Solutionsto Exam 18-12-10

Q.1 Three squares is not enough, because a sum of three sugares ca
be congruent to 7 (mod 8). Now see Theorem 10.2 in the lecitesnor
Theorem 7.3 in the handout from Stewart and Tall.

Q.21f a,b € Z andz := a + b\/2, then define
2 i=a—bV/2, N(z):=z22"=a* - 20"

Let R := Z[V2] = {a + bv2 : a,b € Z}. For anyz,, 2, € R, itis easily
checked that

(2122)" = 2725
and hence that
N(leg) = N(Zl)N(ZQ)

From this we can deduce the following algebraic identitya,ib, ¢, d € Z,
then

(a® — 2b%)(c* — 2d*) = (ac + 2bd)* — 2(ad + bc)?. (1)
This is what is meant by being able tmultiply’ integer solutions to the
equation

w2 — 2% =1. (2)
In particular, taking: = ¢, b = d in (1) we find that if(a, b) is any solution
to (2) then(a? + 202, 2ab) is another solution. Now ifi, b are positive
integers, then clearly
min{a® + 2b%, 2ab} > max{a, b}.
Hence, starting from any solution whatsoever to (2) in pasiintegers,
iteration of the map
(a,b) — (a® + 2b?, 2ab)

produces an infinity of solutions. Since, for examgle,2) is a solution to
(2), this proves that (2) has infinitely many integer solnsio

Q.3 (i) Theorem 12.4 in the lecture notes.
(if) Theorem 11.7 in the lecture notes.

Q.4 The presumtive solutions would be given by the usual quaxdfait-
mula
3+v32—-4-9-11

T = 20) = (18)7![3 + v/—387] (mod1237).
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Hence solutions exist if and only if

—387 .
1237 )

Sincel237 = 1 (mod4), we first have

387\ [ -1 387\ [ 387
1237 ) \1237) \1237) \1237 /)"

Next, since387 = 32 - 43, we have

387\ [/ 3 \’[/ 43\ [ 43
1237 ) \ 1237 1237/ \1237)°

Sincel237 = 1 (mod4), quadratic reciprocity implies that

43\ (1237
1237)  \ 43 /-

Sincel237 = 28 - 43 + 33, it follows that

() ()

Since33 = 1 (mod4), Jacobi reciprocity implies that

() -(5)- ()

Next, since33 = 1 (mod8), one has

()= (&) (@)= (&)

Finally, Jacobi reciprocity yields

()-()-()--

Hence, the original congruence has no solution.

Q.5(i) 74 x(n) is the number of unorderddtuples{ay, ..., a; } of elements
of A which satisfya; + - - - + a, = n. We say thatd is anasymptotic basis
if, for some positive integef, one has 4 ,(n) > 0 for all n > 0. The least
suchh is then called th¢exact) order of the asymptotic basis.

(ii) See Theorem 17.6 in the lecture notes.

Q.6 A cannot be an asymptotic basis of order 1 sidtd) < 1. Now it
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remains to show that every sufficiently largec N can be written as a sum
of two elements ofA. Sinced(A) > 1/2, one has for alh > 0 that

|[AN{1,....,n} > cn,
for some fixed: > 1/2. Now fix such am, and let
Ay =An{l,...,n}, Ay:={n—a:a€ A}

On the one handA,| = |As| > ¢n, SO|A;| + |A2| > 2cn. On the other
hand,A; U A, C {0,1,...,n}, SO|A; U Ay| < n + 1. This implies that
A; N A must be non-empty. Let; € A; N Ay. Thena; € A and there
existsay, € A such thath — as = a4, in other wordsn = a; + ay. Hence
n € 2A, as required.

Q.7 (i) See the handout from Diestel's book. The Regularity Lemma is
stated as Lemma 7.2.1.

(if) Theorem 1.2 in the supplementary lecture notes for week 49.

(iii) The result follows immediately from Theorem 1.3 in the s@opéntary
lecture notes for week 49.

Q.8 This is a special case ¢lado’s regularity theorem which states that
a homogeneous linear equation

L:ar1+--+ayx, =0, a; €7,

is irregular if and only if the following condition holds :
(*) For every non-empty subsétC {1,...,n}, onehasy ,_;a; # 0.

Here | prove the sufficiency of the irregularity condition),(*vhich is all
we need to solve the problem at hand. Saléte an equation for which (*)
is satisfied. Lep be a prime which does not divide any of the subset-sums
Y ics @i Then there exists @ — 1)-coloringx : Z — {1, ...,p — 1} which
avoids monochromatic solutions th Namely, everyr € Z can be written
uniquely asc = p*=x, wherez, is not divisible byp. Then there is a unique
x1 € {1,...,p — 1} such thatry = z; (modp). We definey(z) = x;.

Itis easy to check that condition (*) guarantees the abseht®nochro-
matic solutions taC.

Note that, for the equation + y = 5z, the coefficients are; = a; = 1,
az = —b, and so the set of subset sums of coefficien{ js-5, 2, —4, —3}.
So the smallest prime which works in the construction absge=+ 7, so
we can color the integers with at most 6 colors and avoid mioraatic
solutions tor + y = 5z.



REMARK : The reader who is also interested in a proof of the necessity
of Rado’s condition can check, for example, the followingrses :

1. http://www.math.uga.edwsdyall/REU/rado.pdf
2. The bookRamsey Theory, by Graham, Rothschild and Spencer.



