
SUPPLEMENTARY LECTURENOTES ON THEPROBABILISTIC METHOD

Sum-free sets.

DEFINITION 1: A subsetA of an abelian group(G, +) is said to besum-freeif A ∩
(A + A) = φ, in other words, if there are no solutions inA to the equationx = y + z.

The abelian groups which are of most interest to number theorists areZ and the groups
Zp, wherep is a prime.

EXAMPLE 1: Let n ∈ N and letA be a sum-free subset of{1, ..., n}. If a is the
largest element ofA, and

B := {a − a1 : a1 ∈ A, a1 6= a},
thenA andB are disjoint subsets of{1, ..., n}. It follows that|A| ≤ ⌈n/2⌉. There are
essentially two different examples of a sum-free subset of this size, namely

A1 = {odd numbers in[1, n]}, A2 =
(n

2
, n

]

.

EXAMPLE 2: Let p be a prime, sayp = 3k + i, wherek ∈ N0 andi ∈ {0, 1, 2}. If
i ∈ {0, 1}, thenA := {k + 1, ..., 2k} is a sum-free set modulop, whereas ifi = 2, then
A := {k + 1, ..., 2k + 1} is sum-free modulop. Thus, ifp ≡ 2 (mod3), there exists
a sum-free setA in Zp such that|A| = p+1

3
. This is best-possible, but a proof is not as

simple as in Example A. It is an easy consequence of theCauchy-Davenport theorem,
which is also in this week’s lecture notes. We will now apply aprobabilistic argument
to prove the following result, which apparently was first proven by Erd̋os in 1965 and
rediscovered by Alon and Kleitman in 1990:

Theorem 1.1. Let S be any finite subset ofZ, not containing zero. Then there exists a
sum-free subsetA of S such that|A| ≥ |S|+1

3
.

Proof. Let S be given and choose a primep satisfying the following two conditions :

(i) p > maxs∈S |s|,
(ii) p ≡ 2 (mod3).

Corollary 7.3(i) in the notes for Week 47 guarantees the existence of such a prime.
Sayp = 3k + 2 and letC := {k + 1, ..., 2k + 1}. As noted in Example 2 above,
the setC is sum-free modulop. We shall work in the probability space(Ω, µ), where
Ω = {1, 2, ..., p − 1} andµ is uniform measure. For eachs ∈ S let fs : Ω → Ω be the
map given by

fs : ω 7→ ωs (modp).

The choice ofp (property (i)) guarantees that each of the mapsfs is one-to-one. Let
Xs := Xfs,C . Then for everys we have

E[Xs] =
|C|

p − 1
>

1

3
.
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Let X =
∑

s∈S Xs. By linearity of expectation,

E[X] >
|S|
3

.

Hence there exists someω ∈ Ω such thatX(ω) > |S|/3. But, unwinding the defini-
tions, we see that

X(ω) = #{s ∈ S : ωs (modp) ∈ C}. (1.1)

Let A be the subset ofS on the right of (1.1). This is a sum-free subset ofS, since a
dilation of it lies, modulop, entirely withinC, and hence is sum-free. Since|A| > |S|/3
and|A| is an integer, we must have|A| ≥ (|S| + 1)/3. ¤

Remark 1.2. One can reformulate the above argument in non-probabilistic language,
in which case it basically employs the well-known method in combinatorics ofcounting
pairs. In the proof, we are basically counting in two different ways the ordered pairs
(ω, s) which satisfy (i)ω ∈ Ω (ii) s ∈ S (iii) ωs ∈ C (modp). I leave it as a voluntary
exercise to fill out the details.

Remark 1.3. As shown in Example 2, the setC employed in the above proof is a sum-
free subset ofZp of maximum size. Hence, it is natural to conjecture that Theorem
1.1 cannot be improved upon. It turns out that this is not the case, but it seems to be
non-trivial to show it. In a long and difficult paper, Bourgain[1] showed that, for any
finite S ⊆ Z, not containing zero, one can always find a sum-free subsetA of S such
that|A| ≥ |S|+2

3
. Nothing better than this is known, I think.

For upper bounds, it suffices to find examples of setsS ≤ N without large sum-free
subsets. I believe the current record is due to Lewko [2], whofound, via computer
search, a set of 28 positive integers with no sum-free subsetof size 12. From such
a single example, one can construct (I leave it as another exercise to determine how)
arbitrarily large, finite setsS ⊆ N for which there are no sum-free subsets of size
exceeding11

28
|S|. The gap between1/3 and11/28 is a significant open problem.
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Second moment method and distinct subset sums.

Proposition 1.4. Let X be a non-negative real-valued random variable, andα ≥ 1.
Then

P(X ≥ λE[X]) ≤ 1

λ
. (1.2)

Proof. Simple exercise. This result is calledMarkov’s inequality. ¤

DEFINITION 2: Let X be a random variable. Thevarianceof X, written as Var[X],
is defined as

Var[X] := E[(X − E[X])2].
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The square root of the variance is called thestandard deviation.

Using linearity of expectation, it’s easy to show that (exercise, if you have never done it
before !)

Var[X] = E[X2] − E[X]2. (1.3)

NOTATION : E[X] := µX ,
√

Var[X] := σX . We drop the subscripts when there can be
no confusion about what random variable is being considered.

Remark 1.5. At this point it is worth clarifying the terminologysecond moment method.
Let X be a random variable. Theexponential generating functionof X is the random
variableeX . Thus

eX =
∞

∑

k=0

Xk

k!
.

Under suitable convergence conditions, linearity of expectation yields that

E[eX ] =
∞

∑

k=0

E[Xk]

k!
.

The quantityE[Xk]/k! in this expression is called thek:th momentof the random vari-
ableX. From (1.3) we see that the variance ofX involves its second moment, hence
the name.

A rough analogy to studying the 2nd moment of a random variable is to study the
second derivative of a smooth function in calculus. And justas it is pretty hard to find
a real-life situation where one is interested in the third derivative of a smooth function,
so in probability theory it is pretty rare to study the third moment of a random variable.
Basically, if you can’t get a handle on the second moment, thenyou’re probably in a
whole lot of trouble !

Finally, it should now not come as a great shock that the termfirst moment methodis
applied when one just studies the expectation of a random variable itself. So this is the
method we’ve been using in the applications up to now.

The basic concentration estimate involving variance isChebyshev’s inequality:

Proposition 1.6. Let X be a random variable with meanµ and standard deviationσ.
Letλ ≥ 1. Then

P(|X − µ| ≥ λσ) ≤ 1

λ2
. (1.4)

Proof. Define a new random variableY by Y := |X − µ|2. Then the left-hand side of
(1.4) is just, by definition of variance,P(Y ≥ λ2

E[Y ]). Markov’s inequality (1.2) now
gives the result immediately. ¤

We now specialise to the case where

X = X1 + · · · + Xn

is a sum of indicator variables. We do not assume theXi to be identically distributed
though. Indeed let us denote byAi the event indicated byXi andpi := P(Ai). Thus

Xi =

{

1, with probabilitypi,
0, with probability1 − pi.
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Also denoteµi := E[Xi], σ2
i := Var[Xi]. Clearly,µi = pi. Also, by (1.3) and the fact

thatX2
i = Xi sinceXi only takes on the values 0 and 1, we have

σ2
i = pi − p2

i = pi(1 − pi). (1.5)

We thus have the inequality
σ2

i ≤ µi. (1.6)

Since in applications the individual probabilitiespi are usually very small (even if the
number of eventsAi is usually very large), one does not lose much information inusing
(1.6).

We want an expression for the variance ofX. Using (1.3) and several applications of
linearity of expectation, we obtain that

σ2 =
n

∑

i=1

σ2
i +

∑

i6=j

Cov(Xi, Xj), (1.7)

where thecovarianceof Xi andXj is defined by

Cov(Xi, Xj) = E[XiXj] − E[Xi]E[Xj].

Since theXi are indicator variables, we have

E[XiXj] − E[Xi]E[Xj] = P(Ai ∩ Aj) − P(Ai)P(Aj).

Hence Cov(Xi, Xj) = 0 if the eventsAi andAj are independent. In this case, (1.7)
simplifies to

σ2 =
n

∑

i=1

σ2
i , when theXi are independent. (1.8)

We now describe an application of the second moment method toa problem in num-
ber theory. It is a relatively simple application from a theoretical viewpoint, in that it
only uses Chebyshev’s inequality and (1.8).

DEFINITION 3: LetA = {a1, ..., ak} be a finite set of integers.A is said to havedistinct
subset sumsif, for every two distinct subsetsI, J of {1, ..., k}, the sums

∑

i∈I ai and
∑

j∈J aj have different values1.

Let f(n) be the maximum possible size of a subset of{1, ..., n} which has distinct
subset sums.

LOWER BOUNDS:

Taken = 2k andA = {2i : 0 ≤ i ≤ k}. This example shows thatf(n) ≥ 1 + ⌊log2 n⌋.
Erdős offered 500 dollars for a proof that there exists a universal constantC such that
f(n) ≤ log2 n + C. Note that he’s not asking here for a computation of the optimal
C or even a decent estimate of it, just a proof that some such constant exists, in other
words thatf(n) = log2 n + O(1). The base-2 example shows thatC ≥ 1. If we
confine ourselves to integerC then a number of authors, starting with John Conway

1If I is the empty set, the sum is assigned the value zero. The definition extends to infinite sets, but
the notation will just become a bit more complicated.
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and Richard Guy in 1969, have produced examples showing thatC ≥ 2. The point
here is that the powers-of-2 example is not optimal. Note that, in order to get a better
lower bound onC, it suffices to do so for a singlen, because of the following trick: if
A = {a1, ..., ak} is a subset of{1, ..., n} with distinct subset sums, andu is any odd
number s.t.1 ≤ u ≤ 2n, thenA′ = {2a1, ..., 2ak, u} is a subset of{1, ..., 2n} with
distinct subset sums and one additional element. This meansthat if f(n) > log2 n + C
thenf(N) > log2 N + C for everyN of the formN = 2tn.

One can then use a computer to help find individual examples ... For up-to-date
information on lower bounds see, for example,

http://garden.imacs.sfu.ca/?q=op/sets−with−distinct−subset−sums

UPPERBOUNDS:

If A has sizek and is contained in{1, ..., n} then there are2k distinct subset sums

and each is among
{

0, ..., nk − k(k−1)
2

}

. Thus

2f(n) ≤ 1 + nf(n) − f(n)(f(n) − 1)

2
.

Taking base-2 logs, we have

f(n) ≤ log2 n + log2 f(n) + O(1),

which leads to a bound of the form

f(n) ≤ log2 n + log2 log2 n + O(1). (1.9)

Erdős improved this to the following

Theorem 1.7.

f(n) ≤ log2 n +
1

2
log2 log2 n + O(1). (1.10)

Proof. The idea is to refine the basic counting argument which leads to (1.9) by using
the fact that the2k subset sums for a setA = {a1, ..., ak} are not “uniformly distributed”

in the interval
[

0, nk − k(k−1)
2

]

, but that there is a higher concentration of sums close

to the mean. To make this precise requires a second moment analysis, which we now
perform in detail.

Let A = {a1, ..., ak} be a subset of{1, ..., n} with distinct subset sums. For each
i = 1, ..., k, let Xi be the r.v. given by

Xi =

{

ai, with probability1/2,
0, with probability1/2.

(1.11)

TheXi:s are assumed to be independent, and we letX :=
∑k

i=1 Xi. In words,X is
the value of a subset sum ofA, where the subset is chosen uniformly at random from
all 2k subsets ofA. Though it is of no interest for the proof, note that, by linearity of
expectation,

µ = E[X] =
1

2

(

k
∑

i=1

ai

)

. (1.12)
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What we are interested in is the variance. By (1.5) and (1.8), wehave

σ2 = Var(X) =
1

4

(

k
∑

i=1

a2
i

)

≤ kn2

4
,

henceσ ≤ n
√

k/2. Now letλ ≥ 1. By Chebyshev’s inequality,

P

(

|X − µ| ≥ λn
√

k

2

)

≤ 1

λ2
.

This is equivalent to saying that

P

(

|X − µ| <
λn

√
k

2

)

≥ 1 − 1

λ2
. (1.13)

Now, on the one hand,X is integer-valued, and the number of integers satisfying|X −
µ| < λn

√
k

2
is less than1+λn

√
k. On the other hand, (1.13) says that the probability that

a uniformly randomly chosen subset sum satisfies this inequality is at least1 − 1/λ2.
Since there are2k subset sums, and they are assumed to be all distinct, it follows that
there must be at least

(

1 − 1
λ2

)

2k integers satisfying the inequality. We conclude that
(

1 − 1

λ2

)

2f(n) < 1 + λn
√

f(n).

Taking base-2 logs, we have

f(n) ≤ log2 n +
1

2
log2 f(n) + O(1),

where theO(1)-term depends onλ. From this one easily deduces (1.10). ¤


