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Abstract

We verify and significantly strengthen a conjecture of Jay Zimmer-
man about the fraction of elements of a finite group which may be sent
to their squares under an automorphism of the group.

Mathematics Subject Classification (1991): 20D45.

1. Introduction. All groups considered are finite. For a group G and
a € Aut(G), we set

S(G,a) ={g € G| ga = ¢°}. (1)

We then set s(G, ) = 5(Z) and define the function s(G) by

s(G@) = maX, Aut(c) s(G, a). (2)

A word on notation : whenever it is clear from the context to which group G
we are referring, we will write simply S(«a) for S(G, ) and s(«) for s(G, ).

The function s(G) was investigated by Zimmerman in [8], who proved the
following result (his notation was slightly different from ours) :

Theorem A. Suppose @ € Aut(G) with s(a) > 3. Then s(a) = s(G)
and one of the following holds :

I. G is abelian of odd order and s(G) = 1.



1I. G splits over an abelian, odd-order subgroup of index 2, coinciding
with S(a) and s(G) = 3.

III. Z(Q) is abelian of odd order, G/Z(G) = Ay and G' N Z(G) = {1}.
In this case, s(G) = 5.

Zimmerman conjectured that if s(G) > I then G is soluble. It turns out
that the conjecture is true, but that one can prove much stronger results.
We prove two theorems. One of these is the complete classification of those
groups G of even order such that s(G) > %, plus a partial classification
of those for which s(G) = %. The number % arises naturally, as follows.
Clearly, an even order group satisfies s(G) = [ if G has an odd order direct
factor O of index 2 with s(O) = 2[. In [2], Liebeck proved that if G is non-
abelian of odd order, then s(G) < %, and he classified all odd order groups

where equality holds. Our result is as following :
Theorem B (i) Let G be a group of even order such that s(G) > %. Let

a € Aut(G) be such that s(a) > é. If s(a) = s(G) then one of the following
holds :

L. 5(G) = % G is of type II in Theorem A.
II. 5(G) = % G is of type III in Theorem A.

II. s(G) = i. G has a normal, odd order subgroup of index 4 which co-
incides with S(c).

IV. s(G) = 25—4. G is a split extension of a group of type II by Cs.

V. s(G) = &%. G is a central extension of an odd order subgroup Z C S(c)
by a group H of order 48. H has a homocyclic, normal Sylow-2 subgroup,
which is acted upon fixed-point freely by the elements of H of order 3.

VL s(G) = 2. G is a central extension of an odd order subgroup Z C S(cv)

by A4 X A4.

VIL. s(G) = %. G has an odd order subgroup of indexr 2, which is iso-
morphic to one of the groups of Theorems 4.5 and 4.10 of [2].



If s(a) # s(G), then G is of type I above, has order divisible by 3, and
s(@) = ¢.

(ii) If G is one of the groups of types I through VI above, then G does
indeed possess an automorphism o such that s(a) = s(G) > 3.

In Section 3 we will prove part (i) of this theorem. In Section 4, we
will prove part (ii) by giving explicit examples of automorphisms « with the
desired properties.

We remark that it seems to be a technically more difficult task to decide
which groups of type VII possess an automorphism « with s(a) = %. We
leave the completion of this task for the future. Note that the full classifi-
cation of even order groups with s(G) = % is what’s required, together with
our result and those of Liebeck [2], to finally obtain the complete analogues
of the results of [3] and [4], which give similar classifications of those groups
which admit an automorphism sending a large fraction of the group elements
to their inverses.

Note, in particular, that all the groups of Theorem B are soluble. This
implies Zimmerman’s conjecture. It remains to find the smallest possible
real number s such that s(G) > s implies G is soluble. Zimmerman noted
that s(As,a) = %, where « is conjugation by a transposition in S5, thus
giving a lower bound. We prove

Theorem C. If s(G) > % then G is soluble.

This result is the correct analogue of Corollary 3.2 of [5], where it was
proven that a group possessing an automorphism which sends more than
%ths of the group elements to their inverses is soluble, and that % is best-
possible. Our proof of Theorem C ultimately relies on the classification of
the finite simple groups, which seems to be in the nature of the problem,
but is the simplest proof we know of in the sense that we have attempted
to minimize our dependence on the classification.

The paper is organised as follows. We prove Theorem C first, in the next
section. This result will then be used at one point in the proof of Theorem

B, which is given in section 3.

Notation : If x € G, I, denotes the inner automorphism of G given by



I;(g) = z7'gz. If o € Aut(G) and N is a normal, a-invariant subgroup of
G, we shall denote by o* the induced automorphism of G/N. It will always
be clear from the context to which normal subgroup «* refers. We denote
by s'(G/N,a*) the fraction of cosets of N in G which intersect S(G, ).
Evidently, we have the inequalities

s(G,a) < §'(G/N,a*) < s(G/N,a*). (3)

If z € S(G, @) and H is a subgroup of G, we make the following
definitions :

H*={he€ H|hzx € S(G,a)}. (4)
H,=H*NH" . (5)

One easily checks the following facts :

IfH <G, then | H® |=|H* ' |. (6)
H, = S(G,a) N Cy(z) and is a subgroup of H. (7)
If H is abelian, then H? is a subgroup of H. (8)

2. Proof of Theorem C. The following simple result is, so to speak,
the key which unlocks the proof. As far as we know, it does not appear in
any previous papers on this topic.

Lemma 2.1. Let G be a group, o € Aut(G) and A an abelian subgroup
of G. Write a coset decomposition G = | i~ Ag; where g; € S(c) whenever
Agi N S(a) # ¢. For each such i, put A% := A* for simplicity. Dually, for
each a € A, put

ne=|{i : acA}|. (9)
Then
@) |8 |=n+) na (10)
arl
(ii) For each a € A,
(@ : Cala)) < (Gn: A). (11)



(iii) If G has trivial soluble radical and pg is the highest prime divisor of
| a|, then

Pa+1<(G:Cgla)) (12)
(i) If | A| > -1, there must exist a non-identity element a of A such that

s(a)?

(G Cola)) < AL =1

ST4ls(@) = 1 (13)

Proof. Part (i) is a tautology. Next, note that a € A® & a(a) =
agiag; *. Letting C = Cg(a), if a € A'N AJ a simple computation shows
that Cg; = Cg;. Since A is abelian, it follows that (G : C) < ‘&4 which
proves (ii).

Now suppose G has trivial soluble radical and (G : C) < p,. Let X =
Coreg(C). Then (C : X) is prime to p,, so al® /P« € X and Z(X) is a
non-trivial, soluble normal subgroup of G. This contradiction proves (iii).

Finally, suppose (G : Cg(a)) > k for each non-identity element a of A.

By (ii), ng < (G,;A) for each non-identity element a € A. Since n; < % (a

priori), (10) implies the inequality

s(a) < ! +|A| -1
TlAl EALY

(14)

whenever | A | s(a) > 1. This can easily be transformed into (13), which
proves (iv).

The idea for the proof of Theorem C is to consider a minimal counterex-
ample G. Henceforth, we reserve the letter G to designate this group. Also
fix a choice of an automorphism « of G such that s(a) > %. The proof is
now accomplished by establishing, in succession, the three claims below.

Claim 2.2. G has trivial soluble radical. It is an extension of a non-
abelian, simple normal subgroup S by a subgroup of Out(S). S has order
2137557 where i <10, j <5, k<2 and 1 < 1.

Our verification of this claim will consist of some elementary arguments,
which will also be used to verify Claim 2.3, but will ultimately rely on the
following fact from the literature :



Fact 2.2.1 : There is no non-abelian simple group of any of the follow-
ing orders : 13n (n < 22), 2™.7.13, 11n (n < 35), 22.3".11 or 2".11.m (m <
16).

Obviously, there is no known easy way to prove this fact - one must use
something from the classification of the finite simple groups.

Claim 2.3. G is, in fact, a simple group, and isomorphic to one of As, Ag,
L2(7) and L2(8).

Proving this will rely on some knowledge of the finite simple groups, specif-
ically on the following facts (notation is taken from the ATLAS [1]):

Fact 2.3.1 : The non-abelian simple groups of order 2!315%7! where i <
10,j <5, k<2andl <1lare: A, (5 <n <10), Lo(7), L2(8), Us(3), Us(2),
L3(4), J2 and 56(2)-

Fact 2.3.2 : (i) Let S be one of the above groups, other than As, Asg,
Ly(7), Lo(8) and L3(4). Then S has a self-centralizing abelian subgroup of
order at least 12 and, for any non-identity element x of S, (S : Cs(z)) > 40.

(ii) The Sylow-3 subgroups of order 9 in L3(4) are the centralizers in
L3(4) of each of their non-identity elements.

Fact 2.3.3 : 0ut(A5) = Out(L2(7)) = CQ. Out(As) = Cz X C2 and
Out(L2(8)) = C3. The automorphism group of any non-abelian, simple
group is complete.

The reader is invited to check these facts using the ATLAS or GAP etc.
The statement about the completeness of the automorphism group of a non-
abelian simple group is elementary (see [6], p.452, for example).

. 7 17 1 19
Claim 2.4. s(As) = g5, s(A4s) = 355, s(L2(7)) = 57 and s(L2(8)) = ;-

To prove this last claim, which evidently gives the contradiction imply-
ing our theorem, requires some explicit and tedious computations which we

will not show here. Details may be obtained from the author if desired.

Proof of Claim 2.2. By minimality of G, eq. (3) immediately
implies that G has trivial soluble radical. Now we find it convenient to split



the remainder of the proof into several steps :

Step 1 : w(G) C {2,3,5,7,11,13}. | G | is not divisible by 112 or 132.

Proof. Let p be the greatest prime divisor of | G |. Let A be a
maximal abelian p-subgroup of G, of order p", say. Equations (12) and (13)
imply the inequality

60(p™ — 1)

1< —-

PHLS S 60

which can only be satisfied if (a) p < 7, n arbitrary (b) p = 11 or 13 and
n = 1. This proves Step 1.

(15)

Step 2 : 13 & ©(S).

P r oo f. Suppose the contrary. Let A be a maximal abelian 13-
subgroup of G. By Step 1, | A | = 13. Let C = Cg(A4). From (13), we
obtain
(G:0) < % < 24, so that, in fact, (G : C) < 22, by Step 1.

Suppose | C | is divisible by the prime p # 13. Let z be any element of
C of order p and put B = < A,z >. Applying Lemma 2.1 to the abelian

subgroup B of G, (10) and (11) give the inequality

7 < 1 p—1 n 12p
60 " 13p  13p(p+1) 13p(G:C)’

(16)

Since (G : C) > 14, this inequality is only satisfiable for p = 2 and

(G:C) =14. Tt follows that either (a) C has order 13 and (G : C) < 22 or
(b) 7(C) C {2,13} and (G : C) = 14. In either case, Fact 2.2.1 implies that
G has no non-abelian simple subgroup, a contradiction.

Step 3 : 11 &€ w(G).

Proof. The argument is the same as in Step 2, so we don’t give full
details. Suppose the contrary and let A be a maximal abelian 11-subgroup
of G. Then | A | = 11. Putting C = C(A) and using (13), we see that
(G:0) < % < 36. Suppose | C | is divisible by the prime p # 11.
Then the relevant inequality obtained from (10) and (11) is only satisfiable
if(a)p=3and (G:C)=120r (b) p=2and (G :C) < 16.



Hence, either (a) 7(C) C {3,11} and (G : C) = 12 or (b) n(C) C {2,11}
and (G:C)<16or(c) | C|=11and (G:C) < 35. In all three cases, Fact
2.2.1 implies that G has no non-abelian, simple subgroups, a contradiction.

Step 4 : (i) G contains no subgroup of the form S x T, where both S and T
are non-abelian simple groups.

(#i) Hence, G is an extension of a normal, non-abelian simple subgroup
S by a subgroup of Out(S), where w(S) C {2,3,5,7}.

Proof. (i) Suppose the contrary. By Burnside’s theorem, S x T
contains an abelian subgroup A x B isomorphic to C, x Cy, for some pair of
odd primes p and g, both at least 5, such that C, = AC Sand C; = B C T.
We write A x B as the disjoint union of the four subsets U, V., W, X given
by U=1x1,V=A\{1} x1, W =1 x B\{1}, X = A\{1} x B\{1}. Let
(€ AxB. If( €U,then (G:Cg(¢))=1. If ( € V, then
(G:Cg(€)) > (S:Cs(¢)) > p+ 1, the latter inequality following from the
fact that, since S is simple, it possesses no conjugacy class of prime order.
Similarly, if ¢ € W, then (G : Cg(¢)) > ¢+ 1. Finally, if ( € X, then
(G :Ca({)) 2 (S XT: Coxr(Q)) 2 (p+1)(¢+1). By (10) and (11), it
follows that the maximum possible value for s(G, @) is

1, p=1 g=1l  (p-1g-1)
pqg  pep+1)  pelg+1) pelp+1)(g+1)

(17)

One may check that this can never be greater than %, which proves (i).

(ii) Now let S be a characteristically simple, normal subgroup of G. By
(i), S is simple. Then S x Cg(S) is a subgroup of G. Since G has no non-
trivial, soluble normal subgroups, either C¢(.S) is trivial or insoluble. But
in the latter case, C(S) has a non-abelian simple subgroup, contradicting
(i). Hence Cg(S) is trivial, which proves that G is an extension of S by a
subgroup of Out(S). By Steps 2 and 3, n(S) C {2,3,5,7}.

Henceforth, we reserve the letter S for the unique normal, non-abelian,
simple subgroup of G. The next step will complete the proof of Claim 2.2 :

Step 5 : S has order 2'3/5%7" where i <10, j <5, k<2 and | < 1.

Proof. Letp € {2,3,5,7} and let A, be a maximal abelian p-subgroup
of S, of order p"», say. By (13), there is a non-identity element = € A, such



that (S : Cs(2)) < (G : Ca(z)) < B27=L Gince S is simple, it is therefore

7p"P —60
a subgroup of Sy, where f(p) = [%]. Hence,
ordp(| §[) < ordy(| Agp) [)- (18)

But it is well-known (see, for example, [7], p.94) that
1
ordy (| §1) < gyl +1). (19

Then one may verify that both of these inequalities can only be satisfied if
ord,(| S'|) <£10,5,2,1 according as p = 2, 3,5, 7 respectively, which is what
we wanted to show. We illustrate the case p = 2 here :

Suppose ordg|S| > 10. Then (19) implies that ng > 4, so ng > 5 since
ng is an integer. Now, for any fixed prime p, the function

60(p* — 1
fole) = =)

is strictly decreasing in the domain z > 0, as can be verified by computing
its’ derivative. Hence, if ny > 5, then f(2) < f(5) < 12. Hence, by (18),

orda(| S [) <ordo(] A1 |) =7,

contradicting the assumption that ords|S| > 10.

Proof of Claim 23. S is isomorphic to one of the simple
groups listed in Fact 2.3.1. If A is an abelian subgroup of S of order at least
12, then (13) implies the existence of a non-identity element a of A such
that (S : Cs(a)) < (G : Cg(a)) < (;2)%)2_—61()) < 28. By Fact 2.3.2, S must be
isomorphic to one of As, Ag, Lo(7), Lo(8) and L3(4).

If S = L3(4), let A be a Sylow-3 subgroup of S. A is abelian of order 9
so, by (13), there exists a non-identity element a € A such that

(S: Cs(a)) < (G : Cala) < Si5=5) = 160. But Cs(a) = 4, by Fact 2.3.2,

so that (S : Cs(a)) = ";%' = 20080 > 160, a contradiction.

This proves that S = A5, Ag, La(7) or Lo(8). If Out(S) is a 2-group
then, since S <1 G, it is obvious that S(G, a) = S(S,«). Thus s(S) > s(G)
and, by minimality of G, we must have S = G. If Out(S) & C3 we get the
same conclusion, though we need to use the fact that Aut(S) is complete to
deduce that S(G,a) = S(S, a).




Therefore, by Fact 2.3.3, we have established Claim 2.3, and thus com-
pleted the proof of Theorem C.

3. Proof of Theorem B, part (i). Again, the proof is by induction
on the group order. Trivially, the result holds when | G | = 2, so suppose it
holds for groups of even order < 2k and let G be a group of order 2k such
that s(G) > ¢. We fix a choice of @ € Aut(G) such that s(a) > ;. Now we
divide the proof into two main cases.

CASE I : GG possesses a non-trivial, normal, a-invariant subgroup of even
index.

Fix a choice of such a subgroup and call it N. Since s(G/N,a*) > %,
we may apply the induction hypothesis, and one of six possibilities occurs.

A. G/N is of type I. Then G possesses a normal, a-invariant subgroup
M of index 2. Since S(@) C M, we have s(M, ) > %. By the results of [2],
either s(M,a) = % or M = S(a). Thus, G is either of type I or VII as in
the theorem.

B. G/N is of type III. Then G possesses a normal, a-invariant subgroup
M of index 4. Since S(a) C M, we have s(M,a) > 2. By Theorem A,
M = S(«) and G is of type IIL

C. G/N is of type V. Then G possesses a normal, a-invariant subgroup
M with G/M of order 48 and s(G/M,a*) = . Since s(e) > §, at least 8
cosets of M meet S(a), but the number of such cosets is odd a priori, hence
equals 9. On average, they meet S(a) in at least g | M | elements. One
easily deduces (see (6), (7) and (8)) that G is of type V.

D. G/N is of type VII. Then G possesses a normal, a-invariant subgroup
M of index 2, where M /N has odd order and s(M/N) = £. Since S(a) C M
we have s(M, @) > %, which immediately implies that G is of type VII.

E. G/N is of type II. Then G possesses a normal, a-invariant subgroup
M such that G/M = A4. We proceed to deal with this case in several steps.

Step 1 : The number of cosets of M which meet S(a) must be 5.
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A priori, this number is either 3 or 5, so suppose it were 3, say S(a) C
MUMzUMz .

If M is not abelian of odd order, then | M! | < 1 | M |, by Theorem
A. Since s(a) > ¢, this forces | M® | > 2 | M |, and | M, | > 5 | M |.
Since M, C M, the only way to avoid a contradiction is if s(a) = % and
s(M,a) = % Thus M is of type IT and G possesses a normal subgroup
Z C S(a) such that z € Cg(Z) and G/Z is an extension of Cy by Aj.
Hence G/Z = Cy x A4 and one easily deduces that G is of type IV, which
contradicts the above conclusion that s(G) = .

Hence M is abelian of odd order and contained in S(«). Since M® is now
a subgroup of M and s(G) > %, we are forced to conclude that M* = M.
In particular, z € Cg(M) < G, implying that M = Z(G). One now easily
deduces the contradiction that 5 cosets of M meet S(«). This completes
Step 1.

Now let us write a coset decomposition
G=MUMzUMz *UMyUMy 'UMz U ... UMz, (20)

where {z,y} C S(a) CMUMz UMz 'UMyUMy . The idea is to look
at the groups A = < M,z > and B = < M,y >. We have the inequality

s(G,a) =s(A,a) + s(B,a) — s(M,a) > —. (21)

(=N

Step 2 : Suppose M (and hence A and B) has odd order.

If M C S() then s(A,@) > 1 so, by the results of [2], A C S(a). The
same applies to B, and one easily deduces that G is of type II.

If M ¢ S(c) then [2] implies that s(A, &) and s(B, a) are both < 1. But
this contradicts (21).

Step 3 : Suppose M (and hence A and B) has even order.

For (21) to be satisfied we must have, without loss of generality, that
s(4,a) > % Applying the induction hypothesis, this implies that s(A, a) =
E.

Suppose s(A4, a) = % Thus A possesses an odd-order subgroup O C S(«)
of index 2. Let Z = M N O. Evidently, Z C Z(G) and since G/Z is an
extension of Cy by A4, we easily conclude that G is of type IV.

11



Suppose s(4, @) = 2. Then Z(A) has odd order and A/Z(A) = Ay. Put
Z = Z(A)N M. One easily sees that Z C Z(G). If Z = Z(A), then G/Z has
order 48, being an extension of Cy x C3 by A4. One easily deduces that G is
of type V. If Z # Z(A), then M/Z = A4 and G/Z is an extension of A4 by
Ay, which must be a direct product. One easily deduces that G is of type VL.

F. G/N is of type IV or VI. Similar arguments to those presented al-
ready lead one to the conclusion that G is of the same type as G/N. We
shall not bother to go into further detail. To finish the proof of Theorem C,
there remains to consider

CASE IT : G possesses no non-trivial, normal, a-invariant subgroup of even
index.

By Theorem C, G is soluble. Thus, we must conclude that

(i) G possesses a characteristic, elementary abelian 2-subgroup F with
G/FE of odd order,

(ii) no proper subgroup of E is G-characteristic.

Since F is a 2-group, E; = {1} for any z € S(«). Since E is abelian,
E7 is a subgroup of E. Since s(G) > %, there is some z € S(a) such that
| E* | > ¢ | E|. By (6) this implies that \/[E| > ¢ | E |. Hence,
| E | =2,4,8,16 or 32. At this stage, one looks at the natural map from
G/E — Aut(E).

If | E | =2, then E is obviously a direct factor of G and G is of type I
or VII as in the theorem.

E cannot have order 8 or 32, because condition (ii) cannot be satisfied.

If | E | = 4, then for (ii) to be satisfied, G must possess a central, odd-
order subgroup N with G/N = A,4. Since we are in CASE II, N = {1} and
G is minimal of type II. Similarly, if | £ | = 16, one sees that G must be
minimal of type V.

We have thereby completed the proof of Theorem B, part ().
4. Proof of Theorem B, part (ii) : Explicit automorphisms. We
conclude by giving, for each group G of types I through VI in Theorem B,

a description of an automorphism a of G such that s(a) = s(G) > ¢.

TYPE I : Let A be the odd order abelian subgroup of index 2 and = any

12



element of order 2 in G. Then the map
alr) =z, ale)=d’VacA,

extends to an automorphism of G and satisfies s(e) = s(G) = 1.

TYPE II : Let 8 be the automorphism of Z(G) which squares every ele-
ment. Let v be the automorphism of G/Z(G) = A4 induced by conjugation
by a transposition in Sy;. It was proven in [8] that there exists an automor-
phism « of G inducing B and 7, and that s(a) = s(G) = 3.

TYPE IIT : Let A be the odd order normal subgroup of index 4, and let
X be any complement of order 4. The map

alz)=zVzeX, afla)=ad’VacA,

extends to an automorphism of G and satisfies s(c) = s(G) = 1.
TYPE IV : The group G/Z(G) is a split extension of A4 by Cs. Since
Inn(A4) = Sy, we see easily that either G/Z(G) =2 A4 x Cy or G/Z(G) =2 S4.

In the first case, G = H x Cy where H is a group of Type II. Then the
map « = a1 X id, where ¢ is an automorphism of H with s(H,ay) =
an automorphism of G satisfying s(a) = s(G) = 2.

In the second case, the Universal Coefficients Theorem implies that the
extension must be split, hence a direct product, i.e.: G = Z(G) x K, where
K =~ S,. Let 8 be conjugation by a transposition in Ss. Then s(S4, 8) = 2
and the map a: G — G given by

5 .
127 18

a(zk) = 2*B(k)
is an automorphism of G with s(a) = s(G) =

TYPE V : Let 8 be the automorphism of Z which squares every element.
We shall construct an automorphism ~ of G/Z = H such that

(i) s(H,7) = 15
(ii) there exists an automorphism « of G inducing 8 and 7, such that
s(G,a) = s(G) = .

Write H = E x C where FE is elementary abelian of order 16, C' is of order

13



3, and C acts fixed-point freely on E. Since ords|GL(4,F2)| = 2, there is
no loss of generality in presenting H as follows :

F=<a>x<b>x<c>x<d>,

C=<e>,
elae=b e lee=d

e be=ab e 'de = cd.

Then one may check that the map

extends to an automorphism of H for which s(y) = 3.

The proof of (ii) employs the Filling Lemma in exactly the same way as
in [8]. We refer to that paper for details.

TYPE VI : It is easy (if a little tedious) to check that an automorphism
v of Ay x A4 squares 25 elements if and only if v = ; X 72, where each ~; is
an automorphism of one of the factors which squares 5 elements, and hence
is induced by conjugation by an involution in Sy.

Pick any such automorphism v, and let 8 the automorphism of Z which
squares every element. Then, by the same argument as in [8], there exists

an automorphism of G inducing 8 and v, and clearly s(a) = s(G) = 2.

Acknowledgement. I wish to thank the referee for very helpful
suggestions regarding the presentation of the paper.
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