Solutionsto Homework 2

Q.1. Denotejn| = {1, ..., n} for simplicity. We have
n?-p, = #{(a, b) € [n] x [n] : GCD(a, b) = 1}. (1)
On the other hand,

> (k) = #{(a, b) € [n] x [n] : GCD(a, b) = 1anda < b}. (2)

Hence
n? - p, = QZQS(IC) -1,
k=1

since every unordered pdit, b} of elements ofrn| is counted twice in (1)
and once in (2), except fdrl, 1}, which is counted once in both. Theorem
1.7 in Suppl. Week 46 now implies that - p, — 6/72, v.S.V.

Q.2. Letp be an odd prime. I& were a primitive root mo@, thena(modp)
would be a generator of the grold . But this is a cyclic group of even or-
derp—1, hence any square will lie in the unique subgroup of ofger1) /2
and cannot be a generator.

Q.3. ¢(37) = 36 and the divisors oB6 arel, 2, 3, 4, 6, 9, 12, 18, 36.
Hence ifx € [1, 36], thenx is a primitive root modul®7 if and only if
™ #£ 1 (mod37) forn € {1, 2, 3,4, 6,9, 12, 18}. We can start testing
with x = 2, and in fact this already works. For, moduio,
2l=2 22=4 22=38, 2'=16,
20 =27 29=31, 2%2=26 2¥=-1
So02 is one primitive root. The complete list of primitive rootdulo 37
is given by
{2" (mod37) : 1 <t < 36 and GCO, 36) = 1}.
Now ¢(36) = ¢(2%-3%) = (22—2)(3?—3) = 12, so there aré2 possibilities
for ¢, and one readily checks that these are
te{l1,5,7, 11,13, 17, 19, 23, 25, 29, 31, 35}.

So it remains to comput (mod37) for eacht in this list. Note that, since
37 = 1(mod4), if z is a primitive root then so i87 — x, so we really only
need to compute half of them. Anyway, one finds that the cotapist of
primitive roots modul®7 is

{42, +5, +13, +15, +17, +18}.
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Q.4(i) For each primey, let S? denote the set of those positive integers
such that the highest power pfdividing n is an even power. Then, as
proven in the lectures,

SQ = m Sp- (3)
p=3 (Mod4)

Consider any such. LetpS? := {pn : n € SP}. ThenN is the disjoint
union of S* andpS”. Sinced(pS?) = 5d(S”), it follows thatd(S?) =
1— Zﬁ By (4) and the Chinese Remainder Theorem, it follows that

1
p=3 (m0d4)

So we just need to prove that the infinite product convergestto. Taking
logarithms in the usual manner, this is equivalent to shguiat

1
Z ? = +00.
p=3 (Mod4) b

But this fact follows from the analytic form of Dirichlet’s #orem (Theo-
rem 15.2 in the lecture notes).

(if) From Theorem 10.1 in the lecture notes, we know that the cemgght
S5 is given by
S¢={4*@81+7): k, 1 € No}.

oW IS 1) 1 4 1
d<53>—§<2@>—§><5—6

k=0

Hence,

and sad(S;) =1 —

1_5
6 6

Q.5. This alternative proof of Theorem 9.3 is due to Donald Zadiere

D. ZAGIER, A one-sentence proof that every prime= 1(mod4) is a
sum of two squaregimer. Math. Monthly 97, No. 2, (1990), p. 144.

Q.6. First, one computes6144 = 24 - 1009, so

16144\ /2 \" /1009) /1009
377 ) \377 317 ) \317)°

Next, sincel009 = 2 - 377 + 255, we have

1009 (255
377 ) \377)°



Since377 = 1 (mod4), Jacobi reciprocity implies that
255 377
() - (%),

Next, since377 = 1 - 255 + 122 one has

377 122 2 61 61

() - () - () (25) - (35)

since255 = 7 (mod8) and hencé %) = +1. Next, sinces1 = 1 (mod4),
Jacobi reciprocity implies that

61 255
() = (&)
Since255 = 4 - 61 + 11, one deduces in turn that
255 11
(o)~ (&)
Since61 = 1 (mod4), Jacobi reciprocity and the fact thét = 5- 11 + 6

now give that
Uy _ (61 _ (6
61) \11) \11)°

Sincell = 3 (mod8), we then have
SN (2 (3 - _ (2
1) \11)\11)  \11)°
Since bott3 and11 are congruent t8 (mod4), Jacobi reciprocity implies
that
3\ 11\]1 /11
1) 3)] \3)°
And now, finally, sincell = 2 (mod3), we have
(5)-()
3 3
So we conclude that
16144
37 )

Q.7(i) The proof is by contradiction. Suppose that the limit is netoz
Then there exists > 0, an infinite sequencd’; < N, < --- of positive
integers and subsets C [1, IV;] such that each4;| > €N; and eachd; is
free of non-trivial solutions t&. | claim that there is some constarit> 0,
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depending orC only, such that the following holds :

Let (z4,...,2,) € N™ be any non-trivial solution t&C. Lett; < ¢y <
.-+ < t;, be the full list of distinct integers such that everyequals one of
thet;. Thent; ,/t; < Cforeachj =1,....k — 1.

Indeed, it is here that we use the fact that we are only intedei® non-
trivial solutions. Non-triviality implies that, for any fed;j € {1, ..., k},

Z a; # 07
r;=t;

and it is this which implies the existence of the constaéntiepending only
on the coefficientg,, ..., a,.

Now choose a sequende, d-, ... of positive integers which recursively sat-

isfy
l -1
dy > C <ZN1+ZdZ> .
=1 =1

We are going to construct a sétC N which is free of non-trivial solutions
to £ and satisfieg/(A) > e - this will give the desired contradiction. For
eachl > 0, put

Bl :AI—F& = {u—i—fl U € Al},
where

Then take
A:U&.
=1

Indeed, by construction thB, do not overlap and, crucially, the the choice
of the numbers/;, ensures that any non-trivial solution tbin A must be
entirely contained inside just one of tli&. But eachB; is just a translate
of the corresponding\;, and hence is free of non-trivial solutions.

Finally, for eachl > 0, let M, be the rightmost element &,. It is clear
from the construction thatd N [1, M;]| > eM;, and hencel(A) > ¢, v.s.v.

(ii) Let (xy, ..., z,) be any non-trivial solution t& : >~ | a;x; = 0, where
Lis invariant, i.e.:} "  a; = 0. Letk = max{|z;| : i = 1,...,n}. Now
let A be subset oN of positive upper density. By Szemerédi’s theorein,
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contains a non-trivial arithmetic progression of lengitht 1, which we can
write as

{a —kd,a— (k—1)d,...,a,a+d,....a+kd}, a,d,a—kdeN.

Fori=1,...,n, sety; := a + z;d. Then

Zaiyi: (Zai>a+ (Zaixi)d:OjLO:O,

SO (yi, ..., yn) is @ solution toL inside A. Since the solutionjzy, ..., z,)
was assumed to be non-tririval, so also is the solutign..., v,,). HenceA
contains non-trivial solutions t4, as desired.

Q.8(i) Regarding the functiori(n), we have

R TOES <Z1> _iL%J.

n= n=1 din d=1

Now | N/d| = N/d + O(1), hence

N N
1
S=N -]+ >» O(1)=N(logN +0(1))+O(N)=NlogN + O(N),
<d§:1d> d§:1 (1) = N(log (1)) + O(N) g (V)
which implies thatS ~ N log N.

(i) Regarding the function(n), we have

S:zia(n): 3 (Zd) i(

=1 n=1

3

-3 (X 0] S {3 ()
() (k) e (v )

Hence, asV — oo, one has
2

]VQ
S = 5-¢(2) + O(Nlog N) = %W +O(Nlog N),

so thatS ~ T N?, v.s.v.

Q.9. Numbers of formulas below are in the Supplementary Lectote$l
for Week 46.



(i) Suppose Rg) > 2. Then, by (1.5) and (1.6),
-1 _ oo e (% =
G T (Z )(Z

:<§:£><“M) 3~ Zan K03 f:

)

To summarise, for R@) > 2 one has the series representation

5—1 Z

(i) Suppose Rg) > 1. Then

[e'e) 00 0o dnl o) n
(S = () - Cls) = (Z ni> (Z ni> _y il yhd)

n=1 n=1 n=1 n=1

n=1 n=1

(iii) Suppose Rg) > 2. Then

[e.o]

— 7 . dn @ = o(n
il = (Zni> (Zn—) -y 5o

n=1 n=1 n=1 n=1

Q.10. HereC,, denotes the cyclic group of order Letp — 1 have prime
factorisation

k
p—1=]]a"
i=1
Then
k
Zy=Cpy =[] Cpr. 4)
=1

Let x4, ..., x;, be integers (mog) which generate the cyclic factors in the
product (4), and note that

k
v =[]zt (5)
=1
is a primitive root mod if and only if GCD(u;,q;) = 1 fori =1,..., k.
CAsel: u(p—1)=0.

This means that — 1 is not squarefree, in other words that some> 1.
Without loss of generality, suppose that > 1. Now leta := x{' (modp).



7

Thenz is a primitive root mod if and only if ax is. Let’P denote the set
of all primitive roots modp. Then, modp,

SEZxEZ@ﬂUEaS.

z€eP zeP

But, sincea; > 1, we havea # 0 (modp). Hence we must have =
0 (modp). This deals with Case 1.

CASE2: u(p—1) = (=1)*.

This means that eachy = 1. Then, by (5),

-1 ax—1 ko fai—1

xEP ur=1 up=1 i=1 \u;=1
Fix any:. Thenz =1 (modp), hence, mog,
O=al —1=(z;— DA +a; 4+ +a8h).
Sincex; # 1, it follows that
1+z;+---+2% " =0 (modp).

In other words, every factor in the product (6) is congruentt (modp).
Hence the product is congruent(te1)® = u(p — 1), v.s.V.

Q.11. This is a well-known result callethblstenholme’'s Theorem. For
a presentation of thstandard proof’, see for example

http://projectpen.files.wordpress.com/2009/04/pedra24-version-edited2.pdf



