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F.1 1003 factorises as 17x59 so, by the Chinese Remainder Theorem, there’s
a solution to the congruence modulo 1003 if and only if there is a solution
modulo both 17 and 59. In general, there is a solution mod p if and only
if the discriminant of the quadratic, b — 4ac = 112 —4.3-9 = 13 is a

quadratic residue mod p. So we need to know whether 13 is a quadratic
residue modulo 17 and 59. Using quadratic reciprocity we compute that

(- () (3)- ('
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Thus the congruence has no solution.

F.2 Theorem 6 in my lecture notes from 2004.

F.3 It’s either rational or a quadratic irrational. This is a classical the-
orem of Lagrange. See section 7.7 of NZM for an explanation.

F.4 One proof is Theorem 25 of my 2004 lecture notes. Consult the hand-
outs from the book of Stewart and Tall for the proof using Minkowski’s

theorem.

F.4 (i) Let {a,b,c} be a reduced positive-definite form of discriminant
-44. Since b — 4ac = —44 is even, we must have b even. Since the form is

reduced we have
—d
0<a< ?:>(J,E{].,2,3}.

If a = 1 then, since b € (—a,a], the only possibility is b = 0. This gives
¢ =11, so we have the form {1,0,11}.



If a = 2 then b € {0,2}, in which case ¢ = (b? + 44)/8 is an integer when
b= 2. We get the form {2,2,6}.

If a = 3 then b € {0,£2}. We’ll get an integer-valued ¢ if b = £2, thus
giving us two further reduced forms, namely {3, +2,4}.

We conclude that there are four reduced forms of discriminant -44, namely
2?2+ 1192, 222 +2zy +6y% and 32 £ 2zy + 492

(ii) Denote the given form as f(z,y) = {113,42,4}. We apply the following
sequence of transformations to reduce the form :

S : {113,42,4} > {4,—42,113},
TS : {4,-42,113} — {4,-2,3},
S :{4,-2,3} — {3,2,4}.

Hence f is equivalent to the reduced form 3z2 + 2zy + 4y%. To work out the
variable substitution which accomplishes this transformation, we compute

0 -1 1 5 0 -1
5aQ 5 _
(0 -1 0 -1\ (-1 0
“\1 5 1 0 o 5 -1 )°
Hence the desired variable substitution is

f(=z,5z —y) = 322 + 2y + 49>

F.6 See lecture notes.

F.7 (i) For Re(s) > 1, the following representation is valid :

() =TI (1_ i>1.

p ps

See Proposition 21 in the 2004 lecture notes for an outline of the proof.
(ii) Theorem 27 in the 2004 lecture notes.



F.8 (i) W(k,m) is the smallest positive integer n for which any m-coloring
of the set {1,...,n} must yield a monochromatic k-term AP.
(ii) We consider a random m-coloring of {1, ...,n} and show that, if

k-1

n < /2(k — 1)ym" T (1)

then there is a positive probability that there is no monochromatic k-AP.

k—1
The probability of any k-AP being monochromatic is (%) . The number

of k-AP:s in {1,...,n} can be estimated as follows : any k-AP is determined
by its first term and common difference. If the first term is z, then the
common difference can be no more than 7=7. Thus the number of k-AP:s

1
is at most
1 n
k-1 =

We could evaluate the sum exactly, but for our purposes it is enough to
check that the sum is at most %nQ. Then the number of k-AP:s is at most

n2

20k — 1)

By a simple union bound, it follows that the probability of their being some
monochromatic k-AP is at most

n2

2(k — 1)mk-1"

We want this probability to be strictly less than one, and this is obviously
the case if and only if (1) holds. Q.E.D.



