Solutionsto Homework 3

Q.1. We show thatC is c-irregular. It's a standard argument for making
the jump from finite to infinite sets, which often goes by theneaof a
compactness argument. The only drawback is that it doesn’t provide an
‘explicit’ c-coloring ofN.

Fix a choice ofc colors and a-coloring y,, of {1, ...,n} for everyn, such
that eachy,, avoids monochromatic non-trivial solutions fo We explain
how ac-coloring y of N may be constructed which does the job.

Since there are only finitely many colors, there must be anitefsubse-
quenceS; = (xn,):2, each of which color the number 1 in the same color,
sayc;. Choose any such infinite subsequence ang@et= ¢;. Next, there
must exist an infinite subsequenggof S; s.t. each of the colorings in this
sequence color 2 in the same color, sayPuty(2) = c,. We can continue
indefinitely in this manner, and the resultingoloring y of N will avoid
monochromatic non-trivial solutions 0.

Q.2. Let the colors be red, blue and green. Eackk N can be written
uniquely asn = 2% - u, wherea,, IS a non-negative integer andis odd.
Now color as follows:

Color the integer. red ifa,, = 0 (mod3), colorn blue ifa,, = 1 (mod3)
and colorn green ifa,, = 2 (mod3).
It is easy to check that there will be no monochromatic sohgitodr =
2y + z.

Q.3 (i) First suppsoed is skinny of orderh. This means there exists a
constant” > 0 such that 4 ,(n) < C for all n € N. Now fix anyn € N
and consider

S=38(n) = rau(t).

On the one hand, skinnyness implies that this sum cannoedxcen. On

the other hand, the sum is at least equal to the total numbenaidered
h-tuples{ay, ..., a,} of elements ofA N {1,...,n}. Letting A(n) := |AN

{1,...,n}|, it follows from Lemma 17.3 in the lecture notes that

(A(n)zh—l

Lettingn — oo, it follows that

) < Chn.

lim sup T

n—oo
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which proves thatl is thin.

(i) 1 claim that none of the bases discussed in the Example afieo-T
rem 17.5 are skinny. Fik > 2 and consider the basié = LI"" A, of the
Example. Let» € N and let

r=1x(n) = Tpp_1- 170
be the number consisting of. binary digits, which is defined by setting
r;=1< 1= —1(modh).

The number:(n) has a total of ones, and hence there gfg:, 1) ways to
write it a sumy; + - - - + y, = x(n) of h elements of4,,_,, wheref(n, h)
is the number of unordered partitiogs, ..., S, } of {1, ...,n} into h non-
empty subsets. Here the sets in a partition correspond to¢hagons of the
ones inyy, ..., Yp-

Hencer 4, (x(n)) > f(n,h), and since itis clear that the functigitn, 1)
goes to infinity withn, it follows that the basis! is not skinny.

Q.4. See the solution to Q.6 on the exam from 180811.

Q.5. For references and a proof of a much more general result, see P
per No. 23 on my research homepage.

Q.6 (i) This result was originally proven in the following paper :

P. ERDOS AND R. GRAHAM, On bases with an exact ordégcta Arith.
37 (1980), 201-207.

(ii) Let A be an asymptotic basis. Suppose it contains infinitely masgre
tial elements, written in increasing orderas< e; < ---. For each, lett;
be the smallest modulus of a non-trivial arithmetic progi@s containing
A\{e;}. Hencet; > 1 for eachi. More importantly, note that the numbeys
must be distinct. Now let € N. ThenA\{e, ..., e, } is contained inside an
arithmetic progression of modulds,, whereT,, = LCM{t; : 1 < i < n}.
Since the numbers are distinct, one hag(7},) > n. But recall from Ex-
ercise 9 on Homework 1 that, for any> 0, d(7,,) = O(T¢). Hence,
T, = Q(n'/c) for anye > 0. Now supposed is an asymptotic basis of
orderh. Then the numers;, ..., e, must form a basis foZ./T,,Z. But this
is a priori only possible ifl;, = O(n"). Hence, we get a contradiction by
choosings < 1/h.

(i) Letp; < po < --- be the sequence of primes, written in increasing



order. For eachh > 1, let

k
P=[]p
i=1

and foreach =1, ..., k set

Py
Qi = —-
Fix k, and letA consist of all multiples ofP,, together with each of the
numbersy; ., ¢ = 1,..., k. ThenA is an asymptotic basis of order at most
P, and it has exactly essential elements, namely each of the numfgers

(iv) The upper bound is also proven in the paper ofdsrdnd Graham
referred to above. For the lower bound, tebbe a‘large’ positive inte-
ger and letz be the largest integer strictly less thagm which is relatively
prime ton. Let A be the subset oN, consisting of zero, together with
all positive integers which are congruent to eitieor a (modn). The
order of A as an asymptotic basis fdo¥ equals that of the sef0, 1, a}
as a basis foZ/nZ. Similarly, if we let B = A\{0}, then the order of
B as an asymptotic basis equals tha{ofa} as a basis foZ/nZ. Pro-
vided GCOa,n) = 1, the order ofB is exactlyn — 1, for in that case if
x1, Te, T3, T4 @re NON-negative integers satisfyingt-r, = rs+z4 = n—1,
thenz,+xzsa = r3+2x4a (Modn) ifand only if z; = z3 andz, = z,4. Since
there aren solutions to the equatiam, + 5 = n — 1 in non-negative inte-
gers, it follows that alk congruence classes modulavill be representable
asx; + xqa, for some such paifzy, z5).

Now considerA instead. Suppose = (1 — €)y/n. Then it is easy to
see that there is an absolute constant 0 such that every number froth
up ton — 1 can be written asy - 0 + =1 - 1 + x5 - a, wherexg, 1, x5 are
non-negative integers such that+ z; + =, < (2 + Ce)y/n. Hence the
order of A, as an asymptotic basis, is at m@at+ Ce)\/n.

To summarise, we have shown that there is an absolute constar) such
that, for all sufficiently large integers, the following holds : There exists
an asymptotic basid,,, containing zero, of order less th&+ Ce,)/n,
wherea,, = (1 — ¢,)\/n is the largest integer up tg'n which is relatively
prime ton, such that4,,\{0} is an asymptotic basis of order— 1.

In particular, ifn is prime for example, then, — 0 asn — oo. This
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already implies that
. X(h)
lim su > 1.
Py =
To deduce that the same is true of the liminf can be acconeaibly a suit-
able‘interpolation’. For example, one can show that for all sidfitly large

h, one can find am for which the basisi,, has order exactly. | will leave
further details to the reader.

Q.7 (i) If |A] = nthen
2n—1<|A—Al <n(n-1)+1.

The upper bound is just one plus the number of ordered paidistihct
elements ofd. Since subtraction is non-commutative we need to consider
ordered pairs, and thplus one’ comes from the fact théat= a — a for any
a € A. For the lower bound, we just need to exhibit— 1 distinct elements
of A—A fA={a1 <ay <---<a,},then{£(a; —ay) :i=1,...,n}
froms such a collection dfn — 1 distinct elements o/l — A.

(REMARK: In a similar manner to Q.9(i) below, one may also show that
|A — Al = 2n — 1if and only if A is an arithmetic progression).

(if) The smallest such set has 8 elements, and it is unique uprie &ffins-
formationz — ax+b, a,b € Z. ForexampleA = {0,2,3,4,7,11, 12,14}
works. For further examples, see Paper No. 24 on my researobfage.

(iii) Leta; + as € A+ A. There existsi3 € A such thatu, = = — as,
hence(a; + as) — x = (a; — ag). Conversely, let; —a; € A — A. Then

a; — az = (a1 + az) — x. The point is that there is a 1-1 correspondence
between the elements of the sdts- A and(A + A) — {z}. Thus, both sets
have the same size and hendet+ A| = |A — A|.

(iv) Write the elements ofl in increasing orderd = {a; < ay < -+ <
a,}. ThenA+ A contains neithet; + a;, nora,, + a,,.

(v) By part(iv) it suffices to show thatB + B| < |B — B| + 1. Lety

be such thatd = {y} — A. Then

B+B=(AU{z})+(Au{z}) = (A+ A U{z}+A)U{2z} =
=[A+{y} = AJU[{z} + {y} — AU {22} =

={yp +I(A-A)U{x} - A)fJu{2z} € [{y} + (B - B)]U{2z},

which proves thatB + B| < |B — B| + 1.



(vi) This is first proven in the following paper:

G. MARTIN AND K. O’BRYANT, Many sets have more sums than dif-
ferences Additive Combinatorics, 287-305, CRM Proc. Lecture NotdS,
Amer. Math. Soc., Providence, RI (2007).

A more general result is proven in Theorem 8 of Paper No. 24 gn m
homepage.

Q.8. It suffices to show that, for any > 0, ask — oo the number of
integer solutions ta? — y? = k is O(k). Now we can factorise a differ-
ence of two squares? — > = (z + y)(z — y). It follows that there is a 2-1
correspondence between integer solutions’e- y> = k and integer fac-
torisationst = « - b. Indeed the correspondence is giveniby (a +0)/2,

y = (a F b)/2. Now the number of such factorsations is jas{k), the
factor two coming from the fact that we allow both positivedaregative
integer factorisations. As shown in Exercise 7 of Homeworlorde has
T(k) = O(k®), for anye > 0. This completes the proof.

QI ()Write A = {a; < ay < -+ < ax}. If K < 2thenA is a priori
an AP, so suppose > 3. The following is an increasing sequenceéf— 1
distinct elements ofA + A:

201 < a1+ as <2a3 <as+az<---<22ap1 <ap_1+ap <2ag. (1)
Next, for anyi, one has
@i + Qg1 < @ + Qg2 < Qiy1 + Qigo. (2)
Suppose there exists arwith 1 < ¢ < k£ — 2, such that
Uito — Qip1 7 Qip1 — Q. (3

In that caseq; +a;,2 # 2a;,1, SO from (2) it follows that:; + a; . » would be
an element ofA + A not appearing in the sequence (1). Sinde= 2k — 1,
it follows that (3) doesn’t hold for anyand henced is an AP.

(i) This is a special case of the following theorem of Freiman:

Let A beasetof integerswith |A| =k > 3. If|24| = (2k—1)+b < 3k—
4, then A isa subset of an arithmetic progression of length £ + b < 2k — 3.

For a proof, see Chapter 1 of the following book (which is in @iexs
library):



M.B. NATHANSON, Additive Number Theory : Inverse Problems and
the Geometry of Sumset§raduate Texts in Mathematics 165, Springer
(1996).

Q.10. Such sets exist, for example the skt = {¢™ : n € Ny}, for
anyc > 2. Every infinite subset sum converges and it is easy to sealihat
subset sums, whether finite or infinite, are distinct, predid > 2.

Q.11. See the attached scan of the proof reproduced from the Bbek
Probabilistic Method, by Alon and Spencer.



