SUPPLEMENTARY LECTURENOTES ON THEPROBABILISTIC METHOD
Sum-free sets.

DEFINITION 1: A subset4 of an abelian groupG, +) is said to besum-freeif A N
(A+ A) = ¢, in other words, if there are no solutions.nto the equation: = y + .

The abelian groups which are of most interest to number tsareZ and the groups
Z,, Wherep is a prime.

EXAMPLE 1: Letn € N and letA be a sum-free subset ¢fi,...,n}. If a is the
largest element ofl, and

B:={a—ay:a1 €A, a1 # a},

then A and B are disjoint subsets dfl, ..., n}. It follows that|A| < [n/2]. There are
essentially two different examples of a sum-free subseitisfdize, namely

A; = {odd numbers inl, n]}, Ay = (g,n] :
EXAMPLE 2: Letp be a prime, say = 3k + i, wherek € Ny and: € {0, 1,2}. If
i € {0,1}, thenA := {k + 1, ..., 2k} is a sum-free set modujg whereas if = 2, then
A:={k+1,..,2k + 1} is sum-free modulp. Thus, ifp = 2 (mod3), there exists
a sum-free setl in Z, such thatA| = ’%1 This is best-possible, but a proof is not as
simple as in Example A. It is an easy consequence oCidugechy-Davenport theorem
which is also in this week’s lecture notes. We will now applgrababilistic argument
to prove the following result, which apparently was firsty@ao by Erds in 1965 and
rediscovered by Alon and Kleitman in 1990:

Theorem 1.1. Let S be any finite subset &, not containing zero. Then there exists a
sum-free subset of S such thagA| > 1L

Proof. Let S be given and choose a primpesatisfying the following two conditions :

() p > maxses [s],
(i) p =2 (mod3).

Corollary 7.3(i) in the notes for Week 47 guarantees the emc of such a prime.
Sayp = 3k + 2 and letC := {k + 1,...,2k + 1}. As noted in Example 2 above,
the setC' is sum-free modul@. We shall work in the probability spagé, i), where
Q2 =1{1,2,...,p— 1} andp is uniform measure. For eaghe S let f, : QO — ) be the
map given by

fs:w— ws (modp).

The choice ofp (property (i)) guarantees that each of the m#@ps one-to-one. Let
X, 1= Xy, c. Then for everys we have
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Let X = _. X,. By linearity of expectation,

seS

|51
EX| > —.
X1 > 5
Hence there exists some € Q2 such thatX' (w) > |S|/3. But, unwinding the defini-
tions, we see that

X(w) =#{s€ S :ws (modp) € C}. (1.1)

Let A be the subset of on the right of (1.1). This is a sum-free subsetSofsince a
dilation of it lies, modulag, entirely withinC', and hence is sum-free. Sincél > |S|/3
and|A| is an integer, we must havd| > (|.S| + 1)/3. O

Remark 1.2. One can reformulate the above argument in non-probabilstiguage,
in which case it basically employs the well-known methodambinatorics otounting
pairs. In the proof, we are basically counting in two different waie ordered pairs
(w, s) which satisfy (i)w € Q (ii) s € S (i) ws € C' (modp). | leave it as a voluntary
exercise to fill out the details.

Remark 1.3. As shown in Example 2, the s€temployed in the above proof is a sum-
free subset of, of maximum size. Hence, it is natural to conjecture that Taep
1.1 cannot be improved upon. It turns out that this is not #eecbut it seems to be
non-trivial to show it. In a long and difficult paper, Bourgdit] showed that, for any
finite S C Z, not containing zero, one can always find a sum-free sulbs#tS such
that|A| > ‘S‘T” Nothing better than this is known, | think.

For upper bounds, it suffices to find examples of sets N without large sum-free
subsets. | believe the current record is due to Lewko [2], ¥dund, via computer
search, a set of 28 positive integers with no sum-free sulfseize 12. From such
a single example, one can construct (I leave it as anotheciegeto determine how)
arbitrarily large, finite set§ C N for which there are no sum-free subsets of size
exceedingt|S|. The gap betweel/3 and11/28 is a significant open problem.
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Second moment method and distinct subset sums.

Proposition 1.4. Let X be a non-negative real-valued random variable, and> 1.
Then

1
P(X > M\E[X]) < i (1.2)
Proof. Simple exercise. This result is call&thrkov’s inequality O

DEFINITION 2: Let X be a random variable. Tharianceof X, written as VarX],
is defined as

Var[X] := E[(X — E[X])¥.



The square root of the variance is called st@ndard deviation

Using linearity of expectation, it's easy to show that (exz, if you have never done it
before !)

Var[X] = E[X?] — E[X]?. (1.3)
NOTATION : E[X] := ux, v/Var[X] := ox. We drop the subscripts when there can be
no confusion about what random variable is being considered

Remark 1.5. At this pointitis worth clarifying the terminologyecond moment method
Let X be a random variable. Thexponential generating functiasf X is the random
variablee*. Thus
PRSP
k!
k=0
Under suitable convergence conditions, linearity of exgean yields that

— E[X*
EleX] =) %
k=0
The quantityE[X*]/k! in this expression is called theth momenobf the random vari-
able X. From (1.3) we see that the varianceXfinvolves its second moment, hence
the name.

A rough analogy to studying the 2nd moment of a random vagiabto study the
second derivative of a smooth function in calculus. And asstt is pretty hard to find
a real-life situation where one is interested in the thirdvadgive of a smooth function,
so in probability theory it is pretty rare to study the thirdment of a random variable.
Basically, if you can't get a handle on the second moment, yfwerre probably in a
whole lot of trouble !

Finally, it should now not come as a great shock that the festhmoment method
applied when one just studies the expectation of a randomablaritself. So this is the
method we’ve been using in the applications up to now.

The basic concentration estimate involving varianc8hgbyshev’s inequality

Proposition 1.6. Let X be a random variable with meamand standard deviation.
LetA > 1. Then

P(X — 4 > Ao) < —. (1.4)

1
A2
Proof. Define a new random variablé by Y := | X — u|?. Then the left-hand side of

(1.4) is just, by definition of varianc@(Y > A\?E[Y]). Markov’s inequality (1.2) now
gives the result immediately. O

We now specialise to the case where
X=X+ +X,
is a sum of indicator variables. We do not assumeXhé¢o be identically distributed
though. Indeed let us denote By the event indicated by(; andp; := P(A;). Thus
Y 1, with probability p;,
‘1 0, with probability1 — p;.
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Also denoteu; := E[X;], 0? := Var[X;]. Clearly,u; = p;. Also, by (1.3) and the fact
that X? = X; sinceX; only takes on the values 0 and 1, we have

ol =pi —p; = pi(1—pi). (1.5)
We thus have the inequality
Since in applications the individual probabilitipsare usually very small (even if the
number of events; is usually very large), one does not lose much informatiarsing
(1.6).
We want an expression for the varianceXof Using (1.3) and several applications of
linearity of expectation, we obtain that

o’ =Y ol +> CovX; X;), (1.7)
i=1 i#j
where thecovarianceof X; and.X; is defined by
Cov(X;, X;) = E[XiX;] — E[Xi]E[X;].
Since theX; are indicator variables, we have
E[X:X;] — E[XG]E[X;] = P(A; N Aj) — P(A;)P(4;).

Hence CovyX;, X;) = 0 if the events4; and A; are independent. In this case, (1.7)
simplifies to

o> =Y o7, when theX; are independent (1.8)
=1
We now describe an application of the second moment methagbtoblem in num-
ber theory. It is a relatively simple application from a thetacal viewpoint, in that it
only uses Chebyshev’s inequality and (1.8).

DEFINITION 3: LetA = {a4, ..., ax } be afinite set of integers! is said to havelistinct
subset sumi, for every two distinct subsets, .J of {1, ...k}, the sums) ., a; and
> ey a; have different valués

Let f(n) be the maximum possible size of a subsef{ bf...,n} which has distinct
subset sums.

LOWER BOUNDS:

Taken = 2¥ andA = {2°: 0 < i < k}. This example shows thg{(n) > 1+ |log, n].
Erdds offered 500 dollars for a proof that there exists a unalezsnstantCC' such that
f(n) < logy,n + C. Note that he’s not asking here for a computation of the ogitim
C or even a decent estimate of it, just a proof that some sucstaoihexists, in other
words thatf(n) = log,n + O(1). The base-2 example shows ti@t> 1. If we
confine ourselves to integér then a number of authors, starting with John Conway

Yf Iis the empty set, the sum is assigned the value zero. Thetiefiektends to infinite sets, but
the notation will just become a bit more complicated.
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and Richard Guy in 1969, have produced examples showing(that 2. The point
here is that the powers-of-2 example is not optimal. Notg thaorder to get a better
lower bound o, it suffices to do so for a single, because of the following trick: if
A = {ay,...,a;} is a subset of 1, ..., n} with distinct subset sums, andis any odd
number s.t.1 < u < 2n, thenA’ = {2a4, ..., 2a;,u} is a subset of 1, ..., 2n} with
distinct subset sums and one additional element. This nteand f(n) > log,n + C
thenf(N) > log, N + C for everyN of the formN = 2'n.

One can then use a computer to help find individual example&or up-to-date
information on lower bounds see, for example,

http://garden.imacs.sfu.ca/?q=op/setgh_distinct subset sums
UPPERBOUNDS:

If A has sizek and is contained i{1,...,n} then there ar@* distinct subset sums
and each is amonéo, onk — ’“(’“T‘l)} Thus

F)(f(n) —1)
2

A nf(n) —

Taking base-2 logs, we have

f(n) <logyn +log, f(n) + O(1),
which leads to a bound of the form

f(n) <logyn +log,logyn + O(1). (1.9)
Erdds improved this to the following
Theorem 1.7.

f(n) <logyn+ %log2 log, n + O(1). (1.10)

Proof. The idea is to refine the basic counting argument which lead$.9) by using
the fact that th@* subset sums for a sét= {ay, ..., a; } are not “uniformly distributed”
in the interval |0, nk — @} but that there is a higher concentration of sums close
to the mean. To make this precise requires a second momdgsianahich we now
perform in detail.

Let A = {ay,...,ar} be a subset of1,...,n} with distinct subset sums. For each
i=1,.., k, let X; be the r.v. given by

X, = { a;, Wwith probability1/2,

0, with probability1/2. (1.11)

The X;:s are assumed to be independent, and we&let= Zle X;. Inwords, X is
the value of a subset sum df, where the subset is chosen uniformly at random from
all 2* subsets ofd. Though it is of no interest for the proof, note that, by lingeof

expectation,
k
1
n=EX] =3 (Z ai> . (1.12)
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What we are interested in is the variance. By (1.5) and (1.8have

1< kn?
2 _ _ 2
a_Var(X)_Z(E ai>§ T

=1

hences < nv/k/2. Now letA > 1. By Chebyshev’s inequality,

vk 1
—ul > < —.
This is equivalent to saying that
vk 1
P(;X—m< "2\/_>21—ﬁ. (1.13)

Now, on the one handy is integer-valued, and the number of integers satisfyitg-

ul < % is less tharl + \nv/k. On the other hand, (1.13) says that the probability that
a uniformly randomly chosen subset sum satisfies this idggimat leastl — 1/\2.
Since there aré* subset sums, and they are assumed to be all distinct, iv®ltbat
there must be at leaét — ;) 2* integers satisfying the inequality. We conclude that

1
(1 - ﬁ) 27 < 14 M/ f(n).
Taking base-2 logs, we have

1
f(n) < logyn + 3 log, f(n) + O(1),
where theO(1)-term depends oi. From this one easily deduces (1.10). O



