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Abstract

We introduce a new fast numerical method for computing discontinuous solutions to the Boltzmann equation and illus-
trate it by numerical examples. A combination of adaptive grids for approximation of the distribution function and an
approximate fast Fourier transform on non-uniform grids for computing smooth terms in the Boltzmann collision integral
is used.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

This paper is devoted to a new deterministic scheme for numerical solution of the classical Boltzmann equa-

tion [10] for a dilute gas of particles
0021-9

doi:10.

* Co
E-m

(R. Gr
of
ot
¼ Qðf ; f Þ; ð1Þ
where f :¼ f ðt; vÞ and f : Rþ � R3 ! Rþ. We concentrate mainly on a new approach to the approximation of
the collision operator Qðf ; f Þ for distribution functions f discontinuous in velocity space and demonstrate the
method on the space homogeneous equation (1).

The collision operator Qðf ; f Þ for molecular potentials with angular cut off [10] can be decomposed into the
gain and the loss parts:
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Qðf ; f ÞðvÞ ¼ Qþðf ; f ÞðvÞ � Q�ðf ; f ÞðvÞ; ð2Þ

Qþðf ; f ÞðvÞ ¼
Z

R3

Z
S2

Bðjuj; hÞf v� 1

2
ðu� jujxÞ

� �
f v� 1

2
ðuþ jujxÞ

� �
dxdu ð3Þ
and
Q�ðf ; f ÞðvÞ ¼ f ðvÞq�ðf ÞðvÞ ð4Þ
with q� denoting the collision frequency term
q�ðf ÞðvÞ ¼
Z

R3

f ðv� uÞ
Z

S2

Bðjuj; hÞdxdu:
The function Bðjuj; hÞ is of the form
Bðjuj; hÞ ¼ B0 juj;
jðu;xÞj
juj

� �
; u 2 R3; x 2 S2; S2 ¼ fq 2 R3 : jqj ¼ 1g:
It contains the information about the binary interactions of particles and reflects the physical properties of
the model. In the case of a popular Variable Hard Sphere (VHS) model [3] the collision kernel B has the fol-
lowing form:
Bðjv� wj; hÞ ¼ Cajv� wja ð5Þ
with �3 < a 6 1. For a ¼ 0 with C0 ¼ 1
4p we get the so called Maxwellian gas and for a ¼ 1 with C1 ¼ 1 we get

the gas of ‘‘hard sphere” molecules.
We will use the following form of the Fourier transform:
F vðmÞ½f � :¼ f̂ m;¼
Z

R3

f ðvÞe2pıðv;mÞ dv ð6Þ
and the inverse Fourier transform
F�1
m ðvÞ½f̂ � :¼ f ðvÞ ¼

Z
R3

f̂ me�2pıðm;vÞ dm: ð7Þ
One can reformulate the gain and the collision frequency terms using the Fourier transform:
Qþðf ; f ÞðvÞ ¼ F�1
l ðvÞF�1

m ðvÞ½f̂ lf̂ m
bBðl;mÞ�; ð8Þ

q�ðf ÞðvÞ ¼ F�1
m ðvÞ½f̂ m

bBðm;mÞ�; ð9Þ
where
bBðl;mÞ ¼ Z
R3

Z
S2

Bðjuj; hÞe2pı lþm
2 ;uð Þe2pıjuj m�l

2 ;xð Þdxdu: ð10Þ
The gain term is a kind of bilinear pseudo-differential operator with symbol bBðl;mÞ. The kernel bBðl;mÞ is a
distribution, hence in order to use it in practical computations one has to regularize it. By choosing a proper
constant R > 0 one can write the regularized kernel as [23]
bBRðl;mÞ ¼
Z
Bð0;RÞ

Z
S2

Bðjuj; hÞe2pı lþm
2 ;uð Þe2pıjuj m�l

2 ;xð Þ dxdu: ð11Þ
We denote by QþR ðf ; f Þ and q�R ðf Þ the gain and collision frequency terms with the regularized kernel bBR. The
kernel bBR can be computed analytically for the hard sphere gas and for the Maxwell gas (see [23]). We use the
explicit formulas for bBR from [23] later in our computations.

The major part of applied computations concerning the Boltzmann equation is based on various variants of
the probabilistic Monte Carlo methods, see [4,24]. The development of deterministic methods for the Boltz-
mann equation is usually motivated, see [23,19], by the desire of higher precision results in situations when
probabilistic methods are not effective enough.
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Several different ideas led to various types of discrete velocity models (DVM) satisfying exact conservation
laws in discrete form [12,25,9,21]. Also rigorous consistency and convergence results for such models were
proved [20,17,21]. All above mentioned DVM methods have high computational cost of order n7 with n denot-
ing here the number of points along one coordinate direction in the uniform velocity grid. Another disadvan-
tage is that the integration over the sphere S2 of the possible outputs of collisions in Qðf ; f Þ is approximated
with low precision [20,21] in DVM.

The Kyoto group in kinetic theory has developed a family of finite difference methods for the Boltzmann
equation, linearized Boltzmann equation and the BGK equation and investigated numerically many mostly
stationary problems [19,13]. These computations demonstrate precise results but they are very time and mem-
ory consuming.

Applying Fourier transform to the Boltzmann collision operator leads to essential simplifications in the
case of Maxwell pseudo-molecules [7]. Using this reduction and the fast Fourier transform (FFT) led authors
of [11,5] to a fast deterministic method restricted to Maxwell pseudo-molecules and having low computational
cost OðN 4Þ and accuracy Oð1=

ffiffiffiffi
N
p
Þ. Here N is the number of Fourier modes along one coordinate direction.

Another method designed for the model of hard spheres and also using FFT was suggested in [8] and has com-
putational cost N 6 log N and a higher accuracy of order 1=N 2. A spectral method based on the restriction of
the Boltzmann equation to a finite domain and on the representation of the solution by Fourier series was
suggested in [22] and developed further in [23]. This method has an advantage of high spectral accuracy for
smooth solutions to the Boltzmann equation and complexity OðN 6Þ.

The main goal of the present paper is to design a Fourier based deterministic method for computation of
the collision operator Qðf ; f Þ with discontinuous distribution functions f. We also apply it to space homoge-
neous problems with discontinuous initial data for Maxwell pseudo-molecules and for hard sphere molecules.
We are interested in discontinuous solutions because they are typical for flows around a body. It is particularly
easy to observe in regimes close to collisionless. Computations done by the Kyoto group show that discontin-
uous distribution functions are typical for flows around bodies for a wide range of Knudsen numbers [26].

Using Fourier transform for computation of Qðf ; f Þ is attractive because one goes around the integration
over the sphere in (2) and makes use of the convolution structure in Qðf ; f Þ. But Fourier based spectral
approximations for discontinuous solutions lose accuracy because of the Gibbs phenomenon.

The main idea here is to combine an adaptive approximation for discontinuous solutions f to the Boltz-
mann equation with Fourier spectral approximation for the smooth terms in the equation: the gain term
Qþðf ; f Þ and the collision frequency q�ðf Þ. It is based on the classical result that in the case of Maxwell mol-
ecules and hard potentials with cut off the gain term Qþðf ; f Þ in the collision operator has certain smoothing
properties and is actually smooth even for a discontinuous f. This property was found first in [16] and later
investigated in details in [27,18]. The collision frequency q�ðf Þ is also a smooth function because it is a con-
volution of f with a regular function. A detailed study of the propagation of smoothness and singularity of
solutions was done in [18]. These results give a theoretical motivation to our numerical approach. To illustrate
the smoothing properties of Qþðf ; f Þ we give here a numerical example with the graph of Qþðf ; f Þ in the x–y

plane for a discontinuous function f in the case of hard sphere gas, see Fig. 1.
Discontinuous solutions to the space homogeneous Boltzmann equation are computed in the present paper

by the following recursive algorithm:
(1) Building of an adaptive grid starts with a coarse uniform grid over a cube. Values of the distribution

function f in the centres of the cubes in the grid are calculated. At the initial time f is given analytically, at
the next time steps it is computed as it is described in (5) below. (2) We identify the cubes where the variation
of f over neighbouring cubes is larger than a desired precision. All such cubes are divided into eight similar
cubes and the solution f is computed in the centres of the new cubes that appeared after the subdivision. This
procedure is repeated again for all new cubes until the minimal grid step is reached or the variation of f is
smaller than the desired precision. A new adaptive grid is ready. (3) A moderately small amount of Fourier
coefficients for f given on the non-uniform grid is computed using an approximate fast Fourier transform
by Beylkin [2]. (4) Fourier coefficients for smooth terms Qþðf ; f Þ and q�ðf Þ in the Boltzmann equation are
computed. (5) We compute f at the next time step by an explicit Runge–Kutta method. Then we go to (2)
and build a new adaptive grid for f. In these computations we use the values of f at the previous time step
and the corresponding Fourier spectral representation for the smooth terms Qþðf ; f Þ and q�ðf Þ in the Boltz-
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Fig. 1. Distribution function f with discontinuity and the corresponding gain term Qþðf ; f Þ.
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mann equation. We apply again the approximate fast Fourier transform [2] now for computing Qþðf ; f Þ and
q�ðf Þ on the new adaptive grid.

Details of the computations with the tests and the illustrative examples are described in the rest of the
paper.

2. Discretization of the collision integral

2.1. Grid generation

We illustrate our approach to the numerical solution of the Boltzmann equation by the space homogeneous
problems with discontinuous initial data. The distribution function f ðt; vÞ is usually negligible outside some
ball, so for the numerical treatment of the Boltzmann equation we assume that supp f � Xv :¼ ½�L; L�3.

At each time step we build in a rather standard way a binary adaptive grid that follows the changes of the
distribution function f in the cube Xv.

We start with some initial uniform coarse cubic grid, fix the desired precision and the minimal grid step we
can accept. The values of the solution f in the centres of the cubes are computed. Then we identify those cubes
for which the variation of f over centres of neighbouring cubes is larger than the desired precision. Each of
these cubes with a side for example a is divided into eight similar small cubes with the side a=2. After the divi-
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sion the values of f in the centres of the new small cubes are computed. At the initial time f is given analyt-
ically, at the next time steps it is computed by the method described later in the next sections. This dissection
procedure is repeated recursively for each new generation of smaller cubes until the desired precision or the
smallest accepted cube size is reached.

The resulting adaptive binary grid follows the variation of f in Xv being more dense around discontinu-
ities and in regions with higher gradients. We illustrate it in Figs. 5 and 7 by showing centres of the cross-
sections of the grid cubes by the coordinate plane z ¼ 0 and the graphs for values of f at the same points in
Figs. 4 and 6.

A new adaptive grid is created at each time step in parallel with the computation of the values of the solu-
tion at the next time step by an explicit Runge–Kutta finite difference scheme, that in turn uses a non-uniform
fast Fourier spectral approximations for QþR ðf ; f Þ and q�R ðf Þ, see Sections 3 and 2.3.

2.2. Discretization of Fourier transform

Now we focus on the numerical approximation of the Fourier transform integrals (6) and (7) for f defined
on a non-regular grid. We restrict the function f to a bounded domain Xv. See [23] for a discussion of the valid-
ity of such a restriction. For the sake of simplicity we describe here the evaluation of the integral (6) for f

approximated by a function �f piecewise constant on the cubic cells defined by the adaptive grid in the velocity
space. The approach we use below does not depend much on this issue. We use below the notation f̂ m for the
Fourier transform of �f . An elementary integration implies
f̂ m ¼
X

K

�f K

Z
K

e2pıðv;mÞ dv ¼
X

K

Cm
�f K

X
vK

avK e2pıðvK ;mÞ;
where K denotes a cubic cell of the adaptive grid in Xv with the vertices vK , �f K is a constant approximating f on
K, Cm is a constant depending only on m and avK ¼ �1. Collecting terms with exponents corresponding to the
same vertex vj in the double sum above implies
f̂ m ¼ Cm

X
j

F j e2pıðvj;mÞ; ð12Þ
where F j is a sum of contributions to the node vj of approximations �f K from all cubes K having the node vj in
common.

The standard fast Fourier transform (FFT) algorithm commonly used to compute numerically trigonomet-
ric sums cannot be used here for sums like one in (12), since the velocity points vj in Xv are not equidistant. To
compute this sum effectively we use the unequally spaced fast Fourier transform (USFFT) algorithm developed
by Beylkin [2]. This algorithm is formulated in [2] in such a way that the grid points vj lie within the cube
� 1

2
; 1

2

� �3
. We scale our problem so the support of the function f lies in this cube.

The idea of the USFFT is that the sum of Fourier exponents with non-uniform nodes vj is interpreted as a
Fourier transform of a linear combination of delta functions concentrated in these nodes. This linear combi-
nation of delta functions is projected on a subspace of B-splines of order p, usually p 6 5. The Fourier trans-
form of the projection is used as an approximation to the original sum of exponents. To get the inverse
USFFT one does computations in the reverse order. First the projection of the function onto the subspace
of B-splines is computed and then it is used to compute the function in arbitrary points. We give for complete-
ness an outline of the particular algorithm we used (see [2]). Values of Fourier transform f̂ m by formula (12)
will be computed on a uniform grid in R3 in a Fourier domain: fm ¼ ðm1;m2;m3Þ : m1;m2;m3 ¼ �M ; . . . ;
M � 1g for M ¼ 2�n�2 with n < �2. We will use for brevity the shortened notation m ¼ �M ; . . . ;M � 1 for
multi-indices denoting points of such grids. Hence we need to compute the sum (12) for m ¼ �M ; . . . ;M � 1.

We let N ¼ 4M . The first step is to compute the coefficients
gk ¼
X

j

�f jb
ðpÞ
k1;n
ðvj;1ÞbðpÞk2;n

ðvj;2ÞbðpÞk3;n
ðvj;3Þ; k ¼ 0; . . . ;N � 1;
where vj ¼ ðvj;1; vj;2; vj;3Þ and bðpÞr;nðxÞ ¼ 2�
n
2bðpÞð2�nx� rÞ with bðpÞ being the central B-spline of order p. The

computational cost of this step is Oðp3NvÞ.
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Then we evaluate a trigonometric sum
F l ¼
XN�1

k¼0

gke2pıðk;lÞ=N ; l ¼ �N=2; . . . ;N=2� 1
using standard FFT algorithm with the cost OðN 3 log NÞ.
The last step is the scaling of the Fourier transform F l according to the formula:
f̂ m ¼
1

N
3
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðpÞðm1=NÞaðpÞðm2=NÞaðpÞðm3=NÞ

p F m; m ¼ �M ; . . . ;M � 1;
where aðpÞðmj=NÞ ¼
Pp

l¼�pb
ð2pþ1ÞðlÞe2pılmj=N . This step requires only OðN 3Þ multiplications, hence the total cost

of the USFFT algorithm can be estimated as Oðp3NvÞ þOðN 3 log NÞ. The precision of these computations de-

pends on the order p of the central B-splines bðpÞ.
A similar procedure is used to calculate the inverse Fourier transform (7) which, discretized in the Fourier

domain, is given by
f ðvÞ ¼
XM�1

m¼�M

f̂ me�2pıðm;vÞ; v 2 Xv: ð13Þ
Namely, we start with extending the Fourier coefficients
gk ¼
f̂ kþM if �M 6 k 6 M � 1;

0 otherwise;

(
k ¼ �N=2; . . . ;N=2� 1:
Then we scale gk according to the formula ~gk ¼ gk

b̂k1
b̂k2

b̂k3

; where b̂kj ¼
Pp�1

2

l¼�p�1
2

bðpÞðlÞe2pılkj=N . Next we apply the
FFT algorithm to compute the sum
fl ¼
XN=2�1

k¼�N=2

~gke2pıðl;kÞ=N ; l ¼ �N=2; . . . ;N=2� 1:
Finally, we evaluate f at any point v 2 Xv using the formula
f ðvÞ ¼
XN=2�1

l¼�N=2

flb
ðpÞ N

2
v1 � l1

� �
bðpÞ

N
2

v2 � l2

� �
bðpÞ

N
2

v3 � l3

� �
:

The cost of the first two steps of the algorithm is OðN 3 log NÞ. The cost of the last step depends on the num-
ber of required computations of f in the velocity domain and for N v points it is Oðp3NvÞ. Hence the total cost
of calculation of the inverse Fourier transform is the same as before.

2.3. Gain and loss terms

Discretization of the collision operator Qðf ; f Þ is splitted according to (2) into three steps: computation of
QþR ðf ; f Þ, computation of q�R ðf Þ and pointwise multiplication of f and q�R ðf Þ in the points of the adaptive grid.

We start with the regularized gain term QþR ðf ; f Þ (cf. (8)), which is discretized as follows:
QþR ðf ; f ÞðvÞ ¼
XM�1

l;m¼�M

f̂ lf̂ m
bBRðl;mÞe�2pıðlþm;vÞ:
Using new indices p ¼ lþm and q ¼ l�m we change the summation to get
QþR ðf ; f ÞðvÞ ¼
X

p

X
q

f̂ pþq
2

f̂ p�q
2

T ðjpj; jqjÞe�2pıðp;vÞ;
where we use the fact that bBR depends only on jlþmj and jl�mj in the VHS model (see [23]), thus we can
define T ðjpj; jqjÞ :¼ bBRðl;mÞ.
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We introduce the notation F ðpÞ ¼
P

qf̂ pþq
2

f̂ p�q
2

T ðjpj; jqjÞ and compute F ðpÞ for every p with a cost OðN 6Þ.
Then QþR ðf ; f Þ is an inverse Fourier transform of F ðpÞ:
QþR ðf ; f ÞðvÞ ¼
X

p

F ðpÞe�2pıðp;vÞ
and must be computed in the points v from the adaptive grid, in fact during the process when this grid is gen-
erated and in parallel to the computation of the solution f at the new time step. Because of this reason we use
again the USFFT by Beylkin [2] here, now its inverse version, to compute QþR ðf ; f Þ effectively and indepen-
dently for each v point in the grid.

The discretization of the loss term Q�R ðf ; f Þ consists of the computation of the discrete collision frequency
term (cf. (9))
q�R ðf ÞðvÞ ¼
XM�1

m¼�M

f̂ m
bBRðm;mÞe�2pıðm;vÞ;
which is a convolution operator and a pointwise multiplication of q�R ðf ÞðvÞ by f ðvÞ. We compute q�R ðf ÞðvÞ
again using USFFT algorithm. The total computational cost of the numerical approximation of the collision
operator is OðN vÞ þOðN 6 log NÞ.

We point out that the computational cost consists of two parts. The first one depends on the approximation
of the discontinuous solution and increases linearly with the number N v of the points in the adaptive velocity
grid. Another part depends on the number N of Fourier modes along one coordinate direction, i.e. on the
approximation of the smooth terms QþR ðf ; f Þ and q�R ðf Þ in the Boltzmann equation.
3. Time discretization

The homogeneous Boltzmann equation is solved numerically using either the standard semi-implicit Euler
scheme
~f nþ1 ¼ f n þ DtQþðf n; f nÞ
1þ Dtq�ðf nÞ ð14Þ
or the second order Runge–Kutta scheme
~f nþ1 ¼ f n þ Dt
2
ðK1 þ K2Þ; ð15Þ
where f n ¼ f ðtnÞ denotes the solution f at time tn and K1 ¼ Qðf n; f nÞ, K2 ¼ Qðf n þ K1; f n þ K1Þ.
The proposed numerical scheme conserves only mass (spectral methods do not represent higher moments of

solutions exactly), momentum and energy are not conserved. We use here a correction technique which
enforces the conservation and was proposed by Aristov and Tcheremisin [1]. The numerical solution ~f nþ1

given by (14) or (15) is corrected by multiplying by a polynomial
1þ
X4

i¼0

aiwi;
where w0ðvÞ ¼ 1, wiðvÞ ¼ vi for i ¼ 1; 2; 3 and w4ðvÞ ¼ jvj. The numbers ai are determined by requiring that the
(discretized) conservation laws
X

vj2Gv

wlðvjÞ~f nþ1ðvjÞ 1þ
X4

i¼0

aiwiðvjÞ
 !

¼
X
vj2Gv

wlðvjÞf nðvjÞ
are satisfied for l ¼ 0; . . . ; 4. Hence we get the following formula for the solution:
f nþ1 ¼ ~f nþ1 1þ
X4

i¼0

aiwi

 !
: ð16Þ
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At each time step a new adaptive grid is built for the solution f nþ1 according to the algorithm presented in
Section 2.1.

4. Numerical examples

In this section, we present the numerical tests and examples showing the effectiveness of our method. We
start with classical tests where we compare the results of our method with the analytical BKW solution and
with the results of DSMC method for the gas of hard spheres. Next we illustrate our method by two examples
with discontinuous initial data.

4.1. Continuous initial data

Test 1. In this test we compare our method with the classical BKW analytical solution to the Boltzmann
equation in the case of Maxwell molecules (cf. [6,15]). At each time step we compute the relative L1 and L2

norms of the error of the numerical solution according to the formula:
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Fig. 7. Example 2, grid steps 0, 2 and 4.
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Ep ¼
kf hðtÞ � f ðtÞkp

kf ðtÞkp

;

where k � kp with p ¼ 1 or p ¼ 2 denotes the corresponding Lp norm and f hðtÞ and f ðtÞ are the numerical and
analytical solutions at time t. Fig. 2 shows the computed norms for the parameters M ¼ 8 and M ¼ 16 (i.e. the
number of Fourier modes in one direction is 2M ¼ 16 and 2M ¼ 32, respectively). The computations were per-
formed using the second order Runge–Kutta scheme for the time step Dt ¼ 0:12.

Test 2. In the second test we give the results for a relaxation problem in the case of hard sphere molecules
and compare them with the solution obtained by the DSMC method (cf. [14]).

We study the relaxation process of the second moment of solution of the Boltzmann equation. As the initial
data we take the sum of two Maxwellian functions:
f0ðvÞ ¼
1

2ð2pT Þ3=2
exp � jv� uj2

2T

 !
þ exp � jvþ uj2

2T

 !" #
with u ¼ ð1:5; 0; 1:5Þ and T ¼ 0:5. In Fig. 3, we present the relaxation of the second moment in xz-direction.
The computation was performed using the Runge–Kutta scheme with time step Dt ¼ 0:02 and for M ¼ 8.

4.2. Discontinuous initial data

Having in mind future applications of our approach to boundary value problems we chose data with dis-
continuities typical for flows around bodies. We use the model of Maxwell pseudo-molecules in Example 1 and
hard sphere molecules in Example 2. In both examples below the Maxwell distribution function has the form
fMðvÞ ¼ 1

ð2pT Þ3=2 e�jv�uj2=2T :

Example 1. In the first example (see Figs. 4 and 5) the initial distribution function imitates the distribution
function in the gas flow around a sphere at a point x at some finite distance from the sphere. It is initially equal
to the Maxwell distribution function with T ¼ 0:7 and u ¼ ð0; 0; 0Þ for points within a cone with centre at the
origin. Outside of this cone the initial distribution function is taken equal to another Maxwell distribution
with T ¼ 1:7 and u ¼ ð�1:5; 0; 0Þ. The cone has the axis laying in vx–vy plane with an angle of 135� with respect
to the vx-axis. The angle a between the cone and its axis is 75�. The computation was performed using the
Runge–Kutta scheme with time step Dt ¼ 0:02 for M ¼ 8 and the number of points in the adaptive velocity
grid was of the order of 106.

Example 2. The second example (see Figs. 6 and 7) is given to illustrate the method on solutions with discon-
tinuities along planes. The initial distribution function is a Maxwell distribution function with T ¼ 1:0 and
u ¼ ð0; 0; 0Þ in the half space vx > 0 and is another Maxwell distribution with T ¼ 0:5 and u ¼ ð�1:4; 0; 0Þ
in the half space vx < �1:4. There are no particles within a gap with velocities with �1:4 < vx < 0. The com-
putation was performed using the Runge–Kutta scheme with time step Dt ¼ 0:02 for M ¼ 8 and the number of
points in the adaptive velocity grid was of the order of 106.

Each of these examples is illustrated by a sequence of graphs for values of the distribution function f ðti; vÞ
for several time points ti ¼ 0:02 � i in vx–vy plane (Figs. 4 and 6) and also the corresponding cross-sections of
the three-dimensional adaptive grid with vx–vy plane (Figs. 5 and 7). The numerical results show that the initial
discontinuity in the distribution function decreases but preserves its position in complete accordance with the
known properties of the Boltzmann equation, see [18].

5. Conclusions

In the present paper we have developed a new fast numerical method for computing discontinuous solu-
tions to the Boltzmann equation. The method uses an adaptive grid for solutions for effective resolution of
the discontinuous distribution function. The Fourier spectral representation is used for the gain term and
for the collision frequency that are known to be regular terms in the equation [16,27,18]. An approximate fast
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Fourier transform on the non-uniform grid makes it possible to do the fast computation of the gain term and
the collision frequency on the adaptive grid.

The comparisons to the DSMC scheme for hard sphere molecules and to the analytical BKW solution show
very good agreement even for rather small number of Fourier modes. The effectiveness of the method in the
case of discontinuous initial data is verified by numerical tests.

In the present paper we discuss the method for the homogeneous Boltzmann equation. Some strategies to
deal with space non-uniform problems are currently under development and the results will be described
elsewhere.
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