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Definition 1.1. A functionf : N → C is said to bemultiplicativeif

f(mn) = f(m)f(n) whenever GCD(m,n) = 1. (1.1)

Example 1.2. The Eulerφ-function is multiplicative. This follows immediately from
the formula (see Proposition 8.1 in the main lecture notes)

φ(n)

n
=
∏

p|n

(

1 −
1

p

)

. (1.2)

Example 1.3.For eachk ∈ N0, let σk : N → N be the function defined by

σk(n) :=
∑

d|n

dk, (1.3)

where the sum is taken over all positive divisorsd of n, includingd = 1 andd = n. We
setd(n) := σ0(n) andσ(n) := σ1(n). The functiond(n) is called thedivisor function
andσ(n) is called thesum of divisors function. It is easy to check (using FTA) that the
functionsσk are multiplicative for everyk ∈ N0.

Example 1.4. Another important example of a multiplicative function is the so-called
Möbius functionµ defined by

µ(n) =







1, if n = 1,
0, if p2|n for some primep,
(−1)k, if n =

∏k
i=1

pi, where thepi are distinct primes.
(1.4)

There are important relationships between the functionsφ, σk, µ and the Riemannζ-
function. For our present purposes, we need the following two relationships - more
may be given later.

Lemma 1.5. For anyn ∈ N one has

φ(n)

n
=
∑

d|n

µ(d)

d
. (1.5)

Proof. This is an immediate consequence of the definition ofµ, FTA and the formula
(1.2). �

Lemma 1.6. If Re(s) > 1 thenζ(s) 6= 0 and

1

ζ(s)
=

∞
∑

n=1

µ(n)

ns
. (1.6)

Proof. This is an immediate consequence of the definition ofµ, FTA and the Euler
product forζ - see Theorem 5.3 in the main lecture notes. �

We now use these facts to prove the following very nice theorem (see Remark 8.3 in
the main lecture notes).
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Theorem 1.7.For n ∈ N one has
n
∑

m=1

φ(m) =

(

3

π2

)

n2 + O(n log n). (1.7)

Proof. By Lemma 1.5, one has

n
∑

m=1

φ(m) =
n
∑

m=1

m ·





∑

d|m

µ(d)

d



 . (1.8)

Setr := m/d and interchange the order of summation. One gets that

n
∑

m=1

φ(m) =
n
∑

d=1

µ(d) ·





⌊n/d⌋
∑

r=1

r



 . (1.9)

Now
⌊n/d⌋
∑

r=1

r =
1

2
⌊n/d⌋ (⌊n/d⌋ + 1) =

n2

2d2
+ O

(n

d

)

. (1.10)

Hence
n
∑

m=1

φ(m) =
n2

2

n
∑

d=1

µ(d)

d2
+ O

(

n
n
∑

d=1

µ(d)

d

)

. (1.11)

We can bound the second term on the right as follows :
∣

∣

∣

∣

∣

n
∑

d=1

µ(d)

d

∣

∣

∣

∣

∣

≤
n
∑

d=1

∣

∣

∣

∣

µ(d)

d

∣

∣

∣

∣

≤
n
∑

d=1

1

d
= log n + O(1). (1.12)

Hence the last term in (1.11) isO(n log n). Furthermore, by Lemma 1.6, asn → ∞,
n
∑

d=1

µ(d)

d2
→

∞
∑

d=1

µ(d)

d2
=

1

ζ(2)
=

6

π2
. (1.13)

Regarding the speed of convergence, we have the estimate
∣

∣

∣

∣

∣

∞
∑

d=n+1

µ(d)

d2

∣

∣

∣

∣

∣

≤
∞
∑

d=n+1

∣

∣

∣

∣

µ(d)

d2

∣

∣

∣

∣

≤
∞
∑

d=n+1

1

d2
= O(1/n). (1.14)

Substituting (1.12), (1.13) and (1.14) into (1.11) yields (1.7). �

I wish to say a few more words about multiplicative functions. We start with a couple
of useful properties :

Proposition 1.8. (i) Let f, g be two multiplicative functions. Iff(n) = g(n) whenever
n is a prime power, thenf(n) = g(n) for everyn ∈ N.
(ii) If f is a multiplicative function, then the function

g(n) :=
∑

d|n

f(d) (1.15)

is also multiplicative.
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The proof of these facts is simple and left to the reader. Hereare two important
applications :

Proposition 1.9. (i) For everyn ∈ N,
∑

d|n

φ(d) = n. (1.16)

(ii) Let ν : N → C be given by

ν(n) :=
∑

d|n

µ(d). (1.17)

Thenν(1) = 1 andν(n) = 0 for all n > 1.

Proof. For a proof of the first identity, see Exercise 4, Homework 2 from 2008. The
proof of the second identity is left as an exercise. In both cases one uses part (i) of
Proposition 1.8. �

The relationship between identities (1.5) and (1.16) is a special case of what is called
theMöbius Inversion Formula:

Theorem 1.10. (Möbius Inversion Formula)Let f : N → C be any function and let
the functiong : N → C be defined by (1.15). Then

f(n) =
∑

d|n

µ(d) g
(n

d

)

. (1.18)

Proof. By the definition ofg, we can expand the right-hand side of (1.18) as a double
sum

∑

d|n

µ(d)
∑

e|n

d

f(e). (1.19)

Upon interchanging the order of summation we can rewrite this as
∑

e|n

f(e)
∑

d|n

e

µ(d). (1.20)

The inner sum is justν(n/e). Thus (1.18) follows from Proposition 1.9(ii). �


