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Abstract

This master thesis consists of an introductory text to the so called Hegselmann-Krause bounded
confidence model, a well known simple model within the field of opinion dynamics, along with
three original papers. The model emulates a discussion among a group of idealised people, or
agents, who are assumed to be willing to compromise, but only with those whose opinions are
sufficiently close to their own. As it turns out, the interactions between the agents give rise
to very complex behaviours on a population level, and the purpose of our work has been to
understand these behaviours mathematically. The introduction presents the model and some of
its properties, discusses some open problems and then summarises and discusses the papers.

In the first paper we prove a conjecture by Hendrickx et al., that consensus is not guaranteed
even for a continuum of agents and a regular opinion function. The continuous agent model
is meant to capture the behaviour of the traditional model as the number of agents grows to
infinity.

In the second paper we investigate what happens when agents hold one dimensional opin-
ions which are equidistant on an interval. In particular, we exactly determine the freezing
time of a system where the initial distances between the agents equal the radius of confidence.
The behaviour of such configurations was previously observed in simulations by Krause, and
presumably many others, but no formal proof was known.

In the third paper we present a set of configurations on the line with a freezing time of
Θ(n2), where n is the number of agents. This is the first known example of freezing times that
exceed O(n).
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Chapter 1

Introduction

The subject of this thesis is what has become known as the Hegselmann-Krause bounded confi-
dence model (or HK-model for short)1 , also known as the Hegselmann-Krause dynamics. It is
named after philosopher Rainer Hegselmann and mathematician Ulrich Krause, and was devel-
oped to model the opinions of people debating a given topic. It and was first published in 1997
in [7], and popularised in 2002 in [6]. The basic idea is this: Let real numbers represent opinions
and assume that people, whom we will refer to as agents, find an opinion reasonable if and only
if it is close to their own. Then assume that people are willing to compromise with others if
and only if they find their opinions reasonable. This is implemented by the model supposing
that there is some radius r, commonly taken to be 1, such that everyone is willing to replace
their opinion with the average of the opinions within this radius. It further supposes that all
the agents update their opinions in this fashion, and that they do so simultaneously in discrete
time steps.

1.1.1 Definitions

To put this formally, for n agents let the vector xt ∈ Rn represent their respective opinions
at time t. The set of possible opinions, in this case the real numbers, will be referred to as
the opinion space and the individual vectors will often be referred to as configurations. By
convention, the agents are labelled 1, 2, ... n and the opinions assumed to be sorted so that
they lie in increasing order.2 For an opinion a in the opinion space and a time t, an agent i
such that xt(i) = a is said to be a follower of that opinion. The agents 1 and n are referred
to as extremists along with all agents that share either of their opinions. For each agent i we
define a set Nt(i) = {j : |xt(j)− xt(i)| ≤ 1} which is referred to as the neighbours3 of i at time
t. Note that j ∈ Nt(i) ⇔ i ∈ Nt(j). If i and j are neighbours, we often say that they can see
each other. From an initial vector x0 of opinions, the system then evolves according to the rule

xt+1(i) =
1

|Nt(i)|
∑

j∈Nt(i)

xt(j). (1.1.1)

Under this rule we see that any two agents that share the same opinion at time t must also
be of the same opinion at time t+1 and, by induction, at all subsequent time steps. A maximal
set of agents with the same opinion is refereed to as a cluster, and the number of agents in a

1The abbreviation HK for Hegselmann-Krause is also used in other constructions
2It is a good exercise to show that the order is preserved under the dynamics defined in (1.1.1).
3This choice of nomenclature is admittedly not in line with our view that the numbers xt(i) are opinions, but

still standard. It originates in the idea that, for every t, one may construct a graph where the nodes represent
agents, and where the nodes i and j are connected iff i ∈ Nt(j).
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cluster is referred to as its size. Should all agents belong to a single cluster the system is said
to have reached consensus, and otherwise to result in fragmentation. If for some time step
T <∞ we get xT+1 = xT we obviously have xT+t = xT for all t ∈ N, and we say that the system
is then frozen. The smallest such T is called the freezing time of the system. One of the most
basic results concerning the HK-model is that every initial configuration of any finite number
of agents must freeze in a finite number of steps, and the freezing time can thus be defined for
any configuration of agents. There are various proofs of this, some of which give explicit, albeit
maybe not tight, bounds on how large the freezing time can be for a configuration of n agents.
For a discussion on the best bounds known to date, see section 1.2.

For some arguments it is useful to consider stationary agents with varying opinions. Other
arguments are better conducted by considering agents that move around in the opinion space.
For this reason we will often abuse the terminology by referring to agents when we in fact mean
their opinions. It should be clear from the context which view is employed.

Over the years numerous variations of this model have been presented. It has been modified
to allow agents to have individual thresholds for which opinions they consider, and even asym-
metrical thresholds. The model has also been generalised to opinion spaces of higher dimensions,
with each agent holding an opinion in Rd for some d ≥ 1. Even more exotic opinion spaces like
the circle have been studied, see e.g [5]. The work for this thesis has mainly been focused on
the classic one dimensional model described above, although Paper I concerns a generalisation
to an uncountably infinite number of agents.

1.1.2 Motivation

From a mathematical point of view, the HK-model describes a dynamical system with an evo-
lution rule defined by (1.1.1). If each agent retains the same set of neighbours the evolution
is linear and can be described in terms of a matrix A acting on xt. The challenge in under-
standing the dynamics of the system lies in the fact that the the sets Nt(i) depend on xt, in
effect making the evolution rule piecewise linear. As the neighbourhoods change discretely it
is not, however, continuous. By finding the freezing time T , calculating a matrix At for each
t < T and multiplying all the matrices A0, A1, . . . , AT together,4 one can, in theory, obtain
the correct frozen state for any initial condition by multiplying it by a single carefully chosen
matrix. Actually finding this matrix for a general initial state has proven very difficult without
explicitly calculating all the intermediate matrices At one at a time, at each step using the
product of the previous matrices to find which neighbourhoods each agent should have. In the
resulting product the discontinuities from the individual matrices At all contribute to making
the system potentially chaotic.

The very simple rule give rise to an extraordinary amount of unexplained phenomena. Many
of these arise as one considers parametrised sets of initial configurations and varies the param-
eters. Though one may observe tendencies, the evolution of the system often depends on the
parameters in quite subtle ways. It is, for instance, still an open problem to classify the initial
configurations of opinions that will ultimately lead to consensus, and equally open is the ques-
tion of determining the number of clusters that will emerge when consensus fails. Simulations
suggest that if opinions are generated independently at random from any reasonable probability
distribution, the number of final clusters, and even their location and relative sizes, is relatively
independent of the number of agents, but from a mathematical point of view these are still
wide open questions. Another example comes from agents deterministically positioned in peri-
odic configurations: As it seems, this often results in almost, but not entirely, periodic frozen

4One could check that if the system is frozen at time T we will have that AT+t = AT for all t > 0, so an
infinite product would work just as well.
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configurations. There is not much theory to explains this either. Unexpected regularities and
irregularities seem to appear for almost any construction on scales ranging from the very local
to the very global.

With all this beautiful complexity arising from such a simple definition, the HK-model
readily lends itself to mathematical study; it has been analysed by means of functional analysis,
Lyapunov functions, linear programing, Markov theory and several other mathematical tools.
New ideas are required to further explore the nature of this system, and we hope the interest
for its many problems will continue to grow.

There is also a more worldly justification for the study of systems like the HK-model. Despite
its origin, and despite us thinking about the values in x as opinions, what makes this model
interesting and important to so many non-mathematicians is not necessarily applications to
the study of actual opinions of actual people, though this is indeed one motivation. The HK
model is a very simple example of a multi-agent system with local rules. The meaning of this
is that even though the new position for an agent does depend on the opinions of other agents,
only those that are in some sense near enough at that particular time will count. This is a
broad class of problems with many applications in fields such as biology, economics, robotics
and the study of social interactions. The agents in these models may be birds in a large flock
who only watch their closest neighbours, sick humans who infect those who come too close or
autonomous robots exploring unknown territory with limited vision. The rules these agents
follow are comparatively complicated, and though they may be easy to simulate to get an idea
of their behaviour, knowing anything at all about the dynamics in a mathematical sense is often
difficult. Working with a model as simple as the HK-model allows us to go deeper into the
theory and better understand the dynamics involved. This follows the well known principle of
understanding the basics well in order to help with the intuition of more complicated cases.
Even so, very little is known about the HK-model, but we are just beginning to uncover its
secrets.

1.1.3 Basic examples

To get some intuition for what the model can do, consider the following examples:

Example 1.1.1. For a very basic first example, consider x0 = (0, 1, 2). For this vector we have
N0(1) = {1, 2}, N0(2) = {1, 2, 3} and N0(3) = {2, 3}. We calculate the average opinion for each
set of neighbours using (1.1.1) and obtain x1 = (12 , 1,

3
2). We now see that N1(1) = N1(2) =

N1(2) = {1, 2, 3} and make the observation that agents sharing the same set of neighbours must
belong to the same cluster in the next time step. We thus have x2 = (1, 1, 1) and see that the
the system is frozen with freezing time 2, and that we have reached consensus.

Example 1.1.2. For a slightly more complicated system, consider x0 = (0, 12 , 1, 2, 3). We first
note that agents 2 and 4 each have two neighbours apart from themselves, and that they both
lie exactly centred in between these neighbours. Their opinions will thus remain unchanged
until the next step. Agent 1 share the same set of neighbours as agent 2, and they will thus
adopt the same opinion. Agent 5 can only see 4, and will thus move to 5

2 . As for agent 3, we
have N0(3) = {1, 2, 3, 4} which yields 7

8 , using (1.1.1). Thus we have x1 = (12 ,
1
2 ,

7
8 , 2,

5
2). We

now note that 2 − 7
8 > 1, which implies that the system has fragmented and now consists of

two sub-systems of agents, each with their respective set of neighbours. The two sub-systems
will, according to the observation made in the previous example collapse into clusters in the
next step, and we have x2 = (58 ,

5
8 ,

5
8 ,

9
4 ,

9
4). Again, the freezing time is 2, but we do not reach

consensus.

These examples show, among other things, that adding more agents to a system that reaches
consensus might actually cause fragmentation. A fact that might be surprising is that one could
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then again force the agents in Example 1.1.2 into a consensus by spreading their opinions further
apart:

Example 1.1.3. Consider x0 = (0, 1, 2, 3, 4). Because of symmetry, agent 3 will necessarily
retain her opinion for all times t. Note also that, because of this symmetry, it would suffice to
consider the lower half of the configuration. Using our experience from the previous examples, we
immediately see that only the extremists will move in the first step, and so x1 = (12 , 1, 2, 3,

7
2).

In the subsequent steps, agents 2 and 4 will try to stay in equilibrium with their respective
extremist and agent 3, and the extremists will chaise after them. Not until t = 4 will the
extremist see agent 3, to form a cluster with their penultimate agents at t = 5. The two clusters
will now be a distance 1250

1296 apart, close enough for the system to reach consensus at t = 6.

1.2 What is known?

Very little is known about the nature of the HK-dynamics. For particular constructions it is
easy to do the calculations and see where they lead, but for an arbitrary configuration of agents
or even a class of configurations there are only a handful of known rigorous results. Arguably
the most important of these results is the following:

Theorem 1.2.1. Let f1(n) denote the maximal number of steps needed for a configuration of
n agents to freeze. Then f1(n) = O(n3).

This theorem was proven independently in both [9] and [1]. The proofs are similar in essence:
They both show that if the extremists on one side do not disconnect or increase in number at
time t, they must move at least a distance proportional to 1

n2 towards the centre, at least every
other time step. In [1] this methodology is pronounced, while it is only implicitly used in [9]
where the authors instead prove a stronger statement about the total motion of the extremists
and an additional penultimate agent. They both continue to argue that if the extremists on
either side disconnect from the rest of the agents and thereby freeze, the same lower bound on
the movement can be applied to the most extreme non-frozen agent or agents. We can assume
that no two opinions differ by more than n, so with the lower bound on the movement of the
extremists we see that they can move no more than O(n3) times. Would they initially differ by
more than n some pair of consecutive agents would have opinions differing by more than 1, and
the system could then be divided into two subsystems that could be analysed separately.

Though the proofs share similarities they are conducted in markedly different manners and
each provides insights about the problem. The partial results used in [9] are slightly stronger,
and the coefficient of n3 is slightly lower than in [1]: 3 instead of 4. The proof in [1] on the
other hand is much shorter, half a page as compared to almost four pages.

The problem of finding upper and lower bounds on f1(n) is further discussed in section 1.4.3.

1.3 Concerning simulations

Simulations play a key part in the study of the HK-model. Most importantly, they have allowed
us to discover a wide range of patterns and phenomena that would hardly have been found
by hand without considerable effort. Also, the ease with which one could implement a simple
simulation and play around with different parameters and initial configurations has doubtlessly
contributed to its increased popularity. Although the model was introduced in 1997, it went
rather unnoticed until 2002 when [6] was published. This article use computer simulations of
the model to demonstrate interesting phenomena and to visualise these in clear and elegant
pictures. When this was written [6] had 938 citations on Google Scholar, which is notably more
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than earlier papers on this topic. Simulations are a also valuable tool for testing hypotheses;
before trying to prove a statement, it is very convenient to be able to implement simulations to
see whether the statement is plausible or not.

For most of our simulations we have used variations on the following Matlab code:

N=50; % Choosing the number of agents N.
L=10; % Choosing opinion space.
v=sort(L*rand(1,N)); % Generating x0, here uniformly at random.
M=v; % Opinions are stored in a matrix M.

t=0; % t denotes the current time step.

while 1 % The loop will run until terminated.
u=zeros(1,N); % Resetting the vector that will become.

% the next v
for i=1:N

w=v; ↓ % A temporary vector w of potential neighbours.
w(abs(v-v(i))>(1+1e-13))=[];% Finding the neighbours of i by removing

% opinions that differ by more than
% some r>1, see discussion below.

u(1,i)=mean(w); % Agent i chooses the mean of neighbouring
% opinions.

end
v=u; % Updating the vector.
M(t+1,:)=u; % Updating M.
t=t+1; % Moving on to the next time step.

q=abs(diff(v)); % These lines detects if the system is
q(q==0)=2; % frosen and break the main loop if it is.
if min(q) > 1

break
end

end
plot(0:t,M,'.-') % See Figure 1.1

All the phenomena discussed in this thesis may be observed by initialising this code with
appropriate opinion vectors, or by iterating the code to gather quantitative information. Though
not very sophisticated, it manages to simulate the evolution of single random configurations
consisting of up to a few tens of thousands of agents in a few minutes. At each time step it goes
through all the agents, for each making a copy of the current configuration and then filtering
unwanted opinions. It calculates the mean of what is left and stores this in a temporary vector,
which then replaces the original vector before the new configuration is stored and the loop
repeats. To determine when the configuration has frozen, in which case the simulation should
terminate, the code tests whether any two distinct opinions in the configuration differ by more
than 1. One can easily check that this is true if and only if the configuration is frozen.

The inequality marked by an arrow (↓) deserves special attention: We want the agents to
only consider opinions that differ at most 1 from their own, so the term 10−13 seems somewhat
out of place. Still, it is absolutely necessary in order to get the results we want, and the reason
for this is that the calculations are carried out using floating point numbers. This means that
the computer, which internally works in binary, needs to round all numbers to the closest binary
representation that uses a fixed number of digits.5 For small integers, halves, quarters etc. this
causes no problems, but for any other numbers there will be errors. Any error at all, however
minor, could make the computer mistake a neighbour for a non-neighbour, and as if this were

5Our code use 60 binary digits.
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Figure 1.1: A plot generated from the Matlab-code with opinions on the vertical axis and time
on the horizontal axis.

not enough these errors may accumulate.
Consider, for example, an initial configuration made up entirely of integer multiples of

1
5 : in the program we set v=0.2*[0,1,2,3,4,5, ..., k] for some k and observe what hap-
pens.6Already for k=6 the first mistake will occur, as the second agent will not recognise the
sixth as its neighbour. These errors are initially small and build up slowly, and do not become
larger than 10−13 until k=3072. The addition of the extra term thus protect us from some errors
that could potentially drastically alter the evolution some configurations.

A legitimate question would now be if the extra 10−13-term itself could cause mistakes of
the other kind, and count a non-neighbour as a neighbour. The answer is of course yes, but this
has turned out to be a less severe problem in the cases we have considered.

For deterministic configurations, this is due to the fact that if opinions are assumed to
be rational numbers, and we denote the biggest denominator at time t by Dt, we easily have

Dt+1 ≤ D2
t

maxiNt(i)| for all times t. Since numbers whose difference from one is less than 10−13

necessarily have large denominators, for as long as Dt ≤ 1013 we are thus protected from errors
of this second kind. This protection lasts only for a very small number of steps, but one could
argue that, intuitively, this should be enough in most cases: After a few time steps, the opinions
have affected each other in complicated ways and are difficult to guess without calculating
them, and we thus think of them as random variables. The “probability” of an error occurring
now depends on how densely the opinions are packed. If the density is not small enough for
the probability of errors to be low, the sets of neighbours must also be large, and adding or
subtracting one agent will not drastically change the evolution. As the updates are linear, one
could, in theory, reason in a similar way for subsequent time steps as well, although this leads
to messy calculations.

As for random configurations, one could of course apply the same argument as above.

6The correct Matlab notation for this is v=0.2*(0:k).
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To summarise, we believe our program to be rather robust against errors due to the rounding
of the the floating point numbers. Since our research has mostly been focused on proving results
using exact arithmetic, with simulations as a mere supplement, we have not put much effort
into supporting these beliefs with more formal results. The constant 10−13 was chosen more or
less arbitrarily to keep both of the errors discussed rare enough for our needs.

1.4 Some open questions

Since very little is known about the HK-dynamics, as has been mentioned earlier, this section
could be made quite extensive. Among the mysteries of this model, however, there are a few
well known problems that have remained, despite many efforts. In this section, we will discuss
a few of them.

In simulations, it is common to construct an initial configuration by assigning independent
random opinions to the agents from some probability distribution. This makes for interesting
simulations, as quite different behaviours may be observed from what may at a first look like
similar sets of agents. On the one hand, this can give a good idea of what “typically” happens to
random configurations generated from a certain distribution. After a few hundred simulations
one might feel rather confident about their behaviour, although in a rather informal, intuitive
way. On the other hand, one gets very little or no information about what may happen. There
might be rare classes of configurations which behave very differently from what is normally
observed. Thus, the frustrating truth is that these simulations show phenomena that we often
cannot explain, while they withhold the most interesting special cases.

In this section we will discuss three such open questions. The first two of these are strongly
related and concern explaining observed phenomena, while the third one concerns the existence
of special cases.

1.4.1 Cut-off for consensus with uniform distribution

As we have seen, the rules of the HK-dynamics do not guarantee consensus. In fact, if we want
opinions to be spread over an arbitrary interval it is non-trivial to construct any configuration
of agents that reach consensus at all.7 Simply choosing independent uniformly random opinions
on an interval typically results in fragmentation unless the interval in question is very small:
With opinions contained in the interval [0,1] one step will give immediate consensus, and one
can easily see that a large number of opinions spread evenly over [0,2] will coincide after 2
or maybe 3 iterations. On the other hand, simulations suggest that opinions drawn from a
uniform distribution over [0,10] will practically never reach consensus. But what about the
interval [0,5]? If small intervals behave in one way, and bigger ones in another there needs to
be some bifurcation.

Assuming all “short” intervals behave in one way, and all “long” intervals in another, which
is suggested by simulations, this reasoning can be made formal as follows:

Conjecture 1.4.1. Let n agents have opinions drawn independently and uniformly at random
from the interval [0,L], and let pL,n be the probability that the system converges to consensus.
Then there exists a number Lc such that

pL,n →
{

1 if L < Lc

0 if L > Lc

(1.4.1)

as n→∞.

7Hint: the only way we have found requires an extremely uneven distribution of an extreme number of agents.
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HK-operator Faltning

←ConvolutionHK →

Figure 1.2: The different intervals of integration for the standard convolution with a box and
the HK-operator.

This conjecture could conceivably be approached in several different ways. One such way
would be to assume that the agents are so densely packed that they can be approximated by
an agent continuum, as is done in [2]. In this generalised model, for a given time step t a
configuration can be represented by a function xt from the real interval [0, 1] that indexes the
agents, and into the opinion space. We will not get into too much detail here, but if considered as
a limit of an increasing finite number of agents generated independently from some probability
distribution, the initial function x0 turns out to be precisely the inverse density function of that
distribution.8 In the case of uniform distribution, this translates to x0 being a linear function
from agents to opinions.

As in the discrete agent model, we obtain the next state by letting the agents replace their
own opinion with the average of those nearby. Since we are now dealing with ordinary real
valued functions in one variable, one might be tempted to erroneously interpret this as simply
convolving xt with a box function. If this interpretation would be correct any function would
become gradually flattened out and in the end approach a constant function, which corresponds
to consensus in the continuous model. However, in order to then update the opinion of an
agent α using normal convolution, one would have to integrate the function xt over the interval
[α − 1, α + 1]. In contrast, the correct way to make an update analogous to (1.1.1) is instead
to evaluate xt at α and then integrate over the inverse image x−1t ([xt(α) − 1, xt(α) + 1]). The
result must then be divided by the length of the interval that constitutes this inverse image.
The rule for updating the function can thus be considered a form of “skewed convolution” with
a box function. Figure 1.2 tries to illustrate this. If one could better understand this operator,
call it HK, and find some manageable way to use it in calculations, one would simply have to
apply it repeatedly to a linear function. If this has slope k, say, all that then remains to finish
the proof is to vary k to see what happens near k = 5 for limt→∞HKt.

However, no one has thus far succeeded in this and the problem remains open.

1.4.2 The 2r-conjecture

In the previous section we mentioned the idea of assigning opinions in some interval indepen-
dently and uniformly at random to a set of agents. This is a natural first class of configurations

8If α is a random variable denoting the opinion, this is defined as the inverse of the function F (ξ) = P(α ≤ ξ).
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Figure 1.3: A histogram showing the distribution of distances between clusters obtained from 25
simulations, each of 5000 agents equally distributed on the interval [0, 100]. The total number
of distances is 1003, the sample mean is 2.4 and the sample variance is 0.46.

to try when implementing the HK-model, and it is discussed in countless papers. As was men-
tioned in the last section, intervals above some length tend to result in opinions ending up
fragmented into multiple clusters, and this appears to happen in a somewhat regular manner:
It seems like the distances between the clusters tend to stay above 2r, where r is defined as
in Section 1.1.1; hence the name of the phenomenon. It should be noted that this is not one
formal conjecture, but rather an unexplained phenomenon about which several possible conjec-
tures could be posited. For this reason we will refer to it as the 2r-phenomenon. It should also
be noted that this tendency is merely a tendency, and that distances well below two are frequent
even for large numbers of agents. Twenty-five simulations with 105 agents equally distributed
on [1, 100] give a sample mean of 2.4 and a sample variance of 0.46, see Figure 1.3.

This behaviour is still far from understood. The first step in understanding the system
would be to pose an explicit conjecture, and this has partially been done.

In [2] the authors introduce the concept of stability. Basically, a frozen configuration of
a large number of agents is stable if it cannot be altered radically by the introduction of an
additional agent.9 For example, a system where two clusters that consist of a hundred agents
each, holding opinions 0 and 3

2 respectively, is certainly frozen, but introducing a single agent
of opinion 3

4 will force the system to start evolving again and eventually reach consensus. The
system is thus unstable. If we instead let one of the clusters consist of 300 agents a new
perturbing agent will be so attracted to the bigger cluster that it immediately moves too far
away from the smaller cluster to have any influence over it. In the next step the system will
once again freeze. The new frozen configuration will not be much different from the initial one
and the initial system is thus considered stable. For a more rigorous description, see [2] or [3].

9This is a simplification of the original notion of stability, which uses a weighted version of (1.1.1). It is easy
to check, however, that Conjecture 1.4.2 as it is stated here an the original conjecture more or less directly imply
each other.
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The authors show that if #A > #B denotes the sizes of two clusters A and B, a configuration
is stable if and only if the distance between any two clusters A and B is greater than 1 + #B

#A +

O( 1
#A).10 They then make the following conjecture:

Conjecture 1.4.2. (Conjecture 1 in [2]) Fix an interval from which you draw opinions inde-
pendently according to a fixed continuous probability distribution with connected support. Then
the probability of the system evolving to a stable frozen configuration approaches 1 as the number
of agents goes to infinity.

Intuitively, if the opinions are drawn uniformly and independently, the final clusters should
consist of approximately the same number of agents. If this intuition is true, Conjecture 1.4.2
would imply that the distances between clusters should stay above 2, and thus this would
partially explain the 2r-phenomenon.

1.4.3 The average and maximal freezing times

One of the hottest, most productive, questions concerning the HK-model is the maximal number
of steps f1(n) during which a configuration of n agents may evolve before it freezes. The example
provided in Paper III shows that f1(n) = Ω(n2), which still leaves a gap to the best known upper
bound f1(n) = O(n3).

Both of these bounds are far higher than one might expect from observing random simu-
lations. Let f̄1(n,L) denote the expected value of the freezing time for n agents with opinions
uniformly and independently distributed on [0, L].11 For up to a few thousand agents f̄1 seems
to grow very slowly as the number of agents increases. Determining precisely how slowly is
complicated by the fact that the width L of the interval seems to affect the growth rate in a
non-linear fashion. This is most easily seen for very small values of L: It is straight forward to
see that a system freezes after a single step if L ≤ 1 and after two steps if L ∈ (1, 2) asymp-
totically almost surely as n → ∞. With a little work one can convince oneself that four steps
will asymptotically almost surely suffice for any L ≤ 3, but for larger values of L finding how
f̄1 depends on L and n appears highly non-trivial. Figure 1.4 shows simulations that suggest
that f̄1 might not even be monotone in L.

A first clue that convergence might require many time steps if n is large comes in the
form of semi-stable states. By this we mean a configuration containing two large clusters of
approximately the same size and with opinions too different for them to see each other, and a
small cluster in the middle that can see both of the big ones. These structures appear relatively
frequently in random simulations and the freezing time is linear in the number of agents they
contain. For example, place the opinions of m agents each on 1 and −1 and let one agent have
opinion 0. With only one agent affecting them the extremists will move a distance 1

m towards
the centre, reducing their difference by a factor (1 − 2

m). For as long as the distance remains
larger than 1 it will reduce by the same factor. Once the extremists see each other the system
will reach consensus in a single step. If we denote the freezing time by T we thus have that

1 ≈ 2(1− 2

m
)T ⇔ 0 ≈ log 2 + T log(1− 2

m
) ≈ log 2− T 2

m
⇔ T ≈ m log 2

2

and we see that the time T depends linearly on m.
The example in the previous paragraph is important, as it introduces the idea that opinions

might change very slowly until some time step when suddenly new interactions with appear
and the system collapses. We believe that it plays a vital role in explaining the observations in

10With the original definition of stability the O( 1
#A

) term is omitted.
11To our knowledge this function has not been previously studied.
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Figure 1.4: Empirical approximations of f̄1 for some values of L and n. Each point is computed
from the average of 100 simulations with opinions uniformly distributed on [0, L]. Note that
for L = 5, f̄1 seems to depend nearly linearly on n, while it hardly seems to depend on n at all
for L = 7. Increasing L further appears to once again increase the correlation between L and
f̄1. Note also that the graphs seem to intersect near n = 650; passing this point even seems
to revert their order, even though this might be due to random noise. There is currently no
rigorous theory to explain any of these observations.

Figure 1.4. If enough agents form a semi-stable state it might not collapse for tens or hundreds
of steps.12 Different values of L seem to be more or less prone to give rise to these semi-stable
states, and this affects f̄n. The idea is also used in the proofs of both the best known upper and
lower bounds on f1(n) known to date, where slow-moving extremists play a crucial part. In the
calculation of these estimates the speed of the extremists is, however, reduced even further to
Θ( 1

n2 ) compared to the just presented Θ( 1
n).

The discrepancy between the bounds originates from our lack of understanding of how and
why splits occur. While the extremists in the example of Paper III steadily move at a speed of
about 1

n2 per time step, the distance they travel is bounded by some constant. After moving
this distance the extremists absorb all their neighbours, disconnect and form clusters. The most
extreme agents in the remaining central component are too few to move that slowly, and their
structure will comparatively quickly collapse. If there would have been more agents occupying
the opinions close to the original extremists, they could not have sustained their slow movement
for long enough, and the time before the disconnections would shorten. Someone might suggest
that somehow assigning opinions slightly outside the neighbourhoods of the extremists to more
agents could remedy this. One must keep in mind, however, that the freezing time is measured
in relation to the number of agents: If we want to arrange any number n of agents so that
the extremists retain minimum speed, the number of extremists cannot go below Cn for some
absolute constant C. As we want the freezing time to be asymptotically bigger than n2, the
diameter L of the configuration must also grow with n. With only n agents to distribute, this
puts a limit on the overall “density” of agents in the opinion space, as it can not grow like Θ(n).

12Indeed, the time is unbounded as n grows.
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From these observations we deduce that only some bounded number of opinions, that is the
same for all n, can have as many followers as the extremists. For all other opinions the density of
followers must asymptotically be much lower, and with these large differences in opinion density
splits are hard to avoid. Finding a larger lower bound would require a very clever distribution
of the opinions, possibly with extremists moving faster than this slowest possible speed which
is used in the current proof, and we doubt it can be done.

As for the upper bound, it does not presuppose any disconnections, and only uses the trivial
upper bound O(n) for the distance travelled by an extremist.13 We believe these conditions
can never hold, and that an extremist can either move at close to minimum speed or close
to maximal distance, but never both; it seems as though minimum speed of the extremists
somehow implies that they will disconnect before moving a distance longer than some universal
constant. To prove this, one would supposedly need to formalise the observations from the
previous paragraph of why raising the lower bound seems so difficult.

1.5 Summary and discussion of appended papers

1.5.1 Paper I

This paper proves a conjecture by Hendrickx et al. about a continuous version of the HK-model
where agents are not indexed by a finite set, but by a real interval. The definition of their model
is as follows: Let x0 : I → R be a real-valued monotone function on some interval I, and for
every time step t and each α ∈ I let N0(α) = {β : |xt(α)− xt(β)| ≤ 1} be the set of neighbours
of α at time t. Using the notation | · | to denote the length of an interval, we then define xt for
t > 0 recursively by the rule

xt+1(α) =
1

|Nt(α)|

∫

Nt

xt(β)dβ (1.5.1)

in complete analogy with (1.1.1). This is meant to represent what happens when the number of
agents grows to infinity, and in [3] the authors show that in a certain sense their model achieves
this.

One way to get a better intuitive understanding of these dynamics is to, for some t, consider
the derivative of the inverse of a function xt: If d

da(x−1t ) is relatively small for opinions a in
some interval this means that comparatively few agents hold these opinions. If the derivative is
instead relatively large this means that the opinions are popular and will have a large impact on
agents holding similar opinions. The function d

da(x−1t ) thus describes the density of agents over
the opinion space.Figure 1.5 attempts to illustrate this correspondence between the function xt
and the density.14

One of the most basic results concerning the discrete model is that the system always
freezes in finite time. It is a simple exercise to convince oneself that any discrete configuration
can be represented in the continuous model using step functions, so clearly there are at least
some configurations in the continuous agent model that freeze. It is also clear that many
configurations where all opinions lie within a sufficiently small interval will reach consensus in
a finite number of steps and thus freeze as well. A natural question to ask is whether there are
in fact any configurations that do not freeze.

13See section 1.2.
14It should be noted that this construction is not intended to be rigorous but only to aid in the informal under-

standing. Even though all non-constant monotone functions can be assigned an“inverse”by letting discontinuities
correspond to constant segments and vice versa, not all monotone functions have derivatives.
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Figure 1.6: The initial opinion function consists of three plateaux, each with a near zero deriva-
tive, and two steep areas where the derivative is large. As the system is updated, we show that
the plateaux will become flatter and the steep areas steeper.

We denote, in accordance with [2],15 an opinion function as regular if it is everywhere
continuous and piecewise continuously differentiable with uniform positive upper and lower
bounds on its derivatives. Taking I = [0, L], it is fairly straight-forward to show that xt+1

is regular if xt is regular and |xt(L) − xt(0)| ≥ 2. A regular function cannot be frozen, so
to prove that a particular regular function x0 will never freeze, it is enough to prove that
|xt(L)− xt(0)| ≥ 2 remains true for all t. In [3], the authors conjecture the existence of opinion
functions that achieve this, and the main theorem of Paper I confirms this conjecture:

Theorem 1.5.1. There exists a regular function x0 : [0, 1] → R such that, if the sequence
(xt)t∈N is defined according to (1.5.1), then xt(1)− xt(0) > 2 for all t.

The shape of the construction is depicted in Figure 1.6. The opinion function is anti-
symmetric about its centre and it is initialised very close to the continuous agent counterpart

15The original definition is slightly more general.
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of a stable equilibrium.16 The three plateaux seen in the picture correspond to three groups of
agents whose opinions are pairwise too different for them to influence each other. The agents of
the central small plateau will live in a rather “symmetric neighbourhood” and will not change
much. The opinion function being regular, the large plateaux will see some few agents that lie
in between themselves and the central plateau, and we show that their opinions are thus pulled
towards the centre at a rate proportional to the amount of intermediate agents. We then show
that the large plateaux wield enough influence over enough intermediate agents for the agents
to become fewer at a rate that is at least exponential. Adding these two facts together tells us
that the total movement will not exceed some sum of some exponentially decreasing numbers,
and is thus bounded by some absolute constant. We show that this constant is small enough
for the plateaux never to see each other, and this completes the proof.

1.5.2 Paper II

Before the results presented in Paper III were obtained, the freezing times of all known configu-
rations of agents were at most directly proportional to the number of agents. To see that there
are indeed such configurations, let En denote the configuration where each integer opinion from
1 to n is held by exactly one agent.17 The initial evolution of this configuration is comparatively
simple: In the first step, most of the agents will each have one neighbour on either side, both
at distance 1, and thus will not move at all. As for the outermost agents, the extremists, they
will have only one neighbour each apart from themselves and thus will move a distance of one
half towards the centre. In the second time step, most agents will still “live in a symmetric
neighbourhood” and remain unchanged. However, since both the extremists have now changed
their position, the two penultimate agents will now move as well. In the third time step, all but
three agents on each side will remain unchanged, and so on. By continuing in this way we reach
the conclusion that there must be at least n

2 steps before the agents in the middle are affected,
and we see that the time before the system freezes is at least proportional to the number of
agents.

Though configurations like En have been known for many years (see for example [8]), not
much more than what is explained in the previous paragraph was known about them. Several
authors, including Ulrich Krause, had made the empirical observation that the evolution seemed
to follow a very regular pattern. We make this observation precise and prove that the same
behaviour occurs independently of the number of agents.

Theorem 1.5.2. Let n ≥ 2 be an integer, and write n = 6k + l where 0 ≤ l ≤ 5. Suppose
that at t = 0 we have the opinion vector En and we let it evolve according to (1.1.1). Then the
following occurs:

(i) after every fifth time step, a group of three agents will disconnect from either end of the
receptivity graph and then collapse to a cluster in the subsequent time step.

(ii) the final, frozen configuration, will consist of 2k clusters of size 3 with opinions dis-
tributed symmetrically about n+1

2 plus, if l > 0, one cluster of size l with opinion n+1
2 .

(iii) the configuration will freeze at time t = 5k + ε(l), where

ε(l) =





l − 1, if l ∈ {2, 3},
l, if l = 1,
l + 1, if l ∈ {0, 4, 5}.

(1.5.2)

16See section 1.4.2.
17The letter E is for equidistant.
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Figure 1.7: The edge of a long chain of equally spaced agents evolves in a periodic pattern. The
vertical axis shows opinions while the horizontal axis shows time.

In the first part of Paper II, we prove this theorem. This is done by shifting focus from the
opinions themselves to the sequence of distances from each agent to the next. This approach
has the advantage that if we look five steps ahead and disregard the first three opinions or
distances, the first elements in our new list will look approximately like the old ones, and not
like the old ones plus some constant. In fact, the operator that updates the distances and then
truncates the ends in this manner is linear. Formally, we assume n to be large, approximate En
by a semi-infinite set, denoted E∞, and consider what happens at the edge. After showing that
the edge of E∞ does stay similar to the initial configuration, we then show that the two sides of
any finite configuration remain sufficiently similar to the edge of the semi-infinite case for the
results to be transferred, reaching the conclusion that triplets of agents will indeed drop off on
either side until fewer then six agents remain. Finally, we determine the exact number of steps
needed by the remaining agents to reach local consensus, leaving the evolution of configurations
En almost completely understood. Since six agents are lost every five steps approximately 5

6n
steps are needed for En to freeze.

In the second part, we investigate what happens when n agents are placed not at consecutive
integers, but at integer multiples of some real number d ∈ (0,1]. We denote such a sequence by
En,d and note that En,1 = En. A large number of simulations suggest that these configurations
evolve in a manner that in some aspects closely resembles that of En: After a small number
of steps whose precise relation to d remains unclear, the agents who started out with opinions
less than about 2.3 away from an extremist will disconnect on each side. This continues, in the
sense that a fairly constant number of agents drop off fairly periodically, for as long as there
are still agents left in the middle. Though this description is vague it is still the state of the art
understanding of what is going on for small values of d. We present some numerical evidence
making some of the many open questions a bit more precise, but do not prove any results for
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Figure 1.8: The construction resembles a dumbbell. Each cluster at the ends contain n agents
each.

d ≤ 1
2 .

For all values of d in the interval (12 ,1], we completely determine the evolution until the first
disconnection. We then show that the same method that was used to prove periodicity in the
evolution of En,1 can be applied to other values of d as well. As an example, we show that for
d close to 0.81 four agents on each side will disconnect every eighth time step. This example is
important as on average one agent is lost in every step, so for a configuration of this type the
freezing time may thus exceed the number of agents. When Paper II was written, this was the
longest known freezing time for any configuration of n agents.

1.5.3 Paper III

The question of how many time steps a configuration with n agents can maximally take before
it freezes has attracted much interest, and upper bounds for this number have been improved
several times. In 2012–2013 [9] and [1] showed independently that the freezing time for any
configuration of n agents is at most O(n3), setting the current record. However, no lower
bound, other than the almost trivial linear bound discussed in Paper II, has been known. In
this paper we present a configuration Dn and prove the following theorem:

Theorem 1.5.3. The configuration Dn freezes after time Θ(n2).18

Our construction is depicted in Figure 1.8 and resembles a dumbbell where each agent or
cluster of agents can see no further than the next cluster or agent. It can be constructed by
taking a configuration En+1 and attaching two clusters of n agents a distance of 1

n from either
end. One can check that all the agents in the En+1 are initially at equilibrium and will thus not
move. The extremists on either side can only see one agent outside their cluster. Since there
are so many extremists and the penultimate agents are so close, they will only move a distance
of

1
n/(n+1) ∼ 1

n2 in the first step. The configuration will at first remain basically unchanged, so
for a large number of updates the updates may be described by the same matrix, and the speed
of the extremists will remain close to 1

n2 in subsequent steps as well.
By trying to stay at the average opinions of their neighbours, the agents in the En+1 will,

beginning near the edges, start moving towards the centre of the configuration. They will act as
a “cushion” that distributes the contraction and prevent any one pair of agents from getting too
close. We prove that this cushioning is enough to allow the extremists to move at least some

18In the article only the lower bound Ω(n2) is stated in the theorem. The reason for this is that the proof of
the upper bound uses the main result of Paper II, which has not yet been published.

16



constant distance that is independent of the number of agents in the configuration before they
see their second neighbour. This is done by showing that the offset from the initial distances
between neighbours is spread along the chain in the same way the distribution of the position
of a certain kind of random walker spreads when time increases. As it happens, this spread also
satisfies the heat equation, and this can be used to get an intuitive understanding of the proof:
Imagine an isolated metal rod initially held at temperature 0. We now start heating it at the
ends by adding a certain amount of energy in every time step. The heat will spread along the
rod, keeping the temperature near the ends lower than the sum of the temperature that has been
introduced. However, the ends will stay warmer than the rest of the rod, and their temperature
will continue to increase. Like the heat in the rod, the offset from the initial distances will build
up near the ends, until the outermost distances become too short. We show in the paper that
this will happen after Θ(n2) time steps. The extremists will finally see the penultimate agents
in the chain, and these will immediately be pulled towards the edges and thereby disconnect
from the rest of the chain. Because of symmetry this happens simultaneously on both sides.

To complete the proof, we note that what is left after the extremists absorb the outermost
agents in the En+1 is similar enough to an En−3 for the rest of the evolution to proceed as is
described in Paper II and terminate in ∼ 5

6n time steps. Thus the total number of steps is on
the order of n2.

We conjecture that this is the slowest convergence possible for the classic HK-dynamics. See
Section 1.4.3 for some further discussion of this problem.

1.6 Author’s contributions to the papers

Paper I

The idea for the construction and most of the formulation and writing of the proof, apart from
lemma 5 which replaces a much less elegant version of my own. All graphics.

Paper II

The idea to use the inter-agent distances instead of the explicit opinions, and thus reducing the
problem to the study of the operator T of norm 1. All graphics and numerical simulations,
including preliminary simulations.

Paper III

The idea for the construction of D and preliminary simulations.
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Abstract

We present an example of a regular opinion function which, as it evolves in accordance with
the discrete-time Hegselmann-Krause bounded confidence dynamics, always retains opinions
which are separated by more than two. This confirms a conjecture of Blondel, Hendrickx and
Tsitsiklis.



2.1 Introduction

There is a rapidly expanding vista for the application of mathematics to multi-agent systems,
with applications ranging from engineering to the life and social sciences. One major theme of
this effort is emergence, the name given to the idea that patterns in the collective behaviour of
large groups of interacting agents may be explicable even if each individual is assumed to obey
only rules which are both simple and local, the latter meaning that each agent is only influenced
by its close neighbours, in some appropriate metric.

The field of opinion dynamics is concerned with how human agents modify their opinions
on social issues as a result of the influence of others. This paper is a contribution to the study
of a particularly elegant and well-known mathematical model, the bounded confidence model of
Hegselmann and Krause [7], or simply the HK-model for brevity. In the simplest formulation of
the model, we have a finite number, say N , of agents, indexed by the integers 1,2, . . . ,N . The
opinion of agent i is represented by a real number x(i), where the convention is that x(i) ≤ x(j)
whenever i ≤ j. The dynamics are as follows: There is a fixed parameter r > 0 such that, after
each unit of time, every individual replaces their current opinion by the average of those which
currently lie within distance r of themselves. This is summarised by the formula

xt+1(i) =
1

|Nt(i)|
∑

j∈Nt(i)

xt(j) (2.1.1)

where Nt(i) = {j : |xt(j) − xt(i)| ≤ r}. As the dynamics is obviously unaffected by rescaling
all opinions and the confidence bound r by a common factor, we can assume without loss of
generality that r = 1.

Note that the HK-model seems to implicitly assume that each agent is aware of the opinions
of all other agents, even if he chooses to ignore most of them when modifying his view. In
one sense, this is a matter of interpretation. For example, a conservatively inclined Swedish
citizen may switch the channel whenever a member of the Left party1 is giving an interview, or
may keep watching but shake his head and mutter under his breath. In other words, the agent
adopts strategies which both filter out unwelcome opinions and prevent him from being aware
of them in the first place. On the other hand, the HK-model clearly assumes that an agent is
aware of all opinions within his current confidence range. There are no restrictions imposed by,
for example, geography, which prevent certain agents from sharing opinions a priori. In other
words, agents do not follow local rules in the sense described above, though this is the case
when the HK-model is reinterpreted in terms of multi-agent rendezvous [9]. Other important
features of the model are that it is fully deterministic and that all agents act simultaneously.
Hence the model differs in important respects from other famous models of opinion dynamics
such as classical voter models [11] or the Deffuant-Weisbuch model [5].

The update rule (2.1.1) is certainly simple to formulate, though the simplicity is deceptive.
Associated to a given configuration (x(1), . . . ,x(N)) of opinions is a receptivity graph G, whose
nodes are the N agents and where an edge is placed between agents i and j whenever |x(i) −
x(j)| ≤ 1. In this case, agents i and j are said to be neighbours, alternatively that they see
or interact with one another. The transition in the configuration from time t to time t + 1 is
determined by this graph at time t. However, it is clear from (2.1.1) that the dynamics will
affect the graph, which in turn affects the dynamics. This feedback is the basic reason why
many beautiful conjectures about the HK-model remain unresolved, as we shall now explain.

We begin with the necessary notation and terminology. The state space for a system of N
agents obeying the HK-dynamics is the set of non-decreasing functions x : {1,2, . . . ,N} → R,

1Vänsterpartiet in Swedish.
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equivalently, the set of vectors (x(1), · · · ,x(N)) ∈ RN such that x(i) ≤ x(j) whenever i ≤ j.
An equilibrium state is one such that |x(i) − x(j)| > 1 whenever x(i) 6= x(j). Clearly, once an
equilibrium state is reached, then the opinion of every agent will be frozen for all future time.
It is also easy to see that the converse holds: if xt+1(i) = xt(i) for all i, then xt must be an
equilibrium state. Any set of agents sharing a common opinion are referred to as a cluster. By a
slight abuse of terminology, the term“cluster”may refer either to the set of agents with a certain
opinion or the real number representing that opinion. Hence, a HK-system is in equilibrium
if and only if no two clusters are within unit distance of each other. The simplest kind of
equilibrium state is a consensus, in which there is only one cluster. Given a cluster c ∈ R, its
weight w(c) is the number of agents sharing opinion c. A stable equilibrium is one in which, for
any two clusters a and b,

|b− a| ≥ 1 +
min{w(a), w(b)}
max{w(a), w(b)} . (2.1.2)

This last notion was introduced in [2], which is the paper that directly inspired the present work.
The word “stability” refers to the fact that, if we extend the model to allow non-integer weights
and add an agent of sufficiently small weight to an equilibrium configuration satisfying (2.1.2),
then when the system is allowed to evolve again the new equilibrium will not differ much from
the old one, no matter the opinion of the perturbing agent - see [2] for precise statements and
proofs.

The two fundamental facts about the HK-model are the following:
(A) Any initial state will evolve to equilibrium within a finite time.
(B) Even if the receptivity graph is initially connected, the subsequent equilibrium state need
not be a consensus.

Fact (A) seems to have been rediscovered several times over and there are a number of
different proofs in the literature. Indeed, the same fact has been proven for a wide class of
models of which HK is just one particularly simple example, see [4]. Some of the known proofs
of (A) give effective bounds for the time taken to reach equilibrium, as a function of the number
N of agents only. The best-known bound is O(N3), which was proven independently in [1] and
[10]. It had been speculated that equilibrium is always reached within O(N) steps, and that
the worst-case scenario is given by the initial state EN = (1,2, . . . ,N). This is false, however.
Recent work of the authors [8], [12] shows that EN reaches equilibrium in 5N/6 + O(1) steps,
whereas there exists a sequence of configurations which takes time Θ(N2) to do so. It remains
an important open problem in the field to determine the best-possible general upper bound.

Regarding (B), it is easy to see that consensus may not be achieved if the initial distribution
of opinions is very uneven. For example, suppose we have 100 agents and the initial state is

x0(i) =




−1, 1 ≤ i ≤ 98,
0, i = 99,
+1, i = 100.

At t = 1, the opinion of agent 99 will be pulled very close to −1, while agent 100 will only modify
his opinion to x1(100) = 1/2. Thus, agent 100 will now be isolated from everyone else and will
form a cluster by himself in the equilibrium configuration. What is more interesting is that
consensus may not emerge even when there is no such unevenness in the initial configuration.
The simplest example is the initial state E6. A direct computation shows that the resulting
equilibrium consists of clusters at 4613

1728 and 7483
1728 , each of weight three. At this point it seems

natural to ask what a “typical” equilibrium state looks like. In order to make this question
precise, let us fix a parameter L and suppose that the initial opinions x1(0), . . . ,xN (0) are
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chosen independently and uniformly at random from the interval [0, L]. The following two
conjectures are supported by overwhelming numerical evidence:

Conjecture 2.1.1. With opinions chosen initially as just described, let pL,N denote the prob-
ability that the resulting equilibrium is a consensus. Then there exists a critical value Lc

2 such
that, as N →∞, pL,N → 1 whenever L < Lc and pL,N → 0 whenever L > Lc.

Conjecture 2.1.2. With opinions chosen initially as described above, let qL,N denote the prob-
ability that the resulting equilibrium is stable, in the sense of (2.1.2). Then for any fixed L,
qL,N → 1 as N →∞.

We have not seen Conjecture 2.1.1 stated explicitly anywhere, though it is implicit in the
statements of many different authors. Conjecture 2.1.2 is a special case of Conjecture 1 in [3].
They conjecture that the equilibrium state is almost surely stable under the weaker assumption
that the initial opinions are chosen independently from any continuous and bounded pdf on
[0, L] with connected support, and not just the uniform distribution. Indeed, it is expected
that, when the initial distribution is uniform, then the clusters at equilibrium will typically
have about the same weight and hence, if (2.1.2) holds, will typically be separated by at least
two. This hypothesis is referred to in the literature as the 2r conjecture. We are not aware of
anyone having turned this hypothesis into a precise conjecture, however. The reason for this is
probably that, at least as far as can be told from simulations to date, the distribution of cluster
sizes arising from a uniform initial distribution of opinions appears to be quite subtle.

In an attempt to better understand the behaviour of the HK-model for a large number
of agents, Blondel, Hendrickx and Tsitsiklis introduced in [2] a continuous agent version of
the model. Here the uncountably many agents are indexed by numbers in the closed interval
[0, 1] and the state space consists of non-decreasing, bounded Lebesgue measurable functions
x : [0, 1]→ R. The analogue of (2.1.1) is

xt+1(α) =
1

|Nt(α)|

∫

Nt(α)
xt(β) dβ, (2.1.3)

where Nt(α) = {β : |xt(β)− xt(α)| ≤ 1} and | · | denotes the length of an interval. Note that, if
xt is non-decreasing then Nt(α) is indeed always an interval, justifying this notation. It is also
clear that if xt is non-decreasing then so is xt+1, so our choice of state-space also makes sense.
An equilibrium state in this setting is a function attaining only finitely many values, such that
the difference between any two such values exceeds one whenever both are attained on sets of
positive measure. Stable equilibrium can be defined as in (2.1.2), where now w(c) = |x−1(c)|,
and the inequality is required to hold whenever both clusters have positive weight. In particular,
consensus means a constant function, whereas any equilibrium state which is not a consensus is
represented by a discontinuous function. Note that, even if xt is continuous then xt+1 may not
be, if xt is constant on an interval of positive measure. For example, if

x0(α) =

{
0, 0 ≤ α ≤ 1/2,
4α− 2, 1/2 ≤ α ≤ 1,

then one may check that

x1(α) =





1/6, 0 ≤ α ≤ 1/2,

2 (α−1/4)2
α+1/4 , 1/2 ≤ α ≤ 3/4,

2(α− 1/4), 3/4 < α ≤ 1.

2In [6], simulations are presented which suggest that LC is close to 5.
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There is now a discontinuity at α = 3/4, since limα→3/4+ x1(α) = 1 > 1/2 = x1(3/4). This is
caused by the fact that, if α ≤ 3/4 then x0(α) ≤ 1 and so N0(α) reaches all the way down to
zero, whereas if α > 3/4 then N0(α) ⊂ ]1/2, 1].

It is reasonable to restrict attention to initial states x0 which are injective. Indeed, x−10

should correspond to the cdf in Conjecture 2.1.2 above and Conjecture 1 of [3]. We shall assume
henceforth that the initial state is regular, by which we mean that it is almost everywhere C1,
with strictly positive lower and upper bounds on its derivative where it exists. This is a slight
strengthening of the notion of regularity as defined in [3].

In contrast to the discrete case, it is not clear which initial states will reach equilibrium in
finite time. In [2], it is conjectured that a regular initial state x0 will converge almost everywhere
to a stable equilibrium, that is: there is a stable equilibrium x∞ such that, for each ε > 0 there
is a Tε > 0 such that µ({α : |xt(α)− x∞(α)| > ε}) < ε for all t > Tε, where µ denotes Lebesgue
measure. They prove a weaker statement in [3], but this fundamental conjecture about the
continuous agent model remains open.

It is also proven in Lemma 4 of [2] (see also Proposition 3 of [3]) that if x0 is regular and if

xt(1)− xt(0) ≥ 2 for all t (2.1.4)

then xt will also be regular for all t. Hence in such a situation xt will not reach equilibrium in
finite time, nor will it converge to a consensus. This brings us to perhaps the most curious aspect
of the continuous agent model, namely it is not obvious that there is any regular initial state
which does not reach consensus. The existence of regular initial states whose updates satisfy
(2.1.4) was conjectured in [2], but they could give no example with proof. Our contribution
here will be to prove this conjecture:

Theorem 2.1.3. There exists a regular function x0 : [0, 1] → R such that, if the sequence
(xt)t∈N is defined according to (2.1.3), then xt(1)− xt(0) > 2 for all t.

Section 2.2 contains a proof of this result and Section 2.3 contains a discussion of some open
problems.

2.2 Proof of Main Theorem

The opinion function to be described below will converge pointwise to a non-regular stable state
with 3 clusters of positive weight, and the construction can be extended to allow convergence
to (at least) any odd number of such clusters.

Since scaling in the agent space I does not affect the dynamics, we will loosen the definition
of I = [0,1] and let I be a longer interval. This is done to facilitate some computations at the
end of the proof. To construct our initial state x0, we first partition the set I of agents into
successive closed intervals A, B, C, D and E, each intersecting the next in exactly one point. We
choose a small positive ε and let these intervals have the lengths |A| = |E| = 1, |B| = |D| = ε4,
and |C| = ε2, so that the endpoints of the intervals lie symmetrically around the centre of C,

which we denote by c = 1+ε4+ ε2

2 . The proof will go through for any sufficiently small ε, but we
will fix ε = 1

100 which will certainly be small enough. In an analogous manner, we partition the
opinion space into closed intervals A, B, C, D and E . We will consistently use Roman capitals
for intervals in the agent space and script capitals for intervals in the opinion space. We take
|A| = |C| = |E| = ε and |B| = |D| = d = 3

2 . The choice of d is somewhat arbitrary, but depends
on the choice of ε and must always lie in the open interval ]1, 2[. To have some co-ordinates to
work with, we place the origin at the lower endpoints of the intervals A and A, and we thus have
I = [0, 2c] = [0, 2 + ε2 + 2ε4] = [0, 2.00010002] and opinions ranging from 0 to 2d+ 3ε = 3.03.
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Figure 2.1: The shape to which the opinion functions will converge, which consists of two major
clusters, with a smaller cluster in the middle.

We now define x0 to be linear on each of the subsets A–E, in such a way that x0(A) = A,
x0(B) = B, x0(C) = C, x0(D) = D and x0(E) = E . This will force x0 to stay within the
“boxes” illustrated in Fig. 2.2. With this definition, the derivatives of x0 on A and B will be
x′0|A = e0 = ε

|A| = ε, respectively x′0|B = s0 = d
|B| = 3d

2ε4
. The function x0 is anti-symmetric

about c, in particular x′0|E = x′0|A and x′0|D = x′0|B. It is clear that xt(c) = x0(c) for all time
steps t, and that the anti-symmetry remains.

We define At = x−1t ([0, 2ε]) and Bt = x−1t ([2ε, ε+ d]) to be the sets of agents with opinions
in [0, 2ε] and [2ε, ε+d], respectively, at time t, see Fig. 2.3. Note that A is a proper subset of A0.
The reason for using 2ε instead of just ε will become clear in the proof of Lemma 2.2.4 below.
We also let At = xt(A). Again, Roman capitals denote sets of agents while script capitals are
reserved for sets of opinions. We will let Āt denote the average opinion on At at time t.

We also define sequences (et)t≥0 and (st)t≥0: For t = 0 we will use the previously defined
numbers e0 = ε and s0 = d

ε4
, and then recursively set et+1 = 2et

st
and st+1 = ε

2
st
et

.
Using the above definitions, we can note that when t = 0 the following properties hold:

I: At ⊆ A.

II: B ⊇ Bt.

III: x′t|A ≤ et.

IV: x′t|Bt ≥ st.

V: ε− Āt ≥ 4ε2.

Indeed, I–IV hold at t = 0 for any ε > 0, and it is easy to check that, for d = 3
2 ,

Ā0 ≤
ε

2
+ ε6 (2.2.1)

and hence ε = 1
100 is enough for V to hold as well.

We will prove by strong induction that properties I–V hold at all time steps. Note that
Theorem 2.1.3 will follow immediately, since if property I holds for all t, then the opinions of
agents in A will never exceed ε and, by symmetry, the opinions of agents in E will remain above
2d+ 2ε.

Throughout the proofs below we will use without further comment the fact that if property I
holds for all t ≤ T then, in particular, xt(2c)−xt(0) ≥ 2 for all t ≤ T and hence, by Proposition
3 of [3], the functions xt remain regular up to time T .
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Figure 2.2: Some time invariant subspaces of I and the opinion space for a piecewise linear
initial opinion function along with some of the end points. Note that this figure is not to scale.
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Figure 2.3: Overview of the subsets of the agent space and the opinion space at time t.

Lemma 2.2.1. Assume properties I, II and V hold at all t ≤ T . Then

i) BT+1 ⊆ x−1T (AT + 1) where AT + 1 = {α+ 1 : α ∈ AT }.

ii) AT+1 ⊆ A.

iii) AT+1 ⊇ AT .

iv) BT+1 ⊆ BT .

Proof. Let
βT = x−1T (min AT + 1), γT = x−1T (max AT + 1).

denote the two extreme agents in x−1T (AT + 1). We will show that

xT+1(βT ) ≤ ε, xT+1(γT ) ≥ d+ ε (2.2.2)

which together with monotonicity is easily checked to imply all four parts of the lemma.
By definition of γT , the leftmost agent he can see is the rightmost agent of A. Property

I implies that xT (γT ) ∈ [1, 1 + ε], and hence the rightmost agent he can see has an opinion
between 2 and 2 + ε at time T . Because of property II and symmetry and since d = 3

2 and
ε < 1

4 , no agent in C will have an opinion above 2, so γT can see all agents in C. By property
I and symmetry the agents in E all have opinions larger than 2d+ 2ε at time T , and hence γT
cannot see any agents in E. Thus B ∪ C ⊆ NT (γT ) ⊆ B ∪ C ∪D. The integral of the function

x̃T (α) =

{
3
2ε+ d, if α ∈ C,
0, else
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is smaller than or equal to that of xT over all intervals containing C, since the average opinion
on C will always be 3

2ε+ d by symmetry. We thus have that

xT+1(γT ) ≥ 1

|NT (γT )|

∫

NT (γT )
x̃T (α)dα ≥ |C|(32ε+ d)

|B|+ |C|+ |D| =
|C|(32ε+ d)

|C|(2ε2 + 1)
≥ ε+ d

using ε = 1
100 and d = 3

2 .
Next, consider the agent βT . By definition this agent can see every agent in A. Property I

implies again that xT (βT ) ∈ [1, 1 + ε], and hence the same argument as above implies that βT
can also see all agents in B and C, but no agents in E. The integral of the function

x̂T (α) =

{
ĀT , if α ∈ AT ,
2ε+ 2d, else

over NT (βT ) is thus greater than or equal to that of xT over the same set. Since property I
implies AT ⊇ A we can thereby use x̂T to get the following bound:

xT+1(βT ) ≤ 1

|NT (βT )|

∫

A∪B∪C∪D
x̂T (α)dα ≤ |AT |ĀT + (2ε+ 2d)|B ∪ C ∪D|

|AT |
≤

≤ ĀT + (2ε+ 2d)(ε2 + 2ε4) ≤ ĀT + 4ε2 ≤ ε (2.2.3)

where the last inequality is true since we assume property V. We have now established the
inequalities in (2.2.2) so the proof of the lemma is complete.

Lemma 2.2.2. Assume properties I, II and V hold at all t ≤ T . Then the increase in the mean
opinion from AT at time T to AT+1 at time T + 1 is at most linear in |BT |. More precisely,
ĀT+1 − ĀT ≤ 4|BT |.

Proof. Lemma 2.2.1 tells us that AT+1 ⊇ AT , and this allows us to write AT+1 = AT t (AT+1 \
AT ), a disjoint union of two sets.

As for the first of these sets, recall that at time T agents in AT have opinions in [0, 2ε],
and agents in BT have opinions in [2ε, ε + d]. Hence with ε = 1

100 all agents in AT can see
one another, together with some agents in BT whose opinions are all at most 1 + 2ε. Thus the
average of xT+1 over AT at time T + 1 will be

(AT )T+1 ≤
|AT |ĀT + |BT |(1 + 2ε)

|AT |+ |BT |
≤ ĀT +

|BT |(1 + 2ε)

|AT |
≤ ĀT + 2|BT |

where the last inequality uses that A ⊆ AT , which follows from property I.
The average of xT+1 over AT+1 \ AT at time T + 1 is certainly at most 2ε, by definition

of the set AT+1. It also follows immediately from Lemma 2.2.1(iv) and monotonicity that
AT+1 \AT ⊆ BT , and we thereby get the total average

ĀT+1 ≤ (AT )T+1 +
|BT |(2ε)
|AT |

≤ ĀT + 2|BT |+ |BT |(2ε) ≤ ĀT + 4|BT |.

Lemma 2.2.3. Assume properties I-IV hold at all t ≤ T . Then x′T+1|A ≤ eT+1.

Lemma 2.2.4. Assume properties I-IV hold at all t ≤ T . Then x′T+1|BT+1
≥ sT+1 and

|BT+1| ≤ d
sT+1

.
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In the proofs of Lemmas 2.2.3 and 2.2.4 the following additional lemma will be used:

Lemma 2.2.5. Let xt be a regular opinion function on I such that xt(2c)−xt(0) > 2 and define
the functions ut, vt, wt : I → I as follows:

ut(α) =

{
0, if xt(α) ≤ xt(0) + 1

x−1t (xt(α)− 1), otherwise

vt(α) =

{
2c, if xt(α) ≥ xt(2c)− 1

x−1t (xt(α) + 1), otherwise

wt(α) = vt(α)− ut(α)

In words ut(α) and vt(α) are the leftmost and rightmost agents, respectively, that interact with
agent α at time t, and w(α) is the length of the set of neighbours of α at time t.

Then the updated function xt+1 is regular with derivative, where it exists, given by

x′t+1(α) =
1

wt(α)
[ u′t(α) · (1 + xt+1(α)− xt(α)) + v′t(α) · (1 + xt(α)− xt+1(α)) ] .

Proof. That xt+1 is regular was proven in Proposition 3 of [3]. Assuming xt+1, ut, vt and wt
are differentiable at α, we can compute as follows:

We first use the definition in (2.1.3) along with the product rule for derivatives to get

x′t+1(α) =
−w′t(α)

(wt(α))2

∫ vt(α)

ut(α)
xt(β)dβ +

1

wt(α)

d

dα

(∫ vt(α)

ut(α)
xt(β)dβ

)
. (2.2.4)

The first term simplifies to
[u′t(α)− v′t(α)]xt+1(α)

wt(α)
(2.2.5)

and, by the chain rule, the second term can be rewritten as

1

wt(α)

[
xt(vt(α)) · v′t(α)− xt(ut(α)) · u′t(α)

]
. (2.2.6)

But by definition of the functions ut and vt, we have

xt(vt(α)) =

{
xt(α) + 1, if xt(α) ≤ xt(2c)− 1

2c, otherwise

xt(ut(α)) =

{
xt(α)− 1, if xt(α) ≥ xt(0) + 1

0, otherwise.

We would like to substitute the values xt(vt(α)) = xt(α) + 1 and xt(ut(α)) = xt(α) − 1 into
(2.2.6). The former doesn’t hold when xt(α) > xt(2c) − 1, but in this range vt(α) = 2c so
v′t(α) = 0, so the substitution can be made in any case. A similar reasoning applies to the latter
substitution. Hence the right-hand side of (2.2.6) simplifies to

v′t(α) · (xt(α) + 1)− u′t(α) · (xt(α)− 1)

wt(α)
. (2.2.7)

Substituting (2.2.5) and (2.2.7) into (2.2.4) leads after a little computation to (2.2.4).
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Proof of Lemma 2.2.3. By property I, for agents α in A we have that uT (α) = 0, so u′T (α) = 0.
Using Lemma 2.2.5 this gives

x′T+1(α) =
1 + xT (α)− xT+1(α)

wT (α)
v′T (α) (2.2.8)

for all α ∈ A. We also know from property I that, at time T , all agents in A can see each other,
so wT (α) ≥ |A| = 1.

To get a bound on v′T (α), we use the definition of vt, the chain rule, and the formula for the
derivative of an inverse function:

v′T (α) =
d

dα
x−1T (xT (α) + 1) = x′T (α) · 1

x′T (x−1T (xT (α) + 1))
=

x′T (α)

x′T (vT (α))
.

To bound this, first note that α ∈ A implies x′T (α) ≤ eT by property III. Second, note that
since we assume AT ⊆ A, it follows that xT (vT (α)) ∈ [1, 1 + ε]. In particular, vT (α) ∈ BT , and
thus x′T (vT (α)) ≥ sT by property IV. Putting this together results in the bound

v′T (α) ≤ eT
sT
. (2.2.9)

Finally we observe that 1 + xT (α)− xT+1(α) ≤ 2 holds trivially, and we can now insert this
and (2.2.9) into (2.2.8) to obtain

x′T+1(α) ≤ 2
eT
sT

= eT+1

as desired.

Proof of Lemma 2.2.4. First observe that since both the terms within brackets in (2.2.4) are
positive, only one of them is needed to construct a lower bound for the derivative:

x′T+1(α) ≥ 1

wT (α)
u′T (α)[1 + xT+1(α)− xT (α)]. (2.2.10)

We know from assuming property I and symmetry that no agent in BT can see as far as E, so
wT (α) ≤ |A ∪B ∪ C ∪D| ≤ 2|A| = 2. Lemma 2.2.1(i) and the definition of BT together assure
us that (1 + xT+1(α)− xT (α)) ≥ ε: All the agents in BT+1 must have had opinions in AT + 1
at time T , according to Lemma 2.2.1(i). This is the motivation for using 2ε in the definitions
of AT and BT . It also lets us use eT and sT in a way similar to what was done in the proof of

Lemma 2.2.3 to get that u′T (α) =
x′T (α)

x′T (uT (α))
≥ sT

eT
. Applying these inequalities to (2.2.10) gives

the result.
The upper bound on the size of BT+1 simply comes from multiplying the inverse of the

bound on the derivative with the height of BT+1, which we know is constantly d − ε < d by
construction.

Proof of Theorem 2.1.3. We would like properties I–V to hold for all time steps, for then we
would be done.

By Lemmas 2.2.1, 2.2.3 and 2.2.4, if properties I-V hold for all t ≤ T , then I-IV will still
hold at time T + 1. To complete the induction it remains to show that V still holds at time
T + 1.

Lemma 2.2.2 allows us to bound each of the increments Āt+1 − Āt, yielding

ĀT+1 = Ā0 +
T∑

t=0

(
Āt+1 − Āt

)
≤ Ā0 + 4

T∑

t=0

|Bt| ≤ Ā0 + 4ε4 + 4
T∑

t=1

d

st
, (2.2.11)
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where the last inequality follows from Lemma 2.2.4 plus the fact that B0 ⊆ B and |B| = ε4.
We have s1 = d

2ε4
and it can easily be checked that the sequence (et) is decreasing. Hence, for

t ≥ 1,

st+1 =
ε

2et
st ≥

ε

2e1
st =

d

4ε5
st

and hence, by iteration

st ≥
(
d

4ε5

)t−1
s1

Substituting this into (2.2.11) and using (2.2.1) we get

ĀT+1 ≤
ε

2
+ ε6 + 4ε4 +

4d

s1

T∑

t=1

(
4ε5

d

)t−1
≤ ε

2
+ ε6 + 4ε4 +

8ε4

1−
(
4ε5

d

) ≤ ε− 4ε2

where the last inequality holds for ε = 1
100 and d = 3

2 . This completes the proof.

2.3 Discussion

When thinking about how to construct an example to prove Theorem 2.1.3, we first considered
a ”single-S” shape, without the narrow plateau in the middle, but with the height of the narrow
strip connecting the two tails still being above two. We could not prove that the updates of such
an initial state would also satisfy (2.1.4), though we suspect this is the case. In fact, what we
think happens when the function is updated is that a narrow plateau will form in the middle,
thus yielding the ”double-S” shape of the function in Section 2.2 as an intermediate step in the
evolution.

In any case, there should be even simpler examples of regular functions which satisfy (2.1.4).
Indeed, Conjecture 2.1.1 suggests the following corresponding hypothesis for the continuous
agent model:

Conjecture 2.3.1. Let x0 : [0, 1] → R be given by x0(α) = Lα. Then there is a critical value
L∗c such that the updates xt satisfy (2.1.4) whenever L > L∗c , whereas x0 will evolve to consensus
when L < L∗c . Moreover, L∗c = Lc, the critical value in Conjecture 2.1.1.

In fact, we also conjecture there will not be evolution to consensus at the critical value L∗c .
Intuitively, the reason for this is as follows. For as long as the updates xt are continuous and
non-constant, the ranges xt(1) − xt(0) will be strictly decreasing with t. The ”2r conjecture”
suggests that, given a linear x0, there will eventually be consensus if and only if the range of
opinions shrinks to strictly below two at some point. Hence, at L = L∗c , we should converge
almost everywhere to an equilibrium consisting of two clusters of equal measure and separated
by exactly two.

This leads in turn to another obvious remaining question, namely whether it is possible for
a regular initial state to fail to satisfy (2.1.4) and yet never reach consensus.
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Abstract

We consider the Hegselmann-Krause bounded confidence dynamics for n equally spaced opinions
on the real line, with gaps equal to the confidence bound r, which we take to be 1. We prove
rigorous results on the evolution of this configuration, which confirm hypotheses previously
made based on simulations for small values of n. Namely, for every n, the system evolves as
follows: after every 5 time steps, a group of 3 agents become disconnected at either end and
collapse to a cluster at the subsequent step. This continues until there are fewer than 6 agents
left in the middle, and these finally collapse to a cluster, if n is not a multiple of 6. In particular,
the final configuration consists of 2bn/6c clusters of size 3, plus one cluster in the middle of
size n (mod 6), if n is not a multiple of 6, and the number of time steps before freezing is
5n/6 + O(1). We also consider the dynamics for arbitrary, but constant, inter-agent spacings
d ∈ [0, 1] and present three main findings. Firstly we prove that the evolution is periodic also
at some other, but not all, values of d, and present numerical evidence that for all d something
“close”to periodicity nevertheless holds. Secondly, we exhibit a value of d at which the behaviour
is periodic and the time to freezing is n + O(1), hence slower than that for d = 1. Thirdly,
we present numerical evidence that, as d → 0, the time to freezing may be closer, in order of
magnitude, to the diameter d(n− 1) of the configuration rather than the number of agents n.



3.1 Introduction

The Hegselmann-Krause (HK) bounded confidence model of opinion dynamics, in its original
one-dimensional setting introduced in [3], works as follows. We have a finite number n of agents,
indexed by the integers 1, 2, . . . , n. Time is measured discretely and the opinion of agent i at
time t ∈ N∪{0} is represented by a real number xt(i), where the convention is that xt(i) ≤ xt(j)
whenever i ≤ j. There is a fixed parameter r > 0 such that the dynamics are given by

xt+1(i) =
1

|Nt(i)|
∑

j∈Nt(i)

xt(j), (3.1.1)

where Nt(i) = {j : |xt(j) − xt(i)| ≤ r}. As the dynamics are obviously unaffected by rescaling
all opinions and the confidence bound r by a common factor, we can assume without loss of
generality that r = 1.

Let (x(1), . . . , x(n)) be a vector of opinions. We say that agents i and j agree if x(i) = x(j).
A maximal set of agents that agree is called a cluster, and the number of agents in a cluster is
called its size. The configuration x = (x(1), . . . , x(n)) is said to be frozen if |x(i) − x(j)| > 1
whenever x(i) 6= x(j). It is easy to see that, if xt and xt+1 are related as in (3.1.1), then
xt+1 = xt if and only if xt is frozen. Thus once opinions obeying the HK-dynamics become
frozen, they will remain so for all future time.

Perhaps the most fundamental result about the HK-dynamics is that any configuration of
opinions will freeze in finite time. There are multiple proofs of this in the literature, but the
same fact is true for a wide class of models of which HK is just one particularly simple example,
see [2]. More interestingly, the time taken for a configuration to freeze is bounded by a universal
function of the number n of agents. Currently, the best upper bound is O(n3), due to [1]. An
important open problem in the field is to find the optimal bound.

It was noted in [1], and even earlier in [6], that one definitely cannot do better than an
O(n) bound. For suppose we start from the configuration En = (1, 2, . . . , n), so opinions are
equally spaced with gaps equal to the confidence bound. Then it is not hard to see that, as
the configuration updates, if i < n/2 then the opinions of agents i and (n + 1) − i will remain
constant as long as t < i, while both will change at t = i. Hence, the time it takes for the
configuration En to freeze is at least n/2.

Intuitively, En seems like a good candidate for a configuration which converges as slowly as
possible simply because, at the outset, opinions are placed as far apart as they can be while
retaining an unbroken chain of influence. As it turns out, this intuition is badly wrong - in a
companion paper [7] we will exhibit configurations of n agents which, as n → ∞, take time
Ω(n2) to freeze. Configurations of equally spaced agents nevertheless remain interesting for
other reasons. Krause [4] has observed, based on simulations for values of n up to 100 or so,
that the configuration En seems to evolve in a very regular manner. Our main result confirms,
and makes completely precise, Krause’s hypotheses. Before stating it, we introduce some graph-
theoretic terminology. Let (x(1), . . . , x(n)) be a vector of opinions. We can define a receptivity
graph G, whose nodes are the n agents and where an edge is placed between agents i and j
whenever |x(i) − x(j)| ≤ 1. We say that agents i and j are connected if they are in the same
connected component of the receptivity graph. Observe that every connected component of G
is an interval of agents and that i is disconnected from i+ 1 if and only if x(i+ 1) > x(i) + 1.
We can now state our theorem:

Theorem 3.1.1. Let n ≥ 2 be an integer, and write n = 6k + l where 0 ≤ l ≤ 5. Suppose
that at t = 0 we have the opinion vector En and we let it evolve according to (3.1.1). Then the
following occurs:
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(i) after every fifth time step, a group of three agents will disconnect from either end of the
receptivity graph and then collapse to a cluster in the subsequent time step.

(ii) the final, frozen configuration, will consist of 2k clusters of size 3 with opinions dis-
tributed symmetrically about n+1

2 plus, if l > 0, one cluster of size l with opinion n+1
2 .

(iii) the configuration will freeze at time t = 5k + ε(l), where

ε(l) =





l − 1, if l ∈ {2, 3},
l, if l = 1,
l + 1, if l ∈ {0, 4, 5}.

(3.1.2)
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Figure 3.1: After the first 3 agents become disconnected, what is left is very similar to a shorter
version of the original chain.

Remark 3.1.2. The formula for the freezing time for n agents can be written as

T (n) = 1 + 5bn+ 2

6
c+

1

3

(√
3 sin

(
2π(n− 1)

3

)
− cos

(
π(n− 1)

3

)
− (−1)

)
. (3.1.3)

This formula is given in [5], but without proof.

Theorem 3.1.1 will be proven in Section 2. In Section 3 we investigate more generally the
evolution of a configuration of equally spaced agents, when the inter-agent spacing is an arbitrary
number d ∈ (0, 1]. We will show that the evolution is periodic also for some other values of
d, though not all, while numerical and heuristic evidence suggests nevertheless that something
“close” to periodicity might hold for arbitrary d. We will show that, for a small range of values
of d slightly above 0.8, the behaviour is periodic, with groups of four agents disconnecting after
every eighth time step, which leads to a freezing time of n + O(1). Thus En does not even
converge most slowly amongst equally spaced configurations. We conjecture, however, that any
equally spaced configuration of n agents will freeze in time n + O(1), and present numerical
evidence suggesting that, as d → 0, the freezing time may be closer, in order of magnitude, to
the diameter d(n− 1) of the configuration rather than the number n of agents.
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3.2 The case of equal spacings d = 1

For n ∈ N ∪ {0} set

Rn∗ = {(x(1), . . . , x(n)) ∈ Rn : x(i) ≤ x(j) whenever i ≤ j},
Rn+ = {(x(1), . . . , x(n)) ∈ Rn : x(i) ≥ 0 for each i}.

If n ≥ 2, there is a natural map φ : Rn∗ → Rn−1+ given by

φ [(x(1), . . . , x(n))] = (x(2)− x(1), . . . , x(n)− x(n− 1)).

The update rule (3.1.1) can be written in matrix form as

xt+1 = At xt,

where xt,xt+1 ∈ Rn∗ and At is a row-stochastic n×n matrix. Note that the entries of At depend
only on the receptivity graph Gt at time t. If n ≥ 2 then, setting yt = φ(xt), we can just as
well write the update rule as

yt+1 = Bt yt,

where yt,yt+1 ∈ Rn−1+ and Bt is an (n− 1)× (n− 1) matrix with non-negative entries, though
the row sums will no longer equal one in general. As before, the entries of Bt depend only on
the graph Gt. We will find it more convenient to work with (3.2) rather than (3.2), in other
words to replace a vector x of opinions by a vector y = φ(x) of gaps between opinions. Observe
that φ(En) = (1, 1, . . . , 1), a vector which we denote 1n−1. More generally, if the receptivity
graph corresponding to x is connected, then the entries of φ(x) are bounded above by one.

To get a feeling for Theorem 3.1.1, we look at n = 11 as an example. What is important is
what happens during the first five time steps. At t = 0 it is obvious that

y0 = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1),

E(G0) = {{i, i+ 1} : 1 ≤ i ≤ 10},

B0(i,j) =





1/6, if i = j = 1 or i = j = 10,
0, if |i− j| > 1,
1/3, otherwise.

Thus,
y1 = B0 y0 = (0.5, 1, 1, 1, 1, 1, 1, 1, 1, 0.5), (3.2.1)

from which it is in turn clear that G1 = G0 and B1 = B0. The entries of all subsequent vectors
yt will of course all be rational numbers, but we will write approximations to four decimal places
so as to make it easier to keep track of magnitudes. At the next time step we have

y2 = B1 y1 = B2
0 y0 ≈ (0.4167, 0.8333, 1, 1, 1, 1, 1, 1, 0.8333, 0.4167). (3.2.2)

Thus G2 = G0 and B2 = B0 still and so

y3 = B3
0 y0 ≈ (0.3472, 0.75, 0.9444, 1, 1, 1, 1, 0.9444, 0.75, 0.3472). (3.2.3)

Still G3 = G0 and so

y4 = B4
0 y0 ≈

(0.3079, 0.6806, 0.8981, 0.9815, 1, 1, 0.9815, 0.8981, 0.6806, 0.3079). (3.2.4)
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Now finally something happens. Since y4(1) + y4(2) < 1, agents 1 and 3 are now connected,
and similarly with agents 9 and 11. Thus E(G4) = E(G0) ∪ {{1, 3}, {9, 11}} which leads to

B4 =




0 0 0 0 0 0 0 0 0 0
1
12

1
6

1
4 0 0 0 0 0 0 0

1
4

1
2

5
12

1
3 0 0 0 0 0 0

0 0 1
3

1
3

1
3 0 0 0 0 0

0 0 0 1
3

1
3

1
3 0 0 0 0

0 0 0 0 1
3

1
3

1
3 0 0 0

0 0 0 0 0 1
3

1
3

1
3 0 0

0 0 0 0 0 0 1
3

5
12

1
2

1
4

0 0 0 0 0 0 0 1
4

1
6

1
12

0 0 0 0 0 0 0 0 0 0




. (3.2.5)

Hence,

y5 = B4 y4 ≈
(0, 0.3636, 1.1186, 0.9599, 0.9938, 0.9938, 0.9599, 1.1186, 0.3636, 0). (3.2.6)

Here y5(1) = y5(10) = 0 exactly, which means that agents 1 and 2 agree, as do agents 10 and
11. Moreover, y5(3) = y5(8) > 1, which means that agent 3 (resp. 8) has become disconnected
from agent 4 (resp. 9). This is in accordance with part (i) of Theorem 3.1.1. It is easy to
continue and check that agents 1, 2, 3 will collapse to a cluster at t = 6, as will agents 9, 10, 11,
whereas the remaining agents 4, 5, 6, 7, 8 will collapse to a cluster at t = 11, in accordance with
(3.1.2).

We can now give a rough outline of the proof of Theorem 3.1.1. Given n ≥ 11, we proceed
as follows:

Step 1: Show that the receptivity graph Gt, and hence the transition matrix Bt, is con-
stant for t = 0, 1, 2, 3, whereas G4 contains the two extra edges {1, 3} and {n − 2, n}. Thus
y5 = B4B

4
0 y0. Then show that y5(3) = y5(n− 3) > 1, which implies that three agents become

disconnected at each end. If y5(1) + y5(2) < 1, then each group of three agents will collapse to
a cluster at t = 6.

Note that we have already completed this step. The calculations above verify it for n = 11
and it is clear that, if we then increase n, it will not affect how the opinions of the first or
last four agents evolve over the first five time steps. Indeed, the value of n cannot be “felt”
before every agent has changed their opinion at least once which, as we remarked earlier, will
not happen while t < n/2.

Step 2: Thus at t = 5, three agents break free from each end of the configuration. This
leaves us with n− 6 agents and a corresponding vector of gaps y5 ∈ Rn−7+ . We now reset time
to zero and consider y5 as the new initial configuration. For example, with n = 11 we have, by
(3.2.6),

y5 ≈ (0.9599, 0.9938, 0.9938, 0.9599). (3.2.7)

The entries of y5 will lie in (0, 1]. The idea is to show that they lie sufficiently close to 1 such
that, if still n− 6 ≥ 11, then the evolution of the receptivity graph over the next five time steps
will be exactly the same as if all entries equalled 1. To complete the proof, we have to be able
to iterate this procedure, and finally verify the theorem directly for n ≤ 10 - indeed, we need
to verify for these values of n that the behaviour is unaffected if the starting values in y0 are
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all in (0, 1] and sufficiently close to 1.

To complete Step 2, it is convenient to extend the HK-model to an infinite sequence of
agents, more precisely to a well-ordered infinite sequence so that geometrically there is an agent
furthest to the left. Indeed, (3.2) and (3.2) make perfect sense if we regard xt and yt as elements
of R∞, the vector space consisting of all infinite, well-ordered sequences of real numbers, and
At, Bt as appropriate linear operators on this space. Let E∞ = (1, 2, . . . ) denote the element of
R∞ representing a sequence of equally spaced agents with gaps of one. The obvious analogue
of Theorem 3.1.1 would be the following:

Theorem 3.2.1. The evolution of the configuration E∞ under (3.1.1) is periodic, namely after
every fifth time step a group of three agents will disconnect on the left and then collapse to a
cluster at the subsequent time step.

Our strategy will be to first prove Theorem 3.2.1 and then argue that the behaviour is es-
sentially unaffected when we go back to finite sequences.

To begin with, we define precisely the machinery we need, using the standard notation and
terminology of functional analysis. An element of R∞ will be denoted by a well-ordered sequence
x = (x(i))∞i=1 of real numbers. Recall that l∞ denotes the subspace of R∞ consisting of bounded
sequences. It is a Banach space with norm ||x|| = supi |x(i)|. We let 1∞ = (1, 1, . . . ) denote the
element of l∞ consisting entirely of ones. For a linear operator T : l∞ → l∞, its norm is defined
as ||T || = sup||x||=1 ||T (x)||. One says that T is bounded if ||T || < ∞ and B(l∞) denotes the
Banach space of all bounded linear operators on l∞. Let B = (b(i, j))∞i, j=1 be a doubly-infinite
matrix and set

s = sup
i

∞∑

j=1

|b(i, j)|. (3.2.8)

If s is finite then the map T given by

(T (x))(i) =
∞∑

j=1

b(i, j)x(j), x ∈ l∞,

is a well-defined element of B(l∞) of norm s. The map can be written as a matrix product
T (x) = Bx, when x is written as an infinite column.

We now consider a specific collection of operators B̃t, t = 0, . . . , 4 defined by matrices
satisfying (3.2.8). In all cases, the elements b(i, j) will be non-negative and there will be only
finitely many non-zero entries in each row, i.e.: for each i we have b(i, j) = 0 for all j �i 0. Set

B̃0(i, j) =





1/6, if (i, j) = (1, 1),
1/3, if |i− j| ≤ 1 and (i, j) 6= (1, 1),
0, otherwise,

B̃3 = B̃2 = B̃1 = B̃0,

B̃4(i, j) =





B4(i, j), if i ≤ 3 and j ≤ 10,
1/3, if i > 3 and |i− j| ≤ 1,
0, otherwise.

(B4 as in (3.2.5)).

Let S3 : l∞ → l∞ be a threefold leftward shift, i.e.:

(S3x)(i) = x(i+ 3), ∀ i ≥ 1, (3.2.9)
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and finally let T : l∞ → l∞ be the composition

T = S3 ◦ B̃4 ◦ (B̃0)
4. (3.2.10)

The point is that, firstly, the evolution under (3.1.1) of an infinite sequence of equally spaced
agents is described for t ≤ 4 by

yt+1 = B̃t yt, y0 = 1∞. (3.2.11)

Secondly, at t = 5, the first three agents become disconnected. Hence, the map 1∞ 7→ T 1∞
describes what happens if we take a sequence of equally spaced agents, run the HK-dynamics
over 5 time steps, remove the first three agents which have become disconnected from the others,
and reset time to zero. These assertions follow from (3.2.1)-(3.2.4) and (3.2.6), together with
the observation that, whenever y0 is a multiple of 1∞, so that all its entries are equal, then
yt(i) = y0(i) for all i ≥ 6 and all t ≤ 5. Now we need to show two things:

Claim 1: If ||y|| ≤ 1 and ||1∞ − y|| < ε for some sufficiently small ε > 0, then y 7→ T y
still describes, as above, the evolution over 5 time steps of a sequence of agents with initial
inter-agent spacings given by y.

Claim 2: For all n ∈ N, ||T n1∞ − 1∞|| is sufficiently small so that Claim 1 can be applied.

Verifying these two claims will not immediately allow us to complete Step 2 above. Given
a finite sequence of n equally spaced agents, these two claims allow us to iterate as in Step 2
up as far as t ≈ n/2, i.e.: as long as agents in the middle have not yet been affected, because
up to that point the evolution of either half of the finite sequence is exactly the same as for
the corresponding initial segment of the infinite sequence. In order to continue the iteration
beyond this time, we will use the precise quantitative estimates obtained in the proofs of the
two claims below. Basically, the idea is that the entries of T n1∞ remain much closer to one
than is needed for Claim 1 to hold, so that even though the entries of the finite and infinite
sequences diverge when t > n/2, the accumulated divergence never becomes so large so that we
cannot apply Claim 1. The precise argument will follow the verification of the two claims.

Claim 1 is actually a statement about the operators B̃t, 0 ≤ t ≤ 4. We prove the following:

Proposition 3.2.2. Let y0 ∈ l∞ represent the gaps between consecutive agents in an infinite
sequence of agents, indexed by 1, 2, . . . , and let G0 be the corresponding receptivity graph. For
each t = 0, 1, . . . , 4, let yt+1 = B̃t yt, and let Gt+1 be the corresponding graph. If ||y0|| ≤ 1 and
||1∞ − y0|| < 7

79 then the following hold:
(i) for each 0 ≤ t ≤ 3, Gt contains exactly the edges {i, i+ 1}, i ∈ N,
(ii) G4 contains the edges of G3 plus the additional edge {1, 3},
(iii) G5 contains all the edges of G4 except for the edge {3, 4}. Moreover, y5(1) = 0.

Hence Claim 1 holds with ε = 7
79 .

Proof. We already know that (i)-(iii) hold when y0 = 1∞. Now take z0 = 72
791∞. As remarked

earlier, since z0 is a multiple of 1∞, all its entries from the sixth onwards will remain unchanged
for t ≤ 5. So, when considering the evolution of the graph Gt, it suffices to consider the first
five entries of each vector zt. Since every entry of z0 lies between 1/2 and 1, it is immediate
that G0 is as claimed in (i). We have zt = 72

79yt for all t, where the yt are as in (3.2.1)-(3.2.4)
and (3.2.6) except that we have an infinite sequence of ones from the sixth position onwards.
Numerically,

z1 ≈ (0.4557, 0.9114, 0.9114, 0.9114, 0.9114, . . . ), (3.2.12)
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z2 ≈ (0.3791, 0.7594, 0.9114, 0.9114, 0.9114, . . . ), (3.2.13)

z3 ≈ (0.3165, 0.6835, 0.8608, 0.9114, 0.9114, . . . ), (3.2.14)

z4 ≈ (0.2806, 0.6203, 0.8186, 0.8945, 0.9114, . . . ), (3.2.15)

z5 ≈ (0, 0.3314, 1.0195, 0.8748, 0.9058, . . . ). (3.2.16)

Note that z3(1) + z3(2) = 1 exactly, as may be readily checked. For sequences u,v ∈ l∞,
write u < v if u(i) < v(i) for every i and observe that, if M is a doubly-infinite matrix
satisfying (3.2.8), having non-negative entries and at least one non-zero entry in each row, then
u < v ⇒ Mu < Mv. Now if ||w0|| ≤ 1 and ||1∞ − w0|| < 7

79 , then z0 < w0 ≤ 1∞. Hence
zt < wt ≤ yt would hold for all t ≤ 5, but for the fact that the first entry of each vector is zero
at t = 5. By comparing (3.2.1)-(3.2.4), (3.2.6) with (3.2.12)-(3.2.16), and noting in particular
that both w3(1) + w3(2) > 1 and w5(3) > 1, it follows immediately that (i)-(iii) all hold for
the wt.

We now turn to Claim 2. First of all, let us write out T explicitly as a doubly-infinite matrix.
The upper-left 3× 11 block is




47
972

59
486

5
27

17
81

5
27

10
81

5
81

5
243

1
243 0 0

1
54

5
81

10
81

5
27

17
81

5
27

10
81

5
81

5
243

1
243 0

1
243

5
243

5
81

10
81

5
27

17
81

5
27

10
81

5
81

5
243

1
243


 . (3.2.17)

Every other entry in the first three rows is zero, and every row from the fourth onwards is just
a rightward shift of the third row, i.e.:

T (i, j) =





0, if i ≤ 3 and j ≥ 12,
0, if i ≥ 4 and j = 1,
T (i− 1, j − 1), if i ≥ 4 and j ≥ 2.

(3.2.18)

Note that the sum of the entries in every row from the third onwards equals 1. Let

a =
9∑

j=1

T (1, j) =
311

324
≈ 0.9599,

b =

10∑

j=1

T (2, j) =
161

162
≈ 0.9938.

Proposition 3.2.3. Let y0 := 1∞ and for all τ ≥ 0, yτ+1 := T yτ . Then
(i) yτ+1 ≤ yτ for all τ .
(ii) Let γ := 0.1117. Then for all τ ≥ 1,

1− a ≤ 1− yτ (1) < (1 + γ)(1− a), (3.2.19)

1− b ≤ 1− yτ (2) < γ(1− a) + (1 + γ)(1− b), (3.2.20)

1− yτ (i) < γi−2(1− a), ∀ i ≥ 3. (3.2.21)

(iii) the sequence (yτ )∞τ=0 converges in l∞ to a fixed point of T .

Remark 3.2.4. The reason for using τ instead of t is that multiplication by T is to be thought
of as representing the evolution of a configuration of agents over 5 time steps. Hence, one can
informally imagine that “τ = 5t”.
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Proof. Since the sum of the entries in every row of the matrix of T is at most one it is immediate
that T (1∞) ≤ 1∞. Since T has non-negative entries, it follows by induction that yτ+1 ≤ yτ for
every τ , which proves (i). Note that (iii) follows from (i) and (ii), so it remains to prove (ii).

The inequalities in (3.2.19)-(3.2.21) are obviously satisfied when τ = 1. Hence, by (i), the
left-hand inequalities in (3.2.19) and (3.2.20) will be satisfied for all τ ≥ 1. For the right-hand
inequalities, we proceed by induction on τ . First consider i = 1. We have

yτ+1(1) =
9∑

j=1

T (1, j)yτ (j)⇒ 1− yτ+1(1) = (1− a) +
9∑

j=1

T (1, j) (1− yτ (j)).

Assuming (3.2.19)-(3.2.21) hold at step τ , it follows that (3.2.19) holds at step τ + 1 if and only
if f1(γ) ≤ 0, where

f1(γ) = (1− a)


−γ + T (1, 1) (1 + γ) + T (1, 2) γ +

9∑

j=3

T (1, j) γj−2




+ (1− b) T (1, 2) (1 + γ).

We checked with Matlab that f1(γ) = 0 has two solutions in the interval [0, 1], at γ1 ≈ 0.1116
and γ2 ≈ 0.9624, and that f1(γ) < 0 for γ ∈ (γ1, γ2). Thus (3.2.19) holds also at step τ + 1,
provided γ = 0.1117.

Next consider i = 2. Analogous calculations lead to the requirement that f2(γ) ≤ 0, where

f2(γ) = (1− a)


−γ + T (2, 1) (1 + γ) + T (2, 2) γ +

10∑

j=3

T (2, j) γj−2




+ (1− b) [−γ + T (2, 2) (1 + γ)] .

One checks that f2(γ) = 0 has one solution in [0, 1], at γ3 ≈ 0.03, and that f2(γ) < 0 for all
γ ∈ (γ3, 1]. Thus (3.2.20) holds also at step τ + 1, provided γ = 0.1117.

For i = 3, we are led to the requirement that f3(γ) ≤ 0, where

f3(γ) = (1− a)


−γ + T (3, 1) (1 + γ) + T (3, 2) γ +

11∑

j=3

T (3, j) γj−2




+ (1− b) T (3, 2) (1 + γ).

One checks that f3(γ) < 0 for all γ ∈ (γ4, γ5), where γ4 ≈ 0.008 and γ5 ≈ 0.9965.
For i = 4, using (3.2.18) we are led to the requirement that f4(γ) ≤ 0 where

f4(γ) = (1− a)


−γ2 + T (3, 1) γ +

11∑

j=2

T (3, j) γj−1


+ (1− b) T (3, 1) (1 + γ).

One checks that f4(γ) < 0 for all γ ∈ (γ6, γ7), where γ6 ≈ 0.0430 and γ7 ≈ 0.9996.
Finally, every i ≥ 5 will lead to the condition that f5(γ) ≤ 0 where

f5(γ) = −γ2 +

11∑

j=1

T (3, j) γj−1.

One checks that f5(γ) < 0 for all γ ∈ (γ8, 1], where γ8 ≈ 0.0786. This completes the induction
step.
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Claim 2 follows from Proposition 3.2.3. Indeed, for each i ≥ 1, let gi = gi(a,b,γ) be the
bound on the appropriate right-hand side in (3.2.19)-(3.2.21). Since the gi form a decreasing
sequence, we have proven that ||T n1∞ − 1∞|| < g1 ≈ 0.0446 < 7

79 for all n. Together with
Proposition 3.2.2, this already suffices to prove Theorem 3.2.1.

Turning to finite sequences of agents, we are now ready to complete the proof of our main
result.

Proof of Theorem 3.1.1. Let x0 be any finite or infinite vector of equally spaced opinions,
and y0 the corresponding vector of gaps. We start with a couple of observations:

(a) Suppose x0 is finite of length n, and thus y0 has length n − 1. Given the updating rule
(3.1.1), at all times t we will have xt(i) = xt(n + 1 − i) for i = 1, . . . , bn+1

2 c and similarly
yt(i) = yt(n− i) for i = 1, . . . , bn2 c. Hence in order to understand how the configuration evolves,
it suffices to understand the vectors

(
yt(1), . . . , yt

(
bn2 c
))

for all t.

(b) Suppose the receptivity graph Gt is as in Proposition 3.2.2 for all t ≤ 5. Then, for any
k ∈ N in the case of infinite vectors, or for any k ≤ n/2 in the case of finite vectors, the values
of yt(i) for all 0 ≤ t ≤ 5, 1 ≤ i ≤ k, only depend on y0(j), for 1 ≤ j ≤ k + 5.

Now let n ≥ 11 be given. Write bn/2c := r. For each 0 ≤ τ ≤ m, where m is a bound to
be determined in a moment, we define a sequence of “replacement” operators Rτ : l∞ → l∞ as
follows:





(Rτx)(i) = x(i), if i ≤ r − 3τ or i > r − 3τ + 5,
(Rτx(r − 3τ + j) = x(r − 3τ − j), if 1 ≤ j ≤ 5 and n is even,
(Rτx)(r − 3τ + j) = x(r − 3τ + j + 1), if 1 ≤ j ≤ 5 and n is odd.

(3.2.22)

The definition makes sense as long as τ ≤ m, where

m =

{
b r−63 c, if n is even,
b r−53 c, if n is odd.

(3.2.23)

Note that each Rτ is linear and of norm one, since every entry in Rτx is also an entry in x.
Set y0 = z0 = 1∞. For each 0 ≤ τ ≤ m, let Θτ := T ◦ Rτ and define inductively

yτ+1 = T yτ , zτ+1 = Θτ zτ , δτ := ||zτ − yτ ||. (3.2.24)

We are interested in bounding the δτ . Clearly, δ0 = 0. Since ||T || = 1 we have

δτ+1 = ||T (Rτ zτ )− T (yτ )|| ≤ ||Rτ (zτ )− yτ ||. (3.2.25)

Next, by the triangle inequality and the properties of Rτ ,

||Rτ (zτ )− yτ || = ||Rτ (zτ )−Rτ (yτ ) +Rτ (yτ )− yτ || ≤
≤ ||Rτ (zτ )−Rτ (yτ )||+ ||Rτ (yτ )− yτ || =

= ||Rτ (zτ − yτ )||+ ||Rτ (yτ )− yτ || ≤ ||zτ − yτ ||+ ||Rτ (yτ )− yτ || =
= δτ + ||Rτ (yτ )− yτ ||.

Thus we have the recurrence
δτ+1 ≤ δτ + ||Rτ (yτ )− yτ ||. (3.2.26)

We now use Proposition 3.2.3 to bound the second term on the right of (3.2.26). It follows
immediately from the definition of Rτ and the fact that the numbers gi are decreasing with i
that

||Rτ (yτ )− yτ || ≤
{
gr−3τ−5, if n is even,
gr−3τ−4, if n is odd.
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Hence, for all τ ≤ m,

δτ ≤ δ∞ :=
∞∑

k=1

g1+3k = (1− a)

(
γ2

1− γ3
)
≈ 0.0005. (3.2.27)

Thus for all τ ≤ m, and using Proposition 3.2.2 again,

||zτ − 1∞|| ≤ ||zτ − yτ ||+ ||yτ − 1∞|| ≤ δ∞ + g1 <
7

79
. (3.2.28)

Since the operator Rτ just replaces some elements of zτ with others, we also have ||Rτ (zτ ) −
1∞|| < 7/79 for all τ ≤ m. Thus Proposition 3.2.2 holds for each vector Rτ (zτ ). The point is
that this is exactly what we need in order to deduce that a finite sequence of n equally spaced
agents, with initial gaps of one, will evolve as claimed in Theorem 3.1.1, up to τ = m + 1, in
other words up to time t = 5(m + 1), where m is related to n by (3.2.23). This is a direct
consequence of observations (a) and (b) above.

To complete the proof of the theorem, it just remains to consider what happens from time
5(m+ 1) onwards. At this time, a total of 6(m+ 1) agents will have become disconnected, and
by the next time step will have all collapsed into 2(m+1) clusters of size 3 each. We will be left,
at time 5(m+ 1), with a group of somewhere between 5 and 10 agents in the middle, depending
on the value of n (mod 6). The gaps between these remaining agents will still be less than and
close to one, indeed we can use a bound similar to (3.2.27). We will need to add the k = 0 term,
but can also start the sum from either g1, g2 or g3, depending on n (mod 6). Set

δ1,∞ :=
∞∑

k=0

g1+3k = (1− a)

(
1 + γ +

γ2

1− γ3
)
≈ 0.0451,

δ2,∞ :=
∞∑

k=0

g2+3k = (1− a)

(
γ +

γ3

1− γ3
)

+ (1− b)(1 + γ) ≈ 0.0114,

δ3,∞ :=

∞∑

k=0

g3+3k = (1− a)

(
γ

1− γ3
)
≈ 0.0045.

One can check exhaustively that the remaining middle component of G5(m+1), depending on
n (mod 6), will satisfy the following:

Case 1: n ≡ 5 (mod 6).

We have 5 agents left, with gaps represented by the vector (y1, y2, y2, y1), where

y1 ≥ 1− δ1,∞ − g1 ≈ 0.9103,

y2 ≥ 1− δ1,∞ − g2 ≈ 0.9435.

Case 2: n ≡ 0 (mod 6).

We have 6 agents left, with gaps represented by the vector
(y1, y2, y3, y2, y1), where y1, y2 satisfy the same inequalities as in Case 1 and

y3 ≥ 1− δ1,∞ − g3 ≈ 0.9504.

Case 3: n ≡ 1 (mod 6).
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We have 7 agents left, with gaps represented by the vector
(y1, y2, y3, y3, y2, y1), where

y1 ≥ 1− δ2,∞ − g1 ≈ 0.9440,

y2 ≥ 1− δ2,∞ − g2 ≈ 0.9773,

y3 ≥ 1− δ2,∞ − g3 ≈ 0.9841.

Case 4: n ≡ 2 (mod 6).

We have 8 agents left, with gaps represented by the vector
(y1, y2, y3, y4, y3, y2, y1), where y1, y2, y3 satisfy the same inequalities as in Case 3 and

y4 ≥ 1− δ2,∞ − g4 ≈ 0.9881.

Case 5: n ≡ 3 (mod 6).

We have 9 agents left, with gaps represented by the vector
(y1, y2, y3, y4, y4, y3, y2, y1), where

y1 ≥ 1− δ3,∞ − g1 ≈ 0.9509,

y2 ≥ 1− δ3,∞ − g2 ≈ 0.9842,

y3 ≥ 1− δ3,∞ − g3 ≈ 0.9910,

y4 ≥ 1− δ3,∞ − g4 ≈ 0.9950.

Case 6: n ≡ 4 (mod 6).

We have 10 agents left, with gaps represented by the vector
(y1, y2, y3, y4, y5, y4, y3, y2, y1), where y1, y2, y3, y4 satisfy the same inequalities as in Case 5
and

y5 ≥ 1− δ3,∞ − g5 ≈ 0.9954.

When considering the further evolution of one of these six configurations, we can adopt the same
strategy as in the proof of Proposition 3.2.2. We look on the one hand at what happens when
each yi has the minimum value allowed by the inequalities, on the other at what happens when
each yi = 1, and then“interpolate”between these two extremes. We performed all computations
in Matlab and it turns out that the following occurs:

Case 1: The five agents will always collapse to a single cluster after 6 time steps, though
there are two different possibilities for the sequence of receptivity graphs. One possibility is
that agent 3 will become connected to agents 1 and 5 after three steps. If that happens, agents
1 and 2 will agree after four steps, as will agents 4 and 5. However, these pairs will still be at
distance greater than one from one another, so the final collapse to a cluster will require two
further time steps. The other possibility is that agent 3 will become connected to 1 and 5 for
the first time after four steps. In that case, the merged pair {1, 2} will be within distance one
of the merged pair {4, 5} at step five and thus we collapse to a cluster again at step six.

In all remaining cases, there is only one possible sequence of receptivity graphs.

Case 2: Agents 1 and 3 will become connected after four steps, as will agents 4 and 6. At step
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five, agents 1, 2, 3 will disconnect from 4, 5, 6, and each group of three will collapse to a cluster
at step six.

Case 3: At step five, we will split into three components, consisting of {1, 2, 3}, {4} and
{5, 6, 7}. Each boundary component collapses to a cluster at step six.

Case 4: At step five, we will split into three components, consisting of {1, 2, 3}, {4, 5} and
{6, 7, 8}. Each component collapses to a cluster at step six.

Case 5: At step five, we will split into three components, consisting of {1, 2, 3}, {4, 5, 6}
and {7, 8, 9}. Each boundary component will collapse to a cluster at step six, whereas the
middle component will collapse at step seven.

Case 6: At step five, we will split into three components, consisting of {1, 2, 3}, {4, 5, 6, 7}
and {8, 9, 10}. Each boundary component collapses to a cluster at step six, but the middle
component will only collapse at step ten.

The above analysis serves to verify that the values of ε(l) in (3.1.2) are correct for every
0 ≤ l ≤ 5, and thus completes the proof of Theorem 3.1.1.

3.3 The general case of equally spaced opinions

In this section we will study the evolution of a finite or infinite sequence of opinions, updating
according to (3.1.1) and initially equally spaced with gaps equal to d, where d is an arbitrary
real number in the interval (0, 1]. Theorem 3.1.1 describes a striking regularity in the evolution
when d = 1. One motivation for looking at other values of d is the observation that there
exists some ε > 0 such that Theorems 3.1.1 and 3.2.1 hold verbatim for all d ∈ (1 − ε, 1].
Indeed, this follows immediately from an examination of the argument in Section 2. To begin
with, observe that the initial receptivity graph is identical for all d > 1/2, namely it is just a
chain. Next, let’s consider an infinite sequence of agents. Proposition 3.2.2 tells us that the
evolution up to t = 5 is identical for all d > 72/79. In Proposition 3.2.3 we just replace 1∞ by
a multiple d1∞ of itself and rescale all inequalities - for example, the analogue of (3.2.19) will
read: d(1− a) ≤ d− yτ (1) < d(1 + γ)(1− a). Clearly, for d sufficiently close to 1, such bounds
will still be good enough to be able to apply Proposition 3.2.2, even allowing for the additional
perturbations introduced when returning to finite sequences, which we dealt with at the end of
Section 3.2.

The obvious question then is to what extent something like Theorems 3.1.1 and 3.2.1 con-
tinues to hold as d decreases. Figure 3.2 below suggests that something very interesting may
be going on. On the horizontal axis, we plot d on a logarithmic scale. Starting from 1 and
decreasing to 0.005, we ran for each value of d a simulation of b30d c agents. 1 This gives the
configuration a diameter of ≈ 30, so that for all times t < 15 the edge of the configuration
look like the edge of an infinite system with the same d. The blue dots indicate the first time
t = L(d) at which the receptivity graph disconnects. The green triangles record the number
M(d) of agents that disconnect at time L(d) from each end of the graph. Note that M(d)
remains much smaller than n which means that, for every d we simulated, the behaviour up to
time L(d) would be identical for any sufficiently large number (depending on d) of agents and
hence, in particular, for an infinite sequence of agents, except that in that case the graph will

1The precise expression for the vector of values of d is 0.005.^(linspace(1,0,100)).^2
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Figure 3.2: Data for the time of first disconnection.

only disconnect on the left. This explains our notation. The red circles record the products
d ·M(d).

There are two obviously striking features in Figure 3.2. Firstly, L(d) does not seem to be
increasing as d decreases. It is not constant - recall that Theorem 3.2.1 says that L(1) = 5,
while the figure shows that L(d) can attain any value among {3, . . . ,9}. Indeed, all these values
are already attained in the interval d ∈

(
1
2 , 1

]
, see Table 3.1 below. Moreover, L(d) = 6

for “most” values of d simulated with log10(d) ≈ −1, whereas L(d) = 7 for most values with
log10(d) ≈ −2. This may suggest logarithmic growth. When d gets really small then simulations
become impractical. However, it is obvious to ask

Question 3.3.1. Is there an absolute positive constant L such that L(d) ≤ L for all d ∈ (0, 1]?
If not, is it at least true that L(d) = O

(
log 1

d

)
?

The second striking feature is that the products d ·M(d) seem to be hardly changing d→ 0.
In fact, they are all close to 2.38. We do not know if they converge to a limit, however.

Question 3.3.2. Is it true that d ·M(d) converges to a limit as d→ 0? If so, what is the limit?
If not, is it at least true that d ·M(d) = Θ(1) for all d ∈ (0, 1]?

These two questions concern only the behaviour up to the first disconnection in the receptiv-
ity graph. The meat in Theorems 3.1.1 and 3.2.1 is that this behaviour is then repeated, forever
in the case of an infinite sequence of agents and until there are less than 2 ·M(1) = 6 agents
left in the finite case. It turns out that such simple periodicity does not hold for arbitrary d,
though there is a lot of evidence that the behaviour is always “close” to periodic. The rest of this
section will be concerned with developing this assertion. If we accept it for the moment, then
following on from Questions 3.3.1 and 3.3.2 we can ask about the freezing time for an arbitrary
configuration of equally spaced agents. If the evolution were perfectly periodic for all d then, as
d → 0, Question 3.3.2 would imply that the freezing time is O[L(d) · (dn)] for n �d 0. Notice
that d(n− 1) is the diameter of the configuration. As Question 3.3.1 suggests L(d) grows very
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slowly, if at all, this would imply that, for general d, the diameter is a much better measure of
the freezing time than the number of agents. Indeed, a universal bound on L(d) would in turn
suggest an affirmative answer to the following:

Question 3.3.3. Does there exist a universal positive constant κ such that, for any finite
configuration of equally spaced agents obeying (3.1.1), the freezing time is at most κ ·D, where
D is the diameter of the configuration?

To appreciate how far we are from being able to answer any of the questions posed so far,
we cannot even prove that, for all d and n�d 0, the receptivity graph must actually disconnect
at all ! Nor can we prove even an O(n) bound for the freezing time, independent of d. On the
other hand, the intuition that equal spacings of d = 1 should yield the most slowly converging
configuration turns out to be false, even amongst equally spaced configurations. We will prove
below that for a short interval of d-values slightly above 0.8, the freezing time is n+O(1). We
conjecture that this is the worst-case scenario:

Question 3.3.4. Is it true that any configuration of n equally spaced opinions, which evolve
according to (3.1.1), will freeze by time n+ c, where c > 0 is an absolute constant?

Let’s now go into more detail. In what follows, we denote En, d := (1, 1+d, . . . , 1+(n−1)d) ∈
Rn and E∞, d := (1, 1 + d, . . . ) ∈ R∞. Proposition 3.2.2 says that the behaviour up to the first
disconnection in the receptivity graph is identical for all d in a half-open interval to the left of
d = 1. Basically, the reason for this is that, before the disconnection, edges are only added to
the graph, not removed. Consider a fixed edge {i, j} with i < j and a fixed d = d∗. If this edge is
added to the graph at time t it means that (1) xt(j)−xt(i) ≤ 1, whereas (2) xt−1(j)−xt−1(i) > 1.
If we now decrease d and assume that the evolution of the graph is identical up to time t − 1,
then clearly (1) will still hold, while (2) will hold for all d ∈ (d∗ − ε, d∗] for some ε > 0. Hence,
if edges are only added, never deleted, before the first disconnection, then the evolution of the
graph during this period will be identical for all d ∈ (d∗−ε∗, d∗], where ε∗ will in general depend
on d∗ - in particular, it will likely be smaller if the time L(d∗) at which the disconnection occurs
is greater. We may ask whether this is what indeed always happens:

Question 3.3.5. Is it true that, for every d ∈ (0, 1], edges are only added to the receptivity
graph, never deleted, before the time t = L(d) at which it disconnects? Consequently, is it true
that there is a decreasing sequence

1 = d0 > d1 > · · · (3.3.1)

such that the evolution of the graph up to the first disconnection, and hence the values of the
functions L(d) and M(d), are constant on each interval d ∈ (di+1, di]? Moreover, does the
sequence di tend to zero?

By exhaustive computation we have constructed the sequence (3.3.1) down to d = 1/2,
which is a natural threshold as it marks the point at which the receptivity graph is more than
just a chain at t = 0. Table 3.1 below shows the 12 different possibilities for the evolution
prior to disconnection of an infinite sequence of agents for all d > 1/2. The rightmost column
in the table describes the precise evolution. Here A,B, C,D are operators on l∞, considered
as bi-infinite matrices. A is what we called B̃0 in Section 3.2, the operator corresponding to
when the receptivity graph is just a chain. B is what we previously called B̃4, corresponding to
addition of the edge {1, 3}. For C we in turn add the edges {i, 4}, 1 ≤ i ≤ 2 and for D we then
add the edges {j, 5}, 1 ≤ j ≤ 3. S denotes a shift operator. We take y0 = d1∞ and the map
y0 7→ T y0 describes the evolution up to time L(d), followed by removing the segment of size
M(d) which has become disconnected.
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i di L(di) M(di) T = Ti
0 1 5 3 S3 · B · A4

1 72
79 ≈ 0.9114 4 3 S3 · B · A3

2 864
1027 ≈ 0.8413 9 4 S4 · C · B5 · A3

3 31104
36979 ≈ 0.8411 8 4 S4 · C · B4 · A3

4 4
5 3 3 S3 · B · A2

5 48
61 ≈ 0.7869 7 4 S4 · C · B4 · A2

6 1296
1735 ≈ 0.7470 6 4 S4 · C · B3 · A2

7 54
79 ≈ 0.6835 5 4 S4 · C · B2 · A2

8 2
3 5 4 S4 · C · B3 · A

9 9
14 ≈ 0.6429 4 4 S4 · C · B2 · A

10 1440
2459 ≈ 0.5856 7 5 S5 · D · C3 · B2 · A

11 69120
125359 ≈ 0.5514 6 5 S5 · D · C2 · B2 · A

Table 3.1: The possible “states” prior to first disconnection for all d > 1/2.

To verify that this list is complete can be reduced to a finite computation. To get a flavour
of how this works, consider d7 = 54/79. If y0 := d71∞ and y4 := B2 · A2 · y0 one may verify
that y4(1) = 0 and y4(2)+y4(3) = 1. This means that the edges {1, 4} and {2, 4} will be added
to the graph at t = 4 when d = d7 but not when d > d7, so at d = d7 the behaviour changes.
If now y5 := C · y4 then 1

d7
y5(4) = 14189

8640 ≈ 1
0.6089 , which means that adding the edges {1, 4}

and {2, 4} at t = 4 would result in the removal of edge {4, 5}, and hence a disconnection of the
graph, at t = 5 for any d ∈

(
8640
14189 ,

54
79

]
. However, this is a faithful description of the evolution

only down to d8 = 2/3, because then the behaviour changes already at t = 1. For if instead
y0 := d81∞ and y1 := A · y0 then y1(1) + y1(2) = 1 so the edge {1, 3} is already added at
t = 1.

Now notice from the Table that the quotient L(d)/M(d) is not maximised at d0 = 1, it
attains greater values of 9/4 and 8/4 = 2 at d2 and d3 respectively. For values of d in the
very narrow interval (d3, d2], however, the subsequent evolution is not periodic, rather after a
finite amount of time, the behaviour will hop to that exhibited in the interval (d4, d3]. We will
return to this later. However we can prove that, for d lying in some subinterval of (d4, d3], the
behaviour is periodic.

Theorem 3.3.6. There exists a non-empty open subinterval I ⊆ (d4, d3] such that for all d ∈ I,
the following holds:

(i) If the initial configuration E∞, d evolves according to (3.1.1) then the evolution is periodic:
after every eighth time step, a group of four agents disconnect from the left-hand end of the
receptivity graph and collapse to a cluster at the subsequent time step.

(ii) there are positive constants C,C ′ such that the finite configuration En, d will evolve in an
analogous manner, with a group of four agents becoming disconnected at each end after every
eighth time step, until there are at most C agents left in the middle. These will collapse to a
cluster after at most C ′ further time steps.

Note that the statement in the finite case is slightly less precise than in Theorem 3.1.1. This
is because, already for n = 7, the evolution of the graph is not constant for d ∈ (d4, d3]. As
may be verified by direct computation, three different things can happen and the freezing time
can be 8, 9 or 10. In any case, the important point about Theorem 3.3.6(ii) is that the freezing
time is n+O(1).
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Figure 3.3: With d ≈ 0.81 four agents on each side are disconnected from the central connected
component every eighth time step. As with the case d = 1, what is left is very similar to a
shorter version of the original chain.

Proof. The proof is completely analogous to that given in Section 3.2 so we only present a
sketch. Table 3.1 yields an immediate analogue of Proposition 3.2.2, namely: for an infinite
sequence of agents with initial spacings given by y0 ∈ l∞, if d41∞ < y0 ≤ d31∞, then the
evolution up to t = 8 is identical to that described in the i = 3 row of the table, i.e.:

yt = Aty0 for 0 ≤ t ≤ 3, yt = Bt−3y3 for 3 ≤ t ≤ 7, y8 = Cy7.

Secondly, consider the bi-infinite matrix T3. Analogously to (3.2.17) and (3.2.18), all the“action”
takes place in the upper-left 5× 17 block, and every row from the sixth onwards is just a shift
to the right of the previous row. The sum of the entries in every row from the fifth onwards
equals one. Let a, b, c, d respectively denote the sums of the entries in the first four rows. One
can check that

a3 =
375281

373248
≈ 1.0054, b3 =

281497

279936
≈ 1.0056, (3.3.2)

c =
7787

7776
≈ 1.0014, d =

4373

4374
≈ 0.9998. (3.3.3)

One can prove the following analogues of (3.2.19)-(3.2.21), the proof reduced as before to solving
(in Matlab) a finite collection of polynomial equations:

Let y0 := 1∞ and for all τ ≥ 0, yτ+1 := T3 yτ . Let γ3 := 0.3107. Then for all τ ≥ 1,

a3 − 1 ≤ yτ (1)− 1 ≤ (1 + γ3)(b3 − 1), (3.3.4)

b3 − 1 ≤ yτ (2)− 1 ≤ (1 + γ3)(b3 − 1), (3.3.5)

c− 1 ≤ yτ (3)− 1 ≤ γ3(b3 − 1), (3.3.6)

|yτ (i)− 1| ≤ γi−23 (b3 − 1), ∀ i ≥ 4. (3.3.7)
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Note that, according to (3.3.2), there are row sums both above and below one, and thus
the sequence yτ is not monotonic as in Proposition 3.2.3(i). Thus the left-hand inequalities in
(3.3.4) and (3.3.5) also contribute to the collection of polynomial equations to be solved here. In
addition, because of the lack of monotonicity, it is not immediately obvious that (yτ ) converges
in l∞ to a fixed point of T3. Though computations suggest this is definitely the case, we have
not tried to prove it as we don’t need the result.

Now it follows from (3.3.4)-(3.3.7) that, for all τ ≥ 0 and d ∈ (d4 d3], ||d1∞ − dyτ || ≤
d3(1 + γ3)(b3 − 1) ≈ 0.0061. This is much less than half the length of the interval (d4, d3]. So
as long as we don’t choose d too close to the edges of the interval, the behaviour described in
part (i) of Theorem 3.3.6 for an infinite sequence of agents has been established. In the case
of a finite sequence of n agents there will be additional “perturbations” once agents in each
half of the sequence affect one another, and these can be analysed by introducing operators
R3, τ , Θ3, τ = T3R3, τ and vectors zτ = z3, τ analogous to (3.2.22) and (3.2.24). In (3.2.22),
Rτ = R0, τ replaced elements of an input x in groups of five and moved this window three
steps to the left as τ increased. In the present case, R3, τ will replace elements eight at a time
and move the window four steps to the left each time. In imitating the argument on page
43, we must exercise a little caution since ||T3|| = b3 > 1, which in (3.2.25) would lead to an
exponentially growing bound for δτ . However, since T3 is essentially a “band matrix” and the
sum of the entries in each row from the fifth onwards is one, multiplying by T3 will not magnify
errors until τ ≥ m3 −O(1), in fact until τ ≥ m3 − 4, where now

m3 =

{
b r−94 c, if n is even,
b r−84 c, if n is odd.

(r = n/2).

Indeed we still have much more margin for error here than in Section 3.2 so we can continue
replacement up to τ = m3 + 1 and obtain the following analogues of (3.2.28) and (3.2.27):

||zm3+1 − 1∞|| ≤ δ∗∞ + g∗1,

where
g∗1 = d3(1 + γ3)(b3 − 1) ≈ 0.0061

and

δ∗∞ = d3 · b43 ·
∞∑

k=0

|g∗1+4k| = d3 · b43 ·
[
g∗1 + (b− 1)

(
γ33

1− γ43

)]
≈ 0.0054,

Thus ||zm3+1−1∞|| < 0.0116. This is still less than 1
2(δ3− δ4), which proves that the evolution

of the configuration of n agents up to time t = 8(m3 + 1) will be periodic, at least for all d in
some sufficiently small interval around the centre of (d4, d3]. At time 8(m3 + 1) there will be
somewhere between 8 and 15 agents left, depending on n (mod 8), so the proof of the theorem
is complete.

Theorems 3.2.1 and 3.3.6 prove that, at least for some values of d > 1/2, the evolution of
the configuration E∞, d is periodic, with M(d) agents becoming disconnected on the left after
every L(d) time steps. Such simple periodicity does not hold for arbitrary d. Indeed, if d is
close to some di, i > 0, and hence close to the boundary between the two intervals (di, di−1]
and (di+1, di], then the evolution can jump from one “state” to another after a finite time. This
is why the ratio L(d2)/M(d2) = 9/4 > 8/4 does not yield a configuration which converges
even more slowly than in Theorem 3.3.6. Recall from Table 3.1 that the interval (d3, d2] is
very narrow. One can check that, starting with d = d2, a group of 4 agents will disconnect at
t = 9, as in Table 3.1, but at this point the gap between the first two remaining agents will be
13349725
15971904 ≈ 0.8358 < d3, which will suffice for the evolution to jump into a new state whereby

51



the next group of 4 agents disconnect after 8 further steps (at t = 17). In fact, the system will
remain in that state forever, as can be proven by explicit computation and following the proof
of Theorem 3.3.6.

In fact, a system can take arbitrarily long to jump from one state to another. To see this,
we consider values of d slightly above d1 = 72/79. For n ≥ 0 let yn := T n0 1∞, zn := A3yn and
dn+1 := 1

zn(1)+zn(2)
. By Proposition 3.2.3, we know that the sequence (yn) is monotonically

decreasing in l∞ and converging toward a fixed point y∞ of T0. Since, as one can readily
check, the matrix A3 has non-negative entries and row sums at most one, the same is true of
the sequence (zn). Hence, (dn) is an increasing sequence, starting from d1 = d1 = 72/79 and
converging to a limit d∞ = 1

z∞(1)+z∞(2) , which numerically is about 0.921776.... It is easy to see

that, if d ∈ (dn−1, dn], then starting from the configuration E∞, d, it will happen n times that 3
agents disconnect after 5 time steps, whereas on the (n+1):st occasion, 3 agents will disconnect
after 4 steps instead. Indeed, one can check (though the computations become extremely messy)
that the system will then forever remain in the latter state. This leads us to our final question:

Question 3.3.7. Is it true that, for any d ∈ (0, 1], the evolution of the system E∞, d is ultimately
periodic, in the sense that both the time between successive disconnections and the number of
agents which disconnect are constant from some point onwards?

Given the ideas introduced in this paper, answering this last question for d > 1/2 at least
could perhaps be reduced to a finite, if extremely messy computation. However, this would
not yield much insight into what happens as d → 0, which is the main theme behind all the
questions posed in this section. The proofs in this paper all relied heavily on explicit numerical
estimates (as in (3.2.19)-(3.2.21) and (3.3.4)-(3.3.7)). To push the work further, it seems that
a deeper qualitative understanding of the evolution of sequences of equally spaced agents and
the associated linear operators on l∞ will be needed.
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Abstract

Let fk(n) be the maximum number of time steps taken to reach equilibrium by a system of
n agents obeying the k-dimensional Hegselmann-Krause bounded confidence dynamics. Pre-
viously, it was known that Ω(n) = f1(n) = O(n3). Here we show that f1(n) = Ω(n2), which
matches the best-known lower bound in all dimensions k ≥ 2.



4.1 Introduction

The field of opinion dynamics is concerned with how human agents influence one another in
forming opinions, say on social and political issues (though in principle on anything). Mathemat-
ical modelling in this area has increased rapidly in recent years, as technology has improved the
prospects for running computer simulations. Rigorous results remain rare, however, and mainly
confined to the simplest properties of the simplest models. One such simple model which has
proven immensely popular is the so-called Hegselmann-Krause bounded confidence model (HK-
model for brevity). It was introduced in [6], though the paper usually cited is [5], which at
the time of writing has 935 citations on Google scholar, mostly from non-mathematicians. The
model works as follows. We have a finite number n of agents, indexed by the integers 1, 2, . . . , n.
Time is measured discretely and the opinion of agent i at time t ∈ N ∪ {0} is represented by a
real number xt(i) ∈ R. There is a fixed parameter r > 0 such that the dynamics are given by

xt+1(i) =
1

|Nt(i)|
∑

j∈Nt(i)

xt(j), (4.1.1)

where Nt(i) = {j : |xt(j) − xt(i)| ≤ r}. Thus each agent is only willing to compromise at any
time with those whose opinions lie within his so-called confidence interval, and he updates to
the average of these opinions, including his own. Moreover, the width of this interval, 2r, is
the same for all agents. Since the dynamics are obviously unaffected by rescaling all opinions
and the confidence bound r by a common factor, we can assume without loss of generality that
r = 1.

Two important qualitative features of the HK-model are that agents act synchronously and
in a completely deterministic manner. This is in contrast to some other famous opinion dynamics
models such as voter models [10] or the Deffuant-Weisbuch model [3]. Its popularity is probably
due to the simplicity of its formulation, which nevertheless seems “natural”. Mathematically,
it is very tantalising. The update rule (4.1.1) is linear, but clearly the transition matrix is
in general time-dependent, which is the key point. The HK-model has many elegant features
which are still either partly understood or have only been observed in simulations. For a more
comprehensive survey of the theoretical challenges, see for example the introduction to [11].

In this paper, we will focus on one particular question which has been the subject of much
attention, namely how long it takes for opinions obeying the HK-dynamics to stabilise. First,
some notation and terminology. Let (x(1), . . . , x(n)) be a configuration of opinions. We say
that agents i and j agree if x(i) = x(j). A maximal set of agents that agree is called a cluster,
and the number of agents in a cluster is called its size. The configuration is said to be frozen1 if
|x(i)−x(j)| > 1 whenever x(i) 6= x(j). Clearly, if the configuration is frozen then xt+1(i) = xt(i)
for all i, and it is easy to see that the converse also holds.

Perhaps the most fundamental result about the HK-dynamics is that any configuration of
opinions will freeze in a finite number of time steps, which moreover is universally bounded by
a function of the number n of agents only. Indeed, the same is true of a wide class of models
including HK as a simple prototype, see [2]. Let f1(n) denote the maximum number of time
steps taken to freeze by a configuration of n agents obeying (4.1.1). For the HK-model, the
bound given in [2] is f1(n) = nO(n). However, it is known that f1(n) is bounded by a polynomial
function of n. The first such bound of O(n5) was established in [9] and the current record is
O(n3), due to [1].

Lower bounds for f1(n) have received less attention, perhaps due to the difficulty in finding
explicit examples of configurations which take a long time to freeze. A natural example to look

1Other terms used in the literature are “in equilibrium” or “has converged”. We think our term captures the
point with the least possible room for misinterpretation, however.
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Figure 4.1: Schematic representation of the configuration Dn. Each dumbbell has weight n.

at is the configuration En = (1, 2, . . . , n), in which opinions are equally spaced with gaps equal
to the confidence bound. Thus, agents are placed as far apart as possible to begin with, without
being split into two isolated groups. It is not hard to see that, as this configuration updates,
if i < n/2 then the opinions of agents i and (n + 1) − i will remain constant as long as t < i,
while both will change at t = i. Hence, the time taken for the configuration En to freeze is at
least n/2. In fact, this configuration freezes in time 5n/6 +O(1), see [4].

Thus, f1(n) = Ω(n), an observation that was already made in [9]. In this paper, we will
prove that f1(n) = Ω(n2) by exhibiting an explicit sequence Dn of configurations which take
this long to freeze. In fact, we shall abuse notation slightly. Though we could define a suitable
configuration for any number n of agents, in order to simplify the appearance of certain formulas
we will assume that n is even and let Dn denote a certain configuration on 3n+ 1 agents. Our
construction basically combines the chain En with an example of Kurz [7], and is defined as
follows:

Definition 4.1.1. Let n be a positive, even integer. The configuration Dn consists of 3n + 1
agents whose opinions are given by

x(i) =




− 1
n , if 1 ≤ i ≤ n,

i− (n+ 1), if n+ 1 ≤ i ≤ 2n+ 1,
n+ 1

n , if 2n+ 2 ≤ i ≤ 3n+ 1.
(4.1.2)

The configuration is represented pictorially in Figure 4.1. It has the shape of a dumbbell.
Indeed, someone familiar with the theory of Markov chains might consider this a natural can-
didate for maximising the freezing time2. There is a subtlety, however. Along the “bar” of
the dumbbell, opinions are equally spaced at distance one, whereas the two dumbbell clusters
themselves are positioned much closer, at distance 1/n, to the ends of the bar. The latter is
what raises the freezing time from Θ(n) to Θ(n2), as will become evident from the proof below.
In fact, this is just one of at least three ways of considering our construction as a modification
of others previously known which all freeze in linear time. A second way would be to think of it
as starting from En, which freezes in time O(n), and then adding the dumbbells. A third would
be to start from the configuration in [7], which consists of the two dumbbells placed at distance
1/n from their respective solitary agents, but then without the long intermediate chain3. Kurz

2In the general theory of irreducible Markov chains on graphs, dumbbell-like graphs are known to have the
longest mixing times. See, for example, [8].

3In fact, in the Markov chain literature, this configuration is commonly termed a dumbbell, whereas ours
would be referred to as a “dumbbell with a chain in between”. We hope the reader is not confused !
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showed that his configuration took time Ω(n) to freeze and as a by-product of our method, it
can be easily shown to freeze in time O(n).

Let us now formally state our result.

Theorem 4.1.2. The configuration Dn freezes after time Ω(n2).

The proof will be given in the next section. One important feature of our result is that it
matches the best-known lower bound for the freezing time of the multi-dimensional HK-model.
The latter refers to the fact that rule (4.1.1) makes sense if opinions xt(i) are considered as
vectors in Rk for any fixed k and neighborhoods Nt(i) are defined with respect to Euclidean
distance. The sociological interpretation would be that there are k “issues”, and that agents will
compromise if and only if their opinions are sufficiently close on all issues. Let fk(n) denote the
maximum number of time steps taken to freeze by a configuration of n agents with opinions in
Rk and obeying (4.1.1). It turns out that fk(n) is bounded by a universal polynomial function of
n and k. This was also established in [1], who gave the bound fk(n) = O(n10k2). Note, though,
that this is much worse than the best bound O(n3) in one dimension. Indeed, the proof of the
latter in [1] uses a different argument which does not seem to generalise to higher dimensions4.

Already in two dimensions, however, a quadratic lower bound was also proven in [1]. Their
example, which we denote Fn, places the n agents at the vertices of a regular n-gon of side-
length one, and they show that the system requires at least n2/28 steps to freeze. 5 The
configuration Fn seems, at least in hindsight, like a natural “two-dimensional version” of En.
It is not really clear how far one can push this idea, however, as the upper bound of O(n10k2)
for all dimensions makes immediately clear. Indeed, there is no example known in dimensions
k ≥ 3 which takes longer to freeze than Fn, now considered as a configuration on a plane in
Rk. The configurations Dn discussed in this paper are also quite different from the Fn.

We finish this section by giving some more fairly standard terminology to be used below.
Let (x(1), . . . , x(n)) be a configuration of one-dimensional opinions, obeying the convention that
x(i) ≤ x(j) whenever i ≤ j. We can define a receptivity graph G, whose nodes are the n agents
and where an edge is placed between agents i and j whenever |x(i) − x(j)| ≤ 1. We say that
agents i and j are connected if they are in the same connected component of the receptivity
graph. Observe that every connected component of G is an interval of agents and that i is
disconnected from i+ 1 if and only if x(i+ 1) > x(i) + 1.

4.2 Proof of Theorem 4.1.2

Lemma 4.2.1. Let n ≥ 2 and let Pn denote the path on n vertices, indexed from left-to-right
by the integers 1, . . . , n. Let X0, X1, . . . be a random walk on Pn with transition probabilities
pi, j given by

pi, j =





2/3, if (i, j) = (1, 1) or (n, n),
1/3, otherwise and if |i− j| ≤ 1,
0, otherwise.

(4.2.1)

4An important fact which makes the one-dimensional model much simpler to analyse is that, as soon as an
agent becomes isolated, he will remain so forever. This is not always the case in higher dimensions. As an example
in R2, consider three agents a, b, c initially placed at (0, −0.5), (0, 0.5) and (1, 0) respectively. At t = 0, only a
and b will interact, but this first interaction will bring them both to (0, 0) where they are close enough to c to
interact at t = 1.

5By symmetry, it is clear that all agents will end up in agreement in this case.
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For any i, j and t ≥ 0, let hi, j(t) denote the expected number of times a walk started at i will
hit j up to and including time t, i.e.:

hi, j(t) = E[#s : Xs = j, 0 ≤ s ≤ t | X0 = i].

Then h1, 1(t) ≤ c1 ·
√
t for all 1 ≤ t ≤ n2, where c1 > 0 is an absolute constant, independent of

n.

Proof. This result surely follows from standard textbook facts about random walks on graphs,
but since we cannot point to a reference for the precise result, we shall outline a proof in any
case.

Let us consider instead a cycle C2n of length 2n, with vertices indexed clockwise by 1, 2, . . . , 2n,
and a random walk on the cycle for which the transition probabilities are p′i, j = 1/3 if |i −
j| (mod 2n) ≤ 1 and p′i, j = 0 otherwise. Let h′i, j(t) denote the expected number of times a walk
on C2n started at node i hits node j up to and including time t.

Claim 1: (i) h′1, 2n(t) ≤ h′1, 1(t).
(ii) h1, 1(t) = h′1, 1(t) + h′1, 2n(t) ≤ 2h′1, 1(t).

To prove (i) first note that, by the symmetry of the transition rules on the cycle, the func-
tion h′i, i(t) is independent of i. Let τ be the random time at which a walk started at 1 first hits
2n. Then

h′1, 2n(t) =

t∑

s=0

P(τ = s) · h′2n, 2n(t− s) =

t∑

s=0

P(τ = s) · h′1, 1(t− s) ≤

≤
t∑

s=0

P(τ = s) · h′1, 1(t) ≤ h′1, 1(t),

where we have used the obvious fact that the functions h′i, j(t) are all non-decreasing in t.
The right-hand inequality in (ii) follows from (i). For the left-hand equality, we identify the

nodes of C2n in pairs as

v1 = {1, 2n}, v2 = {2, 2n− 1}, . . . , vn = {n, n+ 1}.

A random walk on C2n can be identified with a random walk on the path Pn whose vertices
from left-to-right are v1, . . . , vn, where any step in the former which remains inside the same
subset vi is considered as standing still at the same vertex in the latter. It is also easy to see
that if the transition probabilities on the cycle are p′i, j , then on the path they become pi, j . The
equality in (ii) follows immediately from these observations.

By Claim 1, it suffices to prove that h′1, 1(t) = O(
√
t) for all 1 ≤ t ≤ n2. We go one step

further. Let q(t) denote the probability that the walk on C2n, started at node 1, is also at node 1
at time t. By linearity of expectation, it suffices to prove that q(t) = O(1/

√
t) for all 1 ≤ t ≤ n2.

So fix a time t ≥ 1. Any walk consists of steps of three types: clockwise, anticlockwise and
standing still. The walk will be back at node 1 at time t if and only if the numbers of clockwise
and anticlockwise steps among the first t steps are congruent modulo 2n. The expected number
of standing still steps is t/3 and, up to an error of order e−αt, where α > 0 is an absolute
constant, we can ignore all walks where the number of standing still steps is greater than t/2
say. Conditioned on the number l of such steps and their timings, there are 2t−l possible walks.
The number of these which have c clockwise steps is

(
t−l
c

)
, which is less than 2t−l√

t−l for any c and
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maximised at c = b t−l2 c. Since we’re assuming l ≤ t/2, it follows that every binomial coefficient

is less than 2t−l
√

2
t . The ones that contribute to q(t) are those such that 2c ≡ t− l (mod 2n).

The gap between any two such values of c is at least n which, since t ≤ n2, is at least d
√
t e.

Claim 2: There is a real number κ ∈ (0, 1) such that, for all integers m ≥ 2 and r ≥ 1,
(

m

bm/2c+ rd√m e

)
≤ κr

(
m

bm/2c

)
. (4.2.2)

Once again, we will prove this directly, rather than appealing to some textbook fact. For
0 ≤ k < m, let f(m, k) :=

(
m
k+1

)
/
(
m
k

)
= m−k

k+1 . The function f(m, k) is decreasing in k as long

as k ≥ bm/2c, thus it suffices to prove (4.2.2) for r = 1. If we put k = bm/2c + b12
√
mc then,

for sufficiently large m, f(m, k) ≤ 1− 1√
m

. Thus, for sufficiently large m,

(
m

bm/2c+d√m e
)

(
m
bm/2c

) =

d√m e∏

j=1

f(m, bm/2c+ j) ≤
(

1− 1√
m

) 1
2

√
m

≤ e−1/2. (4.2.3)

So, for m sufficiently large, (4.2.2) holds with κ = e−1/2 Hence it holds for some κ < 1 and all
m ≥ 2, since for all such m, the first quotient in (4.2.3) is strictly less than one. This proves
Claim 2.

Claim 2 implies that, conditioned on l, the contributions to q(t) from different values of
c decrease exponentially as one moves away from b t−l2 c, and hence the total contribution is
bounded by an absolute constant times the largest one which, as previously stated, is at most√

2
t . Unwinding our argument, what we have shown is that, provided 1 ≤ t ≤ n2 and condition-

ing on the number and timing of all standing still steps up to time t, the probability of the walk
being back at node 1 is O(1/

√
t) +O(e−αt) = O(1/

√
t). Hence, q(t) = O(1/

√
t), as desired.

Lemma 4.2.2. Let n ∈ N, κ ∈ Q>0 and, for t ≥ 0, let δt = (δ1, t, . . . , δn, t) be a sequence of
vectors in Qn

≥0 defined recursively as follows:

δ0 = (0, . . . , 0),

δ1, t+1 = κ+
2

3
δ1, t +

1

3
δ2, t,

δn, t+1 = κ+
2

3
δn, t +

1

3
δn−1, t,

δi, t =
1

3
(δi−1, t + δi, t + δi+1, t) , ∀ 2 ≤ i ≤ n− 1.

Then there is an absolute constant c2 > 0 such that δi, t ≤ c2 · κ ·
√
t for all i and all t ≤ n2.

Proof. For any t, it is clear that δi, t = δ(n+1)−i, t and that δi, t ≥ δi+1, t for all i < n/2. It thus

suffices to prove that δ1, t = O(κ
√
t) for all t ≤ n2.

The recursion can be written in matrix form as

δ0 = 0, (4.2.4)

δt+1 = v + P · δt, (4.2.5)

where v = (κ, 0, 0, . . . , 0, κ)T and P = (pi, j) is the transition matrix of (4.2.1). It follows easily
from (4.2.4) and (4.2.5) that, for any t > 0,

δt = (I + P + · · ·+ P t−1)v.
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Hence,
δ1, t = κ · (h1, 1(t) + h1, n(t)) ≤ 2κ · h1, 1(t), (4.2.6)

where the last inequality can be proven in a similar manner to part (i) of Claim 1 in the proof
of Lemma 4.2.1. Hence, Lemma 4.2.2 follows from (4.2.6) and Lemma 4.2.1.

Proof. of Theorem 4.1.2. For simplicity (see (4.2.7) below), we assume n ≥ 3. Let x0 = Dn ∈
R3n+1 and for all t > 0 let the updates xt = (xt(1), . . . , xt(3n + 1)) be generated according to
(4.1.1). So xt represents the positions of the agents at time t. We will find it more convenient
to work instead with the vectors of gaps yt = (y0, t, . . . , yn+1, t) ∈ Rn+2 given by

yi, t = xt(n+ 1 + i)− xt(n+ i), 0 ≤ i ≤ n+ 1.

Observe that y0 =
(
1
n , 1, . . . , 1, 1

n

)
. Let Gt denote the receptivity graph at time t. For as long

as Gt = G0, it is easily checked that yt+1 = M · yt where M = (mi, j) is an (n + 2) × (n + 2)
matrix whose upper left 2× 3 block is

(
n

(n+1)(n+2)
1

n+2 0
n
n+2

2n+1
3(n+2)

1
3

)
,

which is symmetric about its midpoint, i.e.:

mi, j = m(n+3)−i, (n+3)−j

and which, for 3 ≤ i ≤ n, satisfies

mi, j =

{
1/3, if |i− j| ≤ 1,
0, otherwise.

(4.2.7)

We define auxiliary vectors δt = (δ0, t, . . . , δn+1, t) as follows:

yi, t =:
1

n
− δi, t
n2

, if i = 0 or i = n+ 1, (4.2.8)

yi, t =: 1− δi, t
n2

, for 1 ≤ i ≤ n. (4.2.9)

Observe that δ0 = 0 and δi, t = δ(n+1)−i, t for all i and t. As long as Gt = G0 one checks that
the following recursion is satisfied:

0 ≤ δ0, t+1 ≤ 1 +
1

n
(δ0, t + δ1, t) , (4.2.10)

0 ≤ δ1, t+1 ≤ δ0, t +
2

3
δ1, t +

1

3
δ2, t, (4.2.11)

0 ≤ δi, t+1 =
1

3
(δi−1, t + δi, t + δi+1, t) for 2 ≤ i ≤ n− 1. (4.2.12)

Applying Lemma 4.2.2 with κ = 2 it is easy to deduce that, for some absolute constant c3 > 0
and all t ≤ c3 · n2, the solution to (4.2.10)-(4.2.12) with initial condition δ0 = 0 will satisfy

δ0, t ≤ 2, δn+1, t ≤ 2, δi, t < n− 2 for 1 ≤ i ≤ n.

But this in turn implies, from (4.2.8) and (4.2.9), that yi, t + yi+1, t > 1 for all 0 ≤ i ≤ n and all
t ≤ c3 · n2, hence indeed it is true that Gt = G0 for all such t. In particular, agent n + 2 will
not be visible to the cluster on the left before time c3 · n2, which proves that the configuration
will take at least this long to freeze.

61



Remark 4.2.3. One can prove that the configuration does indeed freeze in time Θ(n2). First,
we can turn the above argument around somewhat and deduce instead from the above relations
that δ0, t ≥ 1/2 for all t > 0 and hence, instead of (4.2.11), that

δ1, t+1 ≥
1

4
+

2

3
δ1, t +

1

3
δ2, t.

The argument in Lemma 4.2.2 can then be turned on its head to deduce that δ1, t = Ω(h1,1(t)),
while it is almost trivial that h1,1(t) = Ω( tn). What all of this implies is that agent n + 2 will
indeed become visible to the cluster on the left at time t∗ = Θ(n2), and it will then immediately
disconnect from agent n+3. We then just need to consider the subsequent evolution of the chain
C of agents n+ 3, . . . , 2n− 2. Since δi, t∗ = O(n) for every i, it follows from (4.2.8) and (4.2.9)
that the gaps between consecutive agents in C are all greater than 1−O(1/n). Hence the chain
will freeze in time 5n/6+O(1). This last deduction follows from unpublished results in [4], more
precisely from Theorem 1.1 and remarks at the outset of Section 3 in that paper.

Given that the configuration Dn freezes in time Θ(n2), one can try to compute the constant
factor accurately. We have not done so, but a combination of simulations and the Ockham’s
razor principle lead us to believe that the freezing time for Dn is (1 + o(1))n

2

4 . The factor of
4 = 22 comes from the fact that the numbers δ1, t in (4.2.9) seem to grow like 2

√
t.

Note that, if our hypothesis is correct, then the freezing time of the configuration Dn still
grows more slowly, at least for n � 0, than that of the two-dimensional configuration F3n+1.
These are also two quite different types of configurations. It remains unclear what the right
estimate for the function fk(n) might be in higher dimensions.
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