
Solutions to Exam 16-01-15

Q.1 (i) 66 = 2×3×11 andφ(66) = 1 ·2 ·10 = 20 so there are20 primitive
roots modulo67. If a is any such primitive root, then the full list is given
by {ak : 1 ≤ k ≤ 66, (k, 66) = 1}, i.e.:

k ∈ {1, 5, 7, 13, 17, 19, 23, 25, 29, 31, 35, 37, 41, 43, 47, 49, 53, 59, 61, 65}.

I claim thata = 2 is a primitive root. The proper divisors of66 are
1, 2, 3, 6, 11, 22, 33 and one can check that, modulo67,

21 ≡ 2, 22 ≡ 4, 23 ≡ 8, 26 ≡ −3,

211 ≡ −29, 222 ≡ −30, 233 ≡ −1. (1)

(ii) Yes. This can in fact be seen from (1), namely that−29 ≡ 211. This
is an element of order66/11 = 6 in Z

×
67, hence not a square, since the

subgroup of squares has order66/2 = 33, which is not a multiple of6.
Hence,−29 is a quadratic non-residue. So is−1, since67 ≡ 3 (mod4).
Thus+29 = (−29)(−1) is a quadratic residue.

Alternatively, one can use quadratic reciprocity. Since29 ≡ 1 (mod4)
and67 = 2 · 29 + 9, it follows that
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= +1.

Q.2 See Theorem 9.6 in the notes. For full points, proofs need to be in-
cluded of Proposition 9.1, Theorem 9.3 and Lemma 9.5.

Q.3 If d = e2 thenx = e gives a solution to the congruence for anyp.
Conversely, supposed is a non-square. We need to prove the existence of a
primep such that the congruence has no solution. It suffices to find a prime

p such that
(

d
p

)

= −1.

Now, sinced is not a square, there is at least one primeq such that the
highest power ofq dividing d is odd. Letq1, . . . , qk be the full list of such
primes. Then, for any primep > d,
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. (2)

CASE 1: k = 1 andq1 = 2. Choosep > d such thatp ≡ 3 (mod8). Dirich-
let’s theorem guarantees the existence of such a prime. By Gauss Lemma,
(

2
p

)

= −1 and hence
(

d
p

)

= −1, by (2).

CASE 2: k > 1. Then we may assumeq1 > 2. If p ≡ 1 (mod4), then
1
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by quadratic reciprocity,
(
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)

=
k

∏

i=1

(
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)

.

Let r1 be any quadratic non-residue modq1 and, for eachi = 2, . . . , k,
let ri be a quadratic residue modqi, where we chooseri = 1 if qi = 2.
The Chinese Remainder Theorem plus Dirichlet’s theorem guarantee the
existence of a primep > d satisfying all the congruences

p ≡ 1 (mod4), p ≡ ri (modqi), i = 1, . . . , k.

For any such prime we will have
(

d
p

)

= −1, by (2).

Q.4 Theorem 6.4 in the lecture notes.

Q.5 Call a subsetS of {1, 2, . . . , n} primitive if no element ofS is an
integer multiple of any other. The set

S1 =
{

⌈
n

2
⌉, ⌈

n

2
⌉ + 1, . . . , n

}

is clearly primitve, thusg2(n) ≥ ⌊n+1
2
⌋. Conversely, letS be any prim-

itive set. Each element ofS can be written uniquely in the forms =
2k(s)a(s), wherek(s) ∈ N0 anda(s) is an odd integer in{1, 2, . . . , n}.
If a(s1) = a(s2) with s1 < s2, thens1 dividess2. Hence, the cardinality of
S does not exceed that of the subset of odd numbers in{1, 2, . . . , n}, and
sog2(n) ≤ ⌊n+1

2
⌋.

Q.6 (i) Theorem 20.2 in the lecture notes.
(ii) Lemma 20.3 in the lecture notes.
(iii) Theorem 18.2 in the lecture notes. The proof is in Lecture 21.

Q.7 This proof will be a little sketchy. There areΘ(n2) 3-term APs in
total inZn. List them in any fixed order, and letAi denote the event that the
i:th AP is contained in our random setA = A(n, p). LetXi be the indicator
of the eventAi and letX =

∑

Xi be the random variable which counts the
total number of APs inA. It is clear that, for eachi, E[Xi] = P(Ai) = p3

and hence, by linearity of expectation,

E[X] = Θ(n2p3). (3)

Sincen−2/3 = o(p(n)), it follows thatE[X] → ∞ asn → ∞. We want to
prove thatP(X > 0) → 1. It follows from Chebyshev’s inequality (Theo-
rem 20.1 in the notes) that, wheneverE[X] → ∞, a sufficient condition for



3

P(X > 0) → 1 is that Var(X) = o((E[X])2). Hence, by (3), it suffices to
prove that

Var(X) = o(n4p6). (4)
From the general second moment method, we have

Var(X) =
∑

i

Var(Xi) +
∑

i6=j

Cov(Xi, Xj). (5)

SinceXi is an indicator, Var(Xi) ≤ E[Xi] and so the first sum is at most
E[X] = Θ(n2p3). The only pairs(i, j) that contribute to the second sum
are those such that the eventsAi andAj are dependent, which is the case if
and only if thei:th andj:th APs share at least one common element.

CASE 1: Pairs of APs sharing one term.

It is clear that the number of such pairs isΘ(n3), since there areΘ(n)
choices for the common element, andΘ(n) choices for the common dif-
ference in each AP. Any such pair contains a total of5 distinct elements of
Zn, henceP(Ai ∧ Aj) = p5. Thus the contribution to (5) from such pairs is
Θ(n3p5).

CASE 2: Pairs of APs sharing two terms.

The number of such pairs isΘ(n2). For there are so many choices for the
first AP in the pair, and then onlyO(1) choices for the second AP, since a
3-term AP is completely determined by specifying two of its terms and their
positions (1st, 2nd or 3rd). In any such pair there are a totalof 4 distinct
elements ofZn, hence the contribution of these pairs to (5) isΘ(n2p4).

Summarising, we have

Var(X) = Θ(n2p3) + Θ(n2p4) + Θ(n3p5) =

{

Θ(n3p5), if p(n)

n−1/2
→ ∞,

Θ(n2p3), otherwise.

In any case, sincen2p3 → ∞, one easily checks that (4) holds, and we are
done.

Q.8 (i) See the handout from Diestel’s book.
(ii), (iii) See the Supplementary Lecture Notes for Week 51.


