We will prove the following famous theorem of Fermat. The proof is a
classic example of the infinite descent method.

Theorem 1 There exists no triple (x,y,z) of positive integers such that
ot oyt =2 (1)

An immediate corollary is the case n = 4 of Fermat’s Last Theorem, the
only case for which Fermat is known to have actually written down a com-
plete proof :

Corollary 2 There exists no triple (x,y,z) of positive integers such that
ot oyt =2t (2)
PROOF OF COROLLARY : If we substitute w := 22, then (2) reduces to (1).

The first step in the proof of Theorem 1 is a result that goes back to Pythago-
ras. You shouldn’t have any difficulty understanding why.

Proposition 3 Let (z,y, z) be a triple of relatively prime positive integers.
Then

2’ +y? =22 (3)
if and only if there ezxists a pair (a,b) of relatively prime positive integers
such that either

z=a>—-b%, y=2ab, z=a®+0b (4)

or
T = 2ab, y=a®—b% z=a’+ b’ (5)

NOTE : A triple (z,y,2) of positive integers satisfying (3) is called a
Pythagorean triple. This is because, according to Pythagoras’ theorem, these
triples are in 1-1 correspondence with all right-angled triangles whose side
lengths are integers.

PROOF OF PROPOSITION : If the triple (z,y, z) satisfies either (4) or (5),
then a direct and easy computation shows that (3) is also satisfied. Now
suppose that z,y, z are relatively prime and that (3) is satisfied.



If z and y were both odd, then we’d have z? = y? = 1 (mod 4), imply-

ing 2?2 = 2 (mod 4), which is impossible. Hence at least one of z or y is
even. In fact, exactly one of them is even, since if both were, then so would
be z, contradicting the assumption that x,y, z are relatively prime.

Case I: y is even and z is odd.

Then z is odd, so both z + z and z — = are even. We can rewrite (3)
as

(z+z)(z —z) = y> (6)

Let d = ged(z + z,z — z). We claim that d = 2. Since both terms are even,
we know that d > 2 and d is even. Now d|z + z and d|z — z so d|2z and
d|2z. Hence % divides both z and z. By (3), it also divides y. That is, %
is a common divisor of z,y, z. Since these numbers are relatively prime, we
must have g =1, as required.

Now from (6) and the fact that gcd(z + z,z — ) = 2, the Fundamental
Theorem of Arithmetic immediately implies that there exist relatively prime

positive integers a, b such that
y = 2ab, z+z = 2d?, z—xz = 2b?,

from which (4) follows.
Case II : y is odd and z is even.

Just repeat the above argument, interchanging the roles of  and y. One
deduces that equations of the form (5) are satisfied. This completes the
proof of the proposition.

PROOF OF THEOREM 1 (FERMAT) : Let (z,y,z) be a hypothetical so-
lution to (1), with d = ged(z,y,2). Then (z/d,y/d, z/d?) is also a solution
in relatively prime integers, so it suffices to prove that (1) has no solution
in relatively prime integers. The proof is by the method of infinite descent.
We assume that a solution (z,y, z) in relatively prime integers exists, and
thereby construct another solution (z,%,2'), also in relatively prime inte-
gers, with 2/ < z. Since amongst all solutions, there must exist one with z
minimal, we obtain a contradiction.



So let (z,y,z) be a relatively prime triple which satisfies (1). Then the
triple (z2,42, z) is relatively prime and satisfies (3). Assuming, without loss
of generality, that x is odd and y even, Proposition 3 implies that there exist
relatively prime integres a, b such that

2 =a>-0%, y?=2ab, z=2da’+0b% (7)

Claim : b is even. For suppose b odd. Since z is odd, this would mean a is
even, and hence that z2 = —1 (mod 4), which is impossible.

Now (z,b,a) is a Pythagorean triple with b even, so by Proposition 3
again, there exist relatively prime integers c, d such that

c=c—d® b=2d, a=c+d. (8)
Substituting (8) into (7) we get
y? = 2ab = 4cd(? + d?). (9)

But ¢ and d are relatively prime, hence both are relatively prime to ¢ + d?.
Since, by (9), the product of all three is a perfect square, it follows that each
is a perfect square : that is, there exist relatively prime integers e, f, g such
that

c=e?, d=f?, e +d? = g2

But then the triple (e, f, g) also satisfies (1). Finally, by (8) and (7) we have
that

g<g*=a<a’ <z,

which completes the proof.



