TMA 055 : Diskret Matematik (E3)

Week 2

Demonstration problems for Wedenesday, Sept 10

1. Write the function

1
(1+ 3x)2

as a power series.

2. Write each of the power series
o0 [ee]
Sonat, Yontar,
n=0 n=0

as rational functions, i.e.: in the form ’ng, where p(z) and ¢g(z) are polyno-

] q(z
mials.

3. Solve the recurrence relation

U,()Zl, Uul :4,

Unt2 = 4Upt1 — 4un,

twice, once using geneating functions and once not.

4. Using the method of generating functions (or otherwise), solve the recur-
rence relation

UOZI, u1=2,

2Upto = Tupy1 — Uy + N



Demonstration problems for Friday, Sept 12

Recall the Generalised Binomial Theorem (GBT) :

Theorem If = is a real number with |z| < 1 and z any complex number,
then

(l—i-a:)z:i(z)a:k,

k=0
where
z \defz2(z—1)---(z—k+1)
k] k! )
1. Let n be a negative integer, say n = —m. Show that

(£)=o ("),

2. Repeat Q.1 from Wednesday using the GBT. Also, write the rational
function
1—z+22°
1+ 4z + 622 + 423 + 24

as a power series.

3 (i) Explain why the Catalan numbers C,, satisfy the following alterna-
tive recurrence relation

Co =1,

Cn= Y, Ck—1Cry—1---Cpyu, (1)
ki+thi=n

where the sum is taken over all ordered partitions of n into positive parts.
(ii) Write out the sum (1) in full for n = 1,2, 3,4. How many terms are in
each sum 7 Notice any pattern 7 If so, prove a formula for the number of
terms in the sum as a function of n. Compare this with the usual recurrence
for the Catalan numbers.



Further practice problems
(this list will be constantly updated)

0 (11.1.7 in Biggs) Prove the identity

(3 ) (1) (i) () ()

where s, n are positive integers.

(Hint : If X is an (s + n)-element set and Y = {y1,...,yn} is a specific
n-element subset of X, what is the number of n-element subsets of X for
which y, is the first member of Y not in the subset 7).

1. Let (uy)22, be a sequence of numbers. The exponential generating func-

tion of the sequence is the power series
(e o] In
n=0 :
(i) Suppose the sequence (uy,) satisfies the recurrence relation

U2 + buy (1 + cuy = fi,

where (fy) is some ‘known’ sequence. Show that in that case the e.g.f.
satisfies the differential equation

aE"(z) + bE'(z) + cB(z) = f(x),

where
[es) "

(Note : The point of this exercise is to show those of you familiar with
differential equations the explicit connection between linear recurrence rela-
tions with constant coefficients and differential equations of the same type).

(ii) Let d,, denote the number of derangements of [n] as usual. In class
we proved that

dp = (n—1)(dp—1 + dpn—2), n > 3.



Using this or otherwise, prove that
dp = ndp—1 + (—-1)", n > 2. (2)

(Note : With regard to the ‘otherwise’, I don’t know of any more direct
combinatorial proof of (1). It would be interesting if anyone could find
one !).

Now use (1) to prove that the exponential generating function of the se-
quence d,, (we define dy = 1) is

From this, recover the usual explicit formula for d,, (which we also derived
in class).

2 (25.3.4 in Biggs) What is the coefficient of 2" in

142z + 222
1—3z+ 322 — 23

when written as a power series.

3. Let gy, denote the number of words of length n in the alphabet {a, b, ¢, d, e}
which contain no two consecutive a’s. Find and solve a recurrence relation
for ¢,,. Hence evaluate

. 1
lim dn+
n—,oo q,n

(Note : The numbers get a big ugly here, like in the formula for f,).

4. Solve the recurrence relation

Uug = 4, Uy = 1,
Uy, = dUp_1 + DUp_o + 3" Vn > 2.

5. Solve the recurrence relation

U0=3, (75} =4,

Up42 = dUnt1 — Buy + n.



6. Without using generating functions, can you guess the form of the general
solution to the recurrence relation

8tpt3 = 12upy9 — 6upy1 + uy 7

Now add in the initial conditions ug = u; = ug = 1 and solve the recurrence.
Repeat using generating functions.

7 (see 25.3.3 in Biggs) Recall that the generating function for the Fi-
bonacci numbers (f,,) satisfies
1
G(z) = ——.
(z) 1—z—1?

Using this fact, prove the following

(i) fn is the number of ordered partitions of n into parts each of which
is either one or two.
(ii) we have the formula

n n—1 n—2 n—r
where r is the greatest integer such that r <n —r.

Now try to reprove these two facts, but without explicit use of the gen-
erating function.

8. Let P, be any diagonal path in the plane from (0,0) to (2n,0). Re-
call that a Dyck path is such a path which moreover doesn’t go below the
z-axis. Let A(P,) denote the area under the path, where areas below the
z-axis are counted as negative.

(i) Show that, for any path P,, A(P,) is an integer and A(FP,) — n an
even integer.

For each integer k such that k — n is even, let N(n,k) denote the num-
ber of diagonal paths P, of length 2n such that A(F,) = k.

(ii) Show that N(n,k) = N(n,—k).

(iii) Compute the smallest positive integer k, as a function of n, for
which & — n is even and N(n,k) = 0. Show that N(n,k) > 0 for every
smaller positive integer k such that £ — n is even.



(iv) List the numbers N(n, k) for n = 1,2,3,4,5.

(Note : It is known that the function N(n, k), as a function of k for any fixed
n, is unimodal, i.e.: if we only consider those k for which k — n is even, then
N(n, k) decreases monotonically as |k| increases. There are several known
proofs of this fact, none of them easy !!).



