
Solutions to Homework 3

Q.1. We show thatL is c-irregular. It’s a standard argument for making
the jump from finite to infinite sets, which often goes by the name of a
compactness argument. The only drawback is that it doesn’t provide an
‘explicit’ c-coloring ofN.

Fix a choice ofc colors and ac-coloringχn of {1, ..., n} for everyn, such
that eachχn avoids monochromatic non-trivial solutions toL. We explain
how ac-coloringχ of N may be constructed which does the job.

Since there are only finitely many colors, there must be an infinite subse-
quenceS1 = (χni

)∞i=1 each of which color the number 1 in the same color,
sayc1. Choose any such infinite subsequence and setχ(1) = c1. Next, there
must exist an infinite subsequenceS2 of S1 s.t. each of the colorings in this
sequence color 2 in the same color, sayc2. Putχ(2) = c2. We can continue
indefinitely in this manner, and the resultingc-coloringχ of N will avoid
monochromatic non-trivial solutions toL.

Q.2. Let the colors be red, blue and green. Eachn ∈ N can be written
uniquely asn = 2an · u, wherean is a non-negative integer andu is odd.
Now color as follows:

Color the integern red ifan ≡ 0 (mod3), colorn blue ifan ≡ 1 (mod3)
and colorn green ifan ≡ 2 (mod3).
It is easy to check that there will be no monochromatic solutions to4x =
2y + z.

Q.3 (i) First suppsoeA is skinny of orderh. This means there exists a
constantC > 0 such thatrA,h(n) ≤ C for all n ∈ N. Now fix anyn ∈ N

and consider

S = S(n) :=
hn
∑

t=1

rA,h(t).

On the one hand, skinnyness implies that this sum cannot exceedChn. On
the other hand, the sum is at least equal to the total number ofunordered
h-tuples{a1, ..., ah} of elements ofA ∩ {1, ..., n}. Letting A(n) := |A ∩
{1, ..., n}|, it follows from Lemma 17.3 in the lecture notes that

(

A(n) + h − 1
h

)

≤ Chn.

Lettingn → ∞, it follows that

lim sup
n→∞

A(n)

n1/h
≤ (Chh!)1/h,
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which proves thatA is thin.

(ii) I claim that none of the bases discussed in the Example after Theo-
rem 17.5 are skinny. Fixh ≥ 2 and consider the basisA = ⊔h−1

i=0 Ah of the
Example. Letn ∈ N and let

x = x(n) = xnh−1 · · ·x1x0

be the number consisting ofnh binary digits, which is defined by setting

xi = 1 ⇔ i ≡ −1(modh).

The numberx(n) has a total ofn ones, and hence there aref(n, h) ways to
write it a sumy1 + · · · + yh = x(n) of h elements ofAh−1, wheref(n, h)
is the number of unordered partitions{S1, ..., Sh} of {1, ..., n} into h non-
empty subsets. Here the sets in a partition correspond to thelocations of the
ones iny1, ..., yh.

HencerA,h(x(n)) ≥ f(n, h), and since it is clear that the functionf(n, h)
goes to infinity withn, it follows that the basisA is not skinny.

Q.4. See the solution to Q.6 on the exam from 180811.

Q.5. For references and a proof of a much more general result, see Pa-
per No. 23 on my research homepage.

Q.6 (i) This result was originally proven in the following paper :

P. ERDŐS AND R. GRAHAM , On bases with an exact order,Acta Arith.
37 (1980), 201-207.

(ii) LetA be an asymptotic basis. Suppose it contains infinitely many essen-
tial elements, written in increasing order ase1 < e2 < · · · . For eachi, let ti
be the smallest modulus of a non-trivial arithmetic progression containing
A\{ei}. Henceti > 1 for eachi. More importantly, note that the numbersti
must be distinct. Now letn ∈ N. ThenA\{e1, ..., en} is contained inside an
arithmetic progression of modulusTn, whereTn = LCM{ti : 1 ≤ i ≤ n}.
Since the numbersti are distinct, one hasd(Tn) ≥ n. But recall from Ex-
ercise 9 on Homework 1 that, for anyǫ > 0, d(Tn) = O(T ǫ

n). Hence,
Tn = Ω(n1/ǫ) for any ǫ > 0. Now supposeA is an asymptotic basis of
orderh. Then the numerse1, ..., en must form a basis forZ/TnZ. But this
is a priori only possible ifTn = O(nh). Hence, we get a contradiction by
choosingǫ < 1/h.

(iii) Let p1 < p2 < · · · be the sequence of primes, written in increasing
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order. For eachk ≥ 1, let

Pk :=
k

∏

i=1

pi

and for eachi = 1, ..., k set

qi,k :=
Pk

pi

.

Fix k, and letA consist of all multiples ofPk, together with each of the
numbersqi,k, i = 1, ..., k. ThenA is an asymptotic basis of order at most
Pk, and it has exactlyk essential elements, namely each of the numbersqi,k.

(iv) The upper bound is also proven in the paper of Erdős and Graham
referred to above. For the lower bound, letn be a ‘large’ positive inte-
ger and leta be the largest integer strictly less than

√
n which is relatively

prime ton. Let A be the subset ofN0 consisting of zero, together with
all positive integers which are congruent to either1 or a (mod n). The
order of A as an asymptotic basis forN equals that of the set{0, 1, a}
as a basis forZ/nZ. Similarly, if we let B = A\{0}, then the order of
B as an asymptotic basis equals that of{1, a} as a basis forZ/nZ. Pro-
vided GCD(a, n) = 1, the order ofB is exactlyn − 1, for in that case if
x1, x2, x3, x4 are non-negative integers satisfyingx1+x2 = x3+x4 = n−1,
thenx1+x2a ≡ x3+x4a (modn) if and only ifx1 = x3 andx2 = x4. Since
there aren solutions to the equationx1 + x2 = n − 1 in non-negative inte-
gers, it follows that alln congruence classes modulon will be representable
asx1 + x2a, for some such pair(x1, x2).

Now considerA instead. Supposea = (1 − ǫ)
√

n. Then it is easy to
see that there is an absolute constantC > 0 such that every number from0
up ton − 1 can be written asx0 · 0 + x1 · 1 + x2 · a, wherex0, x1, x2 are
non-negative integers such thatx0 + x1 + x2 ≤ (2 + Cǫ)

√
n. Hence the

order ofA, as an asymptotic basis, is at most(2 + Cǫ)
√

n.

To summarise, we have shown that there is an absolute constant C > 0 such
that, for all sufficiently large integersn, the following holds : There exists
an asymptotic basisAn, containing zero, of order less than(2 + Cǫn)

√
n,

wherean = (1 − ǫn)
√

n is the largest integer up to
√

n which is relatively
prime ton, such thatAn\{0} is an asymptotic basis of ordern − 1.

In particular, if n is prime for example, thenǫn → 0 asn → ∞. This
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already implies that

lim sup
h→∞

X(h)

h2/4
≥ 1.

To deduce that the same is true of the liminf can be accomplished by a suit-
able‘interpolation’. For example, one can show that for all sufficiently large
h, one can find ann for which the basisAn has order exactlyh. I will leave
further details to the reader.

Q.7 (i) If |A| = n then

2n − 1 ≤ |A − A| ≤ n(n − 1) + 1.

The upper bound is just one plus the number of ordered pairs ofdistinct
elements ofA. Since subtraction is non-commutative we need to consider
ordered pairs, and the‘plus one’ comes from the fact that0 = a− a for any
a ∈ A. For the lower bound, we just need to exhibit2n−1 distinct elements
of A − A. If A = {a1 < a2 < · · · < an}, then{±(ai − a1) : i = 1, ..., n}
froms such a collection of2n − 1 distinct elements ofA − A.

(REMARK: In a similar manner to Q.9(i) below, one may also show that
|A − A| = 2n − 1 if and only if A is an arithmetic progression).

(ii) The smallest such set has 8 elements, and it is unique up to affine trans-
formationx 7→ ax+b, a, b ∈ Z. For example,A = {0, 2, 3, 4, 7, 11, 12, 14}
works. For further examples, see Paper No. 24 on my research homepage.

(iii) Let a1 + a2 ∈ A + A. There existsa3 ∈ A such thata2 = x − a3,
hence(a1 + a2) − x = (a1 − a3). Conversely, leta1 − a2 ∈ A − A. Then
a1 − a2 = (a1 + a3) − x. The point is that there is a 1-1 correspondence
between the elements of the setsA−A and(A+A)−{x}. Thus, both sets
have the same size and hence|A + A| = |A − A|.

(iv) Write the elements ofA in increasing order,A = {a1 < a2 < · · · <
an}. ThenA+̂A contains neithera1 + a1 noran + an.

(v) By part (iv) it suffices to show that|B + B| ≤ |B − B| + 1. Let y
be such thatA = {y} − A. Then

B + B = (A ∪ {x}) + (A ∪ {x}) = (A + A) ∪ ({x} + A) ∪ {2x} =

= [A + ({y} − A)] ∪ [{x} + ({y} − A)] ∪ {2x} =

= [{y} + [(A − A) ∪ ({x} − A)]] ∪ {2x} ⊆ [{y} + (B − B)] ∪ {2x},
which proves that|B + B| ≤ |B − B| + 1.
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(vi) This is first proven in the following paper:

G. MARTIN AND K. O’B RYANT, Many sets have more sums than dif-
ferences.Additive Combinatorics, 287-305, CRM Proc. Lecture Notes43,
Amer. Math. Soc., Providence, RI (2007).

A more general result is proven in Theorem 8 of Paper No. 24 on my
homepage.

Q.8. It suffices to show that, for anyǫ > 0, ask → ∞ the number of
integer solutions tox2 − y2 = k is O(kǫ). Now we can factorise a differ-
ence of two squares,x2 − y2 = (x + y)(x− y). It follows that there is a 2-1
correspondence between integer solutions tox2 − y2 = k and integer fac-
torisationsk = a · b. Indeed the correspondence is given byx = (a ± b)/2,
y = (a ∓ b)/2. Now the number of such factorsations is just2τ(k), the
factor two coming from the fact that we allow both positive and negative
integer factorisations. As shown in Exercise 7 of Homework 1, one has
τ(k) = O(kǫ), for anyǫ > 0. This completes the proof.

Q.9 (i) Write A = {a1 < a2 < · · · < ak}. If k ≤ 2 thenA is a priori
an AP, so supposek ≥ 3. The following is an increasing sequence of2k−1
distinct elements ofA + A:

2a1 < a1 + a2 < 2a2 < a2 + a3 < · · · < 2ak−1 < ak−1 + ak < 2ak. (1)

Next, for anyi, one has

ai + ai+1 < ai + ai+2 < ai+1 + ai+2. (2)

Suppose there exists ani, with 1 ≤ i ≤ k − 2, such that

ai+2 − ai+1 6= ai+1 − ai. (3)

In that case,ai+ai+2 6= 2ai+1, so from (2) it follows thatai+ai+2 would be
an element ofA+A not appearing in the sequence (1). Since|A| = 2k−1,
it follows that (3) doesn’t hold for anyi and henceA is an AP.

(ii) This is a special case of the following theorem of Freiman:

Let A be a set of integers with |A| = k ≥ 3. If |2A| = (2k−1)+b ≤ 3k−
4, then A is a subset of an arithmetic progression of length k + b ≤ 2k− 3.

For a proof, see Chapter 1 of the following book (which is in Chalmers
library):
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M.B. NATHANSON, Additive Number Theory : Inverse Problems and
the Geometry of Sumsets,Graduate Texts in Mathematics 165, Springer
(1996).

Q.10. Such sets exist, for example the setAc = {c−n : n ∈ N0}, for
anyc > 2. Every infinite subset sum converges and it is easy to see thatall
subset sums, whether finite or infinite, are distinct, providedc > 2.

Q.11. See the attached scan of the proof reproduced from the bookThe
Probabilistic Method, by Alon and Spencer.


