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Abstract

We consider a variant of what is known as the discrete isoperimetric
problem, namely the problem of minimising the size of the boundary
of a family of subsets of a finite set. We use the technique of ‘shifting’
to provide an alternative proof of a result of Hart. This technique
was introduced in the early 1980s by Frankl and Fiiredi and gave al-
ternative proofs of previously known classical results like the discrete
isoperimetric problem itself and the Kruskal-Katona theorem. Hence
our purpose is to bring Hart’s result into this general framework.

1. Introduction

All notation and terminology is consistent with [5], Ch. 24, except that
we use the symbols +, — instead of U, \ to denote set union and difference
respectively, once no confusion can arise. We denote the set {1,..,n} of
positive integers by [n]. Let F be a family of subsets of [n]. The number of
sets in the family F is denoted by |F|. The boundary 0F of the family F
is defined as

OF ={ACn]: A¢ F, 3B € F such that |[AAB| = 1}. (1)

The classical discrete isoperimetric problem asks to minimise |0F| when |F|
is fixed. This problem was first solved by Harper [3] and a simpler solution
given later by Frankl and Firedi [2]. The answer is that the size of the



boundary is minimised when the family F is a generalised ball, by which we
mean the following : for each A C [n] and r > 0 we define the ball B(A,r)
of center A and radius r by

B(A,r) = {B C [n]: |AAB| < r}. 2)

The family F is then called a generalised ball if there exists a pair (A4,r)
such that B(A,r) CF C B(A,r +1).

The question we are interested in is a variant of the isoperimetric prob-
lem : instead of seeking to minimise the size of the boundary of a family,
one asks how to minimise the ‘number of ways to get there’. To be precise,
we define

P(F)={(A,B):Ac F, B¢ F, |[AAB|=1}. (3)

Then the problem is :
Gwen |F|, minimise |P(F)|.

This problem was solved in 1976 by Hart [4], who was motivated by a prob-
lem in game theory. Perhaps surprisingly, the minimum is not achieved by
generalised balls. This is easily seen by considering the following example.
Consider an odd n and take |F| = 2"~!. The generlised ball around ) would
consist of all subsets of [n] of size at most Z;1. Each set of size 251 is
‘adjacent’ to exactly "TH boundary sets, hence

P(B0. "5 )| = "o ( o ) ~ 2 (@

2

for some ¢ > 0, by Stirling’s formula. On the other hand if we take F
to be the family consisting of all subsets of [n] not containing n, then
F| = [P(F)| = 20, since P(F) = {(4, A+ {n}) : A € F}.

This simple example may alert one to what the answer to the problem might
be. Recall that the reverse lexicographic ordering < of the finite subsets

of N is defined by

‘A<; Bif AC Bor max{z € A— B} < max{z € B — A}".



We denote by R(s) the family consisting of the s smallest finite subsets
of N in the reverse lexicographic order. Then Hart proved

Theorem 1.1 [4]. For anyn > 0 and any F C 2", |P(F)| > |P(R(|F)))|.
2. Alternative proof of Hart’s theorem

Our purpose is to show how Theorem 1.1 can be proved using the well-
known techngique of ‘shifting’ (the definitions will be recalled below). This
technique was introduced by Frankl and Fiiredi in 1981, in the paper [2]
referred to earlier. Soon after, Frankl [1] used the same technique to give a
simple proof of the Kruskal-Katona theorem, and a weaker version of it due
to Lovasz. By applying the technique to Hart’s theorem, we hope we offer a
proof which is conceptually clearer than the original, though we admit that
it is not any shorter.

The proof is established in two main steps. The first of these involves
‘shifting’ the family F and showing that |P(F)| is not increased in this
way. The family F is thereby brought to a sort of canonical form which
in the second step is compared to the family R(|F|), with the help of an
induction argument. Hence our whole method closely parallels that in [1].
The proof will be punctuated by a sequence of lemmas.

We begin by recalling for the reader the definitions of the shifting op-
erations. Let F C 2"l and i € [n]. The down-shift D; is defined by
D;(F) ={D;(A) : A € F} where

Di(A):{ A—-{i}, fiecAand A-{i} ¢ F,

A, otherwise.
There is another type of shifting, where one shifts sideways instead of down-
wards. For 1 <17 < j < n we define the (4, j)-shift Si; by Si;j(F) = {Si;(4) :
A € F} where

s(d) = A+ =4, ifjeAigAadAgT,
Y 4 otherwise.

Lemma 2.1. For any family F C 21" and i € [n], |P(D;(F))| < |P(F)|

PROOF. We construct an explicit injection i : P(D;(F)) — P(F). So



let (A, B) € P(D;(F)). We consider four possible cases :

CAasel : AeF,B¢F.
CAsell : A¢F, BeF.
Caselll: Ae F,Be F.
CAselV : A¢F, B¢ F.

CAsE I: Set i(A, B) = (A, B).

CASE 1II : Set i(A,B) = (B,A). Note that the definition of D; is easily
checked to imply in this case that B = A + {i}.

CASE 11 : Since B € F and B ¢ D;(F) it follows that i € B and B—{i} ¢ F.
Since A € F we cannot therefore have A = B — {i}. Thus the only possibil-
ities are that A = B — {j} or A = B + {j} for some j # i.

In either case one checks that it is feasible to take i(A4, B) =

(A= {i}, B —{i}).

CASE IV : Since A ¢ F but A € D;(F) it follows that A = A; — {i}
for some A; € F. Since B ¢ F we cannot therefore have B = A;. Thus the
only possibilities are that B = A — {j} or B = A + {j} for some j # .

In either case one checks that it is feasible to take i(A, B) =
(A + {i}, B + {i}).

It remains to check that there can be no repititions in the images under

1 of the pairs arising in CASES I-IV. This is straightforward and left to the
reader.

Recall that a family F is called a lower ideal if it is closed under subsets,
ie: A€ Fand BC A= B € F. It follows from Lemma, 2.1 that |P(F)]| is
minimised, for a fixed |F|, when F is some lower ideal.

The following fact is presumably well-known, though a proof does not seem
to be given in [5]. Hence we will give a proof here for the sake of complete-
ness.

Lemma 2.2. If F is a lower ideal, then so is S;;(F) for 1 <i < j < n.

PROOF. Let F be a lower ideal, X € S;j(F) and Y C X. We must show
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that Y € S;;(F). Let X = S;;(A) for some A € F.

Casel: X = A Then Y € F since F is a lower ideal. If S;;(Y) =Y
there is nothing more to prove. Also, S;;(A) = A so there are three possi-
bilities :

(i) j¢A.
(i) je A,i€ A
(iii) j € A,i g A, but A —j+i € F.

If (i) holds then j ¢ Y either so S;;(Y) =Y.

If (ii) holds and S;;(Y) # Y then ¢ ¢ Y and ¥ — j +¢ ¢ F. But
Y —-j+iC A—je€ F, contradicting the fact that F is a lower ideal.

If (iii) holds and S;j(Y) # Y then j € Y and Y —j + i ¢ F. But
Y—-j53+1C A—j+1i € F, so once again we have a contradiction to
the fact that F is a lower ideal.

Case II: X # A. Thus X = A—j+1¢ & F, for some A € F. There
are two possibilities to consider :

(i) YCA—j.
(i)ieY.

If (i) holds then Y € F since F is a lower ideal. Since j ¢ Y we have
Si'(Y) =Y € Sij(f).

If (ii) holds and Y € F then S;;(Y) =Y € S;;(F), since j € Y, and we are
done. Thus we may suppose that Y ¢ F. Let Ay =Y —i+j. Since A; C A
we have A; € F. But Y € F so S;;(A) =Y € S;;(F). This completes the
proof of Lemma 2.2.

Lemma 2.3. If F is a lower ideal then, for 1 < i < j < n, we have
P(Sij (F))] < [PF)['

PROOF. We will construct an explicit injection i : P(S;;(F)) «— P(F). So
let (A, B) € P(S;;(F)). Notice that, by Lemma 2.2, we must have A C B.
As in the proof of Lemma, 2.1, we consider four possible cases :

!This result still holds when F is not a lower ideal, but the proof is a bit longer.



CAasel : AeF,B¢F.
Casell : A¢F, BeF.
Caselll: Ae F,Be F.
CASEIV : A¢F, B¢ F.

We note immediately that CASE II cannot even arise, however, since A C B
and F is a lower ideal.

Case1: Set i(A, B) = (A, B).

Case ITI : Since B € F and B ¢ S;;(F), it follows that j € B, i ¢ B
and B—j+1i¢ F. Since A C B we may consider two possibilities :

(i) A=B—j.
(i) A= B — k for some k # i or j.

If (i) holds we set i(4,B) = (A, B — j +1).

If (ii) holds then j € A and i ¢ A. But A € S;j(F) so we must have
A=

i

Si;j(A), which is only possible if A — j +¢ € F. We therefore take
A,B)=(A—j+1i,B—j+1i) in this case.

CASE IV : Since A ¢ F but A € S;;(F) it follows that A = Ay — j +
for some A; € F. Since A C B we may again consider two possibilities :

(i) B=A+j.
(ii) B= A+ k for some k # i or j.

If (i) holds we set i(A, B) = (41,B) = (A+ j — i, B).

If (ii) holds we wish to take i(A,B) = (A+j —4,B+ j —i). We must
check that B+ j —4:= B &€ F. But if By € F then j € By, 1 € By
and By — j+ 1= B ¢ F so that S;;(B1) = B, contradicting the fact that
B ¢ Si(F).

So it remains to check that there can be no repititions in the images under ¢
of the pairs arising in CAsES LIIT and IV. Once again this is straightforward
and left to the reader.

Before proceeding any further we need to make some more definitions. For



a family F we define a(F) to be the average size of a set in F, i.e.:

1
a(F) == — > |Al. (5)
7| e
We also introduce the families
Fl={AeF:1¢A}, (6)
Fi={A-1:AcF-F'}, (7)
Fri=F' - 7. (8)

Note that if F is a lower ideal then F; C F and

P = 5 (7] + 1), (9
171l = 5 (7] = 7). (10)

Finally we introduce the notations

PH(F):={(A,B) € P(F): A C B}, (11)
P (F):={(A,B) € P(F): B C A}. (12)

Once again note that if F is a lower ideal then P(F) = PT(F).

Now back to the proof. So we are considering families F C 2" for a
fixed n and |F|. After a suitable renumbering of 1,...,n and iteration of
the shifts Si; for j = 2,...,n, Lemmas 2.1-2.3 imply that we may assume
that the family F which minimises |P(F)| has the following canonical form :

(A) F#£FL
(B) F is a lower ideal.
(C) Every member of F* is a maximal set in F'.

From now on we assume that our family F has properties (A) - (C). For
such a family we first prove

Lemma 2.4.

[P(F)| = 2AP(F)| = [F| = [n = 1 = 2a(F*)] || (13)
and [P(F)| =2[P(F))| - |F| + [n+ 1 — 2a(F*)] |F*. (14)
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PROOF. We first establish that
[P(FY)] = [P(F)| + |PHF)| = [P (F)I. (15)

For let (A, B) € P(F'). We consider two possibilities :

(i) A€ Fi.
(i) A € F*.

Because of property (C) there are exactly |P(Fy)| — |P~(F")| pairs of type
(i). And there are exactly |P+(F")| pairs of type (ii). This establishes (15).
Note further that because of property (C) we have indeed that

PHFN =) (n=IA) =[n—a(F)]IF, (16)
AeF*
Po(F) = > Al =a(F)F, (17)
AeF*

so that (15) can be written in the form
[PFY)| = [P(F )| + [n = 2a(F)] |F¥|. (18)

To verify the lemma it thus remains to establish (13), because (14) follows
from (13) and (18).

So let (A,B) € P(F). Because of property (B) we know that A C B.
We consider three possibilities :

(i) 1¢A,1¢B.
(i) 1e A, 1€ B.
(iii) 1 ¢ A, 1 € B.

A pair of type (i) lies in P(F'). Moreover any member of P(F') is ei-
ther of type (i) or of the form (A, A + 1) for some A € F!. Hence the
number of pairs of type (i) is exactly |P(F")| — | F1.

For each pair (A, B) of type (ii) consider the pair (A —1, B —1). This lies in
P(F,) because of property (B). Moreover the only members of P(F;) which
do not arise in this way are pairs of the form (A, A + 1) for some A € Fi.
Hence the number of pairs of type (ii) is precisely |P(F,)| — |F1].

Finally for each pair of type (iii) we must have A € F* and B = A + 1.
Hence there are exactly |F*| pairs of this type.



Adding and using (18), one checks that (13) is obtained. This completes
the proof of Lemma, 2.4.

Our eventual aim is to prove Theorem 1.1 by induction on |F|. In order
to be able to do this we need some information about the behaviour of the
function |P(R(s))|. First, we must make more precise our notation. For any
family F, if F C 2[mol then F C 2 for all n > ng. Thus we shall use the
notation P, (F) in order to specify the value of n under consideration. We
will also employ the less cumbersome notation

Pa(s) := [Pu(R(s))| (0 <s<2%).

We let X; denote the stM_smallest finite subset of N in < 1 - that is, the
largest member of R(s) - and set x5 := | X;|. First off, we have the recursion
formula

pr(s+1) =pu(s) +n — 2x541. (19)

To see this observe that the definition of the family R(s) implies that
Prn(R(s+1)) =Pr(R(s)) + ¥ — & where ¥ = {( X541, Xst1+1) 17 & Xgy1}
and ® = {(X541 — 4, X541) : ¢ € X541}, so that || = n — x4 and
|(I)| = Ts+1-

Iteration of (19) gives the useful formulas

s+t
Pr(s+1t) =pnp(s) +tn —2 Z z;, (20)
i=s+1
S
pr(s —t) =pp(s) —tn+2 Z ;. (21)
1=s—t+1

The crucial information is contained in the next two lemmas :

Lemma 2.5. For any 0 <t < s we have

s+t s
domi— ) m<t (22)
1=s+1 i=s—t+1

PROOF. Let’s look at the sequence of numbers z,. It begins as follows :

0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5, ....



The pattern here is obvious. There are two features of this sequence that
we wish to make note of :

(I) Something we call divide-by-two replication. If we define the 2-element
vectors 1 := (4,7 + 1) then, dividing the terms of the sequence into pairs, we
get the sequence of vectors

0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,...
In other words we get the ‘same’ sequence as before.

(IT) Two special consequences of (I), namely that the sequence consists of
groups of 2 terms, each group of the form {c,c + 1}, and of groups of 4
terms, each group of the form {c,c+ 1,c+ 1,c + 2}.

We now prove (22) by induction on ¢. For ¢ = 0 the inequality holds trivially
for all s. Now consider ¢t > 0 fixed and s arbitrary. We denote the left-hand
side of (22) in what follows by A(s,t). We consider four possibilities :

(i) s,t both even.
(ii) s even, t odd.
(iii) s odd, ¢ even.
(iv) s,t both odd.

CASE (i) : Property (I) immediately implies that A(s,t) = 2A($,%) and
(22) holds by the induction on t.

CASE (ii) : Let z5_¢+1 = a+1, 544 = b. Property (II) implies that zs_; = a,
Zstt+1 = b+ 1. Property (I) and induction on ¢ give the inequalities

1
e Sy R S s S

A(s,t —1)=A(s,t) —(b—a—1) <t—1.
Adding these inequalities gives A(s,t) <t — 1.

CASE (iii) : As above let 5441 = a + 1, 544 = b so that property (II)
implies that z;_; = a, Ts444+1 = b+ 1. Also, since s is odd, we have
Zs+1 = zs + 1. Property (I) and the induction on ¢ thus give the pair of
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inequalities

A(s+1,t)_2A(3;rl ;)—A(s,t)—2x5+(a+b)§t,
Als—1,8) = 28( 1;) Als,t) + 20, — (a+b) < 1

Adding these gives A(s,t) < t as required.

CASE (iv) : This time let z5_411 = a, 54 = b+ 1. Then z;_;; 2 = a+1 and
Tsrt—1 = b. Also z541 = 5+ 1. Induction on ¢ gives the pair of inequalities
A(s—1,t—1) = A(s,t) + 2z, — (2b+ 1) <t —1, (23)
A(s+1,t—1)=A(s,t) — (225 +2)+ (2a+ 1) <t —1. (24)

Next, since s and ¢ are both odd, property (II) implies that one of the fol-
lowing two possibilities must occur :

(1) ZTstt41=0+1, Tsit12=0+2,
(i) s>t+2, 2,4 1=0a—1, 2,4 = a.

If (i) holds, then property (I) and induction on ¢ give

s+ 1 t+1)
2 2

Adding (23) and (25) give A(s,t) < t, as required.

A(s+1,t+1) = 2A(

A(s,t)—(2z,+2)+(20+3) < t+1. (25)

If (ii) holds then property (I) and the induction give
1 t+ 1)
2 2

This time adding (24) and (26) gives A(s,t) < ¢t. This completes the proof
of Lemma, 2.5.

A(s—l,t+1)—2A( A(s,t) +2z5s — (2a—1) < t+1. (26)

Lemma 2.6. For anyn and 0 < s < 2n=1 we have

Pn(28) = 2pp(s) — 2s. (27)
PROOF. Putting s = 0 in (20) we get (since p,(0) = 0)

t

pr(t) = nt — 2 Z T;. (28)

i=1
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The family R(t) can be described as follows. Let
t=2k poke g0k kS k> Lk, >0,
be the binary decomposition of ¢. Then R(t) = |I?_; ¥; where
U;={AUB;: Ac2kl Bj={k+1:1<1<j—1}}.

With this notation, (28) becomes

p .
pa(t) =nt =) (j -1+ %) 2ki+L,

=1

From this (27) is easily seen to follow.

We are now in a position to complete the proof of the main theorem. We
proceed by induction on |F|. The theorem is trivially true if |F| = 0 or 1.
Now fix |F| > 1. To simplify the notation, let s := |F|, t := |F*|, a := a(F*).

Let ng be any integer such that F C 2], We must show that |P,,(F)| <
Pno (| F|)- Notice that, for any n > ny,

Pr(F)| = [Pro (F)| = pn(|F]) = pno (IF]) = (n = n0)|Fl, (29)

so that it suffices to prove that |P,(F)| < pn(|F]|) for any single n > ng. In
the following argument we shall need the quantity p,(s + t) to be defined
(see equation (31)), so we fix a choice of n > ng such that |F| < 271

By (13) and induction on |F| we have
[Pu(F)| 2 2pa(IF)) = 5 = (n = 1 = 20)t. (30)
Eqgs. (9) and (27) give
2pn(IF1]) = puls +) + (s +1) (31)
which, substituted into (30), gives
Pu(F)| = pals +1) = (n — 2= 2a)t. (32)
Hence we are done unless

pr(s+1t) — (n—2—2a)t < py(s). (33)

12



By (20), this inequality is equivalent to

s+t

Y z>(1+a)t (34)

1=s+1

We now repeat this kind of procedure, but starting instead from (14). In-
duction on |F| gives

|Pn(F)| = 2pp(|F1]) — s+ (n+1—2a)t. (35)
Egs. (10) and (27) give
2pn(|F1]) = pu(s —t) + (s — 1) (36)
which, substituted into (35), gives
[Pr(F)| > pn(s —t) + (n — 2a)t. (37)
Hence we are done unless
pu(s —t) + (n — 2a)t < pu(s). (38)
By (21), this inequality is equivalent to
S
Z x; < at. (39)
i=s—t+1

To complete the proof we just have to note that (34) and (39) cannot both
hold as that would give a contradiction to (22).
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