Friday, Sept 5

Last day we proved the following (using the ‘dots and dashes’ idea) :

Theorem The number of ways to place n indistinguishable balls in k dis-

tinguishable cells is ( " Zf; 1 )

This result can be reformulated as

Theorem The number of solutions in non-negative integers x; to the equa-
tion

. n+k—1
1S k}—]. .

PROOF : Let z; be the number of balls placed in the 7:th cell above.

T+t =n 1)

The solutions to (1) are called ordered partitions of n into non-negative parts.

There are three natural variations of the question answered by the above
theorem, namely :

Question 1 In how many ways can n distinguishable balls be placed in
k distinguishable cells ?

Question 2 In how many ways can n distinguishable balls be placed in
k indistinguishable cells ?

Question 3 In how many ways can n indistinguishable balls be placed
in k indistinguishable cells 7

Question 1 can be abswered easily :

Proposition The number of ways to place n distinguishable balls into k
distinguishable cells is k™.

PROOF : There is an obvious 1-1 correspondence between such placements
and all functions from the set {1,2,...,n} to the set {1,2,...,k}. Namely,



given such a function f, we would put ball number ¢ in the f(7):th cell, for
1=1,...,n.

So we only need to count these functions. Well, for each i = 1,...,n,
there are k choices for f(i). So, by the multiplication principle (MP), the
number of such functions is k", v.s.v.

Question 2 is already a lot harder.

DEFINITION : Let n,k be positive integers. The (n,k):th Stirling num-
ber of the second kind, denoted S(n, k), is the number of ways to place n
distinguishable balls into & indistinguishable cells so that no cell is left empty.

REMARK : Note that S(n,k) =0if n < k.

There is no really nice formula for the Stirling numbers, except in some
special cases, for example (see also exercises for Vecka 1 and
Hemuppgift 1) :

Proposition If n > 2, then S(n,2) =2"1 — 1.

PROOF : Call the balls 1, ...,n and the two cells I and II. Let A be the subset
of {1,...,n} denoting which balls are placed in cell I. Then A¢ denotes which
balls are placed in cell II, so the only choice is for A. That neither cell is to
be left empty implies that we may choose for A any subset of {1,...,n} other
than the whole set and the empty subset. There are thus 2" — 2 choices for
A. Finally, to get S(n,2) we have to divide this number by 2! = 2, since the
two cells are indistinguishable. Hence S(n,2) = (2" —2) =2""!1 — 1, v.s.v.

The following recurrence relation is helpful for more general computations
of Stirling numbers :

Theorem The Stirling numbers S(n,k) satisfy the following recurrence re-
lation :

S(n,1) = S(n,n) =1, (2)

S(n,k)=S(n—-1,k—1)+k-S(n—1,k). (3)

PROOF : The relations (2) are obvious, so we turn to (3). Suppose we place
balls 1,...,n into k identical cells. Let’s isolate the n:th ball and consider



two possibilities :

Case 1 : The n:th ball is placed in a cell on its’ own. Then the remain-
ing n — 1 balls are to be placed in k — 1 identical cells, so that no cell is left
empty. By definition, there are S(n — 1,k — 1) ways to do this.

Case 2 : The n:th ball is not on its’ own. How many options do we have in
this case 7 Well, first we have to place the remining n — 1 balls in k& cells
so that no cell is left empty. There are S(n — 1,k) ways to do this. Then
we have k choices for where to put the n:th ball. So, by the MP, we have in
total k- S(n — 1, k) possible choices in this case.

Altogether, then, we have S(n — 1,k — 1) + k- S(n — 1,k) possible ways
to distribute the balls, which proves (3).

We now turn to Question 3.

DEFINITION : Let n,k be positive integers. A placement of n indistinguish-
able balls into k£ indistinguishable cells so that no cell is empty is called a
(unordered) partition of n into k positive parts. The number of such parti-
tions is denoted p(n, k).

The study of the functions p(n, k) and the related functions

P(n,k) ==Y p(n,j),

i<k

p(n) == Zp(n, k).
k

is a classical problem in combinatorial and analytic number theory (two
branches of mathematics which you’ve maybe never even heard of !!). In
particular, the problem of computing the function p(n), which counts the
total number of partitions of the positive integer n into positive parts, has
attracted a great dela of attention. This problem is now considered essen-
tially solved. The real breakthrough came in the 1920s with the following
amazing result -



Theorem (Hardy and Ramanujan)

2n
e"V 3

p(n) ~ in

I don’t want to discuss partitions much in this course. Chapter 26 in Biggs
is devoted to them. See also the exercises.




Monday, Sept 8

Theorem Suppose the sequence (uy) of (complex) numbers satisfies the re-
currence relation

aunyo + bupi1 +cup, =0, Vn >0,
for some constants a,b,c. Let o, 8 be the roots of the quadratic equation
az? + bz +c=0.
(i) If « # B then there exist constants K1, Ko such that
up, = Ko™ + K8, Vn>0.
(ii) If a = [ then there exist constants K1, Ko such that
up = (K1 + Kon)a™, Vn>0.

I leave it as an exercise to the reader to generalise this theorem to linear
recurrence relations with constant coefficients and of arbitrary degree.

A more powerful technique for attacking a wider class of recurrence rela-
tions is to use so-called generating functions.

DEFINITION : Let (u,)g° be any sequence of (complex) numbers. The gen-
erating function for the sequence (u,) is the power series function

G(z) Lt f: Ung™. (4)
n=0

In applying generating functions to solve recurrence relations, one often uses
the following well-known identity :

1 o
— = t" if [t] < 1).
=X <D 5)

Let’s begin by resolving a recurrence we already can solve using the theorem
above, but this time using the generating function method.

EXAMPLE 1 : Solve the recurrence relation

u0=3, U1=5,

Up = dUp—1 — bUp—2, Vn >2.



ABBREVIATED SOLUTION : Let G(z) be the generating function of the se-
quence (uy), as in (4). Observe that

zG(z) = Z Up—12",
n=1

2G(z) = Z Up—2x".
n=2

Hence
o

(1 -5z + 62°)G(x) = Z(un — bup_1 + 6up_2)z" + (up + urz) — Supz.
n=2

By the recurrence relation, the sum ) 5°(---) is identically zero. Hence

_ (3+5z) -5(3r) 3— 10z
C@) = 5 ¥6r 120 —32)"

We seek a partial fraction decomposition

3—10z ! N B
(1-2z)(1-3z) 1—-2z 1-3z’

and one readily computes that A = 4, B = —1. Finally, using the identity
(5), we have the following explicit expression for G(z) as a power series :

G(z) = i(4-2"—1-3")m".

n=0
Comparing with (4) it follows that
Up=4-2"—1.3" =272 _3"  yg.v.

Now let’s continue with an example not covered by the theorem above.

EXAMPLE 2 (SEE BI1GGS 25.6.2) : Let g, be the number of words of length
n in the alphabet {a,b,c,d} which contain an odd number of b:s. Find and
solve a recurrence relation for g,.

ABBREVIATED SOLUTION : Let’s divide the g, allowed words of length n
into two types :



(1) those that begin with a b. Then the remaining n — 1 letters form a
word which is not one of the g,_1 words of length n — 1 containing an odd
number of b:s. Since (by MP) there are in total 4! words of length n — 1
in our alphabet, if follows that there are 4"~! — ¢,_; words of type (i).

(ii) those that don’t begin with a b. Then there are 3 choices for the first
letter (a,c or d) and the remaining n — 1 letters form one of the ¢,_1 words
of length n — 1 containing an odd number of b:s. Hence, by MP, there are
3gn—1 words of type (ii).

From the above analysis we deduce the recurrence relation
dn = 44 2gn-1, Vn2>1

By inspection, we also have the initial condition ¢y = 0. To solve the
recurrence, we consider the generating function

G(z) := Z nx". (6)
n=0

We find that
o0
(1-22)G(z) = > (gn — 2n_1)z" + goa®
n=1
= Z 47 g 4
n=1
1 n
=1 > (4x)
n=1
_ 1 4z
41— 4x
oz
1—4g’
Hence

(1—2z)(1 — 4z)

G(z) =

We seek a partial fraction decomposition

T A n B
(1—-2z)(1—4z) 1-2z 1—4z’
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and readily compute that A = —%, B = % Using the identity (5) we thus
obtain the explicit power series representation

G(x):iG-zw—%an)x".

n=0

Comparing with (6), we must have

1
qn:§(4"—2”).



Thursday, Sept 11

Our first task today is to generalise what we have previously called the bi-
nomial theorem and which may be stated as follows :

Let n be a positive integer and x any real number. Then

n

(1+x)"=Z<Z)xk. (7)
k=0

Here, < Z is the number of ways to choose k objects from n (with order

unimportant) and we have the formula

n n! nn—1) - (n—k+1
<k>:k!(n—k)!: — m( . (8)

Eq. (7) can be proved purely combinatorially, as we have seen in class. As

a step toward generalising (7) we first note that, if & > n, then =0,

n
k
since it is not possible in this case to choose k objects from n. This is
consistent with the last formula in (8) (the first one makes no sense, since
(n — k)! is not defined when n — k < 0), since one of the factors in the
numerator will be zero whenever k£ > n. Hence, the binomial theorem can
be written in the form

[e.e]

(1+$)":Z<Z>xk. (9)
k=0

Then the thing to notice is that, because of the formula in (8), the HL of (9)

is just the McLaurin expansion of the function f(z) = (1+ z)™. Recall that

the McLaurin expansion of a function f(z), which is infinitely differentiable

in a neighbourhood of z = 0, is given by

oo (k)
AC
$° 190 0
k=0 :
There are some general conditions which guarantee that the McLaurin ex-

pansion of a C*®-function f(z) converges pointwise to f(z) in a neighbour-
hood of £ = 0. Since this is not a course in analysis, I don’t want to go into



any details here on this matter. But note that if n is any real (indeed com-
plex) number, not just a positive integer, then the function f(z) = (1 + )"
is a C*°-function in the interval |z| < 1. So the function has a McLaurin
expansion, and one can prove (we don’t do so) that this expansion always
converges to f(z). This is the form in which we wish to generalise the bino-
mial theorem. Let us state the result formally :

Generalised Binomial Theorem Let z be any real (indeed complex) num-
ber and x a real number such that |z| < 1. Then

(1+:I:)z:z<z>:vk, (10)

k=0

where

z \defz(z—1)---(z—k+1)
k)] k!

Later on in the lecture, we will see a cool application of this result !

DEFINITION : Let n be a non-negative integer. A Dyck path of length 2n is
a path in the zy-plane from (0,0) to (2n,0) consisting of 2n steps, each of
the form

(z,y) = (z+ 1,y £1),

which in addition never goes below the z-axis.

DEFINITION : Let n > 0. The nth Catalan number, denoted C,,, is de-
fined to be the number of Dyck paths of length 2n.

Theorem 1 The Catalan numbers satisfy the following recurrence relation
Co=1, (11)

n
Cn=>) Cni1Cpm, VYn>L (12)

m=1

PROOF : (11) is obvious. For (12) we observe that Cy,_1Cj,—, is the num-
ber of Dyck paths of length 2n which first intersect the z-axis at (2m,0).

10



Theorem 2

1 2n
Cn_n—l—l( n )

PROOF : We work with the generating function for the sequence (C,,), i.e.:
the function

F(z) = z Crx".
n=0

Using (11) and (12) we have that

o [F@)? = (&F (@) - Fla) = (Z cm_lxm) - (f; ctxt)
m=1 t=0

n=1
=F(z) — Cy
=F(z)—1,
z[F(x)]* = F(z) — 1. (13)

We may consider (13) as a quadratic equation for F'(z), and hence there are
two possible solutions, namely

1++1—-4z

Fla) = 2z

Since F(0) = Cy = 1, the correct solution must be to take the minus sign.
We conclude that

1—+1—4x

Flw) = 2z

11



To expand this in a power series, we use the generlised binomial theorem
(10) for exponent z = 1/2.

F(z) = 1-Vl—-dz "22_43:

- % [1- (1 - 42)'?]

L3 ()
n=1

B o] (_1)n4n—l—1 1/2 n
_7;) 2 <n+1>x'

So it remains to prove that, for every integer n > 0,

(=pmantt (o121 2n
2 <n+1>_n+1<n>' (14)
We have
12\ 1 &S/l
<n+1>_(n+1)!11;[0<§_z)
_ 1 =
T (n+ 1) 2ntl ((1-3:5--- (20 —1))
1 (1" (2n)!

T+ 1) 20t T 2.4.6---(2n)
C=Dr 1 (2n)
~ vt T (n 1) nlnl’

from which (14) easily follows. This completes the proof of Theorem 2.

12



Monday, Sept 15

NOTATION/TERMINOLOGY : Let X be a set, A and B subsets of X. The
union of A and B, denoted A U B, is the subset of X consisting of those
elements which lie in either A or B, i.e.:

AUBd:ef{:EEX::I:EAoerB}.

The intersection of A and B, denoted A N B, consists of those elements of
X which lie in both A and B, i.e.:

AﬁBd:ef{xEX:weAandwEB}.

The set difference A minus B, denoted A\B, consists of those elements in
A which are not in B, i.e.:

A\deef{weX::I;EAand:ch}.

EXAMPLE : X = N, the set of natural numbers, A = {1,2,3,4}, B =
(2,3,5,6}. Then

AUB =1{1,2,3,4,5,6},
ANB={2,3},
A\B = {1,4)}.

NOTATION : If X is a finite set, then |X| shall denote the number of ele-
ments in X. If X is an infinite set we write | X| = oco.

Theorem (Inclusion-Exclusion or Sieve Principle) Let X be a finite
set and Ay, ..., A, be n subsets of X. Then

‘X\ (L_J Ai) = x|~ 3 4 (15)

+Y AN Al = Y AN AN Ay
i£j itk
oo (<L) A N0 Ay,

PROOF : Didn’t bother with it. There is a proof in Biggs, Chapter 11.4 if
you have the book and you’re interested.
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EXAMPLE : Let n > 0. A derangement of n objects is a permutation
(rearrangement) of them such that no object is left in its’ original posi-
tion. More concretely, if we denote a permutation of the numbers 1,2,...,n
by aias---ay, then a derangement is a permutation such that a; # ¢ for
1=1,...,m.

The number of derangements of n objects is denoted d,,. We seek infor-
mation about the sequence (d,). One may compute

dlZO, d2:17 d3:27 d4:95
etc. For example, the nine derangements of 1,2, 3,4 are
2143 2341 2413 3142 3412 3421 4123 4312 4321.

Theorem

In particular,

d 1
—7:—>— as n — oo. (17)
n! e

PROOF : Note that (17) follows from (16) upon inserting z = —1 into the
well-known McLaurin expansion for the exponential function

To prove (16) we use the I-E principle. To simplify our notation, we’ll
henceforth denote the set {1,2,...,n} by [n]. Let X denote the set of all
permutations of [n]. We consider the n subsets

Ai={reX :nm@@) =1}, i=1,..,n.

By definition,

bl

dn = ‘X\ U 4
=1
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so we may use (15). A typical term on the rhs of (15) is

DF 3 Aan-nAyl
i1 FlaFEFig

Each term in this sum just equals (n — k)!, since we are considering those
permutations which leave some specified k& of our n numbers fixed and per-

mute the others arbitrarily. The number of terms in the sum is ( Z >

Hence the value of the sum, for a fixed k is

n! —1)*

Summing over k from zero to n, we obtain the HL of (16), v.s.v.
There is also a nice recurrence relation satisfied by the sequence (d, ), namely

Theorem

di =0, dy=1, (18)
dp=(n—-1)(dp-1 +dn—2), Yn>3.

PROOF : Let n > 3. We divide the derangements of [n] into two types :

(i) those derangements 7 such that, if 7(1) = 4 then 7(i) = 1. Then 7
must include a derangement of the numbers 2,3, ...,2 — 1,74+ 1,...,n. There
are dy,_o possibilities for this derangement and n—1 possibilities for : = 7 (1).
Hence there are (n — 1)d,_o derangements of type (i).

(ii) all other derangements. Let m be one such and let 7(1) = 7. If we now
imagine identifying the numbers 1 and %, then we can think of 7 as including
a derangement of the numbers 2,3, ..., n (that i is ‘moved’ now means that it
doesn’t get sent back to 1). There are d,,_1 possibilities for this derangement
and n — 1 possibilities for 4, so there are (n — 1)d,—; derangements of type
(ii).

Adding, we get d,, = (n — 1)(dp—1 + dn—2), v.s.v.

See the Week 2 exercises for hints on how to derive (16) from (18) using
exponential generating functions.
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