
Homework 1 (due Friday, Nov. 16)

There are 9 problems below, but Q.7 is quite long and counts astwo prob-
lems. Hence 10 problems. A total of at least 8 correct solutions gives 5
bonus points on the exam. Problems marked with a * are considered more
difficult and these count double. So, for example, if you solve 4 non-starred
problems, including Q.7, plus one starred problem, then youhave solved 7
problems. Clear ?? :)

Q.1 (i) Complete the induction step of the proof of Theorem 3.4 in the
notes, i.e.: the proof that

a1x1 + · · · + anxn = a0 (1)

has a solution if and only if GCD(a1, ..., an) dividesa0.
(ii) Find any solution of the equation

49x + 63y + 85z = 1,

and write down a formula for the general solution.

Q.2 Leta1, ..., an be positive integers with GCD(a1, ..., an) = 1. LetG(a1, ..., an)
denote theirFrobenius number, i.e.: the largest positive integera0 such that
(1) above has no solution in non-negative integersx1, ..., xn.

(i) Prove thatG(a1, ..., an) < ∞ always.
(ii) Prove thatG(a1, a2) = (a1 − 1)(a2 − 1) − 1.

Q.3 If (x, y, z) is a Pythagorean triple, prove thatxyz is divisible by 60.

Q.4 A k-term arithmetic progression is ak-tuple(a1, ..., ak) of distinct in-
tegers such that the differencesai − ai−1 are all equal, fori = 2, ..., k.

(i) Prove that there are infinitely many primitive1 3-term arithmetic pro-
gressions each of whose terms is a perfect square.

*(ii) Prove that it is impossible to find a 4-term arithmetic progression
consisting entirely of perfect squares.

Q.5 Let (R, +, ·) be a commutative ring. A functiond : R → Z+ is said to
beEuclidean if the following three properties are satisfied :

(i) d(a) = 0 ⇔ a = 0.
(ii) For all a, b 6= 0, d(a) ≤ d(ab).
(iii) For all a, b 6= 0, there existq, r ∈ R such thata = qb + r and either

r = 0 or d(r) < d(b).

1i.e.: GCD(a1, a2, a3) = 1.
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Now letR = Z[
√
−2]. Prove that the function

d(z) = |z|2, i.e.: d(x + y
√
−2) = x2 + 2y2,

is a Euclidean function onR.
(HINT : The hard part is to verify property (iii). First do this whenb is

a positive integer, using numerically least remainders (see the statement of
Theorem 12.4 in the lecture notes)).

Remark : An integral domain equipped with a Euclidean function is called
a Euclidean ring. As I have said on multiple occasions in class, it can
be shown that a Euclidean ring is a principal ideal domain andsatisfies a
unique factorisation property. We may discuss this in classlater. This is
one way of proving that one has unique factorisation inZ[

√
−2], which we

used in Theorem 4.2.

Q.6 Let A1 = (a1,n)∞n=1, A2 = (a2,n)∞n=1, · · · ,Ak = (ak,n)∞n=1 be a family
of sequences of positive integers. We say that the family{A1, ...,Ak} is
complementary if every positive integer appears exactly once and in exactly
one of the sequences.

(i) Now let α, β be positive real numbers. Prove that the sequences
([nα]]∞n=1 and([nβ])∞n=1 are complementary if and only ifα andβ are both
irrational and satisfy

1

α
+

1

β
= 1.

*(ii) Prove that it is impossible to find three positive real numbers α, β, γ
such that the sequences([nα]), ([nβ]) and([nγ]) are complementary.

Q.7 (i) A sequence(an)∞n=1 of real numbers is said to besubadditive if,
for everym,n ∈ N, am+n ≤ am + an. Let (an)∞n=1 be a subadditive se-
quence of non-negative integers. Prove thatlimn→∞ an/n exists and is a
non-negative real number.
(ii) Forn ∈ N, let f(n) be the largest size of a subset of{1, ..., n} contain-
ing no three-term arithmetic progressions. A famous theorem of Roth (see
Supplementary Lecture Notes for Week 50) states thatlimn→∞ f(n)/n = 0.
Without using this, prove thatlimn→∞ f(n)/n actually exists at least.
(iii) Let L be any linear Diophantine equation, say

L : a1x1 + · · · + anxn = a0, ai ∈ Z.

Let f(n) be the largest size of a subset of{1, ..., n} which contains no non-
trivial solutions toL . In general, it is not known whetherlimn→∞ f(n)/n
exists. Prove, however, thatlim infn→∞ f(n)/n > 0 whenever the equation
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is variant, .i.e.: whenever eithera0 6= 0 or
∑n

i=1
ai 6= 0.

(iv), (v) With notation as in part(iii), compute (with proof)limn→∞ f(n)/n
for each of the following variant equations :

(a)2x = y,
(b) 3x = y + z.

Q.8 For n ∈ N defineτ(n) to be the number of positive integers which
dividen, including both1 andn itself. Prove that, for anyǫ > 0,

lim
n→∞

τ(n)

nǫ
= 0.

(You can get partial credit for proving the result just forǫ = 1).

*Q.9 Let

S2,3 := {n ∈ Z : n = 3x − 2y for somex, y ∈ N0}.
Prove any non-trivial statement about this set.


