Solutionsto Exam 16-01-15

Q.1(i) 66 =2x3x 11 and¢(66) = 1-2-10 = 20 so there ar0 primitive
roots modula67. If a is any such primitive root, then the full list is given
by {a* : 1 < k <66, (k, 66) =1}, i.e.:

ke{l,5,7,13, 17,19, 23, 25, 29, 31, 35, 37, 41, 43, 47, 49, 53, 59, 61, 65}.

| claim thata = 2 is a primitive root. The proper divisors 66 are
1, 2, 3, 6, 11, 22, 33 and one can check that, moduo,

ol=2 22=4, 22=8, 20=_3,
2l = 929 222=_30, 2% =—1. (1)

(ii) Yes. This can in fact be seen from (1), namely thab = 2'%. This
is an element of orde#6/11 = 6 in Zg,, hence not a square, since the
subgroup of squares has ord#/2 = 33, which is not a multiple of.
Hence,—29 is a quadratic non-residue. So-d, since67 = 3 (mod4).
Thus+29 = (—29)(—1) is a quadratic residue.

Alternatively, one can use quadratic reciprocity. Sifge= 1 (mod4)
and67 = 2- 29 + 9, it follows that
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Q.2 See Theorem 9.6 in the notes. For full points, proofs neecetonb
cluded of Proposition 9.1, Theorem 9.3 and Lemma 9.5.

Q.31f d = ¢ thenz = e gives a solution to the congruence for any
Conversely, supposeis a non-square. We need to prove the existence of a
primep such that the congruence has no solution. It suffices to finthaep
p such that(%) = —1.

Now, sinced is not a square, there is at least one priymich that the
highest power of; dividing d is odd. Letq, ..., g, be the full list of such
primes. Then, for any primg > d,

(5)-11(2)

CASEl: k = 1andg, = 2. Choose > d such thap = 3 (mod8). Dirich-
let's theorem guarantees the existence of such a prime. Bgsdamma,

(%) = —1and hence(%) = —1, by (2).

CASE 2: k > 1. Then we may assumg > 2. If p = 1 (mod4), then
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by quadratic reciprocity,

()-11()

Let ; be any quadratic non-residue mgdand, for each = 2, ..., k,
let r; be a quadratic residue magl where we choose; = 1 if ¢; = 2.
The Chinese Remainder Theorem plus Dirichlet’s theorem gteeahe
existence of a primg > d satisfying all the congruences

p=1(mod4), p=r,(modg),i=1,..., k.
For any such prime we will havé%) = —1, by (2).
Q.4 Theorem 6.4 in the lecture notes.

Q.5 Call a subsetS of {1, 2, ..., n} primitive if no element ofS is an
integer multiple of any other. The set

slz{(gw,(gwﬂ,...,n}

is clearly primitve, thusy,(n) > L”T“J. Conversely, letS be any prim-
itive set. Each element of can be written uniquely in the form =
2k(s)q(s), wherek(s) € Ny anda(s) is an odd integer i1, 2, ..., n}.
If a(s1) = a(sq2) with s; < s9, thens; dividess,. Hence, the cardinality of
S does not exceed that of the subset of odd numbefs.,i2, ..., n}, and
s0gs(n) < [ 3.

Q.6 (i) Theorem 20.2 in the lecture notes.
(i) Lemma 20.3 in the lecture notes.
(iif) Theorem 18.2 in the lecture notes. The proof is in Lecture 21.

Q.7 This proof will be a little sketchy. There a®(n?) 3-term APs in
total inZ,,. List them in any fixed order, and lef; denote the event that the
i:th AP is contained in our random sét= A(n, p). Let X; be the indicator
of the event4; and letX = }_ X, be the random variable which counts the
total number of APs im. Itis clear that, for each, E[X;] = P(4;) = p?
and hence, by linearity of expectation,

E[X] = O(n’p’). ®3)

Sincen=%? = o(p(n)), it follows thatE[X] — co asn — oco. We want to
prove thatP(X > 0) — 1. It follows from Chebyshev’s inequality (Theo-
rem 20.1 in the notes) that, whenel&X| — oo, a sufficient condition for
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P(X > 0) — listhat VafX) = o((E[X])?). Hence, by (3), it suffices to
prove that

Var(X) = o(np%). 4)
From the general second moment method, we have
Var(X) = 3 Var(X;) + > Cov(X;, X;). (5)
i i#j

SinceX; is an indicator, VarX;) < E[X;] and so the first sum is at most
E[X] = ©(n?p3). The only pairg(i, j) that contribute to the second sum
are those such that the evertsand A; are dependent, which is the case if
and only if thei:th andj:th APs share at least one common element.

CASE 1: Pairs of APs sharing one term.

It is clear that the number of such pairs@gn?), since there ar®(n)
choices for the common element, a@dn) choices for the common dif-
ference in each AP. Any such pair contains a total dfstinct elements of
Zy, henceP(A; A A;) = p°. Thus the contribution to (5) from such pairs is
O(n3p®).

CASE 2: Pairs of APs sharing two terms.

The number of such pairs 8(n?). For there are so many choices for the
first AP in the pair, and then oni@(1) choices for the second AP, since a
3-term AP is completely determined by specifying two of itsris and their
positions (1st, 2nd or 3rd). In any such pair there are a tgtal distinct
elements ofZ,,, hence the contribution of these pairs to (5pie?p?).

Summarising, we have

_ 2 3 2 4 3,5\ _ @(713175), if npf?)z — 00,
Var(X) = €(u") + 0% + 0'y7) = { SE TR e

In any case, since’p® — oo, one easily checks that (4) holds, and we are
done.

Q.8 (i) See the handout from Diestel’s book.
(i), (iii) See the Supplementary Lecture Notes for Week 51.



