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ABSTRACT. Sondow et al have studied Ramanujan primes (RPs) and observed nu-
merically that, while half of all primes are RPs asymptotically, one obtains runs of
consecutives RPs (resp. non-RPs) which are statistically significantly longer than one
would expect if one was tossing an unbiased coin. In this discussion paper we attempt
a heuristic explanation of this phenomenon. Our heuristic follows naturally from the
Prime Number Theorem, but seems to be only partly satisfactory. It motivates why one
should obtain long runs of both RPs and non-RPs, and also longer runs of non-RPs
than of RPs. However, it also suggests that one should obtainlonger runs of RPs than
have so far been observed in the data, and this issue remains puzzling.

1. THE MODEL

Consider the following random process : you have an infinite supply of identical
biased coins, which return heads with probabilityp ∈ (1

2
, 1], and tails with probability

1 − p. Now tossN of these coins. For eachi = 1, ..., N , let hi, ti denote the number of
heads (resp. tails) among the firsti tosses. Thushi + ti = i. Also denote

∆i := hi − ti. (1.1)

The coins that come up as heads will each be colored red or blue, according to the
following rule : Suppose thei:th toss is a head. Then color this coin red if and only if
the following two conditions sare satisfied :

∆j ≥ ∆i, for all j = i + 1, ..., N (1.2)

and

If 1 ≤ k < i and∆k ≥ ∆i, then there existsl ∈ (k, i) such that∆l < ∆i. (1.3)

Otherwise, color the coin blue. The definition requires somethought, so here is an
example to illustrate how the scheme works :

toss 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
result H T H H T H H H T H T H H T H H

∆ 1 0 1 2 1 2 3 4 3 4 3 4 5 4 5 6
color B − R B − R R B − B − R B − R R

Now what do we expect to observe, whenN is large ? Well, with high probabil-
ity (w.h.p.), we will observe close topN heads and close to(1 − p)N tails. Hence
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∆N ≈ (2p − 1)N w.h.p. Now at most one coin is colored red for each positive value
attained by the function∆. On the other hand, for anyǫ > 0, w.h.p. the function∆ will
eventually exceed(2p−1− ǫ)N for good. Hence, w.h.p. about(2p−1)N coins will be
colored red, and the remaining heads, about(1 − p)N in number, will be colored blue.
So, asN → ∞, the fraction of redheads, amongst all heads, will almost surely (a.s.)
approach2p−1

p
and the fraction of blueheads will a.s. approach1−p

p
. In particular, when

p = 2/3, about half the head-coins will be colored red and half colored blue.

I claim that, withp = 2/3, this is a good basic model to have in mind when one
considers Ramanujan primes (RPs) : the red coins corresponding to RPs and the blue
ones to non-RPs. I will explain two things :

1. Why this model is reasonable.
2. Why one expects to get longer runs of blue coins than if the red-blue coloring was
done by tossing another, fair coin.

I will deal with the second issue first. However, the analysiswill show that, in this
model, one also expects longer runs of red coins than if the coloring was done fairly
at random, though not as long as the blue runs. This may seem tocontradict the data
in [?]. After explaining why I nevertheless consider the model tobe reasonable, I will
discuss this issue.

2. WHY DO WE GET LONG MONOCHROMATIC RUNS?

If a biased coin with probabilityp of heads is tossedN times, then it is well-known
that the expected length of the longest run of consecutive heads is approximatelylog N

log(1/p)
=

log1/p N . Another way of looking at this is that, for anyk ∈ N, one expects to have
to toss the coin on the order of(1/p)k times to have a reasonable probability of seeing
at least one run ofk consecutive heads. This is easy to see intuitively : the probability
of any k consecutive coin tosses all resulting in heads ispk and thus, by linearity of
expectation, the expected number of such runs amongstN tosses is(N − k + 1)pk,
which (for any fixedk) will be Θ(1) whenN = Θ[(1/p)k].

In particular, whenp = 1/2, we expect to have to make on the order of2k tosses to
have a reasonable probability of witnessing a run ofk heads.

The following facts about biased coin-tossing are also well-known :

Proposition 2.1 Suppose we toss a sequence of identical biased coins with probabil-
ity p > 1/2 of heads. With notation as in Section 1, for eachN ∈ N, let cN,p denote the
probability that∆i ≥ 0 for all i = 1, ..., N . Then the numberscN,p are non-increasing
in N and if we letcp := limN→∞ cN,p, then

cp =
2p − 1

p
> 0. (2.1)

PROOF : That cN,p ≥ cN+1,p is trivial. Let E,F andF ′ denote the following three
events :
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E : the event that∆i > 0 for all i > 0, when we make an infinite sequence of tosses.
F : the event that∆i ≥ 0 for all i > 0 when we make an infinite sequence of tosses.
F ′ : the event that∆i ≥ ∆1 for all i > 1 when we make an infinite sequence of tosses.

Since the coin tosses are independent, one has

P(F ) = P(F ′). (2.2)

Secondly, it is clear that
cp = P(F ). (2.3)

Thirdly, the eventE occurs if and only if the first toss yields a head and thereafter event
F ′ occurs. Hence,

P(E) = p · P(F ′). (2.4)
In Example 1.13, Chapter 3 of [?], it is shown that

P(E) = 2p − 1. (2.5)

Eqs. (2.2)-(2.5) together imply (2.1), and the proof is complete.

Remark 2.2 It is no accident thatcp equals the fraction of redheads in the head-coloring
model of Section 1. Indeed, this observation is the basis forthe rigorous proof of (2.1).

Fix p > 1/2 and consider the head-coloring model of Section 1. Fixk ∈ N and let
Ek,N denote the expected number of runs ofk redheads, whenN coins are tossed. I
claim that, asN → ∞,

[

(2p − 1)2

p

]

· pk−1
.

Ek,N

N
≤ pk−1. (2.6)

To see the right-hand inequality, just observe that ifk consecutive heads are all colored
red, then at the very least thek − 1 heads from the 2nd to the last must have been a run
of k − 1 heads, with no tails in between. This happens with probability pk−1. Thus, the
probability of a run ofk redheads with a fixed starting point is at mostpk−1. Since there
areN − k + 1 possible starting points for the run, linearity of expectation implies that

Ek,N ≤ (N − k + 1)pk−1, (2.7)

which gives the right-hand inequality in (2.6). For the lower bound, we again consider
a fixed starting point. A sufficient condition to get a run ofk redheads with a given
starting point is that the following three events all occur :

A : the starting point is a redhead,
B : it is followed by a run ofk − 1 heads, with no tails in between
C : the value of∆ never again goes below its value at the end of this run ofk heads.

It is clear that each ofB andC positively correlates withA, while B andC are in-
dependent of one another. Hence

P(A ∧ B ∧ C) ≥ P(A) × P(B) × P(C). (2.8)

As shown in Section 1, we know thatP(A) → 2p − 1 asN → ∞. As above, the
eventB occurs with probabilitypk−1. Thirdly, it is immediate thatP(C) ≥ cp = 2p−1

p
.

Plugging everything into (2.8), we find that the probabilityof a run ofk redheads with
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a given starting point is at least
[

(2p−1)2

p

]

· pk−1. Linearity of expectation then yields the

left-hand inequality in (2.6).
This brings us to our first result :

Proposition 2.3 In the model of Section 1, the expected length of the longest run of
consecutive reds among a total ofN heads, is on the order oflog N

log(1/p)
. In other words,

for anyk ∈ N, we expect to have to make on the order ofpk tosses in order to have a
reasonable probability of observing a run ofk redheads.

In particular, whenp = 2/3, the expected length of the longest run of consecutive
reds among a total ofN heads, is on the order oflog N

log(3/2)
. In other words, for any

k ∈ N, we expect to have to make on the order of
(

3
2

)k
tosses in order to have a reason-

able probability of observing a run ofk redheads.

Remark 2.4 The proposition says that, for any fixedp > 1/2 and very largeN , we
expect to see runs of redheads amongst the heads of similar length to runs of heads
amongst all the coins.

So what about blues ? Here, for simplicity, I only consider the casep = 2/3 for
the moment1. Let k ∈ N and letF2k,N denote the expected number of runs of2k con-
secutive blue heads somewhere amongst the firstN coins. Suppose, for example, that
in a run of3k consecutive tosses one observes at least2k tails2. This means that the
function∆ will have decreased by at leastk over this run. All succeeding heads will
definitely be colored blue at least until the function∆ has risen byk again. Then it is a
tedious, but standard, calculation to show that there is a fixedu > 03 such that, in order
for the function∆ to increase byk, at least2k heads will need to be revealed. Hence,
asN → ∞,

F2k,N

N
& u · q2k, (2.9)

whereq2k is the probability of a run of3k tosses yielding at least2k tails. Explicitly,
one has

q2k =
3k

∑

l=2k

(

3k
l

) (

1

3

)l (
2

3

)3k−l

. (2.10)

A lower bound for this is got by simply taking thel = 2k term, hence

q2k ≥
(

3k
2k

) (

1

3

)2k (

2

3

)k

. (2.11)

1I will generalise to arbitraryp > 1/2 when I get the time. I will indicate below where changes need
to be made.

2More generally, one will need to replace 2 and 3 by some numbers depending onp, and chosen in
such a way that the final exponent in (2.13) will be less thanp.

3This number will also depend onp in a general analysis.
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Now let k → ∞ also. Putvk :=
√

3
4πk

. Applying Stirling’s estimate to (2.11), one
easily computes that

(

3k
2k

)

∼ vk

(

33

22

)k

= vk

(

27

4

)k

, (2.12)

and hence that

q2k & vk

(

1

2

)k

= vk

(

1√
2

)2k

. (2.13)

Putting all this together, and using the fact thatu in (2.9) is a constant, plus that the
functionvk decreases subexponentially ink, we have our second result :

Proposition 2.5 In the model of Section 1, withp = 2/3, the expected length of the
longest run of consecutive blues among a total ofN heads, is at leastlog N

log(
√

2)
= 2 log2 N .

In other words, for large but fixedk ∈ N, we expect to have to make at most on the order
of (

√
2)k = 2k/2 tosses in order to have a reasonable probability of observing a run of

k blueheads.

Remark Note the use of the words‘at least’ and‘at most’ in Proposition 2.5, as against
‘approximately’ in Proposition 2.3. This reflects the fact that we only have a lower
bound in (2.9), whereas in (2.6) we have both upper and lower bounds. While it seems
difficult to computeF2k,N

N
exactly, it is quite easy to see, with the help of Proposition

2.1, that there will be some upper bound of the formc2k
1 , for somec1 < 1. Hence,

in order to have a reasonable probability of observing a run of k blueheads, one does
expect to have to make a number of tosses which is exponentialin k.

From Propositions 2.3 and 2.5 it follows that one expects to see longer runs, both of
reds and blues, than if the coloring was done fairly at random, but that one expects to
see even longer runs of blueheads than of redheads. Or, to putit another way, for any
fixed, and large enoughk ∈ N, one expects to see a run ofk blueheads somewhat earlier
than a run ofk redheads, and one expects to see both in turn much earlier than if the
coloring was done fairly at random.

3. WHY IS THIS A REASONABLE MODEL FORRPS ?

First of all, we just focus on the‘ordinary’ RPs discussed in [?]4, which we wish to
compare with thep = 2/3 model above. The obvious extension to the so-called Gener-
alised RPs of [?] will be mentioned at the end.

So considerp = 2/3 as fixed for now. Let me describe, in somewhat informal terms,
another random model which I claim is asymptotically equivalent to that in Section 1.
Suppose we have two different radioactive substances, H (head) and T (tail). H decays
twice as fast as T (i.e.: T has double the half-life of H). At some timet = 0, I start
observing both substances and record each individual decayof a H- or a T-atom. For
eachi ∈ N, let hi, ti denote the number of H- (resp. T-) atoms amongst the firsti which

4Table 1 of this paper contains some errors, but these have been corrected in arXiv:1105.2249(v2)
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decay. Then color a decayed H-atom red if conditions (1.2) and (1.3) hold, otherwise
blue.

If one wants to be more formal, one can phrase this in terms of two independent,
parallel Poisson processes, one of which has double the intensity of the other. But the
point is that this model is equivalent, ast → ∞, with that of Section 1. I leave it to the
reader to convince himself of this.

From here, we can see the relevance to Ramanujan primes. First of all, the prime
number theorem says that, for largex, there are approximatelyx

log x
primes up tox.

Equivalently, it says that, for largen, then:th prime satsifiespn ∼ n log n. Now sup-
pose that we start from somepn and begin searching to the right of it for the next
prime pn+1. There is, of course, nothing random about this search process. But in a
well-known ‘random model’ for prime gaps, one imagines that this search is a Poisson
process with intensity 1

log n
∼ 1

log pn
. In this random model, there is also no need to start

the search at a prime : the starting point can also be chosen atrandom without affecting
the model.

Now suppose one chooses a large random numberx and starts two prime searches in
parallel, one atx and the other atx/2, where the former search proceeds twice as fast
as the latter. By this I mean that, when in the former process we have searched from
x up to x + t, then in the latter we have searched fromx/2 up to (x + t)/2. Since
log(x/2) ∼ log x, one sees that the former Poisson process has approximatelytwice the
intensity of the latter. Clearly, the method of determining whether a prime is Ramanu-
jan or not is basically the same as that of deciding how to color the primes‘revealed’
in the former of these two Poisson processes. Hence, we have shown how our model in
Section 1 is a reasonable model for the Ramanujan primes.

Finally, we turn to Generalised RPs. To modelc-Ramanujan primes, one should choose
p = 1

1+c
5.

4. DISCUSSION

Everything above is, of course, heuristics. There is nothing ‘random’ about the prime
numbers. More importantly, the Prime Number Theorem is a very precise statement
about the density of the primes. This suggests that a main problem with our heuristic
model is its Markovian nature. In other words, if I start a search for a prime from
some pointx, and don’t find any prime up tox + t, say, then the PNT implies that I
am now, in some sense,‘more likely’ to find a prime betweenx + t andx + 2t. The
further one searches the more restrictive the PNT becomes. Since, in order to observe a
monochromatic run (equivalently, a run of (non)-RPs) of length k, one expects to have
to search in a range exponential ink (Props. 2.3 and 2.5), the PNT will, indeed, impose
severe restrictions on what can happen.

In [?], the authors fix an upper boundx, and find the length of the longest run of
(non)-RPs in[1, x]. Our models suggest that a better way of collecting the data would
be to fix an integerk, and determine the first time a run ofk (non)-RPs appears. This
is because,‘locally’, the model of two parallel Poisson processes seemsto be okay.

5I will leave all further calculations for generalc to another forum.
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Despite the problems discussed above, I do not see clearly why Propositions 2.1 and 2.2
should not be a reasonable guide what should be observed, ask → ∞. In other words,
I conjecture that, once the numbers get big enough, one will also observe considerably
longer runs of Ramanujan primes than a fair coin-tossing model would suggest, though
never as long as the runs of non-Ramanujan primes. If this is not the case, if the data in
[?] is a reasonable guide to what happens asymptotically, thenour model must contain
a serious flaw.
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