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THEOREM 1. Let A be a subset of [1,n)] containing no solutions to the
equation

3z =y + 2. (6)
Then either n =4 and A = {1,3,4} or |A] < [2].

REMARK. For every n > 1 the set A of odd integers in [1,n] has size [2]
and contains no solutions to (6).

Proof of Theorem 1. One may verify by hand that the result holds for
all n < 10. Now we proceed by induction on 7. So let n > 10 and assume
the result holds for all 4 < n. The induction step is trivial if n is odd, so we
may assume that n is even. Let s = |}] and ¢ = | 22|, Partition the interval
{1,n] into three subintervals

L =[l,8], Iy=(st, L= (t, 7).

* Let A be a subset of |1, n] avoiding (6). Suppose ANI, # ¢ and let © € AN,

Then 1 <3z —n <n. Let I, := [3z — n,n]. The map
fry—3z—y

is a bijection from I, to itself. If, for some y € /,, both y and f(y) lay in A,
then we’d have a solution in A to (6), namely

3z = (3z - y) +v.

It follows that [A N I, < |3]L,]]. But the induction hypothesis gives an
upper bound on [AN 1,3z - n)| and tells us that the only possible way to
achieve |A[ > [%] is if the following hold :

(i) AN Iy = {=} where 83z —n =5 & ¢ = 245,

(ii) {1,3,4} ¢ 4,

(iti) AN Iy| = L]
Thus we have two cases to consider.

CaseI: ANl = ¢. Since the induction hypothesis gives an upper bound on
|A N 1] it’s easy to see that it only allows for the possibility that |A| > [%]
if I3 C A. Then we have three cases left
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,(®1) n=0 (mod 3), so n =3l with { even. Iy = [1,{], I, = [l 4 1,2I] and

I, = [20+1,31). So, by induction, |A| > [2] is only possible if | = 4, n = 12

and
A={1,3,4,9,10,11,12}.
But then 3 -4 =1+ 11 is a solution in (6) in A, contradiction.

(®9) n =2 (mod 3), 80 n = 3I+2 with [ even. [; = {1,{], [ = [I-+1,2l+1]
and I3 = [2] + 2,30 + 2. By induction, |4| > [}] is only possible if [ = 4,
n =14 and

A={1,3,4,10,11,12,13, 14}.

But then 3-4 =1+ 11 is once again a solution to {6) in A, a contradiction.

(®3) n =1 (mod 3),s0 n =31+ 1 with { odd. [y = {L,1], I, = [l -+ 1,2]]
and I3 = [21-+1, 31+1]. By induction, if |A| > [2], then in addition to Is C A
we must have that |7y N A| = 2. With regard to the latter, induction again
implies that either

(a) l e A, or

(b) ! =5and [ NA={1,3,4}.
if (b) holds, then n = 16 and A = {1,3,4,11,12,13,14,15,16}. But then
3.4 =111 is yet again a solution to (6) in A, contradiction.

If (a) holds then since n > 10 we have [ > 3, so I; N A contains at lcast
one further element m < [. But then 3] — m cannot lie in A as otherwise

we’d have the solution
3-l=@Bl-m)+m
to (6). But 3l —m € I, contradicting the fact that I3 C A.

This completes the induction step in Case L.

Case II : The conditions (i), (i) and (iii) above are satisfied. By (i), %®
is an integer, so n = 3] + 1 for some odd [. Then I} = [L1,1], I, = {{ + 1, 21},
Ii=[20+1,3+1 and ANl = {l+2 = z}. Since n > 10 we have that
2z € I3. But 2z ¢ A, as otherwise we’d have the solution

3-z=(22)+=
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to (6) in A. By induction, we conclude that the only way |A] > [27 is
possible is if 7;\A = {2z} and [I; N 4| = % As in Case 1 above, we can
further conclude that either

(a)le A, or

(b) I="5and I; N A = {1,3,4).

It (b) holds then n = 16 and A = {1,3,4,7,11,12, 13, 15,16}, so once again
we have the contradiction that 3-4 =1+ 11 is a solution to (6) in A.

If (a) holds and ! > 3, then there are at least two distinct numbers
m1 < mg < lin I N A Arguing as in Case I, we obtain the contradiction
that I3\ A contains at least two elements. Finally, then, we are left with [ = 3,
in which case n = 10 and z = 5. But then 2z = 10 ¢ 4, so {5,7,8} C A and
3-5 =7+ 8 is a solution to (6) in A.

This final contradiction completes the induction step in Case If, and with it
the proof of Theorem 1.

COROLLARY,

| 1
Ao3 = Az = Az = Az = A4z = p3 :5.

Proof. Tmmediate.

3. The case £ > 4, The main result is Theorem 3, which is a general
result valid for all £ > 4. We fear, however, that if the reader were to study
that proof immediately, then he/she may drown in the algebra and not see
the main ideas so clearly. We have therefore decided to first present, in
Theorem 2 below, the complete proof in the special case k = 4.

First, some simplifying terminology :

DEFINITION 1. A set of positive integers which contains no solutions to
the equation

de=y+z

will be called good.




