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Some more or less explicit class field theory

Dennis Eriksson

May 25, 2004

Abstract

A little survey of explicit class field theory, both local and global. In
particular, for imaginary quadratic fields we give the theory of complex
multiplication for elliptic curves, and we also construct the Lubin-Tate
group. Torsion points in various groups will turn out to generate partic-
ular ramified extensions of our fields. This makes the reciprocity laws of
class field theory explicit.
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1 Outline and Prerequisites

1.1 Conductors and Ray Class Fields

K is a number field.
OK is the maximal order of F .

The following material was partially taken from [6] and [1].

Definition 1. Let M = M0M∞ be the formal product of the following
two objects:

M0 = a =
∏

i

P
ei
i

and

M∞ =
∏

∞i.

The first one is an ideal, factored into prime components, so that ei = 0
for all but finitely many primes. The second one is a formal sum of a
number of infinite primes. We call M a divisor.

Definition 2. Let I denote the group of fractional ideals of K, and P
the group of principal ideals. Let IM = IM0 be the subgroup of fractional
ideals relatively prime to M0. Furthermore, let PM be the subgroup of P
such that (α) ∈ PM if α ≡ 1(mod M0) and α|∞i > 0 for ∞i|M∞.

To a finite abelian extension L/K we can associate a divisor cL, called
the ”conductor”, with the property that it is divisible by exactly the
ramified primes (finite and infinite) and if cL|M, another divisor, then
there is a surjective homomorphism

IM → Gal(L/K)

sending a prime ideal p to σp, the p Frobenius element of L/K, and extend-
ing by linearity. The kernel is furthermore exactly H = PMNL/KIM(L),
where NL/K is the obvious norm map on ideals from L to K. The con-
verse on H is also true, i.e. given a subgroup PM ⊆ H ⊆ IM, there is an
extension L/K with conductor dividing M such that H = PMNL/KIM(L)
and an isomorphism, using the same map as above,

IM/H ' Gal(L/K).

This is essentially functorial, i.e. if you have two groups H1 ⊆ H2, then we
have associated fields L1 ⊇ L2 and vice versa. In particular, now choose
H = PM.

The associated field KM is called the ray class field, and it has the prop-
erty that if K ⊆ L has conductor c = cL dividing M, then L ⊆ KM,
and furthermore, it is characterized by the fact that a prime ideal p splits
completely, if and only if it is principal over K, p = (α), α ≡ 1(mod M0)
and α|∞i > 0, for all ∞i|M∞. Its Galois group is naturally isomorphic to
IM/PM.

In particular, take M = (1), then the associated field H is called the
Hilbert class field, and is by construction the maximal abelian unramified
extension of K, characterized by the fact that p of K splits completely if
and only if it is principal, and not ramified at any infinite primes. Fur-
thermore, the above isomorphism allows us to identify Gal(H/K) with
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I/P , the class group.

The following will be needed at one point: For a finite abelian group
G, let Ĝ = Hom(G,Q/Z) be the Piontryiagin dual of G. G is non-

canonically isomorphic to Ĝ, and canonically isomorphic to Ĝ by the map
g 7→ [χ 7→ χ(g)], and we will often use the latter identification implicitly.

We have a natural non-degenerate pairing,

G× Ĝ → C×

(g, χ) 7→ χ(g).

This sets up a duality between subgroups H of G and subgroups H ′ of Ĝ,
by H 7→ H⊥ = {χ ∈ Ĝ|χ(h) = 1, h ∈ H}.

1.2 Summary of Results

Our main objective will be to determine the ray class fields of various fields
of arithmetic interest, local fields and global fields. The most famous re-
sult in this direction is the Kronecker-Weber theorem, which asserts that
the maximal abelian extension of Q is obtained by adjoining the n-th roots
of unity. Geometrically, one adds all the torsion points of the circle. We
will have similar results when considering imaginary quadratic fields, and
local fields. Here the circle is replaced by an elliptic curve and a formal
group respectively.

One can take two different viewpoints in this game. On the one hand,
it has been observed that ramified extensions are obtained by adjoining
torsion as just mentioned. We show that one can pick out an invariant
differential on some complex group-variety and obtain functions whose
values at certain torsion points give abelian extensions. The other course
of action one can take is to follow up what happens in the chapter on
the Kronecker-Weber theorem. There we use the local Kronecker-Weber
theorem to deduce a result in the global case. In principle, if one is able to
solve the ”local Kronecker-Weber”-problem, which amounts to finding the
maximal abelian totally ramified extension of the completion of the global
field at a prime, and generate the Hilbert class field, then one should be
able to find all abelian extensions of any global field.

This study is divided into three parts:

• Local fields: Here we show that the maximal unramified extension
of a local field with finite residue field of characteristic p is generated
by n-th roots of unity, n being prime to p. We also construct the
Lubin-Tate groups, whose torsion points will generate the maximal
totally ramified abelian extension. We round off with a proof of a
local Kronecker-Weber theorem for Qp.

• The global field Q: Here we prove the famous Kronecker-Weber
theorem.

• Imaginary quadratic fields, K: To every imaginary quadratic field
we can associate an elliptic curve with a big endomorphism algebra.
This leads us into the theory of complex multiplication, which in
the end gives rise to the following two results: the j-invariant of
the associated elliptic curve generates the Hilbert class field of K,
and torsion points of the same elliptic curve will generate ramified
extensions.
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2 Explicit Local Class Field Theory

K is a local field.
OK is the valuation ring of K.
m = (π) is the maximal ideal of OK .

K is the residue field, OK/(π).

We wish to construct the maximal abelian extension of a local field,
i.e. the fraction field of a complete local ring with finite residue field. We
will distinguish between totally ramified extensions and unramified ex-
tensions, and treating each case separately and using the decomposition
Kab = KnrKπ of Kab into an unramified part and a totally ramified part,
we will arrive at our conclusion.

The case of unramified extensions is easily sketched. Indeed, finite un-
ramified extensions L of K corresponds bijectively to finite extensions L
of K, as is shown in [3]. If we have a finite extension L of K, lift elements
of L to OL, and denote such a set of representatives by SL. Any element
x of L can then be written as

x =

∞∑
n=−n0

snπn, sn ∈ SL.

Hence, using this notation we have

Knr =
⋃

L/K finite

L

and the completion of Knr is given by

K̂nr =

{ ∞∑
n=−n0

snπn, sn ∈ S =
⋃

SL

}

Notice that this is an analogue of the Hilbert class field in the local case,
in the sense that it is the maximal unramified abelian extension.

As was just noted, an unramified extension L/K of degree n, corre-
sponds to an extension of residue fields L/K. We obtained unramified
extensions by lifting elements of L to L. Because L is generated by roots
of unity and of degree n over K, it contains a primitive n-th root of unity.
Let ζ be a multiplicative representative of a primitive root n-th root of
unity with p not divining n. This is also a primitive n-root of unity, and
must thus generate L as an K-algebra. One obtains the result by passage
to a limit and the observation that the algebraic closure of K is obtained
by adjoining all n-th roots of unity with n being prime to p. We have just
shown:

Theorem 1. The maximal unramified extension of a local field K with
finite residue field is obtained by adjoining n-th roots of unity, with n being
prime to the characteristic of the residue field.

2.1 The Lubin-Tate Group

K is a local field.
OK is the subring of K consisting of elements of positive evaluation.
π is a unformizer of the maximal ideal of OK .
q is the cardinality of the residue field OK/(π).
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In this section we will construct a group structure on the maximal ideal
on the algebraic closure of a local field, such that the torsion on this cor-
responds to ramified extensions of the same.

First we need a small detour to the land of abelian formal groups. We
say that a polynomial F ∈ OK [[X, Y ]] is an (abelian) formal group (with
respect to OK) , if

• F is without constant term, i.e. F (X, Y ) =
∑

an,mXnY m and
a0,0 = 0.

• F is ”associative”, i.e. F (F (X, Y ), Z) = F (X, F (Y, Z)).

• We have an ”identity”, F (X, 0) = X and F (0, Y ) = Y .

• It is abelian, F (X, Y ) = F (Y, X).

One can include in this definition the existence of an ”inverse”, a formal
power-series i in one variable such that F (X, i(X)) = 0. However, this
can easily be constructed, as in [2].

There are two basic examples of a formal group.

• The formal additive group, Ĝa, where

F (X, Y ) = X + Y

.

• The formal multiplicative group, Ĝm, where

F (X, Y ) = (1 + X)(1 + Y )− 1

.

If we let X and Y be elements of m = (π). Then Ĝa is just the usual

additive group on m, and Ĝm reflect the multiplicative group-structure
that can be put upon m, by sending x ∈ m to 1 + x ∈ 1 + m and use the
multiplicative group structure on this.

Denote by On(X) the power-series in the variable/multivariable X
whose monomials all have degrees at least n. Now, let Lπ be the set of
formal power-series in OK such that they verify the following properties:

• f(X) = πX + O2(X)

• f(X) = Xq + πg(X) where g ∈ OK [[X]].

Thus, Lπ is a set of ”Eisenstein” power-series. We will need the following
lemma to associate a sane formal group to elements of Lπ, a lemma which
Oesterlé, [2], calls ”une lemme technique”:

Lemma 2. Let f, g ∈ Lπ and a1, . . . , am ∈ OK . Then there exists a
unique formal power-series Φ such that

• Φ is without constant term and Φ(X1, . . . , Xm) = a1X1 + . . . +
amXm + O2(Xi).

• f(Φ(X1, . . . , Xm)) = Φ(g(X1), . . . , g(Xm)).
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Proof. If Φ1 =
∑m

i=1 aiXi, one checks that, using multi-index notation
X = (X1, . . . , Xm) that

f(Φ1(X)) = Φ1(g(X)) + O2(X).

Now, if we have a polynomial Φn of degree n such that

f(Φn(X)) = Φn(g(X)) + On(X)

we wish to construct a better approximation Φn+1 up to On+1(X)-terms.
It is not difficult to show that we necessarily have

Φn+1 = Φn + [π(1− πn)]−1S(X)

where S(X) is the homogenous degree n+1-part of Φn(g(X))−f(Φn(X)).
One needs an argument to show that the latter part of this is actually a
polynomial with coefficients in OK , and for this we refer to [2]. Uniqueness
follows from the fact that all every Φi is uniquely determined by Φi−1,
and that Φ1 is the first best approximation.

In particular, we can take a1 = a2 = 1 and f = g, in which case one
gets a power-series in two variables F , such that

f(F (X, Y )) = F (f(X), f(Y )).

We wish to show that this is a formal group, in which case one can inter-
pret the above formula as f being a homomorphism of formal groups.
All the properties to be shown are either obvious or follow from the
uniqueness-property in the above lemma. To give a taste of how the
proofs go, we show associativity. So, let G1(X, Y, Z) = F (F (X, Y ), Z)
and G2(X, Y, Z) = F (X, F (Y, Z)). Both G1 and G2 are of the form
X + Y + Z + O2(X, Y, Z), because F is. It is thus of the form prescribed
in the lemma. It is also obvious that f commutes with both G1 and G2

in the above sense, and our uniqueness-property tells us that G1 = G2.
We have thus showed the first half of:

Theorem 3. Let f ∈ Lπ, then there exists a unique formal group F = Ff

such that f(F (X, Y )) = F (f(X), f(Y )). Also, every element a ∈ OK

defines (uniquely) an endomorphism [a] = [a](X) of Ff , such that

• [a](X) = aX + O2(X).

• [a](f(X)) = f([a](X)).

These furthermore satisfy that

• [a + b] = [a] + [b].

• [ab] = [a] ◦ [b]

• [π] = f .

Proof. It remains to prove the existence of [a]. However, the existence and
uniqueness follows from our technical lemma. That it is an endomorphism
of our formal group F means just that [a](F (X, Y )) = F ([a](X), [a](Y )).
However, f commutes with both sides, and both sides have leading term
aX +aY , so uniqueness says they are the same. The remaining properties
are shown in the same way.

Definition 3. The formal group Ff is called the Lubin-Tate group (asso-
ciated to f).
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One shows, again using the technical lemma, that two Lubin-Tate
groups Ff and Fg are isomorphic, i.e. there exists a formal power-series
u(X) = X + O2(X), which means that u is invertible, and such that
u ◦ Ff = Fg ◦ u. One just finds a such a u verifying u ◦ f = g ◦ u and
u = X + O2(X) and it will verify the the other written property.

2.2 Construction of Totally Ramified Extensions

We now wish to associate a group, in the usual sense, to Ff , on which
OK acts. The torsion of this group will happen to generate all totally
ramified abelian extensions. The proof of this fact will essentially lead us
to a construction of local class field theory in its entirety.

Let KS be the separable closure of K, and mS its maximal ideal. Fixing
an f ∈ Lπ, mL will be, for each separable extension L/K, an abelian
group, with group law x ⊕ x′ := Ff (x, x′), ªx = i(x). Because x and x′

are in mL and F ∈ OK [[X, Y ]], x⊕ x′ actually defines a converging sum.
Also, because the coefficients of F are in OK , GS := Gal(KS/K) acts on
mL, and it is formal that it is a OK-module by a.x := [a](x). Finally,
we now construct the candidates for generating ramified extensions of K,
namely one defines

Tf,π(πn) = {x ∈ mS , πn.x = 0},

the πn-torsion of mS and

Tf,π =

∞⋃
n=1

Tf,π(πn).

Theorem 4. Let Tf,π be as above, then

a Tf,π is isomorphic to K/OK as an OK-module.

b the field K(Tf,π(πn)) is a separable algebraic extension of K and is a
totally ramified abelian extension of K of degree qn−1(q − 1).

c For every σ ∈ Gal(K(Tf,π(πn))/K), there is an a(σ) ∈ O×K defined
modulo 1 + πnOK such that for any x ∈ K(Tf,π(πn)), one has

σ(x) = a(σ)x

and the map σ 7→ a(σ) is an isomorphism Gal(K(Tf,π(πn))/K) →
O×K/(1 + πnOK). Furthermore, this doesn’t depend on the choice of
f .

Proof. We have already seen that we have an isomorphism u : Ff → Fg for
two different f, g ∈ Lπ, and one checks without trouble that u◦[a]f ◦u−1 =
[a]g, for a ∈ OK , and thus u defines an isomorphism mS,f → mS,g of OK-
modules. Hence u(Tf,π(πn)) = Tg,π(πn), and because u also commutes
with the action of the Galois group GS , we see that K(Tf,π(πn)) and
K(Tg,π(πn)) are both fixed by the same elements of GS , hence the same.

We can thus in particular take f = πx + xq. One then sees, noting that π
acts as f , that the torsion group Tf,π(π) consists of the zeros of xq + πx,
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and that all those zeros are in this group, because the polynomial is sep-
arable. Fixing a zero x0 6= 0 of f gives a map OK → Tf,π(π), a 7→ a.x0,
with kernel exactly mK . Because the residue field has exactly q elements,
as does the number of roots of xq + πx, it is surjective. Because the poly-
nomial Xq + πX − x is separable, one can find a y such that π.y = x,
and this shows that Tf,π is π-divisible. A simple algebraic lemma then
shows that we have an OK-module isomorphism K/OK → Tf,π, namely
one takes representatives from A so that they surject to A/m ' Tf,π(π).
In particular, taking 1 mapped to x1, one can find an x2 s.th. πx2 = x1,
and so on. Then one maps π−n ∈ K/OK to xn, extends linearly and
shows this gives an isomorphism.

Since, by the above, Tf,π(πn) = OK/πnOK , and is thus generated, as
an OK-module, by a single element x, so K(x) = K(Tf,π(πn)). Hence,
for any σ ∈ Gal(K(x)/K), one has σ(x) = a.x for some a ∈ OK , and one
sees that σ defines an element in O×K/(1 + πnOK), and that this associa-
tion is an injective homomorphism. To show that it is surjective, suppose
that, as above, that x is a generator of the πn-torsion. Then, writing
f (k) = f ◦ f ◦ . . . ◦ f (k times), one has f (n)(x) = 0, but f (n−1)(x) 6= 0,
and one calculates

0 =
f (n)(x)

f (n−1)(x)
=

(
f (n−1)(x)

)q−1

+ π.

But
(
f (n−1)(X)

)q−1

= Xqn−1(q−1) mod π, so x is the zero of an Eisenstein

polynomial, and K(x) is a totally ramified extension of degree qn−1(q−1).
Because πn-torsion is stable under GS , K(Tf,π(πn)) is Galois. O×K/(1 +
πnOK) and Gal(K(x)/K) both have the same cardinality, and the con-
structed correspondence was injective, hence an isomorphism. This also
shows the extension is abelian, and all three assertions of the theorem
have been proved.

Some natural questions that can be asked at this point are: Are the
above extensions dependent on the choice of uniformizer π, do they gen-
erate all abelian totally ramified extensions? As one may suspect, the
answer to these questions is indeed yes.

2.3 Local Kronecker-Weber

Let the field obtained by adding all torsion be denoted by Kπ. Because all
finite subextensions are finite and totally ramified, this is linearly disjoint
with Knr.

Hence, to show that two different uniformizers π and π′ give rise to the
same Kπ and Kπ′ , it will be sufficient to show that KnrKπ = KnrKπ′ .
This is however not too hairy, and we will be content with giving the
following lemma without proof, but it can be found in [2]:

Lemma 5. Suppose that f ∈ Lπ, g ∈ Lω. Then there exists a formal
power-series Φ ∈ OKnr [[X]] such that

[ω]g ◦ Φ = ΦF ◦ [π]f

and

Φ(x) = εx + O2(x)

8



where F is the Frobenius element F : Knr → Knr prolonged to K̂nr and ε
is a unit in K̂nr such that εω = F (ε)π. This can also be written, regarding
Φ as a homomorphism of formal groups,

Ff,π
Φ //

[π]f

²²

Fg,ω

[ω]g

²²
Ff,π

ΦF
// Fg,ω.

So, now take two polynomials f and g as in the lemma, together with
the map Φ. Φ is in fact an isomorphism of formal groups over K̂nr, which
is not so difficult to show, using the techniques from the earlier chapter,
but with K̂nr instead of OK . For details, see [2]. Because of this, the
induced groups mK̂nr associated to f and g respectively, are isomorphic

over K̂nr, and thus their torsion groups as well, and so K̂nrKπ = K̂nrKω.

Taking completions once more one obtains K̂nrKπ = K̂nrKω. Let L
be the largest separable algebraic extension of K that is contained in

K̂nrKπ. L is Galois and contains KnrKπ. Take any σ ∈ Gal(L/KnrKπ).
σ is continuous with respect tomK̂nr the valuation of L, and prolongs

by continuity to K̂nrKπ, and because σ is the identity on KnrKπ, it is
the identity on this, and L = KnrKπ = KnrKω. Lastly, if we have two
uniformizers ω and π, they differ by an invertible element π. The above
lemma gives us that ΦF ◦ [π]f = [ω]g ◦Φ = Φ ◦ [ω]f = Φ ◦ [u]f ◦ [π]f , and
dividing with [π]f gives that ΦF = Φ ◦ [u]f .

Theorem 6 (Local Class Field Theory). Keeping the notation above,
KnrKπ = Kab and the reciprocity homomorphism

K×̂ → Gal(Kab/K)

is an isomorphism of topological groups, where K×̂ = O×K ⊕ πẐ and Ẑ is
the completion of Z with respect to the ideal topology.

As a remark, we mention how above map associates to an element
α ∈ K×̂ an reciprocity element (α, Kab/K). We briefly recall how this
homomorphism is constructed:
Let L/K be a finite abelian Galois extension, G = Gal(L/K). Consider
the short exact sequence 0 → Z → Q → Q/Z → 0 of G-modules (with
trivial action), and the induced morphism δ : H1(G,Q/Z) → H2(G,Z).
Now, H1(G,Q/Z) ' Hom(G,Q/Z), which is just the character group of G.
This furnishes a map Hom(G,Q/Z)×K× = H1(G,Q/Z)×H0(G, L×) →
H2(G,Z) ×H0(G, L×) → H2(G, L×) ' Br(L/K) ↪→ Br(K). Local class
field theory computes Br(K) to be equal to Q/Z, so we get a pairing

〈, 〉 : Hom(G,Q/Z)×K× → Q/Z.

One checks that 〈, 〉 is bimultiplicative. Because L/K is abelian, one has
a perfect pairing between G and its dual, Hom(G,Q/Z), and the above
map amounts to evaluating χ ∈ Hom(G,Q/Z) at some (α, L/K) ∈ G, i.e.

〈χ, α〉 = χ((α, L/K)).

The reciprocity map associates to α ∈ K x̂ the automorphism (α, Kab/K)
determined as above.

The same argument goes through with any finite Galois extension, but
with replacing G with Gab at appropriate places.
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Proof. (of the theorem of local class field theory) We will suppose some
facts from local class field theory for this proof. For example, we will use
that the map is continuous. Thus, because K×̂ is compact, so is its image.
Also, for any finite extension L of K, one has Gal(L/K) ' K×/NL× by
the Tate local duality theorem, so the image is also dense. Now, since
Knr and Kπ are linearly disjoint, one has the series of maps

K×̂ → Gal(Kab/K) → Gal(KnrKπ/K) → Gal(Knr/K)×Gal(Kπ/K)

and all of these are either obviously surjective, or by the aboveare easily

seen to be so. O×K is sent to Gal(Kπ/K) and πẐ is sent to Gal(Knr/K).
To prove the theorem it will suffice to show that the above composition
of maps is injective. To see this we have to write down the action of
(α, Kab/K) on Knr and Kπ explicitly. It is well-known that this acts as
F v(α), where F is the Frobenius map and v the usual valuation. The case
of the action on Kπ takes a little more analysis. Remember we have a
commutative diagram

K(T (πn))× //

Norm

²²

Gal(Kab/K(T (πn))

Res

²²
K× // Gal(Kab/K)

.

K(T (πn)) is generated by some torsion point x, i.e. a root of a Eisenstein
polynomial of degree qn−1(q − 1) and constant term π, so π is a norm in
this extension. Hence (π, Kab/K) fixes K(T (πn)) and thus Kπ. If u is in
O×K , this gives two different primes π and ω = πu. We wish to show that
σ = (ω, Kab/K) acts as [u−1]f on Kπ. Now, let λ ∈ Tλ. Then, because
(ω, Kab/K) acts as the identity on Tω and thus Φ(Tπ) = Tω, one has

σ(Φ(λ)) = Φ(λ)

and so

σ(Φ(λ)) = ΦF (σ(λ)) = Φ([u]fσ(λ)) = Φ(λ)

by the remarks preceding this theorem. Because Φ is invertible, the result
follows. Finally, the result just shown demonstrates that the above maps
are injective, and the theorem is proven.

We note an important and immediate corollary

Theorem 7 (Local Kronecker-Weber). Every abelian extension of Qp

is contained in a cyclotomic extension Qp( n
√

1).

Proof. Next, we take our local field to be K = Qp, and π = p, f = px+xp.
Then a small calculation shows that the formal group associated to f is
isomorphic to nothing else than Ĝm, or rather, if

F (X, Y ) = (1 + X)(1 + Y )− 1,

then f ◦ F (X, Y ) = F (f(X), f(Y ). Hence, when taking m-points, one
obtains an isomorphism with torsion in the two respective groups. Thus
1+Tπ is the torsion of the formal multiplicative group Ĝm, and its torsion
is given by {1 + x, (1 + x)pn

= 1}. Hence, (Qp)π =
⋃∞

n=1Qp( pn√
1), and

we already know the structure of the unramified extensions.
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3 Class Field Theory for Q
Consider the affine group scheme Gm = SpecZ[T, T−1], and its set of
complex points, C×. As a complex analytic group, this has up to a scalar
multiple one single holomorphic translation-invariant holomorphic 1-form,
namely dz/z. Normalizing it so that

ω = (2πi)−1 dz

z

we obtain a map

Φ : C× → C/H1(C×,Z) ' C/Z

by

Φ(P ) =

∫ P

1

ω.

Here H1(C×,Z) ' Z denotes the singular homology with coefficients
in Z, and one embeds it into C by taking a cycle γ to the complex number∫

γ
ω.. This map is just the logarithm map, Φ(P ) = (2πi)−1 log P , and its

inverse is z 7→ e2πiz. This shows we have a complex analytic isomorphism
of Lie groups C× and C/Z. This might seem trivial, but in the next
chapter about complex multiplication of elliptic curves the same procedure
is carried out, and there as here, the value of the inverse map Φ−1 under
torsion points will be related in a very explicit way to ramified abelian
extensions of our ground field. Also, notice that the torsion points under
the map Φ−1 would have been the same regardless of normalization.

3.1 Kronecker-Weber

Theorem 8 (Kronecker-Weber Theorem). Every abelian extension
of Q is contained in a cyclotomic extension.

Proof. First proof : Let µN = {ζ ∈ C, ζN = 1} be the group of n-th roots
of unity and Q(µN )/Q be the N -th cyclotomic field. It is well known that
this is an abelian extension of Q ramified exactly at primes dividing N ,
with Galois group (Z/NZ)×. For a prime P of Q(µN ) lying above a prime
p 6 |N of Q, we can consider the Frobenius element σP. Fixing a primitive
N -th root of unity, this is determined by the action

ζσP ≡ ζp(mod P).

Because p 6 |N , the equation xN − 1 is separable in characteristic p, and
one concludes that

ζσP = ζp.

Furthermore, this immediately implies that σP = 1 is equivalent to that
p ≡ 1(mod N). The Frobenius element is independent of the prime P

above p chosen, and hence the decomposition group of P is trivial, and
that p splits completely is equivalent to that p ≡ 1(mod N). We obviously
also have ramification at infinity (a real prime becomes complex), and by
class field theory, this is the ray class field of Q modulo N∞. Hence, if we
choose any number field L of conductor c = N , L is contained in Q(µN ).

Second proof : We build the second proof on the fact that Kronecker-
Weber is true for Qp, the p-adic integers. So, let L/Q be abelian. If
p ramifies, consider the completion LP of L at any prime lying above

11



p. This is an abelian extension of Qp, and hence contained in Qp(µnp),
for some minimally chosen integer np. Let pep be the highest power of
p dividing np, and construct the number n =

∏
pep , and form the field

L′ = L(µn). Our goal is to show that L′ = Q(µn). Let Ip be the inertia
group of a prime p in L′. This can be computed locally, so

Ip ' Gal(Qp(µpep )/Qp)

which has order φ(pep). Taking products of these inertia groups, denoting
it by I, we get,

|I| ≤
∏

|Ip| = φ(n) = [Q(µn) : Q].

The fixed field of I is just Q, because Q has no nontrivial unramified
extensions. But then

[L′ : Q] = [L′ : L′I ] = |I| ≤ [Q(µn) : Q]

and
Q(µn) ⊆ L(µn) = L′

gives that in fact Q(µn) = L′.

4 Complex Multiplication of Elliptic Curves

4.1 General Theory

K is an imaginary quadratic extension of Q.
O is an order of K.
OK is the maximal order of K.

Let E/C be an elliptic curve with invariant differential dx/y. Consider
the inverse of the map

F : E(C) → C/H1(E(C),Z)

given by

F (P ) =

∫ P

0

dx/y(mod H1(E(C),Z)).

It is the well known isomorphism (of compact complex Lie groups) C/Λ '
E(C) ⊆ CP2 given by z 7→ (℘(z), ℘′(z), 1) if z 6= 0 and 0 7→ (0 : 1 : 0).
Here Λ = Z⊕ τZ and

℘(z) =
1

z2
+

∑

w∈Λ\0

(
1

(z − w)2
− 1

w2

)

is the Weierstrass ℘-function, which satisfies the equation

(℘′(z))2 = 4℘(z)3 − g2℘(z)− g3.

Furthermore, g2 and g3 are scalar multiples of the Eisenstein series G4

and G6.

The main object of study in this section will be the endomorphism
algebra of E. This is defined to be the set of all morphisms E → E taking
O, the neutral element of E, to itself. Every such morphism is in fact a
homomorphism of groups, and the ring of endomorphisms will be denoted
End(E). Using the analytic isomorphism to the torus C/Λ, we see that
the elements of the endomorphism ring are in 1-1-correspondence with all
the complex numbers α such that αΛ ⊆ Λ.

12



Proposition 9. The endomorphism ring of E is either Z or an order of
an imaginary quadratic field, O = Z+ fOK , for some positive integer f .

Proof. Let Λ = 〈1, τ〉 and take any α such that αΛ ⊆ Λ, then α =
a + bτ, ατ = c + dτ . Hence, if α is not an integer we can eliminate it from
the equation to arrive at

bτ2 − (a− d)τ − c = 0.

One concludes that bτ is an algebraic integer, and thus α is in OK , K =
Q(τ). We also get that K = Q(τ) is an imaginary quadratic extension
of Q, and finally End(E) is an order of the same, which we denote by
O. That orders of K are of this form is well known and not difficult to
show.

Furthermore, the lattice Λ is a proper ideal of O, by which we mean
that {α ∈ C|αΛ ⊆ Λ} = O. This is the same as requiring that Λ is a
projective O-module of rank 1: more precisely, Λ ⊗ Hom(Λ,O) ' O and
Λ has rank 1.

Conversely, given a order O with fraction field K, any proper ideal
determines a lattice with an endomorphism ring equal to O. Furthermore,
any lattice for E is determined uniquely up to homothethy, so we further
restrict ourselves to fractional ideals of K modulo homothethy, if we want
a fixed endomorphism ring. But this is precisely the ideal class group.1

Proposition 10. For an order of an imaginary quadratic field O, there
is a bijection

Elliptic curves with complex multiplication by O/Isomorhpism ↔ Cl(O).

We also have an action of the class group on E = Ea, given by
p ∗ Ea = Eap−1 . This is quite an analytic action, because it uses the
analytic realization of an elliptic curve as a torus.
If σ ∈ Gal(C/Q), Eσ, obtained by transforming the coefficients of the
polynomial(s) defining the curve, has endomorphism ring naturally iso-
morphic to the one of E. Because there are only finitely many classes of
elliptic curves with a given complex multiplication (finiteness of the class
group), we see that there are only finitely many values of j(τ)σ = j(E)σ =
j(Eσ) as σ goes through the automorphisms of the above Galois group.
One concludes that j(τ) is algebraic, and there is a model for E over a
number field Q(j(τ)). Not only is j(τ) algebraic, it is indeed an algebraic
integer, which we will see below.

Remark 11. If [Q(τ) : Q] ≥ 3, j(τ) is transcendental, see [5].

If E has complex multiplication by O, and u ∈ O, we denote the action
of u on E by [u]. Unless otherwise stated, we now restrict ourselves to
the case O = OK , the maximal order.

1in fact, for non-maximal orders Of , we let Cl(Of ) = Pic(Of ) denote the isomorphism
classes of projective Of -modules of rank 1. This is naturally isomorphic to the group of
proper fractional ideals modulo proper principal ideals. For f = 1, O is Dedekind and every
ideal is proper and this coincides with the usual notion of fractional ideals modulo principal
ideals. Lastly, the condition {α ∈ C, αΛ ⊆ Λ} = Of means exactly that Λ is proper, which is
equivalent to being projective of rank 1.
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4.2 The Associated `-adic Galois Representation

For imaginary quadratic fields K, we can associate another group variety
with complex multiplication by OK . This exists, just take any elliptic
curve with the lattice being any element of the class group. Let L be a
field of E. In particular, we can pick L = K(j(E)).

Now, we wish to show that adjoining torsion points to the L yields abelian
extensions of the same. First of all, it is clear that if an endomorphism
α commutes with the action of GL = Gal(L̄/L), the finiteness of ker α
implies the algebraicity of these points too. To see that these are abelian,
we study the Galois representation associated to E. We briefly recall what
it is. Fix a prime number `. First of all, the `-adic Tate module of E is
defined by the inverse limit

T`(E) = lim
←

E[`n]

were E[m] denotes the set of all points P in E such that mP = O, i.e.
the m-torsion. The absolute Galois group GL acts on each E[`n], and
its action commutes with multiplication by `. Hence we have a action
by GL on the Tate module. GL acting continuously on each discrete
(finite) group E[`n] and GL profinite implies that the action on T`(E) is
continuous. The associated representation

ρ` : Gal(L̄/L) → Aut(T`(E)) = GL2(Q`)

is of the utmost interest. If the elliptic curve is arbitrary, we cannot say
much about this. However, if it has complex multiplication we can say
more. The theorem is

Theorem 12. Suppose E/L has complex multiplication by OK , and that
K is contained in L. Then the representation ρ` is abelian, i.e. it factors
through the abelianization of GL.

Proof. Letting E[m] ' Z/mZ × Z/mZ denote the m-torsion points of
E(C), L = K(j(E)) and Lm = L(E[m]). We wish to show that Gal(Lm/L)
is abelian. For this we study our representation

ρ`,m : Gal(Lm/L) → Aut(E[m]),

and our proposition follows if we can show that this injects into the
abelian part of Aut(E[m]). For arbitrary elliptic curves, this only gives
us an injection of Gal(Lm/L) into GL2(Z/mZ), which is almost never
abelian. However, given complex multiplication we obtain more. Be-
cause of the assumptions, endomorphisms of E commute with the action
of Gal(Lm/L). This implies that Gal(Lm/L) determines OK/(mOK)-
automorphisms of E[m]. However, the following argument shows that
E[m] is a free OK/(mOK)-module of rank 1: Fix a lattice Λ for E, ob-
tained by the parameterization via the Weierstrass ℘-function. For any
integral ideal a of OK , E[a] := {P ∈ E(C),∀γ ∈ a, [γ]P = O} is isomor-
phic, as an OK/a-module, to a−1Λ/Λ. Also, because of the isomorphism
A/I ⊗ B/J ' A ⊗ B/(I ⊗ B + A ⊗ J) the Chinese remainder theorem
gives, if a =

∏
pei , that

E[a] '
∏

a−1Λ/peia−1Λ

as an OK/a-module. We have already seen that Λ can be considered as
a fractional ideal, so we show the following fact: Let b be any fractional
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ideal of OK , p a prime ideal and e any integer. Then b/peb is a free
OK/pe-module of rank 1. However, b is a flat OK-module of rank 1 so
when localizing at p it becomes free, i.e. b ⊗OK OK,p ' OK,p. However,
OK,p/(peOK,p) ' OK/(peOK), and then one sees the above fact. This
shows that E[a] is free OK/a-module of rank 1. Hence the OK/(mOK)-
automorphisms of E[a] amount to being (OK/(mOK))×, and one sees
that ρ maps into something abelian.

Notice that the above proof shows that

4.3 Integrality of the j-Invariant

K is a local field contained in C, with finite residue field.
OK is the valuation ring of K.
m is the maximal ideal of OK .

GK is the absolute Galois groups, Gal(K/K), where K is the algebraic closure of K.
k = OK/m, of characteristic p > 0.

We say that a GK-module is unramified if the action of the inertia
subgroup I of GK is trivial. The terminology makes sense, because triv-
iality of the inertia group in algebraic number theory is the same thing
as saying that something is unramified. This notion is intimately con-
nected with the notion of good reduction, as the following criterion of
Néron-Ogg-Shafarevich shows.

Theorem 13 (Criterion of Néron-Ogg-Shafarevich). Let E/K an
elliptic curve. The following are equivalent:

• E has good reduction over K.

• E[m] is unramified at the prime of OK ,for all or infinitely many
integers m ≥ 1 relatively prime to char k.

• The Tate module T`(E) is unramified for some or all primes with
` 6= char(k).

For a proof, see [4], p. 184.

Theorem 14 (Serre-Tate). Let E/K be an elliptic curve with complex
multiplication. Then E has potential good reduction, that is, there exists
a finite extension K′ of K such that E×K K′/K′ has good reduction over
K′.

Proof. We wish to show that there is a finite extension of K such that the
inertia group acts trivially on the Tate module, so that we can apply the
above criterion. Because the Galois representation has an abelian action
on this module, the action of the inertia group I factors through Iab.
Local class field theory then gives us an isomorphism

Iab ' U = O∗K .

Of the latter we furthermore have the decomposition

1 → U1 → U → k∗ → 1

with U1 = {x ∈ U, x = 1(mod m)}. The first one is a pro-p-group, the
latter is finite. In the same manner we have, fixing a Z`-basis of T`(E), a
decomposition of Aut(T`(E)) = GL2(Z`) by

1 → GL2(Z`)1 → GL2(Z`) → GL2(Z/`) → 1.
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Again, the first group above is a pro-`-group, and the latter is finite. Hence
the Galois representation factors through I → Iab → U → Aut(T`(E)). A
pro-`-group cannot have a nontrivial homomorphism to a pro-p-group if
p 6= ` (consider the Piontriyagin dual of two such groups, this consists of
p respectively `-torsion), so choosing ` such an, we see that the Im(U1 →
U → Aut(T`(E)) and Im(GL2(Z`)1 → Aut(T`(E)) have nonempty inter-
section, and so the first image gives an injection Im(U1 → Aut(T`(E)) ↪→
GL2(Z`/`). Hence, since k∗ is finite, so is also the image of U in Aut(T`(E)).
Hence the image of I in Aut(T`(E)) is finite. We cannot quite apply the
lemma of Néron-Ogg-Shafarevich yet, we need the action to be trivial. On
the other hand, the kernel of the map is of finite index in I. The fixed field
of I is just Knr, and the fixed field of the kernel is a finite extension K′′

of Knr. There is thus a finite extension K′/K such that K′′ = K′Knr.
K′ has inertia group equal to the kernel, and this acts, by assumption,
trivially on Aut(T`(E)). Application of Néron-Ogg-Shafarevich gives that
E has good reduction over K′.

The fact that j(E) has potential good reduction indicates that j(E) ∈
OK . Indeed, there is a finite extension K′/K such that E has good reduc-
tion in K′. But that means that ∆′ ∈ O∗K′ , and hence j(E) ∈ K ∩OK′ =
OK .

Corollary 15. If K is a number field, E/K an elliptic curve with complex
multiplication, then E has potential good reduction everywhere and j(E)
is an algebraic integer.

Proof. Obviously if E/K has CM, so does the completion at any prime p,
and so E has potential good reduction everywhere. Furthermore, following
the discussion above j(E) is an algebraic integer locally everywhere, and
hence globally.

4.4 Construction of Class Fields for Imaginary
Quadratic Fields

K is an imaginary quadratic extension of Q.
O is an order of K.
OK is the maximal order of K.
hK is the class number of K.
E is an elliptic curve with complex multiplication by OK .
〈, 〉E is the Weil pairing for E.

We begin by showing that K(j(E)) is the Hilbert class field H of K.
In what follows, we take a model of E over K(j(E)). If j 6= 0, 1728, then
the elliptic curve

E : y2 + xy = x3 +
36

j − 1728
x +

1

j − 1728

has j-invariant j(E) = j. For the other cases, one can take either the
curve y2 + y = x3 or y2 = x3 + x. They have j-invariants 0 and 1728,
respectively.
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Proposition 16. Suppose that P is a prime where E has good reduction.
If σp is the Frobenius element, p the prime of K which P is lying above,
then

j(p ∗ E) ≡ j(E)Np(mod P).

Before giving a proof, we give some immediate corollaries

Corollary 17. If E has good reduction at a prime P of K(j(E)) lying
above a ”nice” prime p of K (to be specified below), and σp is the associated
Frobenius element, then

j(p ∗ E) = j(E)σp .

Proof. Denote by {Ei} a set of representatives of elliptic curves with com-
plex multiplication by OK , with models over the fields K(j(Ei)). For any
i, by the Cebotarev density theorem, we can find an unramified prime p,
excluding a finite set of primes, such that Ei ' p ∗ E. For this we know
that

j(Ei) ≡ j(p ∗ E) ≡ j(E)σp(mod P)

and choosing p such that it doesn’t divide any of the N(j(Ei) − j(Ej)),
one concludes that j(p∗E) = j(E)σp . Notice that we only exclude finitely
many primes during our ”sieve”, so that we can use the Cebotarev density
theorem later.

Corollary 18 (Kronecker’s Jugendtraum). Let {Ei} be the hK el-
liptic curves with complex multiplication by OK . Then
(i) for any of these E = Ei, H = K(j(E)) is the Hilbert class field of K.
(ii) all the j(Ei) are conjugate over Gal(H/K).
(iii) hK = [K(j(E)) : K] = [Q(j(E)) : Q]

Proof. We know that the conjugates of j(E) may be found among the
j(Ei). However, we know that we can find a prime p such that p∗E ' Ei,
and it can be chosen to be ”nice”, and hence j(p ∗ E) = j(E)σp = j(Ei).
One concludes that all the j(Ei) are conjugate to j(E) and K(j(E))/K
is Galois.

Suppose that for σp ∈ Gal(K(j(E))/K) is the Frobenius element of
a ”nice” prime in the above sense, and j(E)σp = j(p ∗ E) = j(E) so
that p splits completely in K(j(E)). Then p ∗ E ' E, and p is principal.
Conversely, σp fixes j(E) if p is principal, in which case p splits completely
in K(j(E)).2 Adding the fact that K is totally complex, so there is no
infinite ramification, and this property for a set of primes of density 1,
which the set of degree 1 primes minus a finite set of primes is, we have
a property which characterizes the Hilbert class field, and we conclude
H = K(j(E)).

Further, this immediately gives that j(E) has degree hK over K. The
third point follows from the fact that [Q(j(E)) : Q] ≤ hK combined with
[K : Q] = 2 and hK = [K(j(E)) : K].

2A short argument is the following: If σp fixes j(E), then it is the identity on K(j(E))
and indeed the decomposition group of any prime ideal P of K(j(E)) lying above p is trivial.
But the decomposition group of P has order equal to fPeP, inertial degree times ramification
index, and these are thus always 1. Hence p splits completely.
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Proof. (of Proposition 16) We prove the proposition for primes of degree
1. Take a prime p such that Np = p, and choose an ideal a prime to p

such that ap is principal, say ap = (α). We then have isogenies

E → p ∗ E → ap ∗ E ' E,

composing to multiplication by α. This is defined over K(j(E)), and
hence also makes sense modulo a prime P lying above p. It it inseparable
modulo P, since α is in p, so it acts as multiplication by 0 on the tangent
space at the origin P, and by translations it acts by multiplication by
0 at the tangent space of every point. Every point such that α acts
by multiplication by 0 is a ramification point, and if α was separable it
would only have finitely many ramified points. The degree of the map
p ∗ E → ap ∗ E is Na which was chosen prime to p, hence it is separable
modulo P. Hence the map E → p ∗E is inseparable modulo P. We wish
to show that it is of degree Np = p, so it is Frobenius composed with an
isomorphism. In that case

j(E)p = j(p ∗ E)(mod P).

Hence we are reduced to showing that reduction modulo a prime ideal P

preserves degrees. This is an easy application of the Weil-pairing, noticing
that it is compatible with reduction P. More precisely, we have

〈̃x, y〉E = 〈x̃, ỹ〉Ẽ .

Hence, for an endomorphism φ of E and we compute, for x, y ∈ T`(E),

〈x̃, ỹ〉deg φ

Ẽ
= 〈̃x, y〉deg φ

E

= ˜〈φx, φy〉E
= 〈φ̃x̃, φ̃ỹ〉Ẽ
= 〈x̃, ỹ〉deg φ̃

Ẽ
.

From the fact that T`(E) ' T`(Ẽ) for ` 6= p, it is true for all x, y ∈ T`(Ẽ)

too. From the non-degeneracy of the Weil pairing, we get deg φ = deg φ̃.
This proves the proposition.

Now, we are lead to the construction of the ramified extensions, and
we will even accomplish a description of the ray class fields. Because an
imaginary quadratic field doesn’t have any real primes, we don’t have
any problems with ramification at infinity, so we can restrict all of our
attention to ramification of the finite primes. It is tempting to add the
torsion points, i.e. x and y of P = (x, y) for all torsion points P . However,
this will unfortunately not always even yield abelian extensions. One
problem which we will face is that if we add some point x, we wish to
say that it is ”invariant” under automorphisms so that if x and x′ come
from the same point P and P ′, then x and x′ are indeed the same. This
amounts to killing all the automorphisms of our elliptic curve, and if the
curve is given in the form y2 = x3 + Ax + B this can most of the time be
accomplished by

h : (x, y) 7→ x.

In the cases j(E) = 0, 1728, the automorphism group is larger, and one
has to take another h.

18



Definition 4. The Weber function h of an elliptic curve of the form
y2 = x3 + Ax + B is the map h : E → E/ Aut(E) ' P1 given as follows:

• AB 6= 0, then h(x, y) = x.

• B = 0, so that Aut(E) ' Z/4Z, then h(x, y) = x2.

• A = 0, so that Aut(E) ' Z/6Z, then h(x, y) = x3.

In particular, any automorphism of E corresponds to an element u ∈
O×K , and for any T ∈ E, one has h([u]T ) = h(T ). For a proof of that the
Weber function is independent of model and that it defines a morphism
over the Hilbert class field of K, see [5], p. 155.

Now, we will need the following lemma from [5], p.133, which is really
at the core of the result:

Lemma 19. Let K be a quadratic imaginary field, H the Hilbert class
field of K, and E/H be an elliptic curve with complex multiplication by
OK . For all but finitely many degree 1 prime ideals p of K that satisfy
σp|H = 1, there is a unique prime π = πp ∈ OK such that

E
[π] //

²²

E

²²
Ẽ

X 7→Xp
// Ẽ

where Ẽ is the reduction of E modulo p.

Finally, letting c be an integral ideal of OK , and E[c] = {T ∈ E|∀γ ∈
c, [γ](T ) = O}. We refer to this as the c-torsion of E. We are now ready
to give a demonstration of the main theorem of this section:

Theorem 20. Let Lc = K(j(E), h(E[c])), then Lc is the ray class field
of K modulo c. In particular, one obtains the maximal abelian extension
as

Kab = K(j(E), h(Etors)).

Proof. For clarity, we write the Frobenius element of L/K with respect
to a prime p as (σp, L/K). We need to prove that p ∈ P (c) exactly when
the induced Frobenius element (p, Lc/K) = 1.

First, assume the latter. Then automatically (p, H/K) = 1, and taking
one prime of degree 1, excluding only finitely many, one gets a prime π
such that p = πOK , according to the lemma, and the given diagram com-
mutes. In particular, a short calculation shows that for a c-torsion point T ,

one has h̃([π̃]T̃ ) = h̃(T̃ ). But the reduction morphism h̃ maps to Ẽ/Ãut E,

since it can be interpreted as the map Ẽ → ˜E/ Aut E ' Ẽ/Ãut E. Hence

there is an ξ ∈ Aut E that reduces mod p to give ˜[π − ξ]T̃ = O. However,
excluding the finite number of primes that divide the order of E[c], we
have a injective map from the c-torsion to the c-torsion mod P, and so
this equality can be lifted to say

[π − ξ]T = O.

We know that E[c] is a free OK/c-module of rank one, so it is generated
by a single element T . Choosing this T above, we find a ξ ∈ O×K such

19



that [π− ξ] kills E[c]. But then π ≡ ξ mod c, and πξ−1 ≡ 1mod c. Hence,
one finds that p = πOK = πξ−1OK , and thus p ∈ P (c).

Conversely, one finds, excluding finitely many primes, for any p ∈ P (c)
there is a π such that the usual diagram commutes and p = πOK . Then
π = ξµ for some µ ∈ O×K , and ξ = 1mod c. For (p, Lc/K) to be the
identity it will suffice to check that it fixes the torsion, because it fixes the
Hilbert class field since it is principal. So, take any T ∈ E[c]. Then using

the definition of the Frobenius element, one finds that
˜

(p, Lc/K)T̃ = [̃π]T .
Excluding finitely many primes as above, we have the injectivity on the
reduction of the torsion, and one concludes that (p, Lc/K)T = [π]T . Now,
an obvious computation gives that (p, Lc/K)h(T ) = h(T ), so this Frobe-
nius is the identity, and the proposition has been proved.

4.5 Examples

In this chapter we have sketched a proof of the fact that if E has com-
plex multiplication, then among other things, that K(j(E)) is the Hilbert
class field of K, and that j(E) is algebraic of degree equal to the class
number of K. In particular, an elliptic curve with complex multiplication
is defined over Q if and only if j(E) is an integer, and there is only one
isomorphism class, due to the bijection of isomorphism classes with the
right endomorphism ring and the class group.

Lemma 21. Let α ∈ End(E), then the degree of α is just |α|2.
In particular, we see that if an endomorphism is an isomorphism it is

equal to multiplication by ±1,±√−1 or (1±√−3)/2. Let us look at the
case of an elliptic curve having complex multiplication by Z[i].
Since multiplication by i is an automorphism, we have iΛ = Λ. Looking
at the Eisenstein-series G6 we get

G6(i) =
∑

w∈Λ\0
w−6

=
∑

wi∈iΛ\0
(iw)−6

= −G6(i).

From this we conclude that g3 = 140G6 = 0. Hence any elliptic curve
with complex multiplication by Z[i] has to be (after a linear transforma-
tion)

y2 = x3 + x.

More precisely, multiplication by i is given by the morphism [i](x, y) =
(−x, iy). Incidently, this shows that every isomorphism class of elliptic
curves with complex multiplication by Z[i] is isomorphic to the above
one, and hence the class number of Z[i] has to be 1. Alternatively, we see
that its j-invariant is an integer. The same kind of argument but using
G4 shows that elliptic curves with complex multiplication by Z[ρ], with
ρ = exp(2πi/3) are isomorphic to

y2 = x3 + 1

and [ρ](x, y) = (ρx, y). Hence this field also has class number 1.
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j(OK) = 1728
g3
2(OK)

g3
2(OK)− 27g2

3(OK)

D j(OK)

1 2633

2 2653

3 0
7 −3353

11 −215

19 −21533

43 −2183353

67 −2153353113

163 −2183353233293

We also have the following list of actual elliptic curves over Q with the
above endomorphism rings, in minimal Weierstrass equation.

Z[
√−1] y2 = x3 + x

Z[
√−2] y2 = x3 + 4x + 2

Z[(1 +
√−3)/2] y2 + y = x3

Z[(1 +
√−7)/2] y2 + xy = x3 − x2 − 2x− 1

Z[(1 +
√−11)/2] y2 + y = x3 − x2 − 7x + 10

Z[(1 +
√−19)/2] y2 + y = x3 − 38x + 90

Z[(1 +
√−43)/2] y2 + y = x3 − 860x + 9707

Z[(1 +
√−67)/2] y2 + y = x3 − 7370x + 243528

Z[(1 +
√−163)/2] y2 + y = x3 − 2174420x + 1234136692

Now, set ρ = exp(2πi/3) = (1 +
√−3)/2, and consider Z[ρ]. We know

from above that the elliptic curve E : y2 = x3 + 1 has CM with Z[ρ], and
we wish to calculate some of its torsion points. So, let P = (x, y) be any
point on E with [α]P = O, α ∈ End(E).

α = 2 It is easy to check that E[2] = {O, (1, 0), (ρ, 0), (ρ2, 0)}.
α = 3 The duplication formula ([4], p. 59) gives, since 2P = −P , that

x4 − 8x = x(4x3 + 4) ⇔ x4 + 4x = 0.

Hence E[3] = {O, (0,±1), ( 3
√

4,±√5), (ρ 3
√

4,±√5), (ρ2 3
√

4,±√5)}.
The above tables are from a course on elliptic curves by Per Salberger at
Göteborg university, spring 2001. They can also be found at the back of
[5].
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