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If (like me) you grew up following English soccer, then there are
two kinds of tournaments:

I The League (2 × round-robin)

I The Cup (single knockout with uniformly random draw)

Which is fairer ?

Well it obviously depends what you mean by “fair” ...

But “justice” should mean that “the best team won”.
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The following model seems natural. It is obviously an
oversimplification of “reality”, but it allows us to pose precise
questions.

I 1. There are n players, indexed by 1, 2, . . . , n.
I 2. For each pair {i , j}, there is a fixed probability pij that i

beats j in a single match.
I 3. We assume pij + pji = 1, thus no draws allowed. Also, we

only record who wins a match, not the “score” or any such
extra information.

I 4 (Double monotonicity).
I pij ≥ 1/2 whenever i < j ,
I pik ≥ pjk whenever i < j and k 6∈ {i , j}.

It now seems uncontestable to assert that i is at least as good as j
whenever i < j . Strict inequality in 4(ii) ⇒ an objective ranking of
the players.
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Let πi be the probability of player i winning the tournament.

Different possible notions of fairness.

Condition 1: π1 ≈ 1.

Condition 2: π1 ≥ π2 ≥ · · · ≥ πn.

It’s obvious (?) that both the League and the Cup satisfy
Condition 2, so we were originally more interested in Condition 1.
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I Whether the League or Cup is fairer depends on the matrix
(pij).

Ex. 1: p1j = 3/4, pij = 1
2 ∀ i , j ≥ 2. Then

π1(League)→ 1, π1(Cup)→ 0.

Ex. 2: pij = 1− ε, ∀ i < j . Then

π1(League)→ 0, π1(Cup)→ 1, provided 1/n� ε� 1/ ln n.
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I A number of papers deal with the special case pij = p ∀ i < j ,
for fixed p ∈

(
1
2 , 1

)
.

These papers are mostly concerned with the question of how
efficient the tournament can be (i.e.: how few matches need
to be played in total), to ensure Fairness Condition 1.

Theorem (Feige et al, 1990). You can get away with
playing a total of n · ω(n) matches, for any function
ω(n)→∞, but not with O(n) matches.

Solution: Knockout, but each contest is “best of ω(n)
matches”.
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Formal Definitions
Three-Player Tournaments

n-Player Tournaments, n ≥ 4

Many knockout tournaments do not employ a random draw, but
instead some kind of seeding.

The figure below illustrates the
standard seeding method for 23 = 8 players.

Winner

1

8

4

5

6

3

7

2
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Standard seeding can be unfair !

Ex. (Schwenk, AMM 2000) Take 0.5 < a < b.

(pij) =



0.5 0.5 a a a b b b
0.5 0.5 a a a b b b

1− a 1− a 0.5 0.5 0.5 a a a
1− a 1− a 0.5 0.5 0.5 a a a
1− a 1− a 0.5 0.5 0.5 a a a
1− b 1− b 1− a 1− a 1− a 0.5 0.5 0.5
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Fairness in sports tournaments
Doubly-monotonic model of matchplay

Fairness Condition 1: Previous Work
Fairness Condition 2: Schwenk

Formal Definitions
Three-Player Tournaments

n-Player Tournaments, n ≥ 4

Many tournaments consist of two phases, based on the following
template:

Phase 1: Some approximation of round-robin, the purpose of
which is to rank the players.

Phase 2: Knockout with standard seeding, based on the ranking
from Phase 1.

Schwenk ⇒ situations can arise in Phase 1 where it is in the
interest of a player to behave dishonestly, by deliberately losing a
match, even if the better player has won every other match
to date.

We could find no evidence that this phenomenon is commonly
understood. On the other hand, there are well-documented
instances where upsets encouraged a team to (apparently) throw a
game to avoid an ostensibly stronger opponent in Phase 2.
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Fairness in sports tournaments
Doubly-monotonic model of matchplay

Fairness Condition 1: Previous Work
Fairness Condition 2: Schwenk

Formal Definitions
Three-Player Tournaments

n-Player Tournaments, n ≥ 4

A tournament is a randomized algorithm which is given access to
a function PlayMatch that takes as input an unordered pair of
numbers between 1 and n and returns one of the numbers.

I In particular, the algorithm determines how the schedule of
remaining matches can depend on the results of matches to
date.

I Matches are played sequentially one-at-a-time.

I We assume there is a bound on the number of matches that
can be played in a specific tournament.

The algorithm outputs a winner once all matches have been
played.
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Fairness in sports tournaments
Doubly-monotonic model of matchplay

Fairness Condition 1: Previous Work
Fairness Condition 2: Schwenk

Formal Definitions
Three-Player Tournaments

n-Player Tournaments, n ≥ 4

SYMMETRY:

I Let T be an n-player tournament. For any permutation
σ ∈ Sn and any P = (pij), we define Q = (qij) by
qσ(i)σ(j) = pij for all i , j ∈ [n].

I That is, Q is the matrix one obtains from P after renaming
each player i 7→ σ(i).

I We say that T is symmetric if, for any P, σ ∈ Sn and any
i ∈ [n], we have πi (P) = πσ(i)(Q).

This definition is meant to capture the intuition that the rules “are
the same for everyone”. Lack of symmetry is a common, and
obvious source of unfairness in many real-life tournaments.
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Fairness in sports tournaments
Doubly-monotonic model of matchplay

Fairness Condition 1: Previous Work
Fairness Condition 2: Schwenk

Formal Definitions
Three-Player Tournaments

n-Player Tournaments, n ≥ 4

HONESTY:

I Suppose that a tournament T is in a state where r ≥ 0
matches have already been played, and it just announced a
pair of players {i , j} to meet in match r + 1.

I Let π+i (P) denote the probability that i wins the tournament
conditioned on the current state and on i being the winner of
match r + 1, assuming the outcome of any subsequent match
is decided according to the matrix P = (pij).

I Similarly, let π−i (P) denote the probability that i wins the
tournament given that i is the loser of match r + 1.

I We say that T is honest if, for any possible such state of T
and any matrix P, we have π+i (P) ≥ π−i (P).
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Fairness in sports tournaments
Doubly-monotonic model of matchplay

Fairness Condition 1: Previous Work
Fairness Condition 2: Schwenk

Formal Definitions
Three-Player Tournaments

n-Player Tournaments, n ≥ 4

FAIRNESS:

Let T be an n-player tournament. We say that T is fair if
π1(P) ≥ π2(P) ≥ · · · ≥ πn(P) for all doubly-monotonic matrices
P.

MAIN QUESTION:

Do symmetry + honesty ⇒ fairness ?

ANSWER:

No, for every n ≥ 3.
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Formal Definitions
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n-Player Tournaments, n ≥ 4

TOURNAMENT T1 = T1,N :

Step 1: Choose one of the three players uniformly at random. Let
i denote the chosen player and j , k denote the remaining players.

Step 2: Let j and k play N matches.

I If one of them, let’s say j , wins at least 3N
4 matches, then the

winner of the tournament is chosen by tossing a fair coin
between j and i .

I Otherwise, the winner of the tournament is chosen by tossing
a fair coin between j and k.

If p12 = p23 = 1/2 and p13 = 1 then, as N →∞,

(π1, π2, π3)→
(

1

3
,

1

2
,

1

6

)
.

Already for N = 2 the tournament is unfair:
(
3
8 ,

5
12 ,

5
24

)
.
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Fairness in sports tournaments
Doubly-monotonic model of matchplay

Fairness Condition 1: Previous Work
Fairness Condition 2: Schwenk

Formal Definitions
Three-Player Tournaments

n-Player Tournaments, n ≥ 4

I Let Pn ⊆ Rn denote the set of all n-dimensional probability
vectors.

I Let Fn ⊆ Pn be the subset of all vectors satisfying
x1 ≥ x2 ≥ · · · ≥ xn.

I Let An ⊆ Pn denote the closure of the set of all those vectors
arising as the vector (π1(P), . . . , πn(P)) of win-probabilities,
for some symmetric and honest n-player tournament T and
doubly-monotonic P.

Theorem.

I A2 = F2.

I Fn is a proper subset of An for all n ≥ 3.

I A3 = {(x1, x2, x3) ∈ P3 : x1 ≥ 1/3, x2 ≤ 1/2, x3 ≤ 1/3}.
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Fairness in sports tournaments
Doubly-monotonic model of matchplay

Fairness Condition 1: Previous Work
Fairness Condition 2: Schwenk

Formal Definitions
Three-Player Tournaments

n-Player Tournaments, n ≥ 4

Proof. Let S be the set claimed equal to A3.

Step 1: S ⊆ A3.

The key step is to show that, if T is an honest n-player tournament
then, for each k ∈ [n], πk = πk(P) is an increasing function of pkl ,
for every l 6= k.

Step 2: A3 ⊆ S.

I We can form “convex combinations” of tournaments.
I S is a convex polygon with five vertices:(

1

3
,

1

2
,

1

6

)
,

(
2

3
, 0,

1

3

)
, (1, 0, 0),

(
1

2
,

1

2
, 0

)
,

(
1

3
,

1

3
,

1

3

)
.

The previous examples T1,N and T2,N allow us to approach
V1 and V2 as N →∞. It is easy to construct families of (fair)
tournaments approaching the other three vertices.
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Fairness in sports tournaments
Doubly-monotonic model of matchplay

Fairness Condition 1: Previous Work
Fairness Condition 2: Schwenk

Formal Definitions
Three-Player Tournaments

n-Player Tournaments, n ≥ 4

We don’t know what An is for any n ≥ 4, but we have a general
conjecture.

I We define a family Gn of labelled digraphs (loops and multiple
edges allowed).

I To each G ∈ Gn we associate
I a vector v(G ) ∈ Pn and
I a sequence TG ,N of symmetric and honest tournaments,

depending on a parameter n × n matrix P.
I We prove that, for certain choices of the parameter P

(independent of G ),
I the tournaments TG ,N are well-defined
I wv(TG ,N , P)→ v(G ) as N →∞.

Let A∗n denote the convex hull of the vectors v(G ), G ∈ Gn.

It follows that A∗n ⊆ An. We conjecture equality.

Remark: The convex polytope A∗n has 3n−1+1
2 corners.
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Fairness in sports tournaments
Doubly-monotonic model of matchplay

Fairness Condition 1: Previous Work
Fairness Condition 2: Schwenk

Formal Definitions
Three-Player Tournaments

n-Player Tournaments, n ≥ 4

THE FAMILY Gn:

The set of arcs of G ∈ Gn satisfies the following conditions:

Rule 1: There are exactly two arcs going out from each vertex.

Rule 2: Every arc (i , j) satisfies j ≤ i .

Rule 3: If (i , j1) and (i , j2) are the two outgoing arcs from i , then
j1 = j2 ⇒ j1 = 1 or j1 = i . In other words, if the two arcs have the
same destination, then either they are both loops or the destination
is vertex 1.

The vector v(G ) = (v1, . . . , vn) is defined as

vi =
indegG (i)

2n
=

1

n
+

indegG (i)− outdegG (i)

2n
.
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Doubly-monotonic model of matchplay

Fairness Condition 1: Previous Work
Fairness Condition 2: Schwenk

Formal Definitions
Three-Player Tournaments

n-Player Tournaments, n ≥ 4

THE TOURNAMENT TG ,N :

Let P = (pij) be any doubly monotonic matrix such that pij 6= pkl
unless either i = k, j = l or i = j , k = l . Let

ε1 := min
i 6=j
|pij − 1

2 |, ε2 := min
i 6=j, k 6=l,

{i , j}6={k, l}

|pij−pkl |, ε :=
1

2
min{ε1, ε2}.

In other words, ε is half the minimum difference between two
distinct numbers appearing in the matrix P.

Step 1: Present the matrix P to each of the players.

Step 2: Choose one of the players uniformly at random. This
player takes no further part in the tournament.
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player takes no further part in the tournament.
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Fairness Condition 1: Previous Work
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Formal Definitions
Three-Player Tournaments

n-Player Tournaments, n ≥ 4

Step 3: The remaining n − 1 players play N iterations of
round-robin.

Once all the matches are finished, each remaining
player tries to establish the identities of the other n − 2 remainers,
as elements from [n], by checking the results of all the matches not
involving himself and comparing with the given matrix P.

(a) He makes an arbitrary list (t1, t2, . . . , tn−2) of the other n − 2
remainers and computes the elements qij of an (n − 2)× (n − 2)
matrix such that qij is the fraction of the matches between ti and
tj which were won by ti .

(b) He tries to find a subset {u1, . . . , un−2} ⊂ [n] such that, for all
1 ≤ i < j ≤ n − 2,

|qij − pui , uj | < ε.

Note that he can find at most one such (n − 2)× (n − 2)
submatrix of P. If he does so, we say that he succeeds in Step 3.
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Formal Definitions
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n-Player Tournaments, n ≥ 4

Step 4: For each player that succeeds in Step 3, do the following:

(a) Let i < j ∈ [n] be the numbers of the two rows and columns in
P which are excluded from the submatrix he identified in Step 3.

(b) For each l ∈ [n]\{i , j}, compute the fraction rl of matches
which he won against the player whom he identified in Step 3 with
row l of the matrix P.

(c) If rl > pil − ε for every l , then assign this player a “token” of
weight

nji
2 , where nji is the number of arcs from j to i in the

digraph G .

Step 5: Assign to the player eliminated in Step 2 a token of
weight 1− s, where s is the sum of the weights of the tokens
distributed in Step 4. The winner of the tournament is now chosen
at random, weighted in accordance with the distribution of tokens.
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