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Abstract

We show how the FKG Inequality can be used to prove negative dependence properties.

1 Introduction

Pemantle[21] points out that there is a need for a theory of negatively dependent events anal-
ogous to the existing natural and useful theory of positively dependent events. Informally
speaking, random variables are said to be negatively dependent , if they have the following
property: if any one subset of the variables is “high”, then other (disjoint) subsets of the vari-
ables are “low”. He gives a survey of various notions of negative dependence, two of which are
reviewed below, and points out several applications of consequences of one of these concepts:
negative association. These examples include natural stochastic processes and structures such
as the uniform random spanning tree[16], the simple exclusion process[15], the random clus-
ter model and occupancy numbers of competing bins[6]. Such variables arise frequently in
the analysis of algorithms where a stream of random bits influences either the input or the
execution of the algorithm. Negative dependence may also be used to obtain information on
the distribution of functionals such as the sum of the variables involved (or more generally,
a non-decreasing function). Newman[19] shows that under negative dependence, one obtains
a Central Limit Theorem (CLT) for stationary sequences of random variables. Dubhashi and
Ranjan[6] show that under negative dependence conditions, one can employ classical tools of
concentration of measure such as the Chernoff-Hoeffding (CH) bounds and related martingale
inequalities (see also [20, 23, 4, 14]).

A classical case of negative dependence occurs in occupancy problems, where m balls are
randomly allocated into n bins. Typical random variables of interest are the occupancy num-
bers Bi, i ∈ [n], that is, the number of balls that are contained in bin i. The Bi’s are dependent,
since

∑
iBi = m. The intuitive argument from above—if one of the Bi’s is “large”, the other

variables are less likely to be “large” as well—suggests that they are negatively dependent.
Occupancy problems arise in the analysis of algorithms from areas as diverse as dynamic load
balancing [1], simulation of parallel computer models on realistic parallel machines [4], and
distributed graph coloring [20]. There are also certain non-linear and non-independent gen-
eralizations of the basic balls and bins model that have been studied, in particular, in the
literature in applied Economics [3, 11, 24]. Recently [5] such models have also been shown to
have relevance in Computer Science in random graph models of the structure of the internet.

Another paradigm example of negative dependence are the so-called permutation distri-
butions that arise in many settings corresponding to resource sharing by random reordering
strategies.
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Establishing negative dependence in these examples is useful in order to carry out prob-
bailistic analysis by employing standard probabilistic tools such as central limit theorems, large
deviation estimates and martingale inequalities. However, this can be a hard task, and it is
mostly accomplished by ad-hoc techniques.

In this paper, we establish negative dependence in the examples mentioned above in two
strong forms: negative association and negative dependence, two concepts that are defined
in § 3 below. We use the FKG inequality, a celebrated tool in the well developed theory of
positive dependence [8, 9, 2]. We show that it can be adapted also to give proofs of negative
association involving occupancy numbers and permutation distributions.

1.1 Organization

The paper is organized as follows. A detailed description of the probabilistic experiments is
given in Section 2. We review the notions of negative association and negative regression in § 3
and the FKG inequality in § 4. In § 5, we show that permutation distributions are negatively
associated by an application of the FKG inequality in an interesting lattice. In § 6, we obtain
certain inequalities involving sums of occupancy numbers that are reminiscent of majorization
inequalities. Curiously, some of these inequalities involve non-disjoint sets of variables, so they
do not follow directly from other results on negative association of occupancy numbers such
as in [6].

2 Examples

For a positive integer n, let [n] := {1, . . . , n}; for I ⊆ [n], let Ī := [n] − I. We investigate
probabilistic experiments where m balls are randomly distributed among n bins. Let Bi,
i ∈ [n], denote the occupancy number of bin i, that is, the number of balls that are contained
in bin i at the end of the experiment.

2.1 Independent Balls

Balls are thrown independently into bins with Pr(ball j goes into bin i) = pi,j , i ∈ [n], j ∈ [m],
and for each ball j,

∑
i pi,j = 1. In the uniform case where pi,j = pi for each j ∈ [m],

(B1, . . . , Bn) have the usual multinomial distribution with

Pr(B1 = m1, . . . , Bn = mn) =
n!

m1! · · ·mn!
· pm1

1 · · · p
mn
n ,

when
∑

imi = m. This is sometimes called the Maxwell–Boltzmann model .

2.2 Permutation Distributions

In the so-called Fermi–Dirac model , bins contain at most one ball, and each distribution of
balls among the bins is equally likely to occur. (This requires m < n.) The Bi’s are indicator
variables in this case, and for mi ∈ {0, 1}, i ∈ [n], with

∑
imi = m,

Pr(B1 = m1, . . . , Bn = mn) =
(
n

m

)−1

.

The joint distribution of (B1, . . . , Bn) in the Fermi–Dirac model is a special case of a
permutation distribution for n random variables.
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Definition 1 Let n be a positive integer.

1. The random variables J1, . . . , Jn have the permutation distribution on [n], if they take
values in [n] and, for every permutation σ : [n]→ [n],

Pr(J1 = σ(1), . . . , Jn = σ(n)) =
1
n!

.

2. Let x1, . . . , xn be arbitrary real numbers. The random variables X1, . . . , Xn are said to
have a permutation distribution on (x1, . . . , xn), if there is a set of random variables
J1, . . . , Jn with the permutation distribution on [n] and Xi = xJi for each i ∈ [n].

We shall refer to either situation as a permutation distribution.

Remark 2 If x1, . . . , xn are all distinct, then this definition is equivalent to stating that

Pr(X1 = xσ(1), . . . , Xn = xσ(n)) =
1
n!

for every permutation σ : [n]→ [n]. This is apparently the definition of Joag-Dev and Proschan
[12].1 However, this is not equivalent if the xi’s are not all distinct, which is the case needed
in our application to the Fermi–Dirac model.

3 Negative Dependence of Random Variables

We consider only discrete random variables. X = (X1, . . . , Xn) denotes a tuple of random
variables X1, . . . , Xn; we will assume that all expectations E[h(X)] exist.

Two random variables X,Y are called negatively correlated , if cov(X,Y ) := E[XY ] −
E[X]E[Y ] ≤ 0. The following definition from [12] is a natural generalization of negative
correlation (and other notions of negative dependence) to the case of n random variables.

Definition 3 (–A) The random variables X = (X1, . . . , Xn) are negatively associated if for
every index set I ⊆ [n], cov(f(Xi, i ∈ I), g(Xi, i ∈ Ī)) ≤ 0, that is,

E[f(Xi, i ∈ I)g(Xi, i ∈ Ī)] ≤ E[f(Xi, i ∈ I)]E[g(Xi, i ∈ Ī)] ,

for all non-decreasing functions f : R|I| → R and g : Rn−|I| → R. (A function h : Rk → R is
said to be non-decreasing, if h(x) ≤ h(y) whenever x ≤ y in the component-wise ordering on
Rk.)

Note that the same inequality will hold if f and g are both non-increasing functions.
Negative association of random variables is preserved under taking subsets, forming unions

of independent sets, and forming sets of non-decreasing functions that are defined on disjoint
subsets of the random variables. The following proposition makes some of these very useful
properties more precise, see [12].

Proposition 4 1. If X = (X1, . . . , Xn) and Y = (Y1, . . . , Ym) both satisfy (−A) and are
mutually independent, then the augmented vector (X,Y) = (X1, . . . , Xn, Y1, . . . , Ym) sat-
isfies (−A).

1They use the term “expermutation” which we were not able to locate in the literature.
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2. Let X := (X1, . . . , Xn) satisfy (−A). Let I1, . . . , Ik ⊆ [n] be disjoint index sets, for some
positive integer k. For j ∈ [k], let hj : R|Ik| → R be non-decreasing functions, and define
Yj := hj(Xi, i ∈ Ij). Then the vector Y := (Y1, . . . , Yk) also satisfies (−A). That is,
non-decreasing functions of disjoint subsets of negatively associated variables are also
negatively associated. The same is true if each hj is a non-increasing function.

Remark 5 It is obvious from the definition that two negatively associated random variables
are negatively correlated. In general, the notion of negative association is much stronger than
the notion of negative correlation.

A different (and probably incomparable) notion of negative dependence is:

Definition 6 (–R) The random variables X = (X1, . . . , Xn) satisfy negative regression if for
every two disjoint index sets I, J ⊆ [n], and all non-decreasing functions f : R|I| → R,

E[f(Xi, i ∈ I) | Xj = aj , j ∈ J ]

is non-increasing in each aj , j ∈ J .

4 The FKG Inequality

We recall some concepts from the theory of partial orders. A (finite) lattice (L,≤L) is a (finite)
set L, partially ordered by ≤L, in which every two elements x, y have a least upper bound,
denoted x ∨ y and called the join of x and y, and a greatest lower bound, denoted x ∧ y and
called the meet of x and y. A lattice L is called distributive, if, for all x, y, z ∈ L, we have the
following two distributive laws:

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) or, equivalently, x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) .

A function f : L → R on a lattice (L,≤L) is said to be non-decreasing (non-increasing) with
respect to ≤L, if x ≤L y implies f(x) ≤ f(y) (respectively, x ≤L y implies f(x) ≥ f(y)). A
function µ : L→ R+ is called log-supermodular , if, for all x, y ∈ L,

µ(x)µ(y) ≤ µ(x ∨ y)µ(x ∧ y) . (4.1)

We give two examples of lattices that we will use in later sections.

Example 7 For positive integers n,m, define L := [n]m and ≤L to be the component-wise
order, that is, for a = (a1, . . . , am),b = (b1, . . . , bm) ∈ L,

a ≤L b ⇐⇒ ak ≤ bk for each k ∈ [m] .

Join and meet are given by the following equations on the components,

(a ∨ b)k := max{ak, bk} and (a ∧ b)k := min{ak, bk} ;

and it turns out that (L,≤L) is a distributive lattice because of the following property of
integers,

min{u,max{v, w}} = max{min{u, v},min{u,w}} ,
max{u,min{v, w}} = min{max{u, v},max{u,w}} .
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Example 8 For m < n, let Lm be the set of (ordered) m-element subsets S = {s1, . . . , sm} of
[n], that is, s1 < · · · < sm. For S, S′ ∈ Lm, we define S � S′ if sk ≤ s′k for all k ∈ [m]. If we
identify S with (s1, . . . , sm) ∈ [n]m, we can view (Lm,�) as a sublattice of the lattice (L,≤L)
from the previous example. (Note that Lm is closed under ∨ and ∧. For m-element subsets S, S′

of [n] and any k ∈ [m − 1], (S ∨ S′)[k+1] := max{s[k+1], s
′
[k+1]} > max{s[k], s′[k]} = (S ∨ S′)[k],

since s[k+1] > s[k] and s′[k+1] > s′[k]. Therefore, (S ∨ S′) ∈ Lm, and (S ∧ S′) ∈ Lm is proved
similarly.) (Lm,�) is distributive, since it is a sublattice of the distributive lattice (L,≤L).
(The lattice (Lm,�) has also been considered in [25].

There is an interesting relationship between (Lm,�) and (Ln−m,�). For m-element subsets
S, S′ of [n], S � S′ if and only if S′ � S. For i ∈ [m], let S′i =: ` + i, ` ≥ 0. This means
`+ i− 1 ≥ S′` ≥ S`, since S � S′, and, in turn, `+ i− 1 ≤ Si−1. This implies Si ≥ `+ i = S′i,
that is, S′ � S.

The FKG inequality extends the correlation of monotone functions on the real line to the
situation in which functions are defined on a lattice.

Theorem 9 (FKG Inequality [8, 22, 2]) Let L be a finite, distributive lattice and let µ :
L→ R+ be a log-supermodular function. Then, if f, g : L→ R are both non-decreasing or both
non-increasing with respect to ≤L, we have∑

x∈L
f(x)µ(x) ·

∑
x∈L

g(x)µ(x) ≤
∑
x∈L

f(x)g(x)µ(x) ·
∑
x∈L

µ(x) .

If one of the functions is non-decreasing and the other is non-increasing, then the reverse
inequality holds.

It is helpful to view µ as a measure on L. Assuming that µ is not identically zero, we can define,
for any f : L → R, its expectation E[f ] := (

∑
x∈L f(x)µ(x))/(

∑
x∈L µ(x)). In this notation,

the FKG inequality asserts, for example, that for any log-supermodular µ and functions f, g :
L→ R,

E[f ] · E[g] ≥ E[f · g] ,

if one of the functions is non-decreasing and the other one is non-increasing. This should be
taken not only as a formal similarity with Definition 3 but as an indication why the FKG
inequality is at the core of many proofs of negative association among random variables.

5 Permutation Distributions are Negatively Associated

We will prove that random variables having a permutation distribution are negatively associ-
ated. Basically, this result already appears in [12, Theorem 2.11]. Here we give a new short
proof of this result via the FKG inequality.

Theorem 10 Random variables having the permutation distribution are negatively associated.

Proof. We shall first show that for any positive integer n, the permutation distribution on [n]
is negatively associated. Let J1, . . . , Jn have the permutation distribution on [n]. Let I ⊆ [n]
be an arbitrary index set with |I| = k ≤ n. For a k-element subset S = {S1, . . . , Sk} ⊆ [n] and
a permutation τ on S, we shall write τ(S) for the vector (τ(S1), . . . , τ(Sk)).
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Let (Lk,�) be the lattice on the k-element subsets of [n] as defined in Example 8. For
non-decreasing functions f : Rk → R, g : Rn−k → R , we define real-valued functions f ′, g′ on
(Lk,�) by setting

f ′(S) :=
1
k!

∑
τ

f(τ(S)) , g′(S) :=
1

(n− k)!

∑
ρ

g(ρ(S)) ,

where τ ranges over all permutations of S and ρ ranges over all permutations of S. Then f ′ is
non-decreasing and g′ is non-increasing on the lattice. To see that f ′ is non-decreasing, that is,
f(S) ≤ f(S′) if S � S′, merely do a term-wise comparison of the two summations. To see that
g′ is non-increasing, observe in addition that S � S′ if and only if S � S′, see Example 8. Set
µ(S) :=

(
n
k

)−1 to get a trivially log-supermodular measure. Observe now that (with σ varying
over all permutations of [n])∑

S

f ′(S)µ(S) =
∑
S

∑
τ

f(τ(S))(n− k)!/n! =
∑
σ

f(σ(i), i ∈ I)/n! = E[f(Ji, i ∈ I)] .

Similarly, ∑
S

g′(S)µ(S) = E[g(Ji, i ∈ Ī)]

and ∑
S

f ′(S)g′(S)µ(S) =
∑
S

∑
τ

f(τ(S))
∑
ρ

g(ρ(S))/n!

=
∑
σ

f(σ(i), i ∈ I)g(σ(i), i ∈ Ī)/n!

= E[f(Ji, i ∈ I)g(Ji, i ∈ Ī)] .

Applying the FKG inequality, we conclude that J1, . . . , Jn are negatively associated.
We deduce that for any reals x1, . . . , xn, random variables X1, . . . , Xn having the permu-

tation distribution on (x1, . . . , xn) are negatively associated. Indeed, Xi = hi(Ji) := xJi are
non-decreasing functions of distinct variables; hence, by Proposition 4(2), we conclude that
any permutation distribution is negatively associated. 2

An immediate corollary is negative association of Fermi-Dirac distributions:

Corollary 11 The indicator variables in the Fermi–Dirac model satisfy the negative associa-
tion condition (−A).

5.1 Application

This corollary a simple analysis of the following probabilistic experiment from [17]. Consider
a k × n matrix A that is defined as follows. Row entries Ai·, i ∈ [k], are independent random
variables, and for each row i, the entries Aij , j ∈ [n], are indicator variables distributed
according to the Fermi–Dirac model, that is, each row of A is a random 0-1 vector of length n
with exactly m ones.

Let f(A) be the number of all-zero columns in A. By Corollary 11 and Proposition 4(1), the
random variables Aij , i ∈ [k], j ∈ [n], are negatively associated and so are the random variables
Cj := 1 − sgn

∑
i∈[k]Aij , j ∈ [n], by Proposition 4(2) (sgn 0 := 0, sgnx := 1 for x > 0). Note

that f(A) =
∑

j∈[n]Cj , and so one can apply Chernoff–Hoeffding bounds on f(A).
In [17], Mehlhorn and Priebe consider shortest path problems on complete digraphs (with

loops) with respect to simple weight functions. On a graph with n vertices, for every vertex v
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and every integer j ∈ [n], there is exactly one edge of length j leaving v. Among other facts,
Mehlhorn and Priebe use large deviation estimates for f(A) to deduce that on random simple
weight functions, any algorithm for the single source shortest path problem has complexity
Ω(n log n) with high probability.

6 Correlation Inequalitites for Sums of Occupancy Numbers

Correlations of the occupancy numbers B1, . . . , Bn in our first experiment are extensively stud-
ied in [6]; it turns out that (B1, . . . , Bn) satisfy a number of negative dependence conditions,
including negative association. By Proposition 4, this implies general correlation inequalities
for non-decreasing functions of disjoint subsets of the occupancy numbers. We now show that
correlation inequalities involving sums of these occupancy numbers can be obtained in a more
direct way via the FKG inequality.

A possible configuration of the experiment can be represented by a vector a := (a1, . . . , am),
with ak ∈ [n] for each k ∈ [m]. This is the configuration where ball k goes into bin ak
for each k ∈ [m]. Define the lattice (L,≤L) on all such configurations as in Example 7
and define µ : L → R+ by µ(a) :=

∏
k pak,k for each a ∈ L. For any a,b ∈ L, we have

µ(a)µ(b) = µ(a ∨ b)µ(a ∧ b), and so µ is log-supermodular.
Let I, J ⊆ [n] be two index sets such that either I ∩ J = ∅ or I ∪ J = [n]; without loss of

generality, we can arrange it by renumbering that J = {1, . . . , |J |} and I = {n−|I|+1, . . . , n}.
Let tI , tJ be arbitrary non-negative integers and define f, g : L → {0, 1} to be the indicator
functions of the events (

∑
i∈I Bi ≥ tI) and (

∑
j∈J Bj ≥ tJ), respectively, where Bi, i ∈ [n],

are the (random) occupancy numbers. (The occupancy number of bin i on configuration a
is given by Bi(a) := |{j | aj = i}|.) The definition of the lattice order ≤L ensures that f is
non-decreasing, while g is non-increasing on L for any fixed integers tI , tJ . Applying the FKG
inequality, we get the following correlation inequality on the random variables Bi, i ∈ [n].

Theorem 12 Let I, J ⊆ [n] be index sets such that either I ∩ J = ∅ or I ∪ J = [n], and let
tI , tJ be arbitrary non-negative integers. Then

Pr
(∑

i∈I Bi ≥ tI ,
∑

j∈J Bj ≥ tJ
)
≤ Pr

(∑
i∈I Bi ≥ tI

)
· Pr

(∑
j∈J Bj ≥ tJ

)
. (6.1)

Remark 13 (6.1) is referred to as the negative quadrant dependence condition for X :=∑
i∈I Bi and Y :=

∑
j∈J Bj . It is known to be equivalent to the negative association condition

(−A) for X,Y , [12]. This can also be easily seen by replacing f, g in the proof of Theorem 12
by arbitrary non-decreasing functions. In fact, even more general correlation inequalities rem-
iniscent of majorization inequalities [10] follow along the same lines. For example, if we define
a partial order on tuples of occupancy numbers (for a fixed number of balls) by

(B1, . . . , Bn) � (B′1, . . . , B
′
n) ⇐⇒

∑
k≤i≤n

Bi ≤
∑
k≤i≤n

B′i for all k ∈ [n− 1] ,

then a ≤L b implies (B1(a), . . . , Bn(a)) � (B1(b), . . . , Bn(b)) and, hence, the FKG inequality
on L can be applied to functions on (B1, . . . , Bn) that are non-decreasing or non-increasing
with respect to �. Such inequalities involve non-disjoint sets of random variables and thus
do not follow directly from the negative assoctaion of the occupancy numbers (Theorem 14 in
[6]).
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7 In Praise of Dexter’s Style

Those of us fortunate to have known Dexter at close quarters are unanimous in admiration
of the hallmarks of Dexter’s style and work: the elegance and power of his mathematical
techniques. The deliberations above are offered as a humble effort to imitate some of that
style.

References

[1] Adler, M., Chakrabarti, S., Mitzenmacher, M. and Rasmussen, L. (1995) Parallel random-
ized load balancing. In Proc. 27th Annual ACM Symposium on the Theory of Computing
238–247
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