1/n) − 2

t + h

n
h .

Next, we require that h <
√

n/4 and t ≤ T1 = d n
8he, whence

(11) E
[

Y 2
t − Y 2

t−1

∣

∣Yt−1

]

≥ 1/2

as long as 0 < Yt−1 ≤ h. Similarly, (11) holds if Yt−1 = 0. Thus Y 2
t∧τh

−(t∧τh)/2

is a submartingale. The proof of Lemma 5 implies that conditional on Yτh
≥ h,

the overshoot Yτh
−h is stochastically dominated by a Bin(n, 1/n) variable. So,

apply Corollary 6 as in (3) with f(x) = 2hx + x2 to get that EY 2
τh

≤ h2 + 3h ≤
2h2 for h ≥ 3. By optional stopping,

2h2 ≥ EY 2
τh

≥ 1

2
E τh ≥ T1

2
P(τh = T1) ,

so

(12) P(τh = T1) ≤ 4h2

T1
≤ 32h3

n
.

Stage 2: Keeping Yt positive for T2 steps: Define τ0 = min{s : Yτh+s =

0} if this set is nonempty, and τ0 = T2 otherwise. Let Ms = h−min{h, Yτh+s}.

If 0 < Ms−1 < h, then

M2
s − M2

s−1 ≤ (ητh+s − 1)2 + 2(1 − ητh+s)Ms−1 ,

so provided h <
√

n/4 and s ≤ T2 ≤ n/(8h), and recalling that τh ≤ T1 =

dn/(8h)e we have E [M2
s −M2

s−1 | Yτh+s−1, τh] ≤ 2 . This also holds if Yτh+s−1 ≥
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h, so {M2
S∧τ0

− 2(s ∧ τ0)}T2
s=0 is a supermartingale. Given the event {Yτh

≥ h}
write Ph for conditional probability and E h for conditional expectation. Since

{M2
s∧τ0

− 2(s∧ τ0)}T2
s=0 is a supermartingale beginning at 0 under E h, optional

stopping yields

(13) E hM2
τ0∧T2

≤ 2E h[τ0 ∧ T2] ≤ 2T2 ,

whence

(14) Ph(τ0 < T2) ≤ Ph(Mτ0∧T2 ≥ h) ≤
E hM2

τ0∧T2

h2
≤ 2T2

h2
.

In conjunction with (12), this yields

(15) P(τ0 < T2) ≤ P(τh = T1) + EPh(τ0 < T2) ≤ 32h3

n
+

2T2

h2
.

Let T2 = bδn2/3c and choose h to approximately minimize the right-hand side

of (15). This gives h = b δ1/5n1/3

(24)1/5 c, which satisfies T2 ≤ n/(8h) and makes the

right-hand side of (15) less than 15δ3/5. Since |C1| < T2 implies τ0 < T2, this

concludes the proof.

6. The Critical Window

As noted in the introduction, the proofs of Theorems 1 and 2 can be extended

to the critical “window” p = 1+λn−1/3

n for some constant λ. For Theorem 2 this

adaptation is straightforward, and we omit it. However, our proof of Theorem

1 used the fact that for λ = 0 (that is, p = 1/n) the exploration process

is stochastically dominated by a mean zero random walk, so we include the

necessary adaptation below.

Theorem 7: Set p = (1 + λn−1/3)/n for some λ ∈ R and consider G(n, p). For

λ > 0 and A > 2λ + 3 we have that for large enough n

P(|C(v)| ≥ An2/3) ≤
( 4λ

1 − e−4λ
+ 16

)

n−1/3e−
((A−1)2/2−(A−1)λ−2)2

4A ,

and

P(|C1| ≥ An2/3) ≤
( 4λ

A(1 − e−4λ)
+

16

A

)

e−
((A−1)2/2−(A−1)λ−2)2

4A .

For λ < 0 and A > 3 we have that for large enough n

P(|C(v)| ≥ An2/3) ≤
( −2λ

e−λ − 1
+ min(5,− 1

λ
)
)

n−1/3e−
((A−1)2/2−(A−1)λ−2)2

4A ,
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and

P(|C1| ≥ An2/3) ≤
( −2λ

A(e−λ − 1)
+ min(5,− 1

λ
)
)

e−
((A−1)2/2−(A−1)λ−2)2

4A .

Proof. Assume p = 1/n + λn−4/3 and that n is large enough; again we bound

the exploration process with a process {St} defined by St = St−1 + ξt −1 where

ξt are distributed as Bin(n, p) and S0 = 1. The two cases of λ being positive or

negative are dealt with separately; assume first λ > 0. Since 1− e−a ≤ a−a2/3

for small enough a > 0, we have

E e−a(ξt−1) = ea[1 − p(1 − e−a)]n ≥ ea(1 − p(a − a2/3))n .

By Taylor expansion of log(1 − x), for small a we have

log E e−a(ξt−1) ≥ a + n
(

− p(a − a2/3) + O(n−2)
)

= a − (1 + λn−1/3)(a − a2/3) + O(n−1) ,

and so for a = 4λn−1/3 and n large, we have E e−a(ξt−1) ≥ 1 hence {e−aSt}
is a submartingale. Take H = dn1/3e, and define γ as in Lemma 5. Then by

optional stopping we have

e−a ≤ 1 − P(Sγ ≥ H) + P(Sγ ≥ H)e−aH ,

and as 1 − e−a ≤ a for a > 0 we get

(16) P(Sγ ≥ H) ≤ 4λn−1/3

1 − e−4λ
.

Also, observe that St − λn−1/3t is a martingale, hence by optional stopping

1 + λn−1/3E γ = P(Sγ ≥ H)E [Sγ | Sγ ≥ H ] and so by Corollary 6 we get

E γ ≤ 8n1/3

1−e−4λ . For λ > 1/4, as (1 − e−4λ)−1 ≤ 2, this gives that E γ ≤ 16n1/3.

It is immediate to check that S2
t − 1

2 t is a submartingale as long as t ≤ γ,

hence by optional stopping E γ
2 ≤ 4λn−1/3

1−e−4λ E [S2
γ |Sγ ≥ H ]. Using Corollary 6 as

in (3) and estimating 4x
1−e−4x ≤ 2 for x ∈ (0, 1/4] gives the same estimate for

λ ∈ (0, 1/4]. Thus

(17) E γ ≤ 16n1/3 ,

for all λ > 0. Take again γ∗ = γ ∧ H2, and as in (5), by (16) and (17) we get

(18) P(Sγ∗ > 0) ≤
( 4λ

1 − e−4λ
+ 16

)

n−1/3 .
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Define Zt as in (6) and note that this time its increments can be stochastically

dominated by variables distributed as Bin(n − j, p) − 1. Similar computations

to the one made in the beginning of Section 4 give that for c ∈ (0, 1)

E [ecZt | Sγ∗ ] ≤ ectλn−1/3− ct2

2n +c2t(1+λn−1/3) ,

and so as before we have

P(∀j ≤ t Yγ∗+j > 0 | Sγ∗ > 0) ≤ E [PS(Zt ≥ −Sγ∗) | Sγ∗ > 0]

≤ ectλn−1/3− ct2

2n +c2t(1+λn−1/3)E [ecSγ∗ | Sγ∗ > 0]

≤ ectλn−1/3− ct2

2n +c2t(1+λn−1/3)+c(n1/3+1)+2(c+c2)

where the last inequality is due to Corollary 6. Write t = bBn2/3c for some

constant B and take c ∈ (0, 1) which attains the minimum of the parabola in

the exponent of the last display. This gives that for large enough n and fixed

B > 2λ + 2 we have

P(∀j ≤ t Yγ∗+j > 0 | Sγ∗ > 0) ≤ e−
(B2/2−Bλ−2)2

4(B+1) .

Together with (18), as in the proof of Theorem 1, we conclude that for any

A > 2λ + 3 we have

P(|C(v)| ≥ An2/3) ≤
( 4λ

1 − e−4λ
+ 16

)

n−1/3e−
((A−1)2/2−(A−1)λ−2)2

4A ,

and as before this implies that

P(|C1| ≥ An2/3) ≤
( 4λ

A(1 − e−4λ)
+

16

A

)

e−
((A−1)2/2−(A−1)λ−2)2

4A .

Assume now p = 1/n+λn−4/3 for some fixed λ < 0. For a > 0, as 1 +x ≤ ex

we have

E ea(ξt−1) = e−a[1 + p(ea − 1)]n ≤ e−a+np(ea−1) .

By Taylor expansion of ex − 1 we have

log E ea(ξt−1) ≤ −a + (1 + λn−1/3)(a + a2/2 + O(a3)) ,

and so for a = −λn−1/3 > 0 we have that E ea(ξt−1) ≤ 1 hence {eaSt} is a

supermartingale. With the same H and γ as before, optional stopping gives

ea ≥ 1 − P(Sγ ≥ H) + P(Sγ ≥ H)ean1/3

,
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and as ex − 1 ≤ 2x for x small enough we get

P(Sγ ≥ H) ≤ −2λn−1/3

e−λ − 1
.

Also, as γ is bounded above by the hitting time of 0, Wald’s Lemma (see [7])

implies that E γ ≤ −n1/3/λ. For λ ∈ [−1/5, 0] it is straight forward to verify

that S2
t∧γ − 1

2 (t ∧ γ) is a submartingale, hence as before we deduce by optional

stopping that E γ ≤ 5n1/3 for such λ’s. Thus we deduce that for all λ < 0,

E γ ≤ min(5,−1/λ)n1/3 .

The rest of the proof continues from (17), as in the case of λ > 0.

Remark: Using similar methods, in [15], we analyze component sizes of bond

percolation on random regular graphs.
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