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◮ G an abelian group

◮ S a subset of G

◮ f : S → S a function

◮ f is said to destroy arithmetic progressions (APs) if:

Whenever (a, b, c) is a non-trivial 3-term AP in G , then
(f (a), f (b), f (c)) is not an AP.
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Whenever (a, b, c) is a non-trivial 3-term AP in G , then
(f (a), f (b), f (c)) is not an AP.

◮ Special cases of most interest:
(i) G = Z, S = N or {1, . . . , n}; or
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An open problem

◮ G an abelian group

◮ S a subset of G

◮ f : S → S a function

◮ f is said to destroy arithmetic progressions (APs) if:

Whenever (a, b, c) is a non-trivial 3-term AP in G , then
(f (a), f (b), f (c)) is not an AP.

◮ Special cases of most interest:
(i) G = Z, S = N or {1, . . . , n}; or
G = S = Zn for some n > 0.
(ii) f a bijection (permutation).
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◮ Our definition is not to be confused with the notion of a
permutation not containing any (k-term) APs (Davis et al,
1977).
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◮ Our definition is not to be confused with the notion of a
permutation not containing any (k-term) APs (Davis et al,
1977).

◮ A Costas array is a permutation of {1, . . . , n} destroying all
non-trivial Sidon quadruples, that is, non-trivial solutions to
a+ b = c + d .
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1977).

◮ A Costas array is a permutation of {1, . . . , n} destroying all
non-trivial Sidon quadruples, that is, non-trivial solutions to
a+ b = c + d .

A 3-term AP is a non-trivial solution to a− 2b + c = 0.
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equation with integer coefficients.
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An open problem

◮ Our definition is not to be confused with the notion of a
permutation not containing any (k-term) APs (Davis et al,
1977).

◮ A Costas array is a permutation of {1, . . . , n} destroying all
non-trivial Sidon quadruples, that is, non-trivial solutions to
a+ b = c + d .

A 3-term AP is a non-trivial solution to a− 2b + c = 0.

Our basic definition can be immediately extended to any linear
equation with integer coefficients.

Indeed, one may consider systems of linear equations, or even
non-linear equations. But we will not do so in this talk.
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◮ Easy to prove, by an inductive argument, that AP-destroying
permutations exist for every n (H, 2004)
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◮ Easy to prove, by an inductive argument, that AP-destroying
permutations exist for every n (H, 2004)

◮ Let M(n) denote the number of such permutations.
Consideration of a random permutation and assuming a
“Poisson paradigm”would lead one to expect that
M(n) = e−Θ(n)n!.
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◮ Let M(n) denote the number of such permutations.
Consideration of a random permutation and assuming a
“Poisson paradigm”would lead one to expect that
M(n) = e−Θ(n)n!.

◮ Open problem to make this intuition rigorous. Dependencies
between the events of destroying individual APs are subtle.
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◮ Let M(n) denote the number of such permutations.
Consideration of a random permutation and assuming a
“Poisson paradigm”would lead one to expect that
M(n) = e−Θ(n)n!.

◮ Open problem to make this intuition rigorous. Dependencies
between the events of destroying individual APs are subtle.

◮ Note that in the case of a linear equation with k variables, the
corresponding estimate would be e−Θ(nk−2)n!.
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permutations exist for every n (H, 2004)

◮ Let M(n) denote the number of such permutations.
Consideration of a random permutation and assuming a
“Poisson paradigm”would lead one to expect that
M(n) = e−Θ(n)n!.

◮ Open problem to make this intuition rigorous. Dependencies
between the events of destroying individual APs are subtle.

◮ Note that in the case of a linear equation with k variables, the
corresponding estimate would be e−Θ(nk−2)n!.

◮ Hence, for k ≥ 4, such permutations may well not exist at all,
for most n.
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◮ Easy to prove, by an inductive argument, that AP-destroying
permutations exist for every n (H, 2004)

◮ Let M(n) denote the number of such permutations.
Consideration of a random permutation and assuming a
“Poisson paradigm”would lead one to expect that
M(n) = e−Θ(n)n!.

◮ Open problem to make this intuition rigorous. Dependencies
between the events of destroying individual APs are subtle.

◮ Note that in the case of a linear equation with k variables, the
corresponding estimate would be e−Θ(nk−2)n!.

◮ Hence, for k ≥ 4, such permutations may well not exist at all,
for most n.

◮ For Costas arrays, it is a well-known problem whether they
exist or not for all n ≫ 0.
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An open problem

◮ Easy to prove, by an inductive argument, that AP-destroying
permutations exist for every n (H, 2004)

◮ Let M(n) denote the number of such permutations.
Consideration of a random permutation and assuming a
“Poisson paradigm”would lead one to expect that
M(n) = e−Θ(n)n!.

◮ Open problem to make this intuition rigorous. Dependencies
between the events of destroying individual APs are subtle.

◮ Note that in the case of a linear equation with k variables, the
corresponding estimate would be e−Θ(nk−2)n!.

◮ Hence, for k ≥ 4, such permutations may well not exist at all,
for most n.

◮ For Costas arrays, it is a well-known problem whether they
exist or not for all n ≫ 0. However, there are“algebraic”
constructions which work for infinitely many n.
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An open problem

◮ Can construct an AP-destroying permutation of N by a
greedy algorithm:

π(1) := 1,
Having chosen π(1), . . . , π(n − 1), choose π(n) to be the
smallest number not yet chosen and which doesn’t screw
things up !
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greedy algorithm:

π(1) := 1,
Having chosen π(1), . . . , π(n − 1), choose π(n) to be the
smallest number not yet chosen and which doesn’t screw
things up !

◮ A not-quite-trivial exercise to show that this works and that π
is surjective, hence an AP-destroying permutation of N.
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◮ Can construct an AP-destroying permutation of N by a
greedy algorithm:

π(1) := 1,
Having chosen π(1), . . . , π(n − 1), choose π(n) to be the
smallest number not yet chosen and which doesn’t screw
things up !

◮ A not-quite-trivial exercise to show that this works and that π
is surjective, hence an AP-destroying permutation of N.

◮ Simulations suggest that π(n)/n → 1 as n → ∞, though
slowly and“chaotically”.
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An open problem

◮ Can construct an AP-destroying permutation of N by a
greedy algorithm:

π(1) := 1,
Having chosen π(1), . . . , π(n − 1), choose π(n) to be the
smallest number not yet chosen and which doesn’t screw
things up !

◮ A not-quite-trivial exercise to show that this works and that π
is surjective, hence an AP-destroying permutation of N.

◮ Simulations suggest that π(n)/n → 1 as n → ∞, though
slowly and“chaotically”. All that has been proven so far (H,
2004) is that, for all n,

3

8
≤

π(n)

n
≤

3

2
.
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◮ This“greedy algorithm”can be used to construct
AP-destroying permutations of countably infinite abelian
groups in general.
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An open problem

◮ This“greedy algorithm”can be used to construct
AP-destroying permutations of countably infinite abelian
groups in general.

Theorem (H, 2004) Let G be a countable infinite abelian

group. Then there exists an AP-destroying permutation of G

if and only if the quotient group G/Ω2(G ) is infinite.

Peter Hegarty (joint work with Anders Martinsson) Department of Mathematics, Chalmers/Gothenburg UniversityPermutations destroying arithmetic progressions in finite cyclic



References
Basic definitions
Related notions

G = Z, S = {1, . . . , n}
G = Z, S = N

G = S = Zn
An open problem

◮ This“greedy algorithm”can be used to construct
AP-destroying permutations of countably infinite abelian
groups in general.

Theorem (H, 2004) Let G be a countable infinite abelian

group. Then there exists an AP-destroying permutation of G

if and only if the quotient group G/Ω2(G ) is infinite.

◮ Generalisation given in [JS, 2015] to arbitrary linear equations.
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An open problem

◮ This“greedy algorithm”can be used to construct
AP-destroying permutations of countably infinite abelian
groups in general.

Theorem (H, 2004) Let G be a countable infinite abelian

group. Then there exists an AP-destroying permutation of G

if and only if the quotient group G/Ω2(G ) is infinite.

◮ Generalisation given in [JS, 2015] to arbitrary linear equations.

◮ Note, in particular, for k ≥ 4 variables, the difference to the
finite case, where it’s not expected that such permutations
exist in general.
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◮ An alternative AP-destroying permutation of N is given
explicitly by (Sidorenko, 1988)

f
(

∑

ai4
i
)

=
∑

π(ai )4
i ,
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◮ An alternative AP-destroying permutation of N is given
explicitly by (Sidorenko, 1988)

f
(

∑

ai4
i
)

=
∑

π(ai )4
i ,

where π is the permutation of {0, 1, 2, 3} given by

π(0) = 0, π(1) = 2, π(2) = 1, π(3) = 3.
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◮ An alternative AP-destroying permutation of N is given
explicitly by (Sidorenko, 1988)

f
(

∑

ai4
i
)

=
∑

π(ai )4
i ,

where π is the permutation of {0, 1, 2, 3} given by

π(0) = 0, π(1) = 2, π(2) = 1, π(3) = 3.

◮ The point is that π has the stronger property of destroying
APs modulo 4, i.e.: it is an AP-destroying permutation of the
abelian group G = Z4.
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◮ An alternative AP-destroying permutation of N is given
explicitly by (Sidorenko, 1988)

f
(

∑

ai4
i
)

=
∑

π(ai )4
i ,

where π is the permutation of {0, 1, 2, 3} given by

π(0) = 0, π(1) = 2, π(2) = 1, π(3) = 3.

◮ The point is that π has the stronger property of destroying
APs modulo 4, i.e.: it is an AP-destroying permutation of the
abelian group G = Z4.
In the same way, any AP-destroying permutation of Zn can be
lifted to an AP-destroying permutation of N.
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An open problem

◮ An alternative AP-destroying permutation of N is given
explicitly by (Sidorenko, 1988)

f
(

∑

ai4
i
)

=
∑

π(ai )4
i ,

where π is the permutation of {0, 1, 2, 3} given by

π(0) = 0, π(1) = 2, π(2) = 1, π(3) = 3.

◮ The point is that π has the stronger property of destroying
APs modulo 4, i.e.: it is an AP-destroying permutation of the
abelian group G = Z4.
In the same way, any AP-destroying permutation of Zn can be
lifted to an AP-destroying permutation of N.
This leads us to our main topic ...
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An open problem

◮ Conderation of a random permutation would still lead one to
expect that the number of AP-destroying permutations of Zn

behaves as e−Θ(n)n!.
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An open problem

◮ Conderation of a random permutation would still lead one to
expect that the number of AP-destroying permutations of Zn

behaves as e−Θ(n)n!.

◮ In particular, one expects such permutations to exist, at least
for all n ≫ 0.
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An open problem

◮ Conderation of a random permutation would still lead one to
expect that the number of AP-destroying permutations of Zn

behaves as e−Θ(n)n!.

◮ In particular, one expects such permutations to exist, at least
for all n ≫ 0.

◮ However, in contrast to the case of S = {1, . . . , n}, it seems
non-trivial to find such permutations at all in Zn.
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◮ Conderation of a random permutation would still lead one to
expect that the number of AP-destroying permutations of Zn

behaves as e−Θ(n)n!.

◮ In particular, one expects such permutations to exist, at least
for all n ≫ 0.

◮ However, in contrast to the case of S = {1, . . . , n}, it seems
non-trivial to find such permutations at all in Zn. Indeed,
none exist for n ∈ {2, 3, 5, 7}.
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An open problem

◮ Conderation of a random permutation would still lead one to
expect that the number of AP-destroying permutations of Zn

behaves as e−Θ(n)n!.

◮ In particular, one expects such permutations to exist, at least
for all n ≫ 0.

◮ However, in contrast to the case of S = {1, . . . , n}, it seems
non-trivial to find such permutations at all in Zn. Indeed,
none exist for n ∈ {2, 3, 5, 7}.

◮ In [H, 2004] I conjectured that there exists an AP-destroying
permutation of Zn if and only if n 6∈ {2, 3, 5, 7}. This I regard
as the main open problem from that initial paper.
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G = S = Zn
An open problem

Here is what we currently know:
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G = Z, S = {1, . . . , n}
G = Z, S = N

G = S = Zn
An open problem

Here is what we currently know:

R1 (H, 2004): If there exist AP-destroying permutations of both
Zm and Zn, then there exists one of Zmn.
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G = Z, S = N

G = S = Zn
An open problem

Here is what we currently know:

R1 (H, 2004): If there exist AP-destroying permutations of both
Zm and Zn, then there exists one of Zmn.

R2 (HM, 2015): Let p be a prime such that p > 3 and
p ≡ 3 (mod 8). Then there exists an AP-destroying permutation of
Zp.

Peter Hegarty (joint work with Anders Martinsson) Department of Mathematics, Chalmers/Gothenburg UniversityPermutations destroying arithmetic progressions in finite cyclic



References
Basic definitions
Related notions

G = Z, S = {1, . . . , n}
G = Z, S = N

G = S = Zn
An open problem

Here is what we currently know:

R1 (H, 2004): If there exist AP-destroying permutations of both
Zm and Zn, then there exists one of Zmn.

R2 (HM, 2015): Let p be a prime such that p > 3 and
p ≡ 3 (mod 8). Then there exists an AP-destroying permutation of
Zp.

R3 (HM, 2015): There exists an AP-destroying permutation of
Zn for all n ≥ n0, where

n0 = (9× 11× 16× 17× 19× 23)2 ≈ 1.4× 1014.
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G = Z, S = {1, . . . , n}
G = Z, S = N

G = S = Zn
An open problem

Proof of R1:
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G = Z, S = {1, . . . , n}
G = Z, S = N

G = S = Zn
An open problem

Proof of R1: This is an application of the following more general
fact:
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G = S = Zn
An open problem

Proof of R1: This is an application of the following more general
fact:
Let G be an abelian group and H a subgroup.
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G = Z, S = {1, . . . , n}
G = Z, S = N

G = S = Zn
An open problem

Proof of R1: This is an application of the following more general
fact:
Let G be an abelian group and H a subgroup. Let π1 and π2 be
AP-destroying permutations of H and G/H respectively.
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G = Z, S = {1, . . . , n}
G = Z, S = N

G = S = Zn
An open problem

Proof of R1: This is an application of the following more general
fact:
Let G be an abelian group and H a subgroup. Let π1 and π2 be
AP-destroying permutations of H and G/H respectively. Choose a
coset decomposition

G =
⊔

i

Hgi .
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G = Z, S = {1, . . . , n}
G = Z, S = N

G = S = Zn
An open problem

Proof of R1: This is an application of the following more general
fact:
Let G be an abelian group and H a subgroup. Let π1 and π2 be
AP-destroying permutations of H and G/H respectively. Choose a
coset decomposition

G =
⊔

i

Hgi .

Then the function π : G → G given by

π(hgi ) = π1(h)gπ2(i)

is an AP-destroying permutation of G .
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G = Z, S = {1, . . . , n}
G = Z, S = N

G = S = Zn
An open problem

Proof of R2:
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G = Z, S = {1, . . . , n}
G = Z, S = N

G = S = Zn
An open problem

Proof of R2:
Let ξ ∈ {0, 1, . . . , p − 1} be such that both ξ and ξ − 1 are
quadratic non-residues modulo p.
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G = Z, S = {1, . . . , n}
G = Z, S = N

G = S = Zn
An open problem

Proof of R2:
Let ξ ∈ {0, 1, . . . , p − 1} be such that both ξ and ξ − 1 are
quadratic non-residues modulo p.
Define f : Zp → Zp by

f (x) =

{

x2, if x ∈ {0, 2, . . . , p − 1},
ξx2, if x ∈ {1, 3, . . . , p − 2}.
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G = Z, S = {1, . . . , n}
G = Z, S = N

G = S = Zn
An open problem

Proof of R2:
Let ξ ∈ {0, 1, . . . , p − 1} be such that both ξ and ξ − 1 are
quadratic non-residues modulo p.
Define f : Zp → Zp by

f (x) =

{

x2, if x ∈ {0, 2, . . . , p − 1},
ξx2, if x ∈ {1, 3, . . . , p − 2}.

Magic, it works ! But only if p ≡ 3 (mod 8).
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G = Z, S = {1, . . . , n}
G = Z, S = N

G = S = Zn
An open problem

Proof of R2:
Let ξ ∈ {0, 1, . . . , p − 1} be such that both ξ and ξ − 1 are
quadratic non-residues modulo p.
Define f : Zp → Zp by

f (x) =

{

x2, if x ∈ {0, 2, . . . , p − 1},
ξx2, if x ∈ {1, 3, . . . , p − 2}.

Magic, it works ! But only if p ≡ 3 (mod 8).
Curiously, we have not been able to find any modification of this
construction which works for other primes.
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G = Z, S = {1, . . . , n}
G = Z, S = N

G = S = Zn
An open problem

Proof of R3:
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G = Z, S = {1, . . . , n}
G = Z, S = N

G = S = Zn
An open problem

Proof of R3:

◮ Imagine the numbers 0, 1, . . . , n − 1 placed round a circle and
divided into k blocks, each of size M or M + 1, where
M = ⌊n/k⌋.
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G = Z, S = {1, . . . , n}
G = Z, S = N

G = S = Zn
An open problem

Proof of R3:

◮ Imagine the numbers 0, 1, . . . , n − 1 placed round a circle and
divided into k blocks, each of size M or M + 1, where
M = ⌊n/k⌋.

◮ We think of k as being fixed and M as variable.
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G = Z, S = {1, . . . , n}
G = Z, S = N

G = S = Zn
An open problem

Proof of R3:

◮ Imagine the numbers 0, 1, . . . , n − 1 placed round a circle and
divided into k blocks, each of size M or M + 1, where
M = ⌊n/k⌋.

◮ We think of k as being fixed and M as variable.

◮ We permute the blocks according to some permutation π1 of
Zk and permute within each block according to some
permutations π2, π

′

2 of ZM or ZM+1, as appropriate.
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G = Z, S = {1, . . . , n}
G = Z, S = N

G = S = Zn
An open problem

Proof of R3:

◮ Imagine the numbers 0, 1, . . . , n − 1 placed round a circle and
divided into k blocks, each of size M or M + 1, where
M = ⌊n/k⌋.

◮ We think of k as being fixed and M as variable.

◮ We permute the blocks according to some permutation π1 of
Zk and permute within each block according to some
permutations π2, π

′

2 of ZM or ZM+1, as appropriate.

◮ It suffices for π2 to destroy APs as a permutation of
{1, 2, . . . ,M}, and we know such permutations exist for all M.
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G = Z, S = {1, . . . , n}
G = Z, S = N

G = S = Zn
An open problem

Proof of R3:

◮ Imagine the numbers 0, 1, . . . , n − 1 placed round a circle and
divided into k blocks, each of size M or M + 1, where
M = ⌊n/k⌋.

◮ We think of k as being fixed and M as variable.

◮ We permute the blocks according to some permutation π1 of
Zk and permute within each block according to some
permutations π2, π

′

2 of ZM or ZM+1, as appropriate.

◮ It suffices for π2 to destroy APs as a permutation of
{1, 2, . . . ,M}, and we know such permutations exist for all M.

◮ π1 will need to destroy APs modulo k, that is, considered as a
permutation of Zk . However, that is not quite enough, which
is where the subtlety lies ...
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G = Z, S = N

G = S = Zn
An open problem

◮ Let β(x) ∈ [0, k) denote the number of the block containing
x ∈ [0, n).
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G = Z, S = {1, . . . , n}
G = Z, S = N

G = S = Zn
An open problem

◮ Let β(x) ∈ [0, k) denote the number of the block containing
x ∈ [0, n).

◮ If (a, b, c) is an AP modulo n, then (β(a), β(b), β(c)) need
not quite be an AP modulo k.
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G = Z, S = {1, . . . , n}
G = Z, S = N

G = S = Zn
An open problem

◮ Let β(x) ∈ [0, k) denote the number of the block containing
x ∈ [0, n).

◮ If (a, b, c) is an AP modulo n, then (β(a), β(b), β(c)) need
not quite be an AP modulo k. However, if M ≥ k, then

|β(a)− 2β(b) + β(c)| ≤ 2 (mod k). (1)
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G = Z, S = {1, . . . , n}
G = Z, S = N

G = S = Zn
An open problem

◮ Let β(x) ∈ [0, k) denote the number of the block containing
x ∈ [0, n).

◮ If (a, b, c) is an AP modulo n, then (β(a), β(b), β(c)) need
not quite be an AP modulo k. However, if M ≥ k, then

|β(a)− 2β(b) + β(c)| ≤ 2 (mod k). (1)

◮ Definition: A permutation π of Zk is said to destroy the

pattern s 7→ t if there is no triple (a, b, c) satisfying
(i) a, b, c not all equal and a− 2b + c ≡ s (mod k),
(ii) π(a)− 2π(b) + π(c) ≡ t (mod k).
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G = Z, S = {1, . . . , n}
G = Z, S = N

G = S = Zn
An open problem

◮ Let β(x) ∈ [0, k) denote the number of the block containing
x ∈ [0, n).

◮ If (a, b, c) is an AP modulo n, then (β(a), β(b), β(c)) need
not quite be an AP modulo k. However, if M ≥ k, then

|β(a)− 2β(b) + β(c)| ≤ 2 (mod k). (1)

◮ Definition: A permutation π of Zk is said to destroy the

pattern s 7→ t if there is no triple (a, b, c) satisfying
(i) a, b, c not all equal and a− 2b + c ≡ s (mod k),
(ii) π(a)− 2π(b) + π(c) ≡ t (mod k).

◮ Definition: A permutation π of Zk is said to destroy

(s, t)-almost APs if it destroys the patterns s ′ 7→ t ′ for all
s ′ ∈ [−s, s] and t ′ ∈ [−t, t].
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G = Z, S = {1, . . . , n}
G = Z, S = N

G = S = Zn
An open problem

◮ Let β(x) ∈ [0, k) denote the number of the block containing
x ∈ [0, n).

◮ If (a, b, c) is an AP modulo n, then (β(a), β(b), β(c)) need
not quite be an AP modulo k. However, if M ≥ k, then

|β(a)− 2β(b) + β(c)| ≤ 2 (mod k). (1)

◮ Definition: A permutation π of Zk is said to destroy the

pattern s 7→ t if there is no triple (a, b, c) satisfying
(i) a, b, c not all equal and a− 2b + c ≡ s (mod k),
(ii) π(a)− 2π(b) + π(c) ≡ t (mod k).

◮ Definition: A permutation π of Zk is said to destroy

(s, t)-almost APs if it destroys the patterns s ′ 7→ t ′ for all
s ′ ∈ [−s, s] and t ′ ∈ [−t, t].

◮ By (1), it suffices to find a (2, 2)-almost AP-destroying
permutation of Zk , for any single k.
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G = Z, S = {1, . . . , n}
G = Z, S = N

G = S = Zn
An open problem

◮ This basically reduces the problem to a computer search.
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G = Z, S = N

G = S = Zn
An open problem

◮ This basically reduces the problem to a computer search.
◮ However, by considering a random permutation, one easily

convinces oneself that (2, 2)-almost AP-destroying
permutations are far too sparse to be found directly.
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G = S = Zn
An open problem

◮ This basically reduces the problem to a computer search.
◮ However, by considering a random permutation, one easily

convinces oneself that (2, 2)-almost AP-destroying
permutations are far too sparse to be found directly.

◮ Instead, we break down the (2, 2) property into its 24
constituent patterns, along with 0 7→ 0.
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G = Z, S = {1, . . . , n}
G = Z, S = N

G = S = Zn
An open problem

◮ This basically reduces the problem to a computer search.
◮ However, by considering a random permutation, one easily

convinces oneself that (2, 2)-almost AP-destroying
permutations are far too sparse to be found directly.

◮ Instead, we break down the (2, 2) property into its 24
constituent patterns, along with 0 7→ 0.

◮ We locate (via computer search) permutations of
Zk1 , Zk2 , . . . ,Zkr , r ≤ 24, which destroy different subsets of
these patterns, each subset including 0 7→ 0.
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G = Z, S = {1, . . . , n}
G = Z, S = N

G = S = Zn
An open problem

◮ This basically reduces the problem to a computer search.
◮ However, by considering a random permutation, one easily

convinces oneself that (2, 2)-almost AP-destroying
permutations are far too sparse to be found directly.

◮ Instead, we break down the (2, 2) property into its 24
constituent patterns, along with 0 7→ 0.

◮ We locate (via computer search) permutations of
Zk1 , Zk2 , . . . ,Zkr , r ≤ 24, which destroy different subsets of
these patterns, each subset including 0 7→ 0.

◮ If the ki are pairwise relatively prime, then a clever application
of the Chinese Remainder Theorem yields a (2, 2)-almost
AP-avoiding permutation of Zk , where k =

∏r
j=1 kj .
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G = Z, S = {1, . . . , n}
G = Z, S = N

G = S = Zn
An open problem

◮ This basically reduces the problem to a computer search.
◮ However, by considering a random permutation, one easily

convinces oneself that (2, 2)-almost AP-destroying
permutations are far too sparse to be found directly.

◮ Instead, we break down the (2, 2) property into its 24
constituent patterns, along with 0 7→ 0.

◮ We locate (via computer search) permutations of
Zk1 , Zk2 , . . . ,Zkr , r ≤ 24, which destroy different subsets of
these patterns, each subset including 0 7→ 0.

◮ If the ki are pairwise relatively prime, then a clever application
of the Chinese Remainder Theorem yields a (2, 2)-almost
AP-avoiding permutation of Zk , where k =

∏r
j=1 kj .

◮ This leads to a larger value of n0 than stated in R3. However,
by choosing the block decomposition carefully at the outset, it
suffices to find a (1, 2)-almost AP-destroying permutation.
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G = Z, S = {1, . . . , n}
G = Z, S = N

G = S = Zn
An open problem

Question:
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G = Z, S = {1, . . . , n}
G = Z, S = N

G = S = Zn
An open problem

Question: Let L(x1, . . . , xk) = a0 +
∑k

i=1 aixi = 0, ai ,∈ Z,
ai 6= 0 ∀ i > 0, be a linear equation. Is it true that the following
statements are equivalent:
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G = Z, S = N

G = S = Zn
An open problem

Question: Let L(x1, . . . , xk) = a0 +
∑k

i=1 aixi = 0, ai ,∈ Z,
ai 6= 0 ∀ i > 0, be a linear equation. Is it true that the following
statements are equivalent:
(i) There is an n0 = n0(L) such that, for every n ≥ n0, there exists
a permutation π of Zn destroying all non-trivial solutions of L = 0.
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G = Z, S = N

G = S = Zn
An open problem

Question: Let L(x1, . . . , xk) = a0 +
∑k

i=1 aixi = 0, ai ,∈ Z,
ai 6= 0 ∀ i > 0, be a linear equation. Is it true that the following
statements are equivalent:
(i) There is an n0 = n0(L) such that, for every n ≥ n0, there exists
a permutation π of Zn destroying all non-trivial solutions of L = 0.
(ii) Either the equation L = 0 is variant, or it is invariant and
k ∈ {2, 3} ?
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G = Z, S = {1, . . . , n}
G = Z, S = N

G = S = Zn
An open problem

Question: Let L(x1, . . . , xk) = a0 +
∑k

i=1 aixi = 0, ai ,∈ Z,
ai 6= 0 ∀ i > 0, be a linear equation. Is it true that the following
statements are equivalent:
(i) There is an n0 = n0(L) such that, for every n ≥ n0, there exists
a permutation π of Zn destroying all non-trivial solutions of L = 0.
(ii) Either the equation L = 0 is variant, or it is invariant and
k ∈ {2, 3} ?

◮ A simple affine transformation will work if the equation is
variant.
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G = Z, S = {1, . . . , n}
G = Z, S = N

G = S = Zn
An open problem

Question: Let L(x1, . . . , xk) = a0 +
∑k

i=1 aixi = 0, ai ,∈ Z,
ai 6= 0 ∀ i > 0, be a linear equation. Is it true that the following
statements are equivalent:
(i) There is an n0 = n0(L) such that, for every n ≥ n0, there exists
a permutation π of Zn destroying all non-trivial solutions of L = 0.
(ii) Either the equation L = 0 is variant, or it is invariant and
k ∈ {2, 3} ?

◮ A simple affine transformation will work if the equation is
variant.

◮ In [H, 2004] we proved that no permutation of any finite
abelian group can destroy all non-trivial solutions to the Sidon
equation a+ b − c − d = 0. However, we do not see at this
point how to modify that argument for equations in four or
more variables in general.
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