
PERMUTATIONS ALL OF WHOSE PATTERNS OF A GIVEN LENGTH

ARE DISTINCT
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Abstract. For each integer k ≥ 2, let F (k) denote the largest n for which there exists a
permutation σ ∈ Sn all of whose patterns of length k are distinct. We prove that F (k) =
k + ⌊

√
2k − 3⌋+ εk, where εk ∈ {−1,0} for every k. We conjecture an even more precise result,

based on data for small values of k.

0. Notation

If f, g : N → R+ are two functions, we write f(x) . g(x), or alternatively g(x) & f(x), to

denote that lim supn→∞
f(x)
g(x) ≤ 1.

As is usual in combinatorics, we will use interval notation for sets of integers. Hence, for real
numbers a ≤ b, the closed interval [a, b] consists of all integers n such that a ≤ n ≤ b, and so
on. The interval [1, n] will be denoted simply by [n]. Let Sn denote the symmetric group on
n letters. We will consider elements of Sn as bijections σ : [n] → [n], and use the shorthand
σ = σ1σ2 · · ·σn to denote that σ(i) = σi. The number n is called the length of the permutation.
Some further more specialised notation will be introduced below.

1. Introduction

Let k, n be positive integers with k ≤ n. If σ ∈ Sn and π ∈ Sk, then one says that σ contains
π as a pattern if there is a subsequence of σ that is order-isomorphic to π, that is, if there exists
a k-tuple (a1, . . . , ak), with 1 ≤ a1 < a2 < · · · < ak ≤ n and

(1.1) sign(σaj
− σai

) = sign(πj − πi), for all 1 ≤ i < j ≤ k.

The following notation and terminology is all standard. Let (a1, . . . , ak) and (a′1, . . . , a
′
k)

be two k-tuples as above, and let σ1, σ2 be the corresponding subsequences of σ. Thus
σ1 = σa1

σa2
· · ·σak

, and similarly for σ2. We write σ1 = σ2 if ai = a′i for i = 1, . . . , k,
whereas we write σ1 ∼= σ2 if they represent the same pattern in Sk. In the latter case one says
that σ1 and σ2 are pattern isomorphic, as subsequences of σ. We write σ1 ⊆ σ to denote that
σ1 is a subsequence of σ. If π ∈ Sk is the pattern represented by σ1, one abuses notaton slightly
and also writes π ⊆ σ.

The study of permutation patterns has developed rapidly over the last 20 years or so: see, for
example, the recent book of Kitaev [K] for a comprehensive overview of the literature. Much of
the research undertaken is concerned with one or other of two complementary themes:

Pattern avoidance: Here one is interested in enumerating, as a function of n, permutations
in Sn which contain no copies of a fixed set of one or more patterns, often of a fixed length k.
Pattern packing: Here one is interested in constructing permutations which contain as many
copies as possible of one or more fixed patterns, or alternatively, which contain as many different
patterns as possible.
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There is by now a rather vast literature on the subject of pattern avoidance. Generating-
function and other techniques allow for precise enumeration of permutations which avoid specific
patterns, and also enable connections to be established to other kinds of permutation statistics.
These results are quantitative in nature. However, there has also been remarkable progress in
achieving qualitative results: for example, the exponential-growth result of Marcus and Tardos
[MT], the Kaiser-Klazar theorem [KK] establishing the dichotomy between exponential and
polynomial growth, plus recent work of Albert-Rus̆kuc-Vatter [ARV] on small permutation
classes.

The literature on pattern packing is smaller but still substantial. For an introduction to the
subject of packing copies of a specific pattern, see [AAHHS]. The paper of Miller [M] contains
state-of-the-art results on the subject of permutations which contain as many different patterns
as possible. It provides the best estimates to date for the following two natural functions:

(i) the maximum number pat(n) of possible patterns, of unspecified length, in a permutation
of length n. Miller proves that

(1.2) 2n − O(n22n−
√

2n) ≤ pat(n) ≤ 2n − Θ(n2n−
√

2n).

(ii) the minimum length L(k) of a so-called k-superpattern, i.e.: a permutation which contains

every π ∈ Sk as a pattern. Since
(

L(k)
k

)

≥ k!, Stirling’s formula gives a trivial lower bound of

(1.3) L(k) &

(

k

e

)2

.

Nobody has yet succeeded in improving on this estimate. Miller obtained the best upper bound
to date. She exhibited, for every k, a k-superpattern whose length is at most k(k + 1)/2.

As Miller remarks in her paper, the problems of estimating the functions in (i) and (ii) above
are, loosely speaking, “dual to one another”. When reading this, it occurred to us to consider
the following notion, which seems more directly “dual” to the notion of a superpattern:

Definition 1.1. Let k, n be natural numbers with k ≤ n. A permutation σ ∈ Sn is called
a k-separator if it contains at most one copy of any π ∈ Sk.

We found no explicit mention of this concept in the existing literature. The obvious object
to study would seem to be the function F : N → N, where F (k) denotes the maximum length
of a k-separator. The trivial lower bound for L(k) in (1.3) now translates into a trivial upper

bound for F (k). For one must have
(

F (k)
k

)

≤ k! and hence, by Stirling’s formula,

(1.4) F (k) .

(

k

e

)2

.

However, the property of being a k-separator is far more restrictive than this. Indeed, it is
almost trivial that

(1.5) F (k) < 2k.

To see this, let σ ∈ Sn, σ = σ1 · · ·σn, be a k-separator. A priori, there are at most k possibilities
for the pattern formed by σ1σ2 · · ·σk−1σT , as T runs from k up to n. Hence, if n ≥ 2k, at least
two of these patterns must coincide.

The main result of our note is the following:

Theorem 1.2. For each k ≥ 2 one has

(1.6) F (k) = k + ⌊
√

2k − 3⌋ + εk,

where εk ∈ {−1,0}.
The proof of this result, which follows in Section 2, has much in common with the methods of

[M]. To obtain a lower bound for F (k), we employ the same “tilted checkerboard” permutations
appearing in [M]. For the upper bound, we further extend the idea employed in [M], and
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attributed originally to Coleman [C], that to avoid repeating patterns in a permutation σ ∈ Sn,
the so-called taxicab distance between elements i, j ∈ [n] should be large. What seems to be
new in our proof is a sort of optimisation argument which allows for a quite accurate estimate
for F (k) (there are hints of this argument in Section 6 of [M], but our approach seems to be
different).

In Section 3 we present the results of computer assisted calculations for small values of k,
specifically for 2 ≤ k ≤ 9, which lead us to conjecture an even more precise result than Theorem
1.2.

2. Proof of Theorem 1.2

2.1. Proof of Lower Bound. In this subsection we prove that, for every k ≥ 2,

(2.1) F (k) ≥ k + ⌊
√

2k − 3⌋ − 1.

Note that 2k − 3 is a perfect square if and only if k = 2m2 − 2m + 2 for some m ≥ 1. To prove
(2.1) it thus suffices to prove, for every integer m ≥ 1, the following two statements :

(i) If 2m2 − 2m + 2 ≤ k ≤ 2m2 + 1, then there exists σ ∈ Sk+(2m−2) which is a k-separator,

(ii) If 2m2 + 2 ≤ k ≤ 2m2 + 2m + 1, then there exists σ ∈ Sk+(2m−1) which is a k-separator.

For positive integers r, s, we employ the definitions of the r × s tilted rectangle and the r × s
tilted checkerboard as given in [M]. In particular, see Figures 1 and 2 of [M] for pictorial repre-
sentations. Let σr,s denote the corresponding r × s checkerboard permutation, considered as a
permutation of length ⌈ rs

2 ⌉, and represented as the set of black dots in Figure 2 of [M]. Thus, r
is the number of columns and s the number of rows in this permutation. If a ∈ [r] and b ∈ [s]
are such that a ≡ b (mod 2), then σr,s

a,b denotes the element of the r × s checkerboard which lies

in its a:th column and b:th row. Here, the columns are read from left to right and the rows
from bottom to top.

Case 1: 2m2 − 2m + 2 ≤ k ≤ 2m2 + 1.

We consider three subcases:

(1a) k = 2m2 − 2m + 2.
(1b) k = 2m2 − 2m + 2 + i, for some 1 ≤ i ≤ m.
(1c) k = 2m2 − m + 2 + j, for some 1 ≤ j < m.

Subcase (1a): We need to exhibit σ ∈ S2m2 which is a k-separator. We take σ = σ2m,2m.
This is indeed a permutation of length 1

2(2m)2 = 2m2. By Proposition 4.4 of [M], a pattern
π ⊆ σ which is not uniquely represented must truncate or avoid at least two of the rows and/or
columns of σ. But, clearly, any such π must omit at least 2m− 1 elements of the checkerboard.

Subcase (1b): We need to exhibit σ ∈ S2m2+i which is a k-separator. We take σ to be the
prefix of σ2m+1,2m whose complement consists of its last m + 1 − i elements, i.e.: we omit the
elements σ2m+1,2m

2m+1,b for b ≥ 2i+1. We need to show that any π ⊆ σ which omits 2m−2 elements

of σ is represented uniquely. We already know this is true when i = 0 from subcase (1a) above.
Now suppose i > 0 and suppose π1, π2 are two subsequences of σ such that π1 ∼= π2 and each
omits 2m − 2 elements of σ. If π1 6= π2 then, reading both from left-to-right, there must be a
first position where they differ. Say this is in position ξ ∈ [k] and let π1

ξ = σa,b, π2
ξ = σc,d. Since

both π1 and π2 omit at most 2m − 2 elements of the 2m × 2m checkerboard formed by all but
the last column of σ, at least one of a and c must equal 2m + 1.

First suppose a = c = 2m + 1 and, WLOG, that b < d. Then

(2.2) σ2m+1,b < σe,f < σ2m+1,d, whenever e < 2m + 1, b ≤ f < d and e ≡ f (mod 2).
3



Since d ≥ b + 2, there are at least 2m such elements σe,f . Since π1 and π2 coincide to the
left of position ξ, none of these 2m elements of σ can lie in either πj . But this contradicts the
assumption that the πj omit only 2m − 2 elements of σ.

Now suppose, WLOG, that 2m+1 = c > a. Then all elements σe,f must be missing from π2,
where either (i) e = a, f > b (ii) a < e < 2m+1 (iii) e = 2m+1, f < d (iv) e < 2m+1, d ≤ f < b
or (v) e < a, b ≤ f < d (note that either (iv) or (v) is unsatisfiable). It is easy to see that the
total number of pairs (e, f) of the same parity satisfying at least one of these conditions must
then be at least 2m, again a contradiction.

Subcase (1c): We need to exhibit σ ∈ S2m2+2m+j which is a k-separator. We take σ to be

the subsequence of σ2m+1,2m+1 whose complement consists of the leftmost m + 1 − j elements
in its top row, i.e.: we omit the elements σ2m+1,2m+1

2ξ−1,2m+1 , where 1 ≤ ξ ≤ m + 1 − j. We need to
show that any π ⊆ σ which omits at most 2m− 2 elements is represented uniquely. We already
know this is true when j = 0 from subcase (1b) above. For j > 0, the argument is essentially
the same as in subcase (1b), for we can rotate σ by 90 degrees clockwise and apply a symmetry
argument. We shall flesh out the details a little so as to leave no room for doubt. Suppose π1, π2

are two subsequences of σ such that π1 ∼= π2 and each omits 2m−2 elements of σ. Firstly, if π1

and π2 coincide along the top row of σ, then it is easy to see that the restrictions of both to the
remaining rows must also be pattern isomorphic. Then we can apply subcase (1b) directly. So
we may suppose that, reading from left-to-right, there is a first position along the top row of σ,
say σa,2m+1, such that, WLOG, σa,2m+1 ∈ π1\π2. Suppose σa,2m+1 is the t:th largest element in
π1. If the t:th largest element in π2 appears in the top row of σ, then it must be in the (a+2):nd
column or later. Since π1 ∼= π2, the same number of elements appear in both to the left of the
t:th largest element. It follows unavoidably that π2 omits at least 2m elements of σ, a contradic-
tion. A similar argument can be applied if the t:th largest element of π2 doesn’t appear in the
top row. We will unavoidably be led to the contradiction that π2 omits at least 2m elements of σ.

Case 2: 2m2 + 2 ≤ k ≤ 2m2 + 2m + 1.

We consider three subcases:

(2a) k = 2m2 + 2.
(2b) k = 2m2 + 2 + i, for some 1 ≤ i ≤ m.
(2c) k = 2m2 + m + 2 + j, for some 1 ≤ j < m.

Subcase (2a): We take σ = σ2m+1,2m+1, which has length ⌈ (2m+1)2

2 ⌉ = 2m2 + 2m + 1. We
need to show that any subsequence which omits at most 2m − 1 elements of σ uniquely repre-
sents its pattern. Let π1 and π2 be two such subsequences and suppose π1 ∼= π2, but π1 6= π2.
We can argue as in subcase (1c) above that, unless π1 and π2 both contain the entire top
row of σ, at least one of them necessarily omits at least 2m elements of σ, a contradiction.
Hence, both contain the entire top row. But then, by a symmetry argument, both must also
contain the entire first column, bottom row and last column of σ. In other words, both contain
all the elements around the edges of σ and from this it follows easily that they must be identical.

We can deal with subcases (2b) and (2c) in exactly the same way as we did with (1b) and
(1c) respectively, except that now we start with σ2m+1,2m+1 and add in the elements of the
last column and top row of σ2m+2,2m+2 one-by-one, first going from bottom to top in the last
column and then from right to left in the top row. As in Case 1, this shows that the value of
F (k) − k is non-decreasing for k in the interval covered by Case 2.

2.2. Proof of Upper Bound. In this subsection we prove that, for every k ≥ 2,

(2.3) F (k) ≤ k + ⌊
√

2k − 3⌋.
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The basic idea is that a k-separator must take numbers which are close together and permute
them so they are placed far apart. We now make this precise. We need a couple of definitions:

Definition 2.1. Let σ ∈ Sn and let i, j ∈ [n]. The distance between i and j in σ, denoted
dσ(i, j), is defined as

(2.4) dσ(i, j) = |σ−1(i) − σ−1(j)|.
In other words, dσ(i, j) is the number of spaces between i and j in the representation σ =
σ1σ2 · · ·σn. For example, if n = 9 and σ = 341679825, then dσ(4, 2) = 6 and dσ(1, 9) = 3.

Definition 2.2. Let σ ∈ Sn and let i, j ∈ [n]. We define the natural number tσi,j to be
the number of integers l such that

(2.5) sign(l − i) = sign(j − l) and sign(σ−1(l) − σ−1(i)) = sign(σ−1(j) − σ−1(l)).

In other words, tσi,j is the number of integers lying strictly between i and j which also appear
between i and j in the representation σ = σ1σ2 · · ·σn. For example, if n = 9 and σ = 341679825,
then tσ3,8 = 3, since each of the numbers 4,6,7 appear between 3 and 8 in σ, whereas tσ1,5 = 1,
since only 2 appears between 1 and 5 in σ. Note that, a priori, for any i,j and σ one has

(2.6) 0 ≤ tσi,j < |i − j|.
We now require three lemmas:

Lemma 2.3. Let σ ∈ Sn be a k-separator. Then for any i 6= j ∈ [n] one has

(2.7) dσ(i, j) ≥ (n − k + 2) + tσi,j − |i − j|.
Proof. Without loss of generality, i < j and i appears to the left of j in the standard represen-
tation of σ. We consider

(2.8) σ = σ1 · · ·σr−1 i σr+1 · · ·σs−1 j σs+1 · · ·σn.

By definition, tσi,j of the numbers in the interval (i, j) appear among σr+1, . . . , σs−1. Hence, the

remaining j − i− 1− tσi,j such numbers appear either to the left of i or to the right of j in (2.8).

A total of n − dσ(i, j) − 1 numbers appear either to the left of i or to the right of j. Hence,
exactly

(2.9) (n − dσ(i, j) − 1) − (j − i − 1 − tσi,j) = n + tσi,j − (j − i) − dσ(i, j)

of these numbers are not in the closed interval [i, j]. If (2.7) failed to hold, it would mean that
the right-hand side of (2.9) was greater than or equal to k − 1. In other words, it would mean
that at least k − 1 of the numbers appearing either to the left of i or to the right of j in σ
were not in the interval [i, j]. If so, pick any k − 1 such numbers reading from left to right, say
σi1 , σi2 , . . . , σip , σj1 , . . . , σjq , where p + q = k − 1 and i1 < i2 < · · · < ip < r < s < j1 < · · · < jq.
Then the two subsequences

(2.10) σi1 · · ·σip i σj1 · · ·σjq and σi1 · · ·σip j σj1 · · ·σjq

yield two copies of the same length-k pattern in σ, contradicting the fact that σ is a k-separator.
This completes the proof of the lemma.

Remark 2.4. Let σ ∈ Sn and i, j ∈ [n]. The taxicab distance between i and j with respect to

σ, which we denote dTC
σ (i, j), is defined in Section 6 of [M] as

(2.11) dTC
σ (i, j) = |i − j| + |σi − σj |.

Also, in Miller’s notation,

(2.12) tσi,j = n − |Sσ(i, j)|.
Hence, in Miller’s notation, (2.7) becomes

(2.13) dTC
σ−1 (i, j) ≥ 2n + 2 − k − |Sσ(i, j)|.
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Lemma 2.5. Let m ∈ N and let a1a2 · · · am be any permutation of the integers in [m]. Then

(2.14)
m−1
∑

i=1

|ai − ai+1| ≤
(m − 1)(m + 1)

2
.

Proof. Let

(2.15) r := #{i ∈ [m − 1] : ai+1 < ai}, s := m − 1 − r = #{i ∈ [m − 1] : ai+1 > ai}.
Let i1, . . . , ir be the indices such that aij+1 < aij , for j = 1, . . . , r. Since the “take-off points”
aij are distinct, for j = 1, . . . , r, and also the “landing points”aij+1 are distinct, for j = 1, . . . , r,
it follows that

(2.16)
r

∑

j=1

|aij − aij+1| ≤ r(m − 1) − 2 ·
r

∑

j=1

(j − 1) = r(m − 1) − r(r − 1).

Similarly, if i′1, . . . , i
′
s are the indices such that ai′j+1 > ai′j

, for j = 1, . . . , s, then

(2.17)
s

∑

j=1

|ai′j
− ai′j+1| ≤ s(m − 1) − s(s − 1).

From (2.16) and (2.17) it follows that

(2.18)
m−1
∑

i=1

|ai − ai+1| ≤ m(m − 1) − (r2 + s2).

Since r + s = m − 1, the quantity r2 + s2 is minimised when m is odd and r = s = m−1
2 . This

proves the lemma.

Remark 2.6. A more careful analysis yields

(2.19)
m−1
∑

i=1

|ai − ai+1| ≤
(m − 1)(m + 1)

2
− 1,

which is best-possible. We have no use for this slight improvement in what follows, however.

Lemma 2.7. For any x ∈ N one has

(2.20) ⌊
√

x⌋ +
x

⌊√x⌋ ≤ 2
(

⌊
√

x⌋ + 1
)

,

with equality if and only if x = n2 − 1 for some n ∈ N.

Proof. This is a simple exercise.

We are now ready to prove (2.3). Let σ ∈ Sn be a k-separator. Since the numbers tσi,j in (2.5)

are, at the very least, non-negative, we have by Lemma 2.3, for any i 6= j ∈ [n], that

(2.21) dσ(i, j) ≥ (n − k + 2) − |i − j|.
Let m ∈ [n]. The value of m will be optimised in due course. Reading from left to right in
the representation σ = σ1 · · ·σn, the numbers from 1 to m will appear in some order, say as
σi1 , . . . , σim , where i1 < · · · < im. By (2.21), we have that

(2.22)
m−1
∑

l=1

dσ(σil , σil+1
) ≥ (m − 1)(n − k + 2) −

m−1
∑

l=1

|σil − σil+1
|.

The left-hand side of (2.22) cannot exceed n−1, since we are reading along σ from left to right.

By Lemma 2.5, the sum on the right-hand side cannot exceed (m−1)(m+1)
2 . Hence,

(2.23) n − 1 ≥ (m − 1)(n − k + 2) − (m − 1)(m + 1)

2
,
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which we can rewrite as

(2.24) n ≤ (k − 1) +
1

2
fk(m),

where

(2.25) fk(m) = m +
2k − 3

m − 2
.

Inequality (2.24) must hold for any choice of m ∈ [n], so we choose m to make fk(m) as small
as possible. As a function of a real variable, fk(m) has a local minimum at m =

√
2k − 3 + 2.

Since, in our case, m must be an integer, we take

(2.26) m =

{

⌈
√

2k − 3⌉ + 2, if k = 2u2 + 1 for some u ∈ N,

⌊
√

2k − 3⌋ + 2, otherwise.

With the help of Lemma 2.7 one easily verifies that, for this choice of m one always has

(2.27) fk(m) < 2
(

⌊
√

2k − 3⌋ + 2
)

which, together with (2.24), yields (2.3).

3. Data and a stronger conjecture

Let k, n ∈ N≥2 with k ≤ n. If σ ∈ Sn is a k-separator, then clearly so are its reverse σ′ and
its complement σ′′, defined respectively by

(3.1) σ′
i := σ(n+1)−i, σ′′

i := (n + 1) − σi, i = 1, . . . , n.

Hence k-separators in Sn come in pairs, and this pairing can be done in two different ways.
Let us call a permutation σ ∈ Sn symmetric if σ′ = σ′′. Hence there are 2⌊

n
2
⌋ · ⌈n

2 ⌉ symmetric
permutations in Sn and they also come in pairs {σ, σ′}.

Let G(k) := k + ⌊
√

2k − 3⌋. For each k ≥ 2 and i ∈ {−1, 0}, we let Ak,i (resp. Bk,i) denote
the number of pairs (resp. symmetric pairs) of k-separators in SG(k)+i. The following data was
obtained with the help of a Mathematica program:

k G(k) Ak,−1 Ak,0 Bk,−1 Bk,0

2 3 1 0 1 0
3 4 3 1 1 1
4 6 7 0 1 0
5 7 45 1 7 1
6 9 10 0 2 0
7 10 79 0 5 0
8 11 980 0 36 0
9 12 13151 1 53 1

What obviously stands out is that εk = 0 only for k ∈ {3,5,9}, in each case there is exactly
one pair of k-separators in SG(k) and they are symmetric. The following table shows, for each
k ∈ {3,5,9}, the unique k-separator σ in SG(k) up to symmetry:

k σ

3 (3,1,4,2)
5 (3,6,1,4,7,2,5)
9 (5,10,2,7,12,4,9,1,6,11,3,8)
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It is not hard to guess a pattern here. Let H(k) := ⌊
√

2k − 3⌋ and note that, if 2 ≤ k ≤ 9,
then H(k + 1) > H(k) if and only if k ∈ {3,5,9}. More generally, H(k + 1) > H(k) if and only
if k = 2m2 + 1 or k = 2m2 + 2m + 1 for some m ∈ N. We now recall the representation of the
tilted checkerboard in Figure 2 of [M] and make the following definitions:

(i) If k = 2m2 + 1, let σm ∈ S2m2 denote the permutation represented by the set of white
dots in the (2m + 1) × (2m + 1) tilted checkerboard. In other words, if σ ∈ S(2m+1)2 is the
permutation given by the (2m + 1) × (2m + 1) tilted square, then σm and the checkerboard
permutation denoted in Section 2 by σ2m+1,2m+1 are complementary subsequences of σ.
(ii) If k = 2m2 + 2m + 1, let τm ∈ S2m2+4m+1 denote the permutation represented by the set of
white dots in the (2m+1)×(2m+3) tilted checkerboard. In other words, if τ ∈ S(2m+1)(2m+3) is
the permutation given by the (2m+1)×(2m+3) tilted rectangle, then τm and the checkerboard
permutation σ2m+1,2m+3 are complementary subsequences of τ .

After noting that the permutations in the three rows of the previous table are σ1, τ1 and σ2

respectively, we are led to make the following conjecture:

Conjecture 3.1. We have εk = 0 if and only if k = 2m2 + 1 or k = 2m2 + 2m + 1, for some
m ∈ N. If k = 2m2 +1 (resp. k = 2m2 +2m+1), then σm (resp. τm) is the unique k-separator
in SF (k) up to symmetry.

There are other directions in which one might choose to extend the ideas presented here, so
let us just make one of the more obvious suggestions. For each pair (k, l) of positive integers,
let P (k, l) denote the maximum number of distinct patterns π ∈ Sk which can appear in a
permutation σ ∈ Sk+l and set

(3.2) Q(k, l) :=
P (k, l)
(

k+1
k

) .

Obviously, for any fixed k, Q(k, l) → 0 as l → ∞. The basic question then is, how quickly does
Q(k, l) go to zero? Theorem 1.2 says that Q(k, l) = 1 at least for l ≤ k + ⌊

√
2k − 3⌋ − 1.
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