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Abstract

If k is a positive integer, we say that a set A of positive integers is k-sum-free if
there do not exist a,b,c in A such that a + b = ke. In particular we give a precise
characterization of the structure of maximum sized k-sum-free sets in {1,...,n} for
k > 4 and n large.

1 Introduction

A set of positive integers is called k-sum-free if it does not contain elements a, b, ¢ such

that
a+ b= kc,
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where k is a positive integer. Denote by f(n, k) the maximum cardinality of a k-sum-free
set in {1,...,n}. For k£ = 1 these extremal sets are well-known: Deshoulliers, Freiman,
S6s, and Temkin [1] proved in particular that the maximum 1-sum-free sets in {1,...,n}
are precisely the set of odd numbers and the “top half” {[%1],... ,n}. For n > 8 even

%,...,n — 1} forms the only additional extremal set. The famous theorem of Roth [4]
gives f(n,2) = o(n). Chung and Goldwasser [2] solved the case k = 3 by showing that the
set of odd integers is the unique extremal set for n > 22. For k£ > 4 they gave an example

of a k-sum-free set [3] of cardinality kgj:;)n + k(kL;)(('Zﬁ)%L o+ O(1), which implies
J(nsk) ~ k(E=2) 8(k—2)

lim,, > s T o) o) and they conjectured that this lower bound is
the actual value. Moreover they conjectured that extremal k-sum-free sets consist of three
intervals of consecutive integers if n is large.

In this paper we prove that the first conjecture is true, and we expose a structural result
which is very close to the second. Our proof is elementary. In fact it is based on two
simple observations:

Suppose we are given a k-sum-free set A. Then

e kx—yd¢ Aforallz,ye A
(Otherwise we could satisfy the equation kx = (kx — y) +y in A.)

e for all y € A any interval centered around % cannot share more than half of its
elements with A.
(Otherwise we would find a pair L%J —d, [%1 +d in A, giving

(1% —d) + (1] +d) = ky)

2 Preparations

Let n € N be large and let k¥ € N>,. We start by agreeing on some notations.

Notations
Let A C {1,...,n} be a set of positive integers. Denote by
s4:=min A and m4 := max A

the smallest and the largest elements of A respectively.

For [,r € R let

(l,r] = {zeN|l<z<r}
[l,7) {reN|i<z<r}
(I,r) {reN|i<z<r}
(l,r] = {zeN|i<z<r}
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abbreviate intervals of integers. Continuous intervals will be indicated by the subscript R.

Furthermore for any y € N and d € Ny(:= NU {0}) put

_lky—1 ky+1

d . _
I¢. d, =

; 5 +d| .

Note that if ky is even then I; = % —d, % —d+1,..., % +d} and |Ig| = 2d+1, while

if ky is odd we have I = Mol g, B 4 d) and 119 = 2d + 2.

The first Lemma restates our introductory observations.

Lemma 1 Let A C [1,n] be a k-sum-free set. If z,y € A thenkx —y ¢ A. Ify € A and
d €Ny then [I§\ Al > d+1.

Suppose A’ is a k-sum-free set consisting of intervals (;, 7;]. The interval (/;,r;] is k-sum-
free if I; > 2. Moreover we observe that consecutive intervals (li1,7i11], (i, 7:] (Where
we assume 7311 < [;) should satisfy kr; 11 < [;+ sa. This leads to the following definition,
describing a successive transformation of an arbitrary k-sum-free set A into a k-sum-free
set of intervals.

Definition 1 Let n € N and let A C [1,n] be k-sum-free with smallest element s := s4.
Define sequences (r;), (1;), (A;) by:

Ay = A, ri:=n,

[ — % - L li+8
T ]C ) t+1 -— k )

Ai = (Ai—l \ (’f’i+1,li]) U (li,T'i] N [8,’/1] fO’f'i Z 1.

The letter t = t4 will be reserved to denote the least integer such that r 1y < s. Observe

that, for alli > t,
t—1
Ai = At = [(l/, Tt] U (U(ljv Tj]) ) (1)

j=1

where o = ay = max{l; + 1, s}.

3 The structure of maximum k-sum-free sets

To obtain the structural result we consider the successive transformation of an arbitrary
k-sum-free set A into a set A; of intervals as in (1). Our plan is to show that each member
of the transformation sequence (A4;) is k-sum-free and has size greater than or equal to
|A|. For n sufficiently large, depending on k, and a maximum sized k-sum-free subset A
of [1,n], it will turn out that A; consists of three intervals only, i.e.: that ¢ = 3. This
observation will do to determine f(n, k), and we conclude our proof by showing that A
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could be enlarged if it did not contain (nearly) the whole interval (I3, r3] and consequently
almost all elements from (I3, 7] and (I1, 7], so that in fact almost nothing happens during
the transformation of an extremal set.

Lemma 2 Let A C [1,n] be k-sum-free. Let i € N.
a) A; is k-sum-free.
b) |Ail = [Aial.

Proof. a) Clearly, it is enough to prove the claim for i < ¢, so we may assume that s < r;.
Suppose there are a,b,c € A; with a + b = kec. A; is of the form

Ai=Ai N [s,ri| U Ly N s, n] U (g, m 1] U U (I, 7).

If ¢ € (Iy,71], then kc > 2n, which is impossible. If ¢ > 2 and ¢ € (l;,r;] for some
J € [2,i], then kc € (2r;,1;_1 + s] and the larger one of a,b must be in (r;,l;_4]. But
(r;,1;-1] N A; = 0 by construction. Hence ¢ € A; 1 N[s,7i11]. Now, ke < kriyy < 1; + s.
Since (ri41,;] N A; = 0, both a and b have to be in A; 1 N[s,ri11] = AN[s, 7). But A
is k-sum-free, a contradiction.

b) The inequality is trivial for ¢ > ¢. For 1 < i < ¢t we have that [; > s and hence
i—1
m:(&lmUJHmUUMﬂu(Lmﬁm>.
j=1
Thus it suffices to prove that

Ay N1, 7| < A O [1,7aa]| + [uw '

k

Clearly, then, it suffices to prove the inequality for + = 1, i.e.: to prove that, for any n > 0,
and any k-sum-free subset A of [1,n] with smallest element s4, we have

A< lAn Ll + [ E520 )

where

wﬂ:{pm2+mJ_

The proof is by induction on n. The result is trivial for n = 1. So suppose it holds for all
1 < m < nand let A be a k-sum-free subset of [1,n]. Note that the result is again trivial if
sa > 2n/k, so we may assume that s4 < 2n/k, which implies that 7, 4 < n/k, since k > 4.

First suppose that there exists x € AN (n/k,2n/k]. Then 1 < kx —n < n and the
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map f:y— kxr —y is a 1-1 mapping from the interval [kx — n, n] to itself. For each y in
this interval, at most one of the numbers y and f(y) can lie in A, since A is k-sum-free.
To simplify notation, put w := kx — n — 1. Then our conclusion is that

AN (]| < = w). (3)

If w=0orif AN[1,w] =, then we are done (since k > 4). Put B := AN [1,w]. Then
we may assume B # (), hence sp = s4. Applying the induction hypothesis to B, we find
that (h_2)
— 2w
Bl=lan el < Bl + | S22, ()
But sp = s4 implies that ro g < r9 4, hence that BN [1,795] € AN[1,rs4]. Thus (3)
and (4) yield the inequality

A< A0 raall+ | S22 | 4 S )

which in turn implies (2), since |A| is an integer. Thus we are reduced to completing the
induction under the assumption that A N (n/k,2n/k] = 0. Suppose z € AN (o, n/k].
Then |2n/k| + sa < kx < n and kx — sa ¢ A. In other words, we can pair off elements
in AN (rq.4,2n/k] with elements in (2n/k,n|\A. This immediately implies (2), and the
proof of Lemma 2 is complete. O

We have seen so far that any k-sum-free set A can be turned into a k-sum-free set A,
having overall size at least |A|. The set A; is a union of intervals, as given by (1), though
note that the final interval [a, ;] may consist of a single point, since r; = s is possible.
The proof of the following Lemma uses a fact shown in [3] by Chung and Goldwasser, to
prove that ¢ must be equal to three if |A| is maximum.

Lemma 3 Let A be a mazimum k-sum-free subset of [1,n|, where n > ng(k) is sufficiently
large. Let s :== s and let t == max{i € N | r; > s}. Thent = 3.

Proof. Let A; be the set of positive integers given by (1). In a similar manner we now
define a k-sum-free subset A} of (0, 1]g.
Put ¢ := s/n and, for i = 1, ..., ¢ define real numbers R;, L; as follows :

2Ri . Li +c

Then we put
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where o' := max{L;,c}. That A} is k-sum-free is shown in [3]. One sees easily that
A < - p(Ap) + 1, (5)

where p denotes the Lebesgue-measure. Now suppose that ¢ # 3. It is shown in [3] that
there exists a constant ¢, > 0, depending only on k, such that in this case
k(k —2) n 8(k —2)

k? —2 k(k% — 2)(k* — 2k — 4)

u(AY)] < = Cp- (6)

In fact, in the notation of page 8 of [3], an explicit value for ¢; (which we will use later)
is given by

e = 1 (R(3) — R(4))
k3(k — 2)(k* — 6k
o= ek DOk +8) (7)
(kS — 4k* + 8)(k® — 4kS + 16)
Now (5) and (6) would imply that
k(k —2) 8(k —2)

Al < - t.

S L | s LU
But we have seen in the introduction that |A| > k,gf:?n + k(kLzB)((’Zﬁ)%L@n + O(1) and,

since t = O(log, n), we thus have a contradiction for sufficiently large n. Hence ¢ must
equal three, for large enough n, as required. O

Now we are nearly in a position to determine f(n,k). We want to calculate the car-
dinality of an extremal k-sum-free set A via computing |A3|. Since |A3| depends on sy,
the following lemma will be helpful :

Lemma 4 Let n > ng(k) be sufficiently large. If A is a mazimal k-sum-free subset of
[1,n], then S — 2k < s4 < S+ 3, where S := | sz |-

Proof. Set s := s4. By Lemma 3, for n > ny(k) we have r4 < s. Since A is maximal we
have |A| = | A3|. Now, for a fixed n, the cardinality of A3 is a function of s € [1, n] only. So
we need to show that |A3(s)| attains its maximum value only for some s € [S — 2k, S + 3.
Define

s':=min{s € [1,n] : I3(s) < s}.

A tedious computation (see the Appendix below) yields that s’ =S + 1 if k£ is even and
=S orS+1if kis odd. Hence

s' € [S,8 +1]. (8)
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Clearly,

_ [(k_,f)n] +71o(s) —la(s) +73(s) —s+1, if s>,
[As(s)] = { [@] +7a(s) — la(s) +r3(s) — I3(s), ifs<s. 9)

How does |A3(s)| change if we alter s ?

First suppose s > s'. If s increases by one, then |A3| will decrease by one unless either
9 or r3 increases. Now 75 can only increase (by one) once in k(> 4) times. Almost the
same is true of r3, though its dependence on [/, makes things a little more complicated.
However, it is not hard to see that we encounter an irreversible decrease in the cardinality
of |A;| after at most 3 steps of increment of s. Hence |A3(s)| < |A3(s")] if s > s’ + 3.
Next suppose s < s'. If we decrease s, then |As| cannot increase at all, since /; will not
decrease unless r; does. Moreover, |A3| will become smaller if the size of any interval is di-
minished. So we can focus our attention on (ly,75]. While ro decreases once in k times, [y
does so no more than once in k| £ | > 2k times. Thus |A;(s)| < |A3(s'—1)|if s < §'—1—2k.

We have now shown that, as a function of s € [1,n], the cardinality of A3 attains its
maximum only for some s € [s" — 2k, s’ + 2]. This, together with (8), completes the proof
of the lemma. Il

Now we can prove the first conjecture of Chung and Goldwasser.

Theorem 1

o f k) K(E—2) 8k~

im = :

n—oo 1 k2 —2  k(k? —2)(k* — 2k% —4)

Proof. Let A be a maximum k-sum-free set in [1,n], with n sufficiently large. From

Lemma 4 we have 4 = £ 4 o(1), where 5* = =82 Thus we can estimate

k A —lh4+rg—lo+rs—=5"+1
M _ | 3|:7"1 1L TTr2—laTT3 +0(1)
n n n
1 2n+ 2n+ kS*  4An 4+ 2kS* +4n+2k5*+k35* 5*) +o(1)
= —|n—— — - 0

n k k? k3 k*

E* — 2k + 2k — 4k + 4 *
= ks ks +S (2k* — 2k +2 —k*) + 0(1)

k* nk3
_ k4—2k3+2k2—4k+4+8(2k2—2k+2—k3) L o(1)
B k4 (k5 — 2k3 — 4k)k3
B k5—2k4—4k+8+0(1)
(kY —2k2 - 4)k
k(k —2) 8(k — 2)
= 1
w—2 Tre =g —ze 1 oW
and the claim follows by taking the limit. O

We can now show the main result.
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Theorem 2 Let k € N>y and n > ny(k). Let S and s’ be as in Lemma 4. Let A C

{1,...,n} be a k-sum-free set of mazimum cardinality, with smallest element s = s4.
Then s € [S,S + 3] and A = T3 UZ, UZ;, where
{[s,r3],[s,7m3 + 1]}, if s> s
Is € ) .
{[s,73),[s,m3] \ {rs — 1}}, ifs< ¢,
IZ c {[l2+2,'f'2],[l2+2,7‘2—|—1]}’ ing-i-]_EA
{(527 T?]a (l27 T + ]-]: [ZZ: TZ); [l277’.2] \ {TZ - 1}}: Zf r3 + 1 ¢ A7
T, € {[l1+2’n]}7 ifTQ‘i‘lEA
' {[llan)a(llan]a[h:n]\{n_1}}a ZfT2+1 ¢A,

If k is even, then T; # [l;,r;) \ {ri — 1} for 1 <i < 3.

Remark. Note that Theorem 2 does not precisely determine the k-sum-free subsets of
{1,...,n} of maximum size, for every n > ni(k). With n and k fixed, one first needs
to determine for which value(s) of s € [S,S + 3] the quantity |A3(s)|, as given by (9),
is maximized. The result will depend on n and k. Even then, for a fixed s, not all the
possibilities for Z3 UZy, UZ; need be k-sum-free. See Section 4 below for further discussion.

Proof. We have already seen that |A3] = |A|. Our first aim is to show by compar-
ing A3 with A, that almost the whole interval (I3, r3] must be in A. Having achieved
this, we infer by Lemma 1 that (r3,l3] N A is nearly empty. Comparing A, with A; will
then reveal that most of (l2,72] is contained in A. Again Lemma 1 will help us to see
that A cannot share many elements with (7o, /;] and a final comparison of A; with A will
conclude the proof.

(TI) The first aim is easily reached if s := s4 > I3 + 1. Simply note that
A2 = (A M [S,Tg]) U (l2,T2] U (ll,Tl] Q [S,Tg] U (12,7'2] U (ll,Tl] = A3.

The maximality of |As| gives Ay = A3 and hence [s,73] C A. Observe that s > I3 together
with Lemma 4 and (8) give S < s < S+ 3.

Assume now that s < I3. We want to show that in this case s = [3. Suppose s < I3
and let B = [S — 2k, l3] N A. Define

c=1,u |J B
beB\{sp}

Clearly C C (I3,73] for all n > 0. Then since C' is the union of disjoint intervals, Lemma
1 gives that |C'\ A| > |B|. Hence we get the contradiction |As| = [(42 \ B) U (I3,73]| >
|(A2\ B)U (C'\ A)| > |A2| — |B| + |B| = | A2|. Therefore we are left with s = [3, and this
implies

|[As| = [As| <= |AN s, 75]| = (I3, rs] N[5, 75]| = [(s, 75]|- (10)
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If r3 ¢ A we can infer from (10) that
AN (s, 3] =[s,73 — 1] = [I3, 75 — 1].
If r3 € A, Lemma 1 gives kl3 —r3 ¢ A, s0 —k+1 < klg —2r3 < —1. If kl3 — 2rs < —2 we

get I, C (I3, 73] and [T}, \ A| > 2, which is impossible since this would imply |As| > [A,|.
Hence kl3 — 2r3 = —1 and k is odd. Using (10) one obtains

Aﬂ[S,Tg]: [l3,’l"3]\{7’3—1}.
Suppose now that s =I5 and r3 +1 € A. Then ki3 — (r3 + 1) ¢ A and
T‘3-k§]€l3—(7"3+1)§7‘3—1.

This contradicts that [s,r3 — 2] C A unless kl3 — (r3 + 1) = r3 — 1, but then r3 ¢ A and
|AN[s,r3]| = |AN][s,r3 — 2]| which contradicts (10). Hence r3 + 1 ¢ A if s = I3.

Finally note that, if s = I3 and kl3 > 2r; — 1, the latter being a requirement for ei-
ther of the two possibilities for Z3 to be k-sum-free, then another computation similar to
the one in the Appendix yields that s > S. Again, using Lemma 4 we obtain

S<s<S+3, (11)

as claimed in the statement of the theorem. This completes the first part of our proof.

(IT) For the second part note that we have just shown
52> 3. (12)

Plugging (11) into the definition of /3 yields (after a further tedious computation similar
to that in the Appendix)
S—1<l<S+1, (13)

which implies in view of (12) and (11)
53§S§53+4. (14)

Moreover we have observed that [s,73—2] C A. Let &,...,&5 € {0,...,k—1} be constants
such that

kli, = 2r—§ (15)
kro = li+s—& (16)
kly, = 2ry—& (17)
krs = lo+s—§& (18)
kls = 2rs —&. (19)
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We suppose that n is sufficiently large, so we can be sure that
ks — (r3 —2),k(rs —2) —s|N A =10.
By (14) we can infer that
0 = [k(ls+4)—(r3—2),k(rs—2)—s|NA
= [rs—& 44k +2,l, — & — 2k N A

Let J=[rs+2,r3—& +4k+1NAand K =, {kx — (s +2),kx — (s + 1), kx — s}.
Then KN A=, |K|=3|J|] and by (18) and (19) we have

KClly—&+2k—2lg—& — k& +4k> + k] C (lo+k — 2,1 +4k* + k] C (I + 2,74),

ifn>0. Let B=[lo — & — 2k +1,1] N A. If BUJ C {l} then AN [rs + 2,15 — 1] = 0.
Otherwise, with C as in part (I) if [B| > 1 we can verify that C' C [ry — 3'“2_2&,7'2] -
(I + 1,73), for n > 0, and |C' \ A| > |B|. Put C := () if |B| < 1. For large n, K and C
are disjoint. Hence |BU J| < [(C'\ A) U K| and we get

[Az| = [[A1\ (JUBU{rs + 1})]U (Io, r2]| > |41\ {rs + 1}].

Thus if r3 + 1 & A we get |As| > |A4| so suppose r3 + 1 € A. Then neither I, nor [y + 1
can be in A;. Otherwise, since (s —& +k),s—&+k—1€[s,s+k] C[s,r3—2] C A we
get

k(rs+1)=lo+(s—&+k)=((2+1)+(s—&+k—1),

which is impossible. But lo + 1 € As, so also in this case it follows that |As| > |A;|, since
lo+1¢ KUC for large n. Again we conclude that AN [r3+ 2,1, — 1] = (). Consequently,

[Ao| = |Ai] & [AN ([lg,ro] U{rs + 1})| = [(I2, o]l

which gives AN[ly, 73] = [la+2,7r9] if r3+1 € A. If r3+1 ¢ A and either [y ¢ Aorry ¢ A,
we get AN [ly, o] = (la, 2] or AN [la, 2] = [l2,72), respectively. In case r3+1 ¢ A and
both Iy, 7 € A, we see that kly —rg =19 — & ¢ A. If & > 2 then Iz12 C (ly, 7o) and Iy
could be profitably replaced. Hence & = 1, AN [lo, ro] = [l2, 73] \ {r2 — 1} and £ is odd.

(III) For the final interval (I1,71] we use Lemma 1 to conclude from
[s,r3—2] C Aand [l +2,7,—2]C A

in view of (16) and (17) that, for n > 0,

0 = An[k(la+2) — (re —2),k(ra — 2) — (Io + 2)]
= ANrg—&+2k+ 2,011 +s—& — 2k — 1y — 2], and
0 AN(k(la+2) — (rg —2),k(rs —2) — 8]
AN [2r9 — & + 2k — 13+ 2,1 — & — 2K]
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Let J=[ro+ 2,70 — & +2k+1]NAand K = Ugeg{kx — s, kx — (s+ 1), kx — (s + 2)}.
From (14) we have

KClh—&+2k—211 —&—k&+2k*+ k] C (Ii+k—2,71], ifn>0.

Let B=1[l; —& —2k+ 1,1 N A. If sp <l with C as in (I) we can verify that, for

sufficiently large n,

2T1—§1—k§2—2k2+k—5
2

C g s T1 g (lla Tl]:
|C'\ A| > |B| and max K < s¢. By analogy with part (II) we get AN[ry+ 2,11 — 1] =0
and the rest of the claim follows as before. |

4 Estimates and Periodicity

We first want to estimate values of n;(k), ¢ = 0, 1, for which Lemmas 3 and 4, and Theorem

2 respectively are valid. The estimates we shall arrive at can probably be improved upon.

The example of a k-sum-free set A in [3], referred to in the proof of Lemma 3, satisfies
k(k — 2) 8(k — 2)

A _3.
A> s " iy e

Hence the proof of Lemma 3 goes through provided n is sufficiently large so that
cgkn — ty > 3, (20)

where tg = ty(n, k) is the largest possible value for ¢ in Definition 1. Now from Definition
1 we easily deduce that, if i < ¢, then r;11 < (%) ri, and hence that ry < (%)ti1 n. Since
ry > 1 a priori, we can thus estimate

1
t() S 5 logk/2 n+ 1. (21)

Since, by (7), cx = O(35), we thus deduce from (18) and (19) that one can take ng(k) =
O(k®). Tt is then an easy and tedious exercise to go through the proof of Theorem 2 and

check that one can also take n(k) = O(kS).

Next, we explain what we mean by the word ‘periodicity’ in the title of this section.

If £ > 4 is even then, for n > 0, we have s’ = S +1 = ka_fﬁj + 1. Hence for a fixed
k, if we regard s’ as a function of n, then s'(n) + 1 = s'(n + p), where p; := w.
For odd k, we define p;, := k® — 2k® — 4k and in this case, a little more care is required to

check that s'(n) + 8 = s'(n + py).
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Now for any k£ and n, let F(k,n) denote the family of maximal k-sum-free subsets of
{1,...,n}. Then for n sufficiently large, as estimated above, and k even (resp. k odd), the
map s — s+ 1 (resp. s — s+ 8) clearly induces a 1-1 correspondence between the sets in
F(k,n) and F(k,n+ pg). This is what we mean by ‘periodicity’. This observation clearly
reduces, for any fixed k, the full classification of all k-sum-free subsets of {1, ...,n}, for all
n, to a finite computation.

192

165015 - Then Lemma 3 is

As an example, we now look at £k = 4. By (7) we compute ¢; =
valid at least for all n satisfying

1
c4n—§log2n—123,

which reduces to n > 9326. One can then check that the proof of Theorem 2 also goes
through for all such n. We have p, = 110. We now present the full classification of all
4-sum-free subsets of {1,...,n}, valid (at least) for all n > 9326. This was obtained with
the help of a computer.

For each s,n € N we define the sets J,(s), 1 < z < 13, as follows (the /; and r; are
functions of s and n as in Definition 1) :

Jl = [S,T‘g—l]U[ZQ,TQ—l]U[Zl,TL—l],
JQ = [S,T3—1]U[lQ,TQ—l]U[l1+1,n],
J3 = [S,Tg—l]u[lg+1,T2]U[l1,’fL—1],

[ ]

Jy = [S,r3—1]U[la+ 1,7 U[ly +1,n],

Js = [S,r3—1|U[la+1,r9+ 1] U [l1 + 2,n],

= [s,r3]Uly,ro = 1] U [l,n — 1],

= [s,r3) U[ly, o — 1| U [l; + 1,n],

= [s,r3) U[lo +1,79] U [l1,n — 1],

= [s,r3]U[la + 1,7 U[l1 +1,n],

= [s,73)Ulo + 1,72+ 1] U [l; +2,n],

= [s,rs+ 1 Ulo+ 2,9 U[ly,n — 1],

= [s,rs+1]U[la+2,m] U [l +1,n],
[s,r3 + 1] U [lo + 2,79 + 1] U [l; + 2,n].

»w »w »

S S &
N’ N N e S e S N

N N N N N N~
W »w »w »

V)

Note that, by Theorem 2, for a given n > 9326, every maximal 4-sum-free subset of
{1,...,n} is one of the sets J,(s), for some s € [S,S +3] = [ — 1,5 + 2]. By the
remarks above, for each i € {0,...,109}, there are natural 1-1 correspondences between
the sets in the families F(k,n) for all n = ¢ (mod 110). By slight abuse of notation, we
denote any such family simply by F;. Our computer program yielded the following result :

If | 7| = 1, then i = 6,7,22,23,46,47, 49,51, 54,55, 57,59, 61,70, 71,73, 75,77, 86, 87, 89
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or 91 and

or ¢ = 36,37,100 or 101 and

If |F;| = 2, then F; is

{Jo(s")},

{Jo(s" +1)}.

{Jo(s), Jo(s' + 1)} if i =93,103,105,107,

{Ju, Jo(s)} if i=09,11,13,25,27,

{Js(s'), Jo(s)} if i=48,50,56,58,60,72,74,76,88,90

{J2(s"), Jo

If | 7| = 3:

Fs = Fou
Fis
Fa9
F39
Fe2 = Frs
Fs3
Fa3
Fo2
Fos = For
Fio2
Fio09

If |Fi| = 4:

Fi=F=Fur
Fio = Fia = Fog
F3s

Fu1 = Fa3

Fso =

Fes = Fes = Fso
Fioa = Fios

Feo

(s} if i=63,65,67,79,8l.

{Ju, Js(s), Jo(s)},
{Ju, J2(s"), Jo(s)},
{J4, 9(8’),J9(S +1)}

)

{J27 J47 J7(SI)7 ‘]9(5,)}7

{Js, Ju, Js(8), Jo(s') },

{Jo(s"), Jia(8"), Je(s' + 1), Jo(s' + 1)},
{Ju; Jo(8), Ji2(s"), Jo(s" + 1)},
{Js(5"), Jo(s"), Jro(s), Jo (s + 1)},
{Js(s"), J2(s"), Js(s"), Jo(s") },
{Js(s"), Jo(s"), Js(s" + 1), Jo(s" + 1)},
{J2(5"), Jo(s"), Jro(s"), Jo(s" + 1)}
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If |Fi|=5:

Fiuu = {J3,Ja, Js(s), J2(s"), Jy
Fig = {Jo, Ju, J7(s"), Jo(
Fos = {J3;Ja, Js(s"), Jo(
Fsi = {Js, J2(s), Jo

'7:82 = {Je( ) (SI),Jg(SI),Jg Sl) J9(81+2)}
Fos = {Js(s"), J2(s'), Jo(s), Js(s' + 1), Jo(s' + 1)},
f99 = {J7( I)7J9(SI)7J9(SI a‘] (S +1) J9(S +2)}7
Fros = {Js(s), Jo(s), Jo(s' + 1), Jr(s" + 1), Jo(s' + 1) }.
If |F| = 6:
Fs = {Jo,Ju, Jo(s), Jo(s'), Jio(s"), Jo(s" + 1)},
Fzz = {JQ,J4,J7(3’),J9(5’),J12( I)aJQ(S + 1)},
Fis = {Ja, Jo(s), Jia(s'), J13(s"), Jz(s" + 1), Jo(s" + 1)},
Fes = {Js(s"), Jr(s), Js(s"), Jo(s"), Juo(s"), Jo(s' + 1)},
.7:85 = {J7(8’),Jg(S’),Jlo(Sl),Jg(Sl ) J12($I+1) JQ(S +2)}
Foo = {Js(s"), J1(s), Js(s"), Jo(s"), Js(s' + 1), Jo(s' + 1)}.
If | F,| = T:

.7:0 = .7:16 == {Jl, JQa J4: J6(Sl)a J7(SI)’ JS(SI)’ JQ(SI)}a
Fio = {Js, Js(s), Jo(s), Ju(s'), Jia(s"), Js(s' + 1), Jo(s" + 1) }.

If | 7| = 8

Fo = {1, o, I3, Ju, Js(8), Ja(8'), Js(s"), Jo ()},

For = Lo, Ju, Jo(8), Jo(s), Jio(s), Jo(s' + 1), Juao(s' + 1), Ju(s' +2)1,

.7:30 = {J3;J4,J6( I),J7( I),JQ(SI) J12( ),Jg(SI-{-l),Jg(SI-i-l)},

.7:35 == {J27J4,J7(SI),J9(SI),J12( )Jg(SI%—1),(]10(81—{—].),Jg(sl—l—2)}7

F42 = {J3;J4;J8(S,),Jg(8,),=]11( I) J12(S,),J3(81+ 1),Jg(8’—|— 1)},

Fos = {Js(s), Jo(s), Js(s'), Jo(s"), Ja(s' + 1), Jo(s' + 1), Jo(s' + 1), Jo(s' + 2)}.

If |7l =09:

Fis = {1, J2, Js, Ja, J6(8'), J2(s'), Js(s'), Jo(s'), Jo(s" +2)},
Fea = {Js(), Jo(s"), Js(8), Jo(s"), Jro(s"), Jo(s' + 1), Jia(s' + 1), Ja(s" + 2), Jo(s" + 2)}.

If || = 10:

Fo = {1, o, Ja, Ju, Js(8), J2(8), Js(8'), Jo(s"), Jio(s), Jo(s" + 1)},
.7:44 = {Jg, J4, Jg(SI), JQ(S,), JU(SI), J12(SI), J13(SI), J(;(SI + 1), J7(8’ -+ 1), Jg(SI + 1)}

S
S
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If |F;| = 11,13 or 14, we get precisely one family for each size:

Fao = {J1, o, Ju, Jo(8'), J7 ("), Js(8'), Jo(s'), J11(8"), Ji2 ("), Js(s' + 1), Jo(s' + 1)},
Fo = {J1,Jo,d3,du, J6(s"), J7(s"), Js(s"), Jo(s), J1o(s),
Jo(s' +1), Jia(s' + 1), Jg(s' + 2), Jo(s' + 2)},
Fao = {J1,Jo, I3, Ju, Je(8'), J7(s"), s ('), Jo(s"), Ji1(s'), J12(s'),
Js(s' +1), Jo(s" + 1), Jio(s' + 1), Jo(s" + 2)}.
Note, in particular, that |F(4,7n)| < 14 for all sufficiently large n. Computer simulations

suggest the same may be true for any even k, with a similar result for odd &, but we leave
the investigation of this possibility to a subsequent paper.

Appendix

As a prototype for a type of calculation which appears in several places in the paper, we
now show, in the notation of Lemma 4, that s’ = S + 1 when £ is even.

We must investigate the condition /3(s) < s. By definition of /3 this is just

3 3 2 2 Tk 573

S < k—2—1 @%< k—2—1 & <k—3—ﬁ
2 2 % 2 Sers\y Tg)?

li1+s Kk Er k2
& <|l—=-=)s&el< ——3—1 s

{27‘3J 2rs ks VQ+SJ ks lo+s ks
Tl <s e T <sen<e| - -

k 4 2 4
& 2—n<<k—4—k—2—1>s<:>n<<k—5—k—3—ﬁ>s@s>—8n
k 4 2 8 4 2 k5 — 2k3 — 4k
&S s> 8.

Thus s' = S + 1, as required.
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