
HOMEWORK SHEET 3 (of 3)
Classical and quantum particle systems

DUE: June 1st 2017
Hand in to J. Björnberg

(1) [6 points] Consider the random-transposition process associated with the (‘S = 0’) xxx
model on a graph G = (V,E). Thus, the edges carry independent, rate 1 Poisson processes
of transpositions (‘crosses’) and we consider the disjoint cycles of the resulting random
permutation at time β.
(a) If G = Kn, the complete graph, and β = 0.99/n, show that there is a constant C > 0

such that
P
(
|γ1| ≤ C log n

)
→ 1, as n→∞ ,

where γ1 is the largest cycle.
(b) If G = Z, the line, and β > 0, show that P

(
|γ(0)| = ∞

)
= 0 where γ(0) is the cycle

containing the origin 0.

(2) [6 points] Consider the xxz spin chain in an external magnetic field of strength h ∈ R,
which has Hamiltonian

H ′(J,∆, h) = Hxxz(J,∆)− hSz ∈ End(H) , Sz =
∑
l∈ZL

Sz
l .

(a) Use symmetry arguments, like in the lecture, to obtain the full spectrum in the zero-
and one-particle sectors.

(b) Work out the details for the coordinate Bethe ansatz (cba) to characterize the spec-
trum in the two-particle sector, M = 2, in terms of the quasimomenta p1 and p2.
Hint: The case h = 0 can be found in Appendix B of the lecture notes; be aware of
the typo, and make sure to explain everything in your own words.

(3) [12 points] Consider the Bethe-ansatz equations (bae) for the xxz spin chain,

ei pm L =
M∏
n=1
n 6=m

S(pn, pm) , S(p, p′) := −1− 2 ∆ ei p
′
+ ei (p+p′)

1− 2 ∆ ei p + ei (p+p′)
, 1 ≤ m ≤M .

(a) Assume we are given a parametrization of a, b, c of the six vertex weights that is entire
in the spectral parameter u; then so should be the eigenvalues

ΛM(a, b, c; ~z ) = aL
M∏

m=1

b (a− b zm) + c2zm
a (a− b zm)

+ bL
M∏

m=1

a (a− b zm)− c2

b (a− b zm)

of the transfer matrix, where we abbreviate zm := ei pm . Show that the bae guarantee
that ΛM(a, b, c; ~z ) is non singular in u.
Hint: Write f(u) := ΛM

(
a(u), b(u), c(u); ~z

)
in the form f(u) = g(u)/h(u) for g and h

polynomial in the vertex weights. Eliminate c in favour of ∆ := (a2 + b2 − c2)/(2 a b).
For any zero u∗ of h, i.e. solving a(u∗) = b(u∗) zm for some 1 ≤ m ≤M , show that the
residue Resu=u∗f = g(u∗)/h

′(u∗) vanishes due to the mth Bethe-ansatz equation for ~z.
(You may assume that u∗ is a simple zero. It might be convenient to write b∗ := b(u∗).)
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In the remainder of this exercise we consider the completely isotropic (xxx) case ∆ = 1.
(b) Show that in terms of rapidities λm := 1

2
cot pm

2
the bae read(

λm + i/2

λm − i/2

)L
=

M∏
n=1
n6=m

λm − λn + i

λm − λn − i
, 1 ≤ m ≤M .

Focus on the two-particle sector, M = 2.
(c) Argue that bound states, with Im(p1) = −Im(p2) 6= 0, are given by λ1 = λ+ i/2 + · · · ,

λ2 = λ− i/2 + · · · for some λ ∈ R, where the dots represent terms that should vanish
in the thermodynamic limit L→∞.

(d) Show that such a bound state contributes ε2(p1, p2) = 1/(λ2 + 1) + · · · to the energy.

(4) [8 points] Consider the six-vertex model on ZK × ZL for K and L even, and suppose that
c � a, b. Use the graphical notation to verify that to ninth order in a, b the partition
function is given by

1
2
Z = 1 +N a2 b2 +N a2 b2 (a2 + b2) + 1

2
N(N + 1) a4 b4 +N a2 b2 (a4 + b4) + · · · ,

where N := K L, we have set c = 1 for convenience, and the dots represent higher-order
terms in a, b.
Hint: For c � a, b, there are two configurations of maximal weight, each involving a
chequerboard-like pattern of the two vertices of weight c (see Figure). You can focus on
one such ground-state configuration in order to calculate the leading behaviour of Z/2.

(5) [12 points] Parametrize the vertex weights as a(u) = r sinh(u+ γ), b(u) = r sinhu, c(u) =
r sinh γ, so that ∆̃(a, b, c) = cosh γ = ∆. Consider the Lax operator

Lal(u) =


a(u)

b(u) c(u)
c(u) b(u)

a(u)


al

∈ End(Va ⊗ Vl) ,

where zeroes are suppressed, and let Pal ∈ End(Va⊗Vl) be the permutation (transposition)
operator that acts by Pal|α, β〉 = |β, α〉 on the basis vectors of Va ⊗ Vl.
(a) Compute tra Pal graphically as well as algebraically.
(b) Find all u∗ such that Lal(u∗) = c∗ Pal and give the proportionality constant c∗.
(c) Calculate H0 = log t(u∗) ∈ End(H) in terms of the momentum operator P = −i logU ,

where U ∈ End(H) is the shift operator acting as U |l1, · · · , lM〉 = |l1 + 1, · · · , lM + 1〉
on the coordinate basis, and relate your computation to the graphical version given in
the lecture.

(d) Express Pal L
′
al(u∗) in terms of ~Sa ·∆ ~Sl := Sx

a S
x
l + Sy

a S
y
l + ∆Sz

a S
z
l .

(e) Compute

H1 =
d

du

∣∣∣∣
u=u∗

log t(u) = t(u∗)
−1 t′(u∗) ∈ End(H)

in terms of Hxxz and the pseudovacuum energy E0 = −J L∆/4.
(f) Give a graphical version of the computation in (e).

Hint: You could draw Pal L
′
al(u∗) from (d) as a crossing, like for the Lax operator,

but decorated with a thick dot at the intersection. Do not spend time trying to find a
graphical representation of log t(u).
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(6) [6 points] Consider the Yang–Baxter algebra associated to the R-matrix of the six-vertex
model/xxz spin chain,

Rab(u− v) =


a(u− v)

b(u− v) c(u− v)
c(u− v) b(u− v)

a(u− v)


ab

∈ End(Va ⊗ Vb) .

(a) Use the graphical notation to obtain the Yang–Baxter-algebra relations

D(u)B(v) =
a(u− v)

b(u− v)
B(v)D(u)− c(u− v)

b(u− v)
B(u)D(v) ,

B(u)B(v) = B(v)B(u)

from the RTT -relation. For each diagram in your computation give the algebraic
expression; for example

B(u) = u

1 · · ·L

= a〈+|Ta(u) |−〉a .

(b) Use the relations from (a) to show that D acts on |ΨM ; ~u 〉 =
∏M

m=1 B(um) |Ω〉 as

D(u0) |ΨM ; ~u 〉 = N0(u0; ~u ) |ΨM ; ~u 〉+
M∑

m=1

Nm(u0; ~u ) |ΨM ;u0, · · · , ûm, · · · , uM 〉 ,

where the hat indicates that the mth spectral parameter is omitted, and find the
coefficients N0(u0; ~u ) and Nm(u0; ~u ).
Hint: You can look at the computation of A(u0) |ΨM ; ~u 〉 in Section 4.3 of the lecture
notes; be aware of typos, and make sure to explain the calculation in your own words.


