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Abstract

Let G be a finite soluble group. We derive upper bounds, in terms
of the derived length of G, for the maximal proportion of elements of
G which can be sent to their inverses under a group automorphism.

1. Introduction and notation

Let G be a finite group. If « is an automorphism of G, we follow [4] in
denoting by I(«) the set of those elements of G which are sent to their
inverses under «, i.e.: Ig(a) = {g € G | go = g~'}. We then set I(a, G) =

%, and define

I(G) = max, Aut() (o, G). (1)
There are several papers in the literature which investigate the properties of
the function (o) from finite groups to Q N (0,1]. The idea underlying these
investigations is that, if I(G) is ‘large’, then G should be ‘close’ to being
abelian. The plausibility of this idea stems from the simple observation
that if [(G) = 1, then G is abelian. The first non-trivial result was due to
Manning [6], who proved that if G is not abelian, then I(G) < 3. Much
later, Liebeck and MacHale ([4], Theorem 4.13) classified all G for which
(G) > % These groups have a very restricted structure. For our purposes,
their most noteworthy feature is that they are all soluble of length at most
2. More recently, this classification has been extended [2] [3] to include all
groups G for which [(G) = % The only other significant result seems to be

due to Potter [7], who proved that if I(G) > =, then G is soluble.



Let us now explain the motivation for the results to appear in this paper.
First, notation : We shall denote by =, the class of finite soluble groups
whose derived length is n. We then define the real number [, by

In = supgez, [(G). (2)

The results quoted above imply that [y = 1 (trivially), I, = % and I3 < %
1

In fact, from the result of [2], it is easy to find G € Z3 such that [(G) = 3,
and thus to see that I3 = % The smallest such group has the following
presentation

Gi=<a,br|a®=0=2¢€2(G),2=2>=1b"tab=a" 27 az = b,z bz = ba > .
(3)
(1 has order 24, and is a semi-direct product of the quaternion group @ by
Cj3. It is isomorphic to the group SL(2,3) of 2 X 2 matrices over the field F3
with determinant one.
The map a : G — G defined by
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aa=a " ba=ab za=z"", (4)

is easily checked to extend to an automorphism of G1, and to satisfy [(«, G1) =
%. In fact, a inverts elementwise the six cosets of Z(G1) represented by the
elements 1,a, 2%, (bx)*!.

These observations led us to wonder as to the value of [,, for arbitrary n.
We must note at this point that we still have no idea what the precise value
of [, is for any n > 4. The furthest we have got is to show that [, = g. This
fact is proven in Section 2.

But instead of asking for the precise value of [,, it is quite natural just
to ask for a reasonable upper bound. This question seems to be far more

tractable, as indicated by the following basic result :

Theorem 1.1. The sequence I, tends to zero as n — oo. In fact, l349r <
%(%)k for all k > 0. More generally, I, < l,l, whenever n =p+q.

We will now give a very simple proof of this result, which depends on the next
lemma. We adopt the following notation : If 7 = Inn(G) and a € Aut(G),
we denote by [(al,G) the maximum of the fractions [(af,G) for g € I.
Then we have

Lemma 1.2. Suppose a € Aut(G) and N is a normal, a-invariant sub-
group of G. Let o* denote the induced automorphism of G/N. Then

l(a,G) <l(al,N)l(a*,G/N) (5)



and, consequently,

I(G) <UN)G/N). (6)

PROOF OF LEMMA : This is a simple extension of Lemma 2.1(b) of
[7]. The number of cosets of N in G which intersect I(a) is at most
l(a*,G/N) - | G/N |. Pick a coset Ng of N such that | Ng N Ig(a) | is as
large as possible. Assume g is chosen to lie in Ig(a). Then {n € N | ng €
Ig(a)} ={n € N|na=g'n'g} ={neN|(nal- =n"'} This
set has size [(aly-1,N) | N | <I(al,N) | N | (here I,-1 denotes the inner
automorphism induced by ¢g~!). Thus, | Ng N Ig(a) | < l(al,N) | N |,
and so | Ig(a) | < l(al,N) | N| x l(a*,G/N) | G/N |, from which we
obtain equation (5). Then (6) follows immediately, which proves the lemma.

In the proof of the theorem to follow, G(*) denotes the it derived sub-
group of G, with the convention that GO =gG.

PROOF OF THEOREM 1.1 : Note that the inequality for l3,9r can be ob-
tained from the more general inequality by putting p = 2, using induction
on k and the facts (already mentioned) that Iy = 3 and I3 = 2. The proof
of the general inequality is very simple. So suppose G € =, and pick p and
g such that p+ ¢ = n. Put H = G@. Then H ¢ Ep and G/H € g, so
I(H) <1, and [(G/H) < l,. Tt follows from equation (6) that I(G) < l,l4,

as desired.

In particular, setting k¥ = 1 (or p = 2,q = 3), the theorem tells us that
ls < %. Also, it gives no information about /4 beyond the trivial fact that
Iy <lg = % But, as mentioned above, we shall prove in Section 2 that
ly = %. In fact, we will show how to generalize an argument used in proving
that I4 < % to obtain a general bound for /,, (Theorem 2.6) which improves
substantially upon Theorem 1.1. For example, Theroem 2.6 will imply that
ls < 3%. However, this result is still by no means best-possible. In Section 3,
we illustrate this by proving that [5 < % (Theorem 3.1), which allows for a
stronger formulation of Potter’s result (Corollary 3.2). Since our discussion
obviously leaves many questions unanswered, we will close Section 3 with

some brief suggestions for future work.
2. The value of I,

In this section we shall obtain a general bound for /,, which improves upon
Theorem 1.1. The proof will require induction on n, and to start the induc-
tion, we must deal with the case n = 4 explicitly. In fact, we can find the



precise value of 4, namely -
Theorem 2.1. [, = %.

We now prove this result. First, we show that [, > % by exhibiting a
group G € Z4 such that [(G) > %. The smallest such group has order 48,
and is a non-split extension of the group Gy of equation (3) by Cs. More
precisely, our group has presentation

Go=<GLy|v =2y tay=a ',y 'by=aby 'zy=2"1>. (7)

It is easily checked that I(I;,G2) = 2. Indeed, |Ig,(Iy)| = £|G1| = 12,
while I, also inverts ya and yb. Since (ya)?> = z and (yb)?> = a, so ya
and yb have order 4 and 8 respectively and < ya > N G; = < z > and
<yb>NG; = <a>. Hence, |Ig,(I) NGi1y| = (4 —2) + (8 —4) =6, as

required.

So, in order to prove our theorem, we must show that if G € =4, then
I(G) < 3. (Note that much of this part of the argument will be generalised
in the proof of Theorem 2.6 below). The proof is by contradiction. So sup-
pose there exists G € =4 satisfying I(G) > %. Pick such a group of smallest
possible order. Henceforth, until the end of the proof, we reserve the letter
G for this fixed choice of group. We also fix a choice of @ € Aut(G) such that
a,G) > %, and reserve the letter « for this automorphism. To simplify
notation, we reserve the letter H for the group G?). Notice immediately
that since [(G) < I(H)I(G/H) by Lemma 1.2, and {(G/H) < 3, we must
have I(H) > ;. Now let us proceed with a sequence of lemmas :

Lemma 2.2. Suppose A is a normal, a-invariant subgroup of G such that
G/A € E3. Then A is abelian, A C Z(G), and A C Ig(c).

PROOF : First, we show A is abelian. If not, then I(A) < 3. But
G/A € B3, I(G/A) < 3. Then, by Lemma 1.2, I(G) < I[(A)I(G/A) <
contradiction.

Now let | A | = m and | G/A | = n. Write G = | |,.,«,, Az; where,
if Az; N Ig(a) # ¢, then z; is chosen to lie in Ig(c). For each i such that
z; € Ig(a) we have, as in [4] Lemma 3.1, that

Ig(OAIx'—1) = Ig(a).’IJ;l. (8)
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In particular, since A is abelian, I4 (ol -1) is a subgroup of A.
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Now let u be the number of those cosets of A in G which consist entirely
of elements of I;(«), and let v be the number of other cosets of A which
intersect Ig(a). Then, by the above remarks, we can at least say that

3
mu + %’U > g™mn- (9)
On the other hand, since G/A € E3 and I3 = 3, we know that
u+v§g. (10)
Combining these inequalities, one easily deduces that v > 2. Put B =

Ca(A). If Az; C Ig(a) and Az; C Ig(«), then (8) implies that Bx; = Bx;.
Hence, (G : B) < 4. Thus G/B is abelian and since G € E4, we must
have B ¢ E1 U Zy. Now suppose (G : B) = t. Since u > %, in particular
u # 0. So pick any z; such that Az; C Ig(a). Then (8) now implies that
l(al, -1,B) > i. Hence, if t > 2, we obtain [(B) > %, which yields the
contradiction that B € 5, UE,. Thus ¢t = 1 and A C Z(G). It follows
immediately that A C Ig(«a), which completes the proof of the lemma.

Corollary 2.3. Let T be a normal, a-invariant subgroup of G properly
contained in H. Then T is abelian and T C Z(H).

PRoOOF : Immediate.

Lemma 2.4. [(H) > 1. H/Z(H) is an elementary abelian 2-group. H'
is cyclic of order 2, H/H' is elementary abelian and Z(H) is cyclic of order
2 or 4.

PROOF : Applying Corollary 2.3 to the subgroup H' of H, we see that
H' C Z(H). Thus H is nilpotent, and H = Hy x O, where Hy is a 2-group
and O has odd order. Suppose O is non-abelian : then /(O) < %, by The-
orem 3.2 of [5]. Thus, {(H) = I(H2)I(O) < % also, contradicting the fact
that [(H) > 1. Thus O is abelian. Now consider the group G/O. Since O
is abelian, G/O € E4 and I(G) < I(G/O) by Lemma 1.2. By minimality of
G, we conclude that O = 1. This proves that H is a 2-group.

Now if H' is not cyclic of order 2, it has a proper subgroup 7;. By Lemma
2.2, Ty is an abelian, a-invariant normal subgroup of G. But G/T) € E4
and [(G) < I(G/T1) which contradicts minimality of G.

Similarly, let T, = {h € H | h? € H'}. Then Tj is a G-normal, a-
invariant subgroup of H, not contained in Z(H). By Corollary 2.3, it must
coincide with H, which proves that H/H' is elementary abelian.



And finally, if Z(H) were not cyclic, it would have a proper subgroup T3
not containing H' and the group G /T3 would contradict minimality of G. So
Z(H) is cyclic and, since H/H' has exponent 2, Z(H ) must have order 2 or 4.

Lemma 2.5 (i) (G/H) < 2 (ii) I(H) = 2 or % and H is of type II in
Theorem 4.13 of [4].

W[

PROOF : (i) We know that I(G) < I(H)I(G/H) and that I(H) < 2, hence
I(G/H) > %. If (G/H) > 2 then, by Theorem 4.13 of [4], we must have
I(G/H) = 2 and (G/H)' = G'/H = C,. But then G’ would be a finite, non-
abelian 2-group with a commutator subgroup of index 2, which is well-known
to be impossible.

(i) Since [(G/H) < 2, the inequality I(G) < I(H)I(G/H) implies that
I(H) > . Now the fact that H is a 2-group with cyclic commutator sub-
group immediately implies that it has the quoted properties, using Theorem
4.13 of [4].

PROOF OF THEOREM 2.1 : Lemma 2.5(ii) suggests that we divide the
remainder of the proof into 2 cases.

Case I : I(H) = 3. By [4], H/Z(H) = Cy x C. By Lemma 2.4, H is
isomorphic to one of Dy, @ or the central product Qo Z = Do Z, where Dy
and @ are the dihedral and quaternion groups of order 8 and Z is cyclic of
order 4. We have a natural injection G/Cqs(H) — Aut(H), whose image is
contained in the subgroup C' = Cent(H), consisting of those maps which are
trivialon Z(H). If H = D4 or @, then C = Aut(H) = D4 or Sy respectively.
If H= Qo Z, then H has one quaternion and three dihedral subgroups, so
that C = CAut(H)(Z) >~ Aut(Q) = S4. But G/Cq(H) € E3, so we must
have H 2 Q or Qo Z and G/Cg(H) = S4. But Ce(H) C Z(G), by Lemma
2.2, so G/Z(@G) is isomorphic to a factor group of Si, hence isomorphic to
S4. From this one can show that either G' = A4 or G’ = G; (for a proof,
see [1]). If G' = A4 then G®) = 1, a contradiction. It remains to show
that if G' = G, then [(G) < %. Notice that the group G4 arises here. More
precisely, let Z(H) = < z > where 22 = 1. Then G’ is generated by elements
a, b, z with the same relations as in (3), and G is generated by G', Z(G) and
an element y which acts by conjugation on G/Z(G) like an involution in Sj.

Suppose [(G) > % and let @ be an automorphism for which /(«a, G) > %.
Then l(a*,G/Z) > g. But /(S4) = 2 and the only automorphisms of Sy in-
verting ten elements are those inner automorphisms induced by conjugation



with a transposition. Hence it must be the case that « inverts Z(G) elemen-
twise, I(a, G) = l(a*, G/Z(G)) = & and the generators a, b, z,y can be cho-
sen so that « inverts each of the ten elements 1,a,z%!, (bz)*!,y, ay, by, aby,
which lie in ten different cosets of Z(G). But now, the fact that « inverts
each of a,y and ay implies that [a,y] = 1. Similarly, the fact that « inverts

each of a, by, aby implies that [a, by] = 1. But then [a,b] = 1, a contradiction.

Case II : I(H) = g. By [4], H/Z(H) is elementary abelian of order 16.
H has many abelian subgroups of index 4; pick any one and call it A. Now
consider the argument in the proof of Lemma 2.2. The a-invariance of A
was not used to obtain u > 7. Normality of A in G was only used to obtain
equation (10). Our group A may not be normal in G, but since I(G/H) < %,
we can still replace equation (10) with the weaker inequality

u+v < 2_n (11)

3
Equation (9) still holds, so combining (9) and (11), one easily deduces that
u > {%. This, in turn, implies that (G : Cg(A)) < 12. But H C Ng(A) so
the order of the group Ng(A)/Cg(A) is divisible by 4. Hence,
(G:Cg(A)) <8and (G: Ng(A)) <2 and we have the subnormal sequence
Cg(A) < Ng(A) <t G. One sees that this implies that G(2) = H C Cg(A), a
contradiction, since A is not contained inside Z(H).
This eliminates Case II, and completes the proof of Theorem 2.1.

We now proceed immediately to the desired generalisation of this
result :

Theorem 2.6. For any n > 3, I, < £(3)"73.

PROOF : We proceed by induction on n. In Section 1, we showed that
I3 = %, and have just proven that [4 = %. So the theorem holds for n = 3, 4.
Suppose it holds for 3 < n < k and consider G € =, where £ > 4 . As
much of the argument from here on is simply a generalisation of that used

to prove Theorem 2.1, we simply outline the required steps :

Step 1 : The proof is by contradiction. Suppose there exists G € = such
that 1(G) > 3(3)¥ 3. Pick such a group of smallest possible order and
reserve the letter G for it. Also reserve a to denote a fixed choice of auto-
morphism of G such that I(e, G) = [(G). Put H = G*~2).



Step 2 : Lemma 2.2 generalizes to the following statement :

Suppose A is a normal, a-invariant subgroup of G such that G/A € Ei_1.
Then A is abelian, A C Z(G) and A C Ig(a).

This statement is proven by following the proof of Lemma 2.2. To show
A is abelian, one must invoke the induction hypothesis for £ — 1. Equation
(9) must be replaced by

m 1,3 k3
o> -2 12
mu—|—2'u>2(4) mn (12)

and, using the induction hypothesis for £ — 1, we can replace (10) by

L 3\ka
< =(= . 13
utv<s(3) (13)
From these inequalities, one gets u > n [1(3)*=*]. Putting B = C¢(4A), if
(G : B) = t then I(B) > L(3)¥=4. Since G € E, the sum of the derived
lengths of B and G/B must be at least k. Using the induction hypothesis
for £ — 1 again, one checks readily that this is only possible if ¢ = 1, which

proves the statement.

Step 3 : This step is new, but is suggested by the argument used to finish
with Case IT of Theorem 2.1. The idea is, even if we drop the assumptions,
in Step 2, that A is either normal in G or a-invariant, we can still say some-
thing provided A is contained in H. Indeed, we have

Lemma 2.7. Let A be any abelian subgroup of H. Then (G : Cg(A)) <
16(3)F°.

PROOF : Consider the argument used to prove the statement in Step 2 above.
The a-invariance of A was not used to obtain u > [$(2)*=*]. Normality of
A in G was used only to obtain equation (13). But since [(G/H) < (2)k=5,
by the induction hypothesis for k¥ — 2 (here is an illustration of why we need
to have dealt with k = 4 to start the induction) we can replace (13) with
the weaker inequality

1,3 -5
+v<=(= . 14

Combining (12) and (14) gives u > n [15(3)*~?], from which the conclusion
of the lemma follows.



This result will be used at the last step of the proof.
Step 4 : Corollary 2.3 follows verbatim.
Step § : Lemma 2.4 also generalizes verbatim, with the same proof.

Step 6 : Part (i) of Lemma 2.5 is true, but obviously useless, in the gen-
eral setting. Nevertheless, we can obtain part (ii) easily anyway when
k > 4. To see this, apply the induction hypothesis for £ — 2 again to
obtain [(G/H) < 1(3)*=5. Since I(G) < I(H)I(G/H), this already implies
that [(H) > %, which is all we need.

Step 7 : Now divide the remainder of the proof into 2 cases, according
to the possible values of I(H). If [(H) = 3 then proceed as before. The
fact that G/Cq(H) injects into Sy actually contradicts the assumption that
k> 4.

Ifi(H) = g then H/Z(H) is elementary abelian of order 16. By Lemma
2.4, H is isomorphic to one of Qo Q or DyoQ or Qo Qo Z =2 Qo Dyo Z,
where Z is cyclic of order 4. G/Cg(H) injects into a soluble subgroup of C' =
Cent(H). In the Appendix we prove that, for each of the three possiblilities
for H, every soluble subgroup of C has derived length at most 4. Hence the
same is true of G/Cq(H), Since Cg(H) C Z(G), it follows that GO =1,
so we are left with the case k = 5.

To finish the proof, we use Lemma 2.7. Pick any abelian subgroup of H
of index 4 and call it A. Let X = Coreg(Ng(A)) and consider the subnormal
sequence

XNCg(A) a4 X «G. (15)

Note that X/ X NCg(A) is a subgroup of Ng(A4)/Ca(A). Lemma 2.7 implies
that (G : Cg(A)) < 16. But H C Ng(A), so (G : Cg(A)) is a multiple of 4
and therefore (G : Ci(A)) < 12. Then either X = G, or (Ng(A4) : Ca(4)) =
4 and G/X is a subgroup of S3. In either case one sees, from (15), that it is
impossible to avoid the contradiction that G(®) = H C Cg(A).

This completes the proof of Theorem 2.6.

3. The value of 5

If, in Theorem 1.1, we put n = 6 and p = ¢ = 3, then we see that lg < i.
The main result of [7] states that if G is a group such that I(G) > 14—5, then
G is soluble. So we see that, not only is G soluble, but of derived length at
most 5. Because of Theorem 2.1, the only remaining question is whether or



not there is a group G of derived length 5 satisfying I(G) > +&. Theorem 2.6
only gives the bound /5 < 3%. As we shall prove, the answer to our question
is negative. In particular, this shows that Theorem 2.6 is nowhere near a
best-possible result.

Theorem 3.1. [5 < %.
For completeness, we state the immediate

Corollary 3.2. If G is a finite group satisfying I(G) > %, then G is
soluble and of derived length at most 4.

PrROOF OF THEOREM 3.1 : The outline of the proof is pretty much the
same as that of Theorem 2.1, but in some respects it simplifies and in others
it gets more complicated, so we have to be careful.

Again, the proof is by contradiction. So suppose there exists G € Zs
such that I(G) > 14—5. We pick such a G of smallest possible order and
henceforth, until the end of the proof, we reserve the letter G for this group.
We also reserve the letter a for a fixed choice of automorphism of G satisfying
la,G) > %. Finally, we put H = G®).

First, we can prove a weaker version of Lemma, 2.2 :

Lemma 3.2 Suppose A is a normal, abelian, a-invariant subgroup of G
such that G/A € E4. Then (G : Cg(A)) < 2.

PROOF : Proceed as in the proof of Lemma 2.2. Note we are assuming
this time that A is abelian. We must replace equations (9) and (10) by the
equations

m 4
L 1
mu+2fu>15mn (16)
and 5
u—i-US?n (17)

respectively. Combining these inequalities gives u > %n. Put B = Cg(A).
Then (G : B) < 12 < 7. Also, if (G : B) = t, then [(B) > £xt. Thus,
if t = 6, B is abelian and the derived length of G/B is at most 2, which
gives the contradiction that H = {1}. Thus ¢ < 5, which means G/B is
abelian and since G € Es, the derived length of B is at least 4. Therefore,
by Theorem 2.1, [(B) < % so, in particular, -2t < 2, which forces ¢ < 2.

> 120 8’
This is the desired conclusion.
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If, in Lemma 3.2, we remove the assumptions that A is normal and o-
invariant, we can still say something, as in Lemma 2.7 :

Lemma 3.3. Let A be any abelian subgroup of H. Then (G : Cg(A)) < 30.

PROOF : Repeat the argument for Lemma 3.2. Equation (16) still holds.
Since A may not be normal in G, equation (17) will not hold, but since
I(G/H) < 3 we can replace it with the weaker inequality

u+ov < (18)

ST

From inequalities (16) and (18) we deduce that u > g5, which, as before,
immediately implies that (G : Cg(A4)) < 30.

Note that the next result is nearly as strong as Lemmas 2.4 and 2.5 - the
only difference is we can’t say this time whether Z(H) is cyclic. This is
what will make the remainder of the proof more complicated than that of
Theorem 2.1 :

Lemma 3.4. [(H) = % or g or % and H is of type II in Theorem 4.13 of [4].

PROOF : Since G/H € Ej, I(G/H) < 3 and since I(G) < I(H)I(G/H),
we must have [(H) > %. Thus, in order to prove the lemma, it suffices, by
Theorem 4.13 of [4], to show that H is a 2-group and H' is cyclic of order 2.

To show H is a 2-group, apply Lemma 3.2 with A = H'. Since
(G: Cg(H")) <2, in particular H C Cg(H'), i.e.. H' C Z(H). Thus H is
nilpotent, and one repeats the argument in the proof of Lemma 2.4 to show
H is a 2-group.

So it remains to show H’ is cyclic of order 2. It must be elementary
abelian, as otherwise G/Qq(H') € E5 and I(G) < I(G/Q1(H')), which con-
tradicts minimality of G. Next, since Ig(a) C Cg(a?), (G : C(a?)) < L,
whence (G : Cg(a?)) < 3. Therefore, (G : Coreg(Cg(a?))) < 6. From
this we infer that H' C Cg(a?), so a has order at most 2 on H' (of course,
the same is true of H : this will be used later). Now since H' is elementary
abelian and (G : Cg(H')) < 2, H' has an odd number of maximal subgroups
which are normal in G. Since « acts as a permutation of these of order at
most 2, we conclude that there is a maximal subgroup N of H' which is
both normal in G and a-invariant. Then G/N € E5 and I(G) < [(G/N), so
by minimality of G we must have N = {1}. This shows that H' has order 2
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and completes the proof of the lemma.

As in Section 2, we now split the remainder of the proof of Theorem 3.1
into three cases, as suggested by Lemma 3.4.

Case I : I(H) = 3. By [4], H/Z(H) = Cy x C5. Note that Z(H) N Z(G)
is contained in Ig(a), hence this group must be cyclic, as otherwise any
subgroup T of Z(H) N Z(G) not containing H' would satisfy G/T € =5
and I(G/T) > (@), thus contradicting minimality of G. In particular, if
Z(H) C Z(G), then Z(H) is cyclic. Suppose this is the case. We have a nat-
ural injection G/Cq(H) — Aut(H). But Aut(H) is soluble of length at most
3, because Cent(H) is abelian (since Z(H) is cyclic) and Aut(H)/Cent(H)
is isomorphic to a subgroup of S3. Thus G/C¢(H) is soluble of length at
most 3, yielding the contradiction that G®) = H C Cg(H).

We may thus suppose that (G : Cq(Z(H))) = 2. Let A be a maximal
subgroup of H containing Z(H). If we could choose A to be normal in G
then, since o has order at most 2 on H, we could also choose A to be a-
invariant, whence A would satisfy the hypotheses of Lemma 3.2. Therefore,
we’d have (G : Cg(A)) < 2, in particular H C Cg(A), a contradiction.
Therefore, A cannot be chosen to be normal in G, so fixing any choice
of A, we have (G : Ng(A4)) = 3. We can still apply Lemma 3.3 to A
and obtain (G : Cg(A)) < 30. Therefore, Ng(A)/Cg(A) has order less
than 10, and since H C Ng(A), the factor group must have even order,
hence order at most 8. Let X = Coreg(Ng(A)). We have a subnormal
sequence X N Cg(A4) < X < G. Clearly, G/X = S3. If Ng(A)/Cs(A) is
abelian, so is X/X N Cg(A) and once again we get the contradiction that
G®) = H C Cg(A). We conclude that Ng(A)/Cg(A) is non-abelian of
order 8.

Now, Ng(A)NCqe(Z(H)) is a subgroup of N¢(A) of index 2. Note that if
g € Ng(A)NCe(Z(H)) then g? € Cg(A). This means Ng(A)/Cg(A) cannot
be the quaternion group, hence must be Dy4. Since D4 has 5 involutions, it
follows that there exists g € Ng(A)\Cg(Z(H)) such that g € Cg(A).

Next, we claim there exists a € A\Z(H) such that o> € H'. Evi-
dently, it suffices to prove this for any conjugate of A. Choose any = €
Cq(Z(H))\Ng(A). Pick any a € A\Z(H) and let (a)l; = b. Since z €
Cq(Z(H)), we get a®> = b? which implies that (ab=!)? € H'. Since ab™! ¢
Z(H), this establishes our claim.

Now choose any a € A\Z(H) such that a? € H'. Also choose g €
Ng(A)\CG(Z(H)) such that g> € Cg(A). We have (a)l, = za for some
2z € Z(H). Since g ¢ < H,Cg(A) >, z ¢ H'. But since a®> € H', we have
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22 = 1. And since (a)I;> = a, a simple computation shows that (2)I, = z.
This implies that z € Z(G), contradicting the fact that Z(H) N Z(G) must
be cyclic.

So with this final contradiction, we have eliminated Case I

Case II : I(H) = g. By [4], H/Z(H) is elementary abelian of order 16, gen-
erated by a1, as, z1,x2 subject to the relations [a1, as] = [z1,22] = [a1,22] =
[a2, 1] = 1, [a1,21] = [ag,z2] = z where < z > = H' is cyclic of order 2.
From these relations, one quickly checks that there are precisely 15 abelian
subgroups of H of index 4 containing Z(H). Since « acts on these as a
permutation of order at most 2, at least one of them is a-invariant. So fix a
choice of abelian subgroup A of H of index 4, containing Z(H), such that
Aa = A. The a-invariance of A will be used at one point in the argument
to follow.

By Lemma 3.3, (G : Cg(A)) < 30. Since A is self-centralising in H, and
H C Ng(A), we have (Ng(A) : Cg(A)) divisible by 4. Thus, (G : Cg(4)) =
4n for some n < 7. To simplify notation, put X = Coreg(Ng(A)) again.
Then we have a natural injection X/X N Cg(A) - Ng(A)/Cq(A), and a
subnormal sequence as in (15). First, suppose (G : Cg(A4)) < 12. Then
(G : X) <6, and it is easy to see from (15) that it is impossible to avoid
the contradiction that G®) = H C Cg(A).

Next, suppose (G : Cg(A)) = 16. From (15), the only way to avoid the
contradiction that H C Cg(A) is to assume that (G : Ng(A)) = 4 and that
G/X = S;. One may check that [(Sy) = I(id, S4) = 5. It is at this point
that we use a-invariance of A. Since A is a-invariant, so is X, so we can
apply Lemma 1.2 to obtain I(G) < I(X)I(G/X) = 3I(X). But H C X, so
I(X) <I(H) = 3. Therefore, [(G) < 3 x £ < 75, a contradiction.

Next, suppose (G : Cg(A)) = 4p, where p = 5 or 7. In either case,
either Cz(A) < G - which immediately gives the usual contradiction that
H C Cg(A) - or (G : Ng(A)) =p, X/X NCg(A) is abelian and G/X is
isomorphic to a soluble subgroup of \S;,, of order divisible by p. It is a fact
(perhaps well-known) that this implies G/ X is metabelian, so once again we
have the contradiction, using (15), that H C Cg(A). For the convenience
of the reader, we give a proof of this ‘fact’ :

Fact 3.5. Let G be a soluble subgroup of Sy, where p is a prime, of order
divisible by p. Then G is a primitive permutation group. It is a semi-direct
product of C, by Cy for some integer q dividing p — 1. In particular, G is
metabelian.
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PROOF OF FACT : The reader is referred to Chapter 10 of [8]. A priori
G, as a subgroup of Sy, is either intransitive, imprimitive or primitive. In
the first two cases, p cannot divide | G |. So G is primitive. By Theorem
10.5.21 of [8], G has a unique minimal normal, non-identity subgroup H of
order p. By Theorem 10.3.5 of [8], H is its’ own centraliser in Sy, hence G
is an extension of H by a subgroup of Aut(H) = C,_;. Since (p,p—1) =1,
this extension is a semi-direct product, which completes the proof of our fact.

In order to eliminate Case II, it remains to deal with the possibility that
(G : Cg(A)) = 24. If Ng(A) < G, we immediately obtain, from (15), the
contradiction that H C Cg(A4). So (G : Ng(A)) =3 or 6.

First, suppose (G : Ng(A)) = 6. Since X/X N Cg(A) is now abelian,
G/X must be isomorphic to a soluble subgroup of Sg of derived length at
least 3. Let P be any such subgroup of Sg. If we can show that [(P) <
£/2 = 22, then we can use the same arugment as above (when we had
(G : Cg(A)) = 16) to obtain I(G) < 7. We now do this.

The possibilities for P are discussed in the last paragraph of the Ap-
pendix. If P is intransitive then P 2 S, or Sy x Co. But I(Sy) = 1(S4x Cs) =
% < %, as desired.

If P is transitive, then P is isomorphic to a subgroup of either
(Cy x Cy x C3) x S3 or (S3 x S3) x Cy. The former group is isomorphic
to Sy x Cy (it has two subgroups isomorphic to Sy, one of which is the
intersection with Ag, whereas the other contains odd permutations), and
its’ only non-metabelian subgroups are isomorphic to S4 or S4 x Cy, which
have already been dealt with above. Furthermore, one may check that every
proper subgroup of (S3 x S3) x Co is metabelian. It thus remains to show
that if P 2 (S5 x S3) % Cs, then I(P) < 22.

P has a characteristic elementary abelian subgroup £ of order 9 and
Cp(E) = E. Now suppose there exists 7 € Aut(P) such that I(r, P) > 22.
We apply an argument similar to that used in the proofs of Lemmas 2.2 and
3.2. Without going into too many details, let u be the number of cosets of E
which consist entirely of elements of Ip(7) and v the number of other cosets
which intersect Ip(7). Then, since [(P/E) = I(D4) = 3, we have the pair of
inequalities

32
> (=—=)72 1
9u+3v_(75)7 (19)
and
u+v <6. (20)

Combining these inequalities, we get u > 3. But, by (8), this contradicts
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the fact that E is self-centralising in P.

Finally, it remains to deal with the possibility that (G : Ng(A)) = 3.
Since A has 3 maximal subgroups containing Z(H), at least one of these
is a-invariant. Pick one such and call it B. Then Cg(B) D Cg(A) and
(G : Cg(B)) divides 12. Let Y = Coreg(Ng(B)). By considering the
subnormal sequence

YNCg(B)<Y <G, (21)

one quickly sees that the only way to avoid the contradiction that H C
Cg(B) is to have (G : Cg(B)) = 12 and (G : Ng(B)) = 6. Thus, as above,
G/Y must be a soluble subgroup of Sg of derived length at least 3, and
satisfying [(G/Y) > % As we have just shown, this is impossible.

Case III : This is very easy to deal with using the same types of argu-
ments. By [4], H/Z(H) is elementary abelian of order 26. H has many
abelian subgroups of index 8, containing Z(H). Let A be any one of these.
By Lemma 3.3, (G : Cg(A)) < 30. But A is self-centralising in H and
H C Ng(A), so (G : Cz(A)) < 24 and is a multiple of 8. Now let B be
any subgroup of A of index 4 containing Z(H). Since (H : Cy(B)) =2, it
follows that (Cg(B) : Cg(A)) is divisible by 4. Therefore, (G : Cg(B)) <
6. Letting X = Coreg(Ng(B)), and considering the subnormal sequence
X NCg(B) <X <G, we see that it is impossible to avoid the contradiction
that G®) = H C Cg(B).
This eliminates Case III, and completes the proof of Theorem 3.1.

Remark 3.6. Before finishing up, let’s clarify what questions we have
left open. Obviously, one would eventually like to obtain the precise value
of [, for all n > 4. This may be very difficult, so one may confine one’s
attention to the case n = 5, where I suspect it is not too hard to actually
construct a group G € E5 with I(G) ‘close’ to %.

It is pretty clear that the arguments we have presented can be pushed
to improve upon both Theorems 2.6 and 3.1, though it seems likely that
some fresh ideas will be required to obtain significantly better results. For
example, our whole strategy for obtaining a bound on /(G), when G € E,,
was based on investigating the group G("~2) - the other terms of the lower
central series were completely ignored. In the cases we considered, this group
always satisfied [(G"~2)) > %, so we could use the classification in [4] to
obtain vital information about it. If we wish to utilise the solubility of G
more comprehensively, it seems likely this will require a generalisation of the
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classification in [4]. Perhaps one can say something about groups G € E,
satisfying [(G) > lp41 ?

Appendix

In this appendix, we will describe the sturcture of the group C' of central
automorphisms of H, when H is one of the groups Qo Q, QoD4 or QoQo Z,
and Z is cyclic of order 4. In particular, we will show that in all cases, every
soluble subgroup of C' has derived length at most 4.

CASEI: H=QoQ.

H is extraspecial so C is the full automorphism group of H. Its’ struc-
ture is given by Winter’s Theorem [9]. More explicitly, C is an extension
of an elementary abelian normal subgroup E of order 16 by an orthogonal
group O of order 72. The group FE stabilises each of the six C4 subgroups of
H, whereas O is an extension of S3 x S3 by Cy, where S3 x S3 stabilises each
quaternion group and permutes the three C4 subgroups which it contains
as in the group G4, while Cs interchanges the two quaternion groups. In
particular, O is soluble of length 3, and hence C is soluble of length 4.

CAsE Il : H= D,oQ.

Once again, H is extraspecial, so we may refer to [9]. This time C is an
extension of an elementary abelian subgeoup F of order 16 by an orthogo-
nal group O = S5. More explicitly, the group E stabilises each of the five
Klein-4 subgroups of H, whereas the group O permutes them as Ss. Now
every soluble subgroup of Ss has derived length at most 3 - indeed, this is
true of every soluble subgroup of Sg, as will be proven in CASE III below.
Hence, every soluble subgroup of C has derived length at most 4, as required.

CASEIII: HX QoQoZ=DsoQo Z.
In this case, C = C Aut H)(Z). H is not extraspecial, so we shall obtain

the structure of C from scratch. We claim that C is an extension of an
elementary abelian group E of order 16 by Se.

Note that C must contain each of the groups found in CASES I and II.

We remark first that the group @ o Z has one quaternion subgroup and 3
dihedral subgroups; also @) o @@ has 2 quaternion subgroups, each of which
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is the centraliser of the other; finally, Dy o @ has 5 elementary abelian sub-
groups of order 4, no two of which commute; hence D4 o () has 10 dihedral
subgroups, and the centraliser of each is a quaternion group.

Now the group H has 30 subgroups K of order 4 such that K N Z = H’,
and 15 of them are cyclic while the other 15 are Klein-4 groups. Given such
a subgroup K, of the 30 subgroups of order 4 whose intersection with Z
is H', 14 commute with K (including K itself) and 16 do not. Moreover,
of the latter, 8 are cyclic and 8 elementary abelian - this holds whether K
itself is cyclic or elementary abelian. Now H has 140 subgroups L of order
8 such that L N Z = H', and using the facts above we see that 20 of them
are quaternion groups, 60 are dihedral and the other 60 are abelian. Also,
the centraliser of each non-abelian L is isomorphic to ) o Z. Finally, there
are 16 extrasepcial subgroups Hy of order 32 such that H = Hy o Z, and
the above remarks about the subgroups L, together with the properties of
Qo Z,Qo@ and Dyo @, can be used to see that 10 of these subgroups H
are isomorphic to @ o ), while 6 are isomorphic to D4 o Q. The latter 6
subgroups are clearly permuted transitively by C. On the other hand, the
stabiliser of each is isomorphic to Aut(D, o Q) hence, by CASE II above, an
extension of an elementary abelian E of order 16 by Ss.
Thus C' is an extension of F by Sg, as claimed.

It now remains to prove that every soluble subgroup of C has derived length
at most 4, and for this it suffices to show that every soluble subgroup of Sg
has derived length at most 3. Let P be a soluble subgroup of Sg which is
not metabelian.

If P is intransitive then, using Theorems 10.1.8 and 10.5.21 of [8], we
quickly deduce that P =2 S4 or Sy x Cs or a transitive subgroup of S5. In
the first two cases, it is immediate that P(3) = 1. In the third case, since
P is transitive in S5, its’ order must be divisible by 5. But then Fact 3.5
implies that P is metabelian, a contradiction.

If P is transitive, the P cannot be primitive, by Theorem 10.5.21 of [8].
Therefore, P is imprimitive. By Theorem 10.5.5 of [8], P must be isomorphic
to a subgroup of either (Cy X Cy x C3) X S3 or (S3 X S3) X Cy. But each of
these groups is soluble of length 3, so we’re done.
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