Homework 1 (due Friday, Nov. 16)

There are 9 problems below, but Q.7 is quite long and counts as two problems. Hence 10 problems. A total of at least 8 correct solutions gives 5 bonus points on the exam. Problems marked with a * are considered more difficult and these count double. So, for example, if you solve 4 non-starred problems, including Q.7, plus one starred problem, then you have solved 7 problems. Clear ?? :)

Q.1 (i) Complete the induction step of the proof of Theorem 3.4 in the notes, i.e.: the proof that

$$a_1 x_1 + \dots + a_n x_n = a_0 \tag{1}$$

has a solution if and only if $GCD(a_1, ..., a_n)$ divides a_0 . (ii) Find any solution of the equation

$$49x + 63y + 85z = 1,$$

and write down a formula for the general solution.

Q.2 Let $a_1, ..., a_n$ be positive integers with $GCD(a_1, ..., a_n) = 1$. Let $G(a_1, ..., a_n)$ denote their *Frobenius number*, i.e.: the largest positive integer a_0 such that (1) above has no solution in non-negative integers $x_1, ..., x_n$.

(i) Prove that $G(a_1, ..., a_n) < \infty$ always.

(ii) Prove that $G(a_1, a_2) = (a_1 - 1)(a_2 - 1) - 1$.

Q.3 If (x, y, z) is a Pythagorean triple, prove that xyz is divisible by 60.

Q.4 A *k*-term arithmetic progression is a *k*-tuple $(a_1, ..., a_k)$ of distinct integers such that the differences $a_i - a_{i-1}$ are all equal, for i = 2, ..., k.

(i) Prove that there are infinitely many primitive¹ 3-term arithmetic progressions each of whose terms is a perfect square.

*(ii) Prove that it is impossible to find a 4-term arithmetic progression consisting entirely of perfect squares.

Q.5 Let $(R, +, \cdot)$ be a commutative ring. A function $d : R \to \mathbb{Z}_+$ is said to be *Euclidean* if the following three properties are satisfied :

(i) $d(a) = 0 \Leftrightarrow a = 0$.

(ii) For all $a, b \neq 0, d(a) \leq d(ab)$.

(iii) For all $a, b \neq 0$, there exist $q, r \in R$ such that a = qb + r and either r = 0 or d(r) < d(b).

¹i.e.: $GCD(a_1, a_2, a_3) = 1$.

Now let $R = \mathbb{Z}[\sqrt{-2}]$. Prove that the function

$$d(z) = |z|^2$$
, i.e.: $d(x + y\sqrt{-2}) = x^2 + 2y^2$,

is a Euclidean function on R.

(HINT : The hard part is to verify property (iii). First do this when b is a positive integer, using numerically least remainders (see the statement of Theorem 12.4 in the lecture notes)).

Remark : An integral domain equipped with a Euclidean function is called a *Euclidean ring*. As I have said on multiple occasions in class, it can be shown that a Euclidean ring is a principal ideal domain and satisfies a unique factorisation property. We may discuss this in class later. This is one way of proving that one has unique factorisation in $\mathbb{Z}[\sqrt{-2}]$, which we used in Theorem 4.2.

Q.6 Let $\mathscr{A}_1 = (a_{1,n})_{n=1}^{\infty}$, $\mathscr{A}_2 = (a_{2,n})_{n=1}^{\infty}$, \cdots , $\mathscr{A}_k = (a_{k,n})_{n=1}^{\infty}$ be a family of sequences of positive integers. We say that the family $\{\mathscr{A}_1, ..., \mathscr{A}_k\}$ is *complementary* if every positive integer appears exactly once and in exactly one of the sequences.

(i) Now let α, β be positive real numbers. Prove that the sequences $([n\alpha]]_{n=1}^{\infty}$ and $([n\beta])_{n=1}^{\infty}$ are complementary if and only if α and β are both irrational and satisfy

$$\frac{1}{\alpha} + \frac{1}{\beta} = 1$$

*(ii) Prove that it is impossible to find three positive real numbers α, β, γ such that the sequences $([n\alpha]), ([n\beta])$ and $([n\gamma])$ are complementary.

Q.7 (i) A sequence $(a_n)_{n=1}^{\infty}$ of real numbers is said to be *subadditive* if, for every $m, n \in \mathbb{N}$, $a_{m+n} \leq a_m + a_n$. Let $(a_n)_{n=1}^{\infty}$ be a subadditive sequence of non-negative integers. Prove that $\lim_{n\to\infty} a_n/n$ exists and is a non-negative real number.

(ii) For $n \in \mathbb{N}$, let f(n) be the largest size of a subset of $\{1, ..., n\}$ containing no three-term arithmetic progressions. A famous theorem of Roth (see Supplementary Lecture Notes for Week 50) states that $\lim_{n\to\infty} f(n)/n = 0$. Without using this, prove that $\lim_{n\to\infty} f(n)/n$ actually exists at least. (iii) Let \mathscr{L} be any linear Diophantine equation, say

$$\mathscr{L}: \quad a_1x_1 + \dots + a_nx_n = a_0, \quad a_i \in \mathbb{Z}.$$

Let f(n) be the largest size of a subset of $\{1, ..., n\}$ which contains no nontrivial solutions to \mathscr{L} . In general, it is not known whether $\lim_{n\to\infty} f(n)/n$ exists. Prove, however, that $\liminf_{n\to\infty} f(n)/n > 0$ whenever the equation is *variant*, i.e.: whenever either $a_0 \neq 0$ or $\sum_{i=1}^n a_i \neq 0$. (iv), (v) With notation as in part (iii), compute (with proof) $\lim_{n\to\infty} f(n)/n$ for each of the following variant equations :

(a) 2x = y, (b) 3x = y + z.

Q.8 For $n \in \mathbb{N}$ define $\tau(n)$ to be the number of positive integers which divide n, including both 1 and n itself. Prove that, for any $\epsilon > 0$,

$$\lim_{n \to \infty} \frac{\tau(n)}{n^{\epsilon}} = 0.$$

(You can get partial credit for proving the result just for $\epsilon = 1$).

*Q.9 Let

$$S_{2,3} := \{ n \in \mathbb{Z} : n = 3^x - 2^y \text{ for some } x, y \in \mathbb{N}_0 \}.$$

Prove any non-trivial statement about this set.