
TMA 055 : Diskret matematik

Tentamen 201003

Lösningar

F.1 45 = 32 · 5 so φ(45) = φ(32) ·φ(5) = (32 − 3)(5− 1) = 6 · 4 = 24. Hence,
Euler’s Theorem states that, if n is an integer relatively prime to 45, then

n24
≡ 1 (mod 45).

Note that both 2 and 7 are relatively prime to 45. Hence (all congruences
are modulo 45)

276 = (224)3 · 24 ≡ 13 · 16 ≡ 16,

and

798 = (724)4 · 72 ≡ 14 · 49 ≡ 1 · 4 ≡ 4.

Thus,

(276 + 798)3 ≡ (16 + 4)3 = 203 = 400 · 20 ≡ −5 · 20 = −100 ≡ −10 ≡ 35.

So the answer is 35.

F.2 Let

G(x) =
∞
∑

n=0

unx
n

denote the generating function of the sequence (un). Let’s rock !

(1− 4x)G(x) = u0 +
∞
∑

n=1

(un − 4un−1)x
n

= 2 +
∞
∑

n=1

(2n+ 1)xn

= 2 + 2 ·
∞
∑

n=1

nxn +
∞
∑

n=1

xn

1



= 2 +
2x

(1− x)2
+

x

1− x

=
2(1− x)2 + 2x+ x(1− x)

(1− x)2

=
x2 − x+ 2

(1− x)2
.

Thus

G(x) =
x2 − x+ 2

(1− x)2(1− 4x)
.

We seek a partial fraction decomposition

x2 − x+ 2

(1− x)2(1− 4x)
=

A

1− x
+

B

(1− x)2
+

C

1− 4x
. (1)

Clearing denominators, we have

x2 − x+ 2 = A(1− x)(1− 4x) +B(1− 4x) + C(1− x)2.

Gathering coefficients, we get the following system of linear equations to
solve
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After the usual Gauβ elimination and back substitution (I omit the details),
we get the solution

A = −
5

9
, B = −

2

3
, C =

29

9
.

Substituting into (1) and using the relations

1

1− t
=

∞
∑

n=0

tn,

1

(1− t)2
=

∞
∑

n=0

(n+ 1)tn,

we conclude that

F (x) = −
5

9

∞
∑

n=0

xn −
2

3

∞
∑

n=0

(n+ 1)xn +
29

9

∞
∑

n=0

4nxn.

2



Hence, it follows that

un = −
5

9
−

2

3
(n+ 1) +

29

9
· 4n.

F.3 Step 0 : Since 3 · 5 ≡ 1 (mod 7), the first congruence can be rewritten
as

x ≡ 5 (mod 7).

Step 1 : We compute the inverse of 13·17 modulo 7. Since 13·17 ≡ (−1)·3 ≡

−3 ≡ 4 (mod 7), we seek a solution to

4a1 ≡ 1 (mod 7).

It’s easy to spot that a solution is a1 = 2.

Step 2 : Compute the inverse of 7 · 17 modulo 13. Since 7 · 17 ≡ 7 · 4 = 28 ≡

2 (mod 13), we must solve

2a2 ≡ 1 (mod 13).

A solution is a2 = 7.

Step 3 : Compute the inverse of 7 · 13 = 91 modulo 17. Since 91 ≡

6 (mod 17), we must solve

6a3 ≡ 1 (mod 17).

A solution is a3 = 3.

Step 4 : A solution to the three congruences is given by

x = 5 · a1 · (13 · 17) + 2 · a2 · (7 · 17) + 4 · a3 · (7 · 13)

= 5 · 2 · 13 · 17 + 2 · 7 · 7 · 17 + 4 · 3 · 7 · 13

= 4968.

Step 5 : The general solution is

x = 4968 + (7 · 13 · 17) · n = 4968 + 1547n,

where n is an arbitrary integer. In particular, the smallest positive solution
is x = 327, got by taking n = −3.)
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F.4 Rewrite the equation as

y3 = x2 + 3x+ 2 = (x+ 1)(x+ 2).

The HL is a product of two consecutive integers, which by necessity are
relatively prime. Since their product is a perfect cube, FTA implies that
each is itself a perfect cube. That is, there are integers z, w such that

x+ 1 = z3, x+ 2 = w3.

But then w3−z3 = 1, which is only possible if either w = 1, z = 0 or w = 0,
z = −1.

Thus, our equation has two solutions, namely

x = −1, y = 0, and x = −2, y = 0.

F.5 Reading from left to right and from top to bottom, let us label the ver-
tices in the three columns as b, c, d (first column), e, f, g (second column),
and h, i, j (third column).

(i) Clearly, χ(G0) ≥ 3 since G0 contains many triangles. In fact, χ(G0) ≥ 4
since, for example, c lies at the centre of a 5-cycle formed by a, b, e, f, d. This
cycle, being of odd length, will require at least 3 colors, and then a fourth
will be needed for c.

On the other hand, if we apply the greedy algorithm to the nodes ordered
alphabetically, then we get a 4-coloring, namely (the colors are 1, 2, 3, 4)

a 1 g 1

b 2 h 2

c 3 i 3

d 2 j 2

e 1 z 1

f 4

Hence χ(G0) = 4.

(ii) Apply Dijkstra’s algorithm to build up the following tree
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Step Choice of edge Labelling

1 ab b := 2

2 ac c := 4

3 ad d := 5

4 be/ce e := 6

5 cf f := 6

6 dg g := 7

7 eh h := 8

8 ei/fi i := 8

9 fj j := 8

10 hz/jz z := 11

Hence the shortest path from a to z has length 11. Depending on the
choices you made in Steps 4 and 10, there are three possibilities for the
shortest path, namely

a → b → e → h → z,

a → c → e → h → z,

a → c → f → j → z..

F.6 Since A0 = C0 = 1 (the empty sequence works !), it suffices to prove
that, for each n > 0,

An =
n
∑

m=1

Am−1An−m.

So fix n > 0. For each m = 1, ..., n − 1, let A(n,m) denote the number of
sequences a1 · · · an of length n for which

am+1 = 0, ai > 0 for i = 2, ...,m. (2)

And let A(n, n) denote the number of sequences of length n for which

ai > 0 for all i = 2, ..., n. (3)

It is clear that

An =
n
∑

m=1

A(n,m),
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and hence it suffices to prove that

A(n,m) = Am−1An−m, for m = 1, ..., n. (4)

First suppose 1 ≤ m ≤ n−1 and let a1 · · · an be one of the A(n,m) sequences
satisfying (2). The subsequence am+1 · · · an, of length n−m, satisfies exactly
the same conditions as at the outest, hence there are An−m possibilities for
it. Since a2 > 0 and a2 ≤ a1 + 1, we must have a2 = 1. We also know that
ai ≥ 1 for i = 2, ...,m. So if we let bi = ai − 1 for i = 2, ...,m, then the
subsequence b2 · · · bm, of length m− 1, satisfies exactly the same conditions
as at the outset. Hence there are Am−1 possibilities for it, and hence in turn
for the subsequence a2 · · · am. Finally, an application of the multiplication
principle verifies (4).

There remains the case m = n. We must verify that A(n, n) = An−1A0 =
An−1. Let a1 · · · an be one of the A(n, n) sequences satisfying (3). Since
a2 > 0 and a2 ≤ a1 +1, we must have a2 = 1. We also know that ai ≥ 1 for
i = 2, ..., n. Hence, letting bi := ai − 1 for i = 2, ..., n, the sequence b2 · · · bn,
of length n−1, satisfies exactly the same conditions as at the outset. Hence
there are An−1 possibilities for it, hence so also for the sequence a2 · · · an,
v.s.v.
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