Extra lecture notes: Day 15

The extra stuff today was a short introduction to posets.

DEFINITION: Let S be any set. A relation \leq on S is said to be a partial ordering if

- (i) \leq is reflexive, i.e.: $a \leq a \ \forall \ a \in S$,
- (ii) \leq is anti-symmetric, i.e.: if $a \leq b$ and $b \leq a$ then a = b,
- (iii) \leq is transitive, i.e.: if $a \leq b$ and $b \leq c$ then $a \leq c$.

DEFINITION: A set S together with a partial ordering \leq on it is called a poset. Notation: (S, \leq) .

DEFINITION: Two elements a, b of a poset (S, \leq) are said to be *comparable* if either $a \leq b$ or $b \leq a$.

A subset T of S is said to be *totally ordered* by \leq if every pair of elements from T are comparable.

A totally ordered subset of a poset is called a *chain*.

A subset $T \leq S$ such that no pair of elements from T are comparable is called an antichain.

Example 0: The ordinary \leq relation on any subset of the real numbers is a total ordering. On the other hand, there is no 'natural' total ordering of the complex numbers.

EXAMPLE 1: Let X be any set and take $S=2^X$, the collection of subsets of X. Define the relation \leq on S by

$$A < B \text{ if } A \subseteq B.$$

Then (S, \leq) is a poset. It is called the *Boolean algebra* on the set X.

Example 2: Let S be the set of positive integers. Define the relation \leq by

$$n_1 \leq n_2 \text{ if } n_1 \mid n_2.$$

If we let X be a set which contains infinitely many copies of each prime number, then the Fundamental Theorem of Arithmetic implies that (S, \leq) can be identified with that part of the Boolean algebra on X consisting of

the finite subsets of X.

As preparation for the next result, note that if $X = \{1, ..., n\}$, then for any k with $0 \le k \le n$, the subsets of X of size k form an antichain in 2^X of size $\binom{n}{k}$.

DEFINITION: Let $f: \mathbf{Z} \to \mathbf{R}$ be a sequence of real numbers. The sequence is said to be *unimodal* if there exists an integer k_0 such that

- (i) $f(k_0)$ is a maximum for f,
- (ii) f(k) is an increasing function of k for $k \leq k_0$,
- (iii) f(k) is a decreasing function of k for $k \geq k_0$.

Proposition Let n be a fixed positive integer, and consider the sequence f(k) given by

$$f(k) := \left\{ egin{array}{l} \left(egin{array}{c} n \\ k \end{array}
ight), & \emph{if } 0 \leq k \leq n, \\ 0, & \emph{otherwise.} \end{array}
ight.$$

Then f(k) is unimodal with a maximum at $k = \lfloor n/2 \rfloor$.

PROOF: Using the formula for the binomial coefficients we have that, for k < n,

$$\left(\begin{array}{c} n \\ k+1 \end{array}\right) = \frac{n-k}{k+1} \left(\begin{array}{c} n \\ k \end{array}\right).$$

Hence $f(k+1) \ge f(k)$ if and only if $n-k \ge k+1 \Leftrightarrow k \le (n-1)/2 \Leftrightarrow k < \lfloor n/2 \rfloor$, v.s.v.

Theorem (Sperner 1929) Let n be a positive integer and $X = \{1, ..., n\}$. The largest size of an antichain in 2^X is $\binom{n}{\lfloor n/2 \rfloor}$.

PROOF: Not given. See [1], Chapter 6.

Theorem (Dilworth) Let (S, \leq) be any finite poset (i.e.: the set S is finite). Then the maximum size of an antichain in S equals the minimum number of pairwise disjoint chains needed to cover all the elements of S.

PROOF: Not given. See [1], Chapter 6.

Corollary (Erdös) Let n be a positive integer. Then in any reordering of the integers $1, 2, ..., n^2 + 1$, there exists either an increasing or a decreasing subsequence of length n + 1.

PROOF : Let $S=\{1,2,...,n^2+1\}$ and let π be any permutation of S. Define a relation \leq_{π} on S by

$$i \leq_{\pi} j \text{ if } i \leq j \text{ and } \pi(i) \leq \pi(j).$$

One easily checks that

- (i) \leq_{π} is a partial ordering on S,
- (ii) a chain in (S, \leq_{π}) corresponds to an increasing subsequence in the reordering π ,
- (iii) an antichain in (S, \leq_{π}) corresponds to a decreasing subsequence in the reordering π .

By (iii), if there exists no decreasing subsequence of length n+1, then there exists no antichain of size n+1 in (S, \leq_{π}) . By Dilworth's Theorem, this implies that S can be covered by at most n pairwise disjoint chains. But S has $n^2 + 1$ elements, so at least one of these chains must have size greater than n. By (ii), this would imply that the reordering π contained an increasing subsequence of length n+1.

REFERENCE

[1] J.H. van Lint and R.M. Wilson, A Course in Combinatorics, Cambridge University Press, 1992.