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Abstract

Markov chain Monte Carlo (MCMC) algorithms are ubiquitous in prob-
ability theory in general and in machine learning in particular. A Markov
chain is devised so that its stationary distribution is some probability distri-
bution of interest. Then one samples from the given distribution by running
the Markov chain for a ”long time” until it appears to be stationary and then
collects the sample. However these chains are often very complex and there
are no theoretical guarantees that stationarity is actually reached. In this pa-
per we study the Gibbs sampler of the posterior distribution of a very simple
case of Latent Dirichlet Allocation, the arguably most well known Bayesian
unsupervised learning model for text generation and text classification. It is
shown that when the corpus consists of two long documents of equal length
m and the vocabulary consists of only two different words, the mixing time
is at most of order m2 logm (which corresponds to m logm rounds over
the corpus). It will be apparent from our analysis that it seems very likely
that the mixing time is not much worse in the more relevant case when the
number of documents and the size of the vocabulary are also large as long
as each word is represented a large number in each document, even though
the computations involved may be intractable.
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1 Introduction
Markov chain Monte Carlo (MCMC) is a powerful tool for sampling from a given
probability distribution on a very large state space, where direct sampling is diffi-
cult, in part because of the size of the state space and in part because of normaliz-
ing constants that are difficult to compute.

In machine learning in particular, MCMC algorithms are extremely common
for sampling from posterior distributions of Bayesian probabilistic models. The
posterior distribution given observed data is difficult to sample from for the given
reasons. One may then design an (irreducible aperiodic) Markov chain whose
stationary distribution is precisely the targeted posterior. This is usually fairly
easy since the posterior is usually easy to compute up to the normalizing constant
(the denominator in Bayes formula). One very often uses Gibbs sampling or the
related Metropolis-Hastings algorithm.

Gibbs sampling in general can be described as follows. The state space is a
finite set of random variables X = {Xa}a∈A, where Xa ∈ T for some measurable
space T , so that X ∈ TA and the targeted distribution is a given probability mea-
sure P on TA. In order to sample from P one starts a Markov chain on TA whose
updates are given by first choosing an index a ∈ A at random and then choosing
a new value of Xa according to the conditional distribution of Xa given all Xb,
b ∈ A \ {a}. Under mild conditions, this Markov chain converges in distribution
to P. The chain is then run for a ”long time” (the ”burn-in”) whereupon a sample,
hopefully approximately from P, is collected. A key question here is for how long
the chain actually has to be run, in order for the distribution after that time to be
a good approximation of P. Since A is usually large, the number of steps needed
should at least be no more than polynomial in the size of A for Gibbs sampling
to be feasible. In almost all practical cases, the structure of the sample space and
the probability measure P is so complex that is virtually impossible to make a rig-
orous analysis of the mixing rate. However it may be possible to consider some
very simplified special cases. In this paper, we will analyse a special case of La-
tent Dirichlet allocation, henceforth LDA for short, and demonstrate for such a
simple special case, the mixing time is polynomial of low degree in the size of the
problem.

LDA is a model used to classify documents according to their topics, which in-
troduced by Blei et al [3]. One is faced with a large corpus of documents and wants
to determine for each word in each document which topic it belongs to. Knowing
this, one can then also classify the documents according to the proportion of words
of the different topics it contains. The setup in LDA is the following. The corpus
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consists of a fixed number D of documents of lengths Nd, d = 1, . . . , D, a fixed
set of topics t1, t2, . . . , ts and a fixed set of distinct words w1, w2, . . . , wv. These
are specified in advance. The number of topics is usually not large, whereas the
number of distinct words is. Next, for each document d = 1, . . . , D, independent
multinomial distributions θd = (θd(1), . . . , θd(s)) over topics is chosen according
to a Dirichlet prior with a known parameter α = (α1, . . . , αs). For each topic ti,
a multinomial distribution φi = (φi(1), . . . , φi(v)) according to a Dirichlet prior
with known parameter β = (β1, . . . , βv) independently of each other and of the
θd:s. Given these, the corpus is then generated by for each position p = 1, . . . , Nd

in each document d, picking a topic zdp according to θd and then picking the word
wdp at that position according to φzd,p , doing this independently for all positions.
Note that the model is a so called ”bag of words” model, i.e. it is invariant under
permutations within each document.

In this paper, the very simple special case withD = s = v = 2,N1 = N2 = m
and α = β = (1, 1) will be studied with respect to the mixing time asymptotics
as m → ∞. We will find that the corresponding Gibbs sampler indeed does mix
fast (contrary to what was erroneously claimed in an earlier version of this paper).
To simplify the notation, denote the two topics by A and B and the two words by
1 and 2. Define nij as the number of occurrences of the word j in document i,
i, j = 1, 2 and write ni. = ni1 +ni2 (which by assumption equals m in the case of
study) and n.j = n1j +n2j and n.. =

∑
i,j nij = 2m. We consider the mixing time

for Gibbs sampling of the posterior in a seemingly typical case, namely that the
number of 1:s in the first document is 3m/10 and in the second document 6m/10.
(Of course the precise numbers here are of no great significance as long as they
are of order m.) Let R = {Rt}∞t=0 denote the corresponding Markov chain, whose
state space is {A,B}2m and let πR denote the stationary distribution of {Rt}, i.e.
the targeted posterior.

Before stating the main result, Theorem 1.3 below, the concept of mixing time
needs to be introduced. Let X = {Xt}∞t=0 be a discrete time aperiodic irreducible
Markov chain on the finite state space S with transition matrix [p(x, y)]x,y∈S . Let
Px be the underlying probability measure underX0 = x and let π be the stationary
distribution.

Definition 1.1 Let µ and ν be two probability measures on S. The the total vari-
ation distance between µ and ν is given by

‖µ− ν‖TV = max
A⊂S

(µ(A)− ν(A)) =
1

2

∑
x∈S

|µ(x)− ν(x)|.
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Definition 1.2 For each κ ∈ (0, 1) and x ∈ S, the (κ, x)-mixing time of X is
given by

τmix(κ, x) = τXmix(κ, x) = min{t : ‖Px(Xt ∈ ·)− π‖TV ≤ κ}.

Theorem 1.3 Consider the case n11 = 3m/10 and n21 = 6m/10. Then there
is a set B ⊆ S with πR(B) = 1 − m−10 such that for each x ∈ B and each
κ = Ω(1/m) there is a C(κ) <∞ such that

τRmix(κ, x) ≤ C(κ)m2 logm

for every x ∈ B.

The proof of Theorem 1.3 relies heavily on the conductance of a Markov
chain.

Definition 1.4 • For A ⊆ S, the conductance is given as

Q(A,Ac) =
∑
x∈A

∑
y∈Ac

π(x)p(x, y).

• The conductance profile of {Xt} is the decreasing function Φ : (0,∞) →
[0, 1] given as follows. For A ⊂ S, let ΦA = Q(A,Ac)/π(A) and for
r ≤ 1/2, set

Φ(r) = min{ΦA : π(A) ≤ r}

and Φ(r) = Φ(1/2) for r > 1/2.

The following is a consequence of Theorem 1 of [6].

Theorem 1.5 Let π∗ = min{π(x) : x ∈ S}. Then for any x ∈ S,

τmix(κ, x) ≤ 1 +

∫ 4/κ

π∗

4

rΦ(r)2
dr.

Theorem 1.5 is a refinement of earlier results on conductance bounds on mix-
ing times. Write Φ̂ = Φ(1/2). The following is from [9, 8].

Theorem 1.6 Assume that X is reversible. Then

τmix(κ, x) ≤ Φ̂−2
(
log(π(x)−1) + log(κ−1)

)
.
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Note that any Gibbs sampler as defined above is reversible.
A powerful method for lower bounding conductance is by canonical paths,

see [5, 7]. Any reversible Markov chain can be seen as a weighted graph G by
assigning weights p(x, y) to each e = {x, y} with p(x, y) > 0. For each pair of
states x, y, choose a weighted path γxy in G from x to y. Even though the direction
of the path is not important, it will later on be convenient in the arguments to keep
the direction in mind. Write Γ for the collection {γxy : x, y ∈ S}. For each
e = {x, y}, letQ(e) = π(x)p(x, y) (which equals π(y)p(y, x) under reversibility).
The idea is to choose these paths in a way that makes the path congestion small.

Definition 1.7 The path congestion of Γ is given by

ρ(Γ) = max
e

1

Q(e)

∑
x,y:e∈γx,y

π(x)π(y).

The key result relating path congestion to conductance is the following

Lemma 1.8 For any collection Γ of canonical paths,

Φ̂ ≥ 1

2ρ(Γ)
.

To finish off the proof, the classical method of coupling will be needed. Let Y
be a Markov chain with the same transition matrix as X such that Y0 is distributed
according to π. Assume that the transitions of X and Y are made dependent, or
coupled, in such a way that whenever Xt = Yt and r > t, then Xr = Yr. Then the
coupling inequality states the following.

Lemma 1.9 Let T be the coupling time of X and Y , i.e. T = min{t : Xt = Yt}
and assume that X0 = x. Then

‖P(Xt ∈ ·)− π‖TV ≤ P(T > t).

The rest of the paper is devoted to the proof of Theorem 1.3.
Remarks on notation. Let {an}∞n=1 and {bn}∞n=1 be two sequences of positive

numbers. We say that an is at most of order bn and write an = O(bn) if there is a
constant C < ∞ such that an < Cbn for all n. We say that an is at least of order
bn and write an = Ω(bn) if bn = O(an). When both an = O(an) and an = Ω(bn),
we say that an is of order bn and write an = Θ(bn). When an/bn → 0, we say that
an is of smaller order than bn and write an = o(bn).
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We will also use the convenient shorthand notation [n] for the set {1, 2, . . . , n}.
Other remarks. Today there is a plethora of extensions of the LDA model;

e.g. Andrews and Vigliocco [1] consider a hidden Markov model for the topics,
Wallach [11] studies a hidden Markov model for the words and Gruber et el. [4]
consider a sentence based model. A good summary of the literature can be found
in the introduction of Tian et el. [10], who also study a sentence based model. For
an introduction to probabilistic topic models, see [2].

2 Proof of Theorem 1.3
The following two lemmas will be needed. The first one is a special case of a well
known fact about moments of beta distributions (and more generally of Dirichlet
distributions). The second one will only be used with K = 2, but the general case
comes at no extra cost.

Lemma 2.1 Let X be a standard uniform random variable and 0 ≤ k ≤ n. Then

E[Xk(1−X)n−k] =
1

(n+ 1)
(
n
k

) .
Lemma 2.2 For any nonnegative integers a11, a12, . . . , a1j, a21, a22, . . . , a2K ,(∑

i,j aij∑
j a1j

)( ∑
j a1j

a11, . . . , a1j

)( ∑
j a2j

a21, . . . , a2j

)

=

( ∑
i,j aij

a11 + a21, . . . , a1K + a2K

)∏
j

(
a1j + a2j
a1j

)
,

where i ranges over [2] and j over [K].

Proof. Both sides of the equality are equal to the multinomial coefficient( ∑
i,j aij

a11, . . . , a2K

)
.

2

Let W = (w11, w12, . . . , w1m, w21, . . . , w2m) be the words in our corpus, let
Z = (z11, z12, . . . , z2m) be the latent topics and Zd be the latent topics in document
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d. Let also θd be the probability that zd1 = A, d = 1, 2 and let φt be the conditional
probability that wdj = 1 given that zdj = t, t = A,B. In the case under study,
these four quantities are all independent standard uniform random variables. We
begin by determining the posterior distribution πR up to a normalizing constant.

Define kdj to be the number words in document d with the topic being A and
the word being j and the same dot notation for the k:s as for the n:s.

Proposition 2.3 The posterior πR of LDA with two documents, two unique words,
two topics and uniform priors is given by

πR(z) = C

(
n..

k..

)
(k.. + 1)(n.. − k.. + 1)

(
n1.

k1.

)(
n2.

k2.

)(
n.1

k.1

)(
n.2

k.2

) ,
where C is a normalizing constant.

Proof.
By Bayes formula

πR(z) = P(Z = z|W = w) ∝ P(W = w|Z = z)P(Z = z).

Now

P(Z = z) = E[P(Z = z|θ1, θ2)]
= E[θk1.1 (1− θ1)n1.−k1. ]E[θk2.2 (1− θ2)n2.−k2. ]

=
1

(n1. + 1)(n2. + 1)
(
n1.

k1.

)(
n2.

k2.

) .
where the last equality follows from Lemma 2.1. For the second factor we have
analogously, again using Lemma 2.1,

P(W = w|Z = z) = E[φk.1A (1− φA)k..−k.1 ]E[φn.1−k.1
B (1− φB)n..−(n.1−k.1)]

=
1

(k.. + 1)(n.. − k.. + 1)
(
k..
k.1

)(
n..−k..
n.1−k.1

) .
Hence, ignoring factors that do not depend on the k:s, using Lemma 2.2 with

K = 2, a1j = k.j and a2j = n.j − k.j for the second equality and again ignoring a
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factor that does not depend on the k:s,

πR(z) ∝
(

(k.. + 1)(n.. − k.. + 1)

(
n1.

k1.

)(
n2.

k2.

)(
k..
k.1

)(
n.. − k..
n.1 − k.1

))−1
=

(
n..

k..

)
(k.. + 1)(n.. − k.. + 1)

(
n1.

k1.

)(
n2.

k2.

)(
n.1

k.1

)(
n.2

k.2

) .
2

The expression for πR only depends on z via k = k(z) := (k11, k12, k21, k22).
Identifying all z having the same k(z), we have (regarding,with some abuse of no-
tation, a k also as the equivalence class consisting of all z:s having that particular
kdj:s) that for any k1 and k2, all z ∈ k1 have the same probability of transition-
ing into k2. Hence the process where we only record the k:s is a lumped Markov
chain, whose state space is [n11]×[n12]×[n21]×[n22]. Denote this lumped Markov
chain by L = {Lt}∞t=0. By summing πR(z) over the z:s having the same value of
k(z), gives the following.

Proposition 2.4 The lumped Gibbs sampler L has the stationary distribution

πL(k) = P(K = k|W = w) = C

(
n..

k..

)(
n11

k11

)(
n12

k12

)(
n21

k21

)(
n22

k22

)
(k.. + 1)(n.. − k.. + 1)

(
n1.

k1.

)(
n2.

k2.

)(
n.1

k.1

)(
n.2

k.2

)
where C is a normalizing constant and K = k(Z).

The most effort will go into analyzing the mixing time of L.
Define

h(x) =
(
xx(1− x)1−x

)−1
, x ∈ (0, 1).

Then, for x ∈ [0, 1], by Stirling’s formula,(
m

xm

)
= C

h(x)m
√
m
√

(x+ 1/m)(1− x+ 1/m))
,

whereC is of constant order. Hence, by cancelling factors independent of (a, b, c, d)
and writing s(x) =

√
(x+ 1/m)(1− x+ 1/m), we get

πL(am, bm, cm, dm) = CG(a, b, c, d)m
s(10(a+c)

9
)s(10(b+d)

11
)s(a+ b)s(c+ d)

s(a+b+c+d
2

)3s(10a
3

)s(10b
7

)s(5c
3

)s(5d
2

)
,
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(a, b, c, d) ∈ [0, 3/10]× [0, 7/10]× [0, 3/5]× [0, 2/5], where C is of constant order
and

G(a, b, c, d) =

(
h( (b+d−a−c)

2
)2h(10a

3
)3/10h(10b

7
)7/10h(5c

3
)3/5h(5d

2
)2/5

h(10(a+c)
9

)9/10h(10(b+d)
11

)11/10h(a+ b)h(c+ d)

)m

. (1)

We will now analyze the function G. Define g := logG. Intuitively in order
to get 3m/10 ones in the first document and 3m/5 ones in the second document,
one has certain restrictions to the φ’s and θ’s. Working this out, one should expect
to have (a, b, c, d) very close to k(u, v) = (k1(u, v), k2(u, v), k3(u, v), k4(u, v)),
u ∈ [0, 3/10], v ∈ [3/5, 1], where

k1(u, v) =
u(v − 3/10)

v − u
k2(u, v) =

(1− u)(v − 3/10)

v − u
(2)

k3(u, v) =
u(v − 3/5)

v − u
k4(u, v) =

(1− u)(v − 3/5)

v − u
, (3)

i.e. G should be maximal around the surface

Π := {k(u, v) : (u, v) ∈ [0, 3/10]× [3/5, 1]}

in [0, 3/10] × [0, 7/10] × [0, 3/5] × [0, 2/5]. To make this more precise, we first
claim the following.

Proposition 2.5 The function G as defined above is constant on Π.

Proof. The claim is equivalent to saying that all four partial derivatives of g
are zero at each (a, b, c, d) ∈ Π. It is helpful to spell out g:

g(a, b, c, d) = 2 log h

(
a+ b+ c+ d

2

)
+

3

10
log h

(
10

3
a

)
+

7

10
log h

(
10

7
b

)
+

3

5
log h

(
5

3
c

)
+

5

2
log h

(
2

5
d

)
− 9

10
log h

(
10(a+ c)

9

)
− 11

10
log h

(
10(b+ d)

11

)
− log h(a+ b)− log h(c+ d). (4)
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Hence, on observing that d
dx
h(x) = log((1− x)/x),

g′a(a, b, c, d) = log
(1− a+b+c+d

2
)(1− 10a

3
)(10(a+c)

9
)(a+ b)

(a+b+c+d
2

)(10a
3

)(1− 10(a+c)
9

)(1− a− b)
(5)

For (a, b, c, d) ∈ Π, substitute with (2) and (3) and get, after some algebra

g′a(a, b, c, d) = log
( 9
20
− u)(v − 10

3
uv)(20

9
uv − u)(v − 3

10
)

(v − 9
20

)(10
3
uv − u)(v − 20

9
uv)( 3

10
− u)

which after some further algebra is seen to be 0 for all (u, v). Analogously, one
finds that the three other partial derivatives vanish on Π. Since g is clearly differ-
entiable in the interior of its domain, this shows that g is indeed constant on Π. 2

Next we study how g behaves as one moves away from Π. In a vicinity of Π,
this is up to small order terms captured by the nonzero eigenvalues of the Hessian
of g on Π. Write

H(u, v) = g′′(k(u, v)), 0 < u <
3

10
,

3

5
< v < 1

for the Hessian of g at k(u, v), Since g is constant on Π, it follows that two of
the four eigenvalues of H(u, v) are 0. Write λ1(u, v) and λ2(u, v) for the other
two eigenvalues. These are the two roots of a second degree polynomial with
coefficients depending on (u, v), i.e.

λ1(u, v) =
α0(u, v)−

√
β0(u, v)

δ(u, v)
(6)

λ2(u, v) =
α0(u, v) +

√
β0(u, v)

δ(u, v)
, (7)

where α0, β0 and δ are polynomials in (u, v). The precise expressions of these
can be found and analyzed using your favorite mathematical software; we used a
combination of Matlab and Maple. It turns out that

δ(u, v) = u(
3

10
− u)(

9

20
− u)(v − 9

20
)(v − 3

5
)(1− v).

The expressions for α0 and β0 are quite extensive and can be found in an appendix.
As can be seen there, α2

0 and β0 have a factor (v − u)4 in common, and it will be
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more convenient to work with α(u, v) = −10−6α0(u, v)/(v − u)2 and β(u, v) =
10−12β0(u, v)/(v − u)4, where the constants are chosen so that the leading terms
of α and β have coefficient 1.

Proposition 2.6 The nonzero eigenvalues λ1(u, v) and λ2(u, v) ofH(u, v) are, as
functions of (u, v), continuous, negative and bounded away from 0.

Proof. It is easy to convince oneself of the truth of Proposition 2.6 using
some mathematical software. Indeed it seems that max(λ1(u, v), λ2(u, v)) < −3.
However a proper proof requires more work. We start with some claims about the
limit behavior when approaching the points at which δ(u, v) vanishes, which are
by the expression for δ all points on the boundary of the domain. For the proof
of the proposition, it suffices to prove that λi(u, v) are negative and stay bounded
away from 0 as one approaches the boundary, Our claims go a bit further, since this
comes with no extra cost in the proof. They are as follows. As (u, v) → (0, v0)
for some v0 ∈ (3/5, 1),

λ1(u, v) = (1 + o(u))
C(v0)

u
, λ2(u, v)→ C(v0)

where C is a generic notation (i.e. not the same function in each instance) for a
continuous negative function. Similarly, as u→ 3/10 and v → v0 ∈ (3/5, 1),

λ1(u, v) =

(
1 + o

(
3

10
− u
))

C(v0)
3
10
− u

, λ2(u, v)→ C(v0).

Analogously

λ1(u, v) =

(
1 + o

(
v − 3

5

))
C(u0)

v − 3
5

, λ2(u, v)→ C(v0)

and

λ1(u, v) = (1 + o(1− v))
C(u0)

1− v
, λ2(u, v)→ C(v0)

as v → 3/5 and v → 1 respectively and u→ u0 ∈ (0, 3/10).
When approaching a corner of the domain, the following holds as (µ, ν) ↓
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(0, 0),

λ1

(
µ,

3

5
+ ν

)
= (1 + o(µν))

C

µν
,

λ2

(
µ,

3

5
+ ν

)
→ C,

λ1(µ, 1− ν) = (1 + o(µν))
C

max(µ, ν)
,

λ2(µ, 1− ν) = (1 + o(µν))
C

min(µ, ν)
,

λ1

(
3

10
− µ, 3

5
+ ν

)
= (1 + o(µν))

C

max(µ, ν)
,

λ2

(
3

10
− µ, 3

5
+ ν

)
= (1 + o(µν))

C

min(µ, ν)
,

λ1

(
3

10
− µ, 1− ν

)
= (1 + o(µν))

C

µν
,

λ2

(
3

10
− µ, 1− ν

)
→ C,

where C is here a generic notation for a negative constant. To prove these claims,
note first that δ is nonnegative in its domain. Next, let us show how to prove that
α0 ≤ 0 with strict inequality in the interior of its domain, i.e. that α ≥ 0 with strict
inequality in the interior. Write γ(w, z) = α(3w/10, 1− 2z/5), w, z ∈ [0, 1]. As
γ(0, 0) and γ(1, 1) are both zero, we use a Taylor expansion around these points.
Using e.g. Maple, it is seen that γ′w(0, 0) = 9625/384 and γ′z(0, 0) = 1625/64 so
that

γ(w, z) =
9624

384
w +

1625

64
z +R

where the remainder term is of the form R = γ′′ww(w0, z0) + 2γ′′wz(w0, z0) +
γ′′zz(w0, z0) for some point (w0, z0) on the line between the origin and (w, z). Sum-
ming up the absolute values of the terms in the partial second derivatives, we find
that these are in absolute value all bounded by 163 on [0, 1/20]× [0, 1/20]. Being
slightly generous with the linear term coefficients, it follows (since w ≥ w0 ≥ 0
and z ≥ z0 ≥ 0) that

γ(w, z) > 25(w + z)− 163(w + z)2

which is larger than 0 on [0, 1/20] × [0, 1/20] except at the origin. Analogously
one shows that γ(w, z) > 0 on [19/20, 1] × [19/20, 1] except at (1, 1). Next, a
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plot in Maple with mesh size 2000× 2000 reveals that on the points (w, z) on the
mesh and outside these two squares, γ(w, z) > 0.038. An analogous analysis of
the partial first derivatives of γ shows that these are bounded by 48. It follows that
the chosen mesh size suffices to draw the desired conclusion.

To prove the negativity of the eigenvalues, it remains to show that β(u, v) ≤
α(u, v)2 with strict inequality in the interior of the domain. Write ξ(w, z) =
α(3w/10, 1 − 2z/5)2 − β(3w/10, 1 − 2z/5), w, z ∈ [0, 1]. Then your favorite
software reveals that ξ is quite amenable:

ξ(w, z) =
729

125 · 1013
w(1− w)(3− 2w)(2− w)(10− 3w)

· z(1− z)(11− 8z)(7− 4z)(5− 2z)h(w, z),

where

h(w, z) = 1744w2z2 − 4760w2z − 5280wz2 + 3475w2 + 13800wz + 4400z2

− 9750w − 11000z + 8125.

Differentiating with respect to w gives

h′w(w, z) = 3488wz2 − 9520wz − 5280z2 + 6950w + 13800z − 9750

and setting h′w(w, z) = 0 and solving for w gives the solution

r(z) =
2640z2 − 6900z + 4875

1744z2 − 4760z + 3475
.

Writing nr(z) and tr(z) for the numerator and denominator respectively, we find
that nr, tr and nr− tr all have no real roots and that nr(0), tr(0) and nr(0)− tr(0)
are all positive. It follows that h′w(·, z) has no zero in [0, 1] for an arbitrary fixed
z. Since h′w(0, 0) < 0 and h′w(0, z) has no real roots as a function of z, h(·, z)
is decreasing. Since h(1, z) = 864z2 − 1960z + 1850 has no real roots and
h(1, 0) > 0, it finally follows that h(·, z) is strictly positive for all z, i.e. h is
strictly positive for all w, z ∈ [0, 1]. A quick consideration of the product of the
other factors in φ(w, z) now shows that φ is 0 on the boundary of [0, 1]× [0, 1] and
strictly positive in the interior.

For the claimed limit behaviors, consider the case (u, v) = (w, 3/5 + z) for
small w ∈ (0, 3/10) and z ∈ (0, 2/5). It turns out (this can be seen using the
expressions for α(u, v) and β(u, v) in the appendix) that

β

(
w,

3

5
+ z

)
+ α

(
w,

3

5
+ z

)
= C1wz +O(w3 + z3),
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β

(
w,

3

5
+ z

)
− α

(
w,

3

5
+ z

)
= C2 +O(w + z),

and α(w, 3
5

+ z) = C3 for negative constants C1, C2, C3. This proves the claims
for (u, v) → (0, v0) and (u, v) → (u0, 3/5) including when u0 = 0 or v0 = 3/5
(but neither v0 = 1 nor u0 = 3/10).

Consider now (u, v) = (w, 1 − z). We have α(w, 1 − z) = C1w + C2z +
O(w2 + z2) for positive constants C1 and C2 and

β(w, 1− z)− α(w, 1− z)2 = C3w
2 + C4z

2 +O(w3 + z3)

and
β(w, 1− z) + α(w, 1− z)2 = C5wz +O(w3 + z3).

This proves the claims for when (u, v)→ (u0, 1) including u0 = 0. The remaining
claims are analogous. 2

As a consequence of these results, it follows that for any given unit vector x or-
thogonal to Π at some point k(u, v) ∈ Π there is aC(u, v,x) ∈ [λ1(u, v), λ2(u, v)]
such that

g(k(u, v) + tx) = g(k(u, v))(1− C(u, v,x)t2 +O(t3)),

where C(u, v,x) is a continuous function of (u, v,x) bounded away from 0.
Hence for any t = o(1),

G(k(u, v) + tx) = G(k(u, v))(1 +O(t3))e−C(u,v,x)t2 .

We strongly believe that G(k(u, v) + tx) is decreasing in t. However the function
and its derivative with respect to t seem to be intractable to analyze. Instead we
observe that for all t, one has at least some C(u, v,x) bounded away from 0 such
that G(k(u, v) + tx) ≤ G(k(u, v))e−C(u,v,x)t2 . To see this, observe that since
the posterior distribution only depends on W via the number of word 1 tokens
in each document. Denote these by Od and write also Ad for the number that
topic A appears in document d. Then the posterior conditioned on (φA, φB) can
be computed as follows

P(K = m(a, b, c, d)|O1 = 0.3m,O2 = 0.6m,φA, φB)

=
P(A1 = k1., A2 = k2.)P(K = m(a, b, c, d)|A1 = k1., A2 = k2., φA, φB)

P(O1 = 0.3m,O2 = 0.6m,φA, φB)
.
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Since the Ad’s are iid uniform and independent of the φ’s, the first factor of the
numerator equals 1/(m + 1)2. The second factor equals the probability that four
independent binomial random variables with parameters (m(a+b), u), m(1−a−
b), v), m(c+d), u) and (m(1−c−d), v) respectively equalma, m(3/10−a), mc
and m(3/5 − d) respectively. Thus P(K = k(u, v)|W = w, φA, φB) = Θ(n−2)
for any (φA, φB) ∈ [u± 1/

√
m]× [v ± 1/

√
m], whereas P(K = k(u, v) + tx) ≤

e−Cmt
2 for any (u, v) and any φA and φB. This follows from standard Chernoff

bounds. The denominator is of order 1/m2 for (φA, φB) ∈ [0, 3/10]× [3/5, 1].

Consider now the Markov chain Z = {Zt} on S = [3m/10] × [7m/10] ×
[3m/5]× [2m/5] defined as follows. Its stationary distribution is given by

πZ(k) = CG(k)m

for a normalizing constant C; this differs from πL only in that πZ neglects the low
order factors in terms of the function s which only make an essential difference
close to Π ∩ ∂S. The updates are then made by proposing to change the present
state k to a state k′ which is chosen randomly among the eight states such that
‖k − k′‖1 = 1 and then making the change with probability πZ(k′)/(πZ(k′) +
πZ(k)).

Proposition 2.7 There is a set B of states such that πZ(B) ≥ 1 − 1/m10 such
that for all κ = Ω(1/m) and all x ∈ B,

τZmix(x, κ) ≤ C(κ)m2.

From here on, we will use the notation C for a generic positive constant.
Proof. For j = 1, 2, . . . , 2J := 2d10 logme, let Bj = {k : πZ(k) ≥ e−j}.

Observe that πZ(BJ) = 1− n−10. We also have that

ΦZ(r) ≥ C
1

mr1/3
(8)

for r ≤ 1/2 and Φ(r) ≥ C/m for r > 1/2 for {Zt} reflected at ∂BJ . This
coincides with Z itself as long as Z does not visit a vertex neighboring ∂B2L.
However, starting Z from any vertex z0 within BJ , the expected number of visits
to any vertex x ∈ Bc

J is bounded by m−6. This follows from the well known fact
of Markov theory that the expected number of visits to x between two consecutive
visits to z0 is πZ(x)/πZ(z0). Hence, by Markov’s inequality, with probability
1 − m−6 no such x will be visited. From this and Theorem 1.5, it follows that
started from BJ , Z mixes in time Cm2.
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To see that (8) holds, note that πZ(B3) > 19/20. Since any set A ⊆ BJ with
1/10 ≤ πZ(A) ≤ 1/2 must have 1/20 ≤ πZ(A ∩B3) ≤ 1/2, it follows that there
is a C > 0 such that ΦZ(r) ≥ C/mr1/3 for r ≥ 1/10; this follows on comparing
with simple random walk onB3. On the other hand, this is very easily seen to hold
true also for A ⊆ BJ with πZ(A) < 1/10. Hence Z has a conductance profile
of C/mr1/3. Consequently Z reflected at ∂B2J has a mixing time of order m2

and since Z started within BJ with probability 1− o(1) does not deviate from the
reflected version within that time, this goes also for Z itself started from within
BJ . 2

Next, we would have liked to modify (8) to a lower bound Φ(r) ≥ C 1
nr1/3

also for L. However, we have not been able to do this formally. Instead we will
use a canonical paths argument for the conductance of Z restricted to BJ that can
be readily modified in the desired way. First observe that the surface Π can be
alternatively expressed as the function surface {k(a, d) = (a, b(a, d), c(a, d), d) :
(a, d) ∈ [0, 3/10]× [0, 2/5]}. Indeed (using your favorite software)

b(a, d) =

(
−10a+ 3d+ 3 +

√
r(a, d)

)(
4a+ 17d+ 3 +

√
r(a, d)

)
−176a+ 162d− 6 + 26

√
r(a, d)

and

c(a, d) =

(
4a− 9d+ 3−

√
r(a, d)

)(
16a+ 3d+ 3−

√
r(a, d)

)
−176a+ 162d− 6 + 26

√
r(a, d)

where r(a, d) = 16a2 + a(24 − 144d) + 9(d + 1)2. One can see that these are
continuous with bounded partial derivatives. By Proposition 2.6, ∂Bj can be ex-
pressed as hl(a, d, ω), (a, d, ω) ∈ [0, 3/10]× [0, 2/5]× [0, 2π), where hj(a, b, c, d)
is the distance from k(a, d) to ∂Bj in the bc-plane in the direction ω and

hj(a, d, ω) =

(
1 +O

(
j3/2√
m

))√
j

m
f(a, d, ω)

for a continuous bounded, and bounded away from 0, function f such that f(a, d, ·)
describes an ellipse in the bc-plane. In particular the intersection of hj with the
bc-plane is convex for sufficiently large m. Hence we can choose a canonical path
in Bj from x1 = (a1, b1, c1, d1)m to x2 = (a2, b2, c2, d2)m, x1, x2 ∈ Bj in the
following way. Fix α ∈ [0, 1] and ω2 such that x2 = αhj(a2, d2, ω2) and write
(a1, b0, c0, d1) = αhj(a1, d1, ω2). Start by moving to a nearest neighbor x of x1
for which the a and d coordinates are odd and then
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(i) walk from x to (a1, b0, c1, d1) via {(a1, b, c1, d1) : b ∈ [b1, b0]},

(ii) walk from (a1, b0, c1, d1) to (a1, b0, c0, d1) via {(a1, b0, c, d1) : c ∈ [c1, c0]},

(iii) walk from (a1, b0, c0, d0) to x2 via first walking

{(a, αhj(a, d1, ω2) cosω2, αhj(a, d1, ω2) sinω2, d1) : a ∈ [a1, a2]}

and then walking

{(a2, αhj(a2, d, ω2) cosω2, αhj(a2, d, ω2) sinω2, d), d : d ∈ [d1, d2]}.

Of course, by the discreteness of the underlying lattice, the paths of step (iii)
are chosen as close as possible to the continuous paths indicated, with the extra
condition that edges in the b- and c-directions are used only when their a- and
d-coordinates are even. This condition together with the starting step makes sure
that no edge is ever used in more than one of (i), (ii) or (iii), with the exception that
some a- and d-edges will also be used in some paths starting in their neighbors.

Then, as the volume of Bj grows linearly in j, it is easy to see that there is a
constant C such that for each e = {x, y} ∈ Bj \Bj−1,

Q(e) ≥ 1

Cejm3
.

Since no canonical path between a pair of vertices which are both in a given Bj

uses any edge in Bc
j , so that any canonical path using an edge e ∈ Bj \ Bj−1 has

all vertices on at least one side of e in Bc
j−1,∑

(x,y):e∈γx,y

π(x)π(y) ≤ C

ejm2
. (9)

To spell this out, assume for simplicity that e ∈ B1. Write πbefore and πafter for
the total respective stationary probability masses of vertices that can appear before
or after e respectively in the above algorithm for finding canonical paths. Then we
have, using a modification of a standard argument for random walk on Z4

m, that

• if e appears in (i), then πbefore ≤ C/m5/2 and πafter ≤ 1 and so the sum in
(9), is bounded by πbeforeπafter ≤ C/m5/2.

• if e appears in (ii), then πbefore ≤ C/m2 and πafter ≤ C/
√
m and so the

sum in (9) is bounded by C/m5/2.
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• if e appears when adjusting a in (iii), then πbefore ≤ C/m and πafter ≤
C/m and so the sum in (9) is bounded by C/m2.

• if e appears when adjusting b in (iii), then πbefore ≤ 1 and πafter ≤ C/m2

and so the sum in (9) is bounded by C/m2.

Adjusting the argument for e in a general Bj is easy. Summing up, we get ρ(Γ) ≤
Cm and hence

τZmix(x, κ) ≤ Cm2 log(2m+ κ−1)

for all x ∈ BL by Theorem 1.6.
Next we observe that Z and L differ in two important ways. One of them

is that their stationary distributions are different. The other is that L spends a
very long time in some states whereas Z does not. Consider e.g. when Lt =
m(a, b, c, d), where a = 0. Then by studying πR, we see that a proposed change
from an A to a B of a topic behind a word 1 in document 1 is accepted only with
probability 1/(0.3m) and hence (since such a change is proposed with probability
0.3/2) the time taken to change a in the lumped chain will be on average 2m. For
Z however, such a change will always take place with probability at least (say)
1/20. In general, the probability to make a change in the a-direction for L is
C(a+ 1/m)(3/10− a+ 1/m) and analogously for the other directions, where C
is of constant order.

We will now adjust the arguments forZ toL in two steps, where first step takes
care of the latter difference. Consider any Markov chain X = {Xt} on BJ with
the same stationary distribution as Z for which there are constants C1, C2 such
that P(X1 = m(a±1/m, b, c, d)|X0 = m(a, b, c, d)) ∈ [C1(a+ 1/m)(3/10−a+
1/m), C2(a + 1/m)(3/10 − a + 1/m)] and analogously for b, c and d. Use the
same canonical paths as before. Consider any edge e = (m(a, b, c, d),m(a, b +
1/m, c, d)) ∈ B1. Unlike for {Zt}, Q(e) is now C(b+1/m)(7/10−b+1/m)/m3

rather than C/m3. However, by the nature of the canonical paths algorithm given,
a closer look at (i) reveals that for a path from x1 to x2, xi = (ai, bi, ci, di), to
use e, either b1 ≤ mb ≤ b2 or vice versa. In the former case e will be traversed
from left to right (in the b direction) and in the latter it will be traversed from
right to left by the canonical path. For the union of all paths traversing e from
left to right πbefore ≤ C(b + 1/m)/m5/2 and πafter ≤ C(7/10 − b + 1/m).
This compensates exactly for the extra factor b in Q(e) and hence the conclusion
that ρ(e) ≤ C

√
m remains. The union paths traversing b from right to left gets

πbefore ≤ C(7/10− b+ 1/m)/m5/2 and πafter ≤ C(b+ 1/m). Steps (ii) and (iii)
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are analogous as is the adjustment for general Bj . Hence

τXmix(x, κ) ≤ Cm2 log(2m+ κ−1)

for all x ∈ BJ .
Next consider L. Obviously L will also with probability 1 − o(1) not hit the

boundary of BJ in the time frame under consideration, so we may consider L
restricted to BJ . Again use the same canonical paths as for Z. Let X be defined
as the lumped Markov chain of the Gibbs sampler U = {Ut} on {A,B}2m driven
by the stationary distribution

πU(z) =
1( 3m

10
am

)( 7m
10
bm

)( 3m
5
cm

)( 2m
5
dm

)G(a, b, c, d)m

for m(a, b, c, d) = k(z). Then {Xt} is a Markov chain of the kind just considered
and it is such that the difference between L and X is that the weights correspond-
ing to L as compared to those of X are altered so that the stationary probability
πL(x) of vertex x = (am, bm, cm, dm) is Cs(a, b, c, d)πZ(x), where

s(a, b, c, d) =
s
(

10(a+c)
9

)
s
(

10(b+d)
11

)
s(a+ b)s(c+ d)

s
(
10a
3

)
s
(
10b
7

)
s
(
5c
3

)
s
(
5d
2

)
and C is of constant order (note that a + b + c + d is of constant order on B2J .
Here, for e = (m(a, b, c, d),m(a, b+ 1/m, c, d)) ∈ B1,

Q(e) = C(b+ 1/m)(7/10− b+ 1/m)πL(x).

In (i), we get withK being the diameter of the intersection ofB1 with the bc-plane,
that for the paths traversing b from left to right

πbefore ≤ C(b+ 1/m)πL(x)
K∑
i=1

√
K√
i

= CK(b+ 1/m)πL(x) ≤ Cb
√
mπL(x)

and still πafter ≤ C(7/10 − b + 1/m) and similarly for paths going from right
to left. Hence ρ(e) ≤

√
m. Again parts (ii) and (iii) are analogous as is the

adjustment for general Bj is. Summing up, we have

Proposition 2.8 There is a set B of states such that πZ(B) ≥ 1 − 1/m10 such
that for all κ = Ω(1/m) and all x ∈ B,

τLmix(x, κ) ≤ C(κ)m2 logm.
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Finally we take the step from the lumped Markov chain L to the original Gibbs
samplerR. Let κ = Ω(1/m), pickC0 sufficiently large that ‖P(Lt ∈ ·)−πL‖TV ≤
κ} whenever t ≥ t0 := (C0/2)m2 logm. Start a Gibbs sampler R0 from πR and
let L0 be the corresponding lumped Markov chain. It is then possible to design a
coupling of L and L0 such that P(Lt0 = L0

t0
) ≥ 1− κ/2. Run this coupling up to

time t0. Then if L and L0 do not agree at that time, let the updates be dependent in
an arbitrary way, e.g. simply independent until they meet. Else, Lt0 = L0

t0
, which

means that the underlying Gibbs samplers R and R0 agree in the number of A’s
in document d at word j for d, j = 1, 2.

Now couple the updates from time t0 and on in the following way. First pair up
the positions in the corpus by pairing each position at which Rt and R0

t agree with
itself and pairing each token (i, j) for which Rt(i, j) = x and R0

t (i, j) 6= x with a
token (i0, j0) in the same document with the same word, for which R0

t (i
0, j0) 6= x

and Rt(i
0, j0) = x, x = A,B. Clearly this can be done so that each position is

paired with one and only one position. Pick such a pairing.
Next, to pickRt+1 andR0

t+1, pick forR0 the position (i0, j0) that is paired with
the position (i, j) chosen for R. The key observation now is that the conditional
distribution ofR0(i0, j0) givenR = (i′, j′), (i′, j′) 6= (i0, j0) is the same as that for
R(i, j) given R(i′, j′), (i′, j′) 6= (i, j). Hence we may, and do, couple the updates
so that R and R0 still agree at time t + 1. This means that no new disagreements
between R and R0 will ever agree and whenever a position (i, j) at which R and
R0 disagree is updated, there is a probability that they agree there, and then also
at (i0, j0), after the update. This probability might be quite small. However, there
are two ways that a new agreement at (i, j) can come about, either by picking
(i, j) or by picking (i0, j0) to be updated in R, and at least one of these choices
gives a probability of at least 1/2 of agreement after the update (namely the choice
that proposes to change a topic that is currently in minority). Hence, if there are
Dt positions of disagreement at time t ≥ t0, there is a probability of at least
((Dt/2)/(2m)) · (1/2) of reducing the number of disagreements by two for one
time step. Since there are at most 2m disagreements at time t0, the coupling time
T , satisfies that T − t0 is stochastically dominated by the sum

∑m
j=1 ξj , where the

ξj:s are independent and geometric with parameters (m− 2j)/(4m) respectively.
Hence E[T − t0] ≤ (1 + o(1))2m logm and Var(T − t0) < 7m2 and so by
Chebyshev’s inequality P(T−t0 > (C0/2)m2 logm) = O(1/(m2 log2m)) < κ/2
for sufficiently large m.

Combining the two steps of the coupling argument, it follows that P(T >
C0m

2 logm) < κ for sufficiently large m. Now Theorem 1.3 follows from the
coupling inequality.
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Final remarks. Needless to say the situation considered here, with only two
unique words in the corpus, is very unrealistic, as is the fact that we use only two
documents. Using only two topics is of course also a bit unrealistic, but since the
number of topics is typically very limited compared to the size of the corpus, this
is not as serious. However using more words and more documents does not seem
to impose any fundamental differences in terms of the analysis here (even though
it may become intractable) as long as each word appears a large number of times
in each document. Indeed it is easy to generalize Proposition 2.3 to the case with
D documents and v distinct words, using the general statement of Lemma 2.2.
One gets

πR(z) = C

(
n..+2v−2
k..+v−1

)∏D
d=1

(
nd.

kd.

) ∏v
j=1

(
n.j

k.j

)
and for the corresponding lumped Markov chain

πL(k) = C

(
n..

k..

)∏D
d=1

∏v
j=1

(
ndj

kdj

)
(k.. + 1)(n.. − k.. + 1)

∏D
d=1

(
nd.

kd.

) ∏v
j=1

(
n.j

k.j

)
and when all ndj:s are larger than logarithmic in Dm (having all documents of
large equal length m), an analogous treatment seems to be in principle possible.
This condition on the ndj’s is of course also not true in most practical situations.
What happens in such situations is an important question worthy of further study.

Another assumption we made, was that the topic distribution per document
prior α and the word distribution per topic prior β were both (1, 1). It is common
to use symmetric priors but usually with smaller parameters. In case of β this does
not seem to be likely to make much of a difference as long as we keep the number
of words very low compared to the length of the documents. For α, the value
used will typically depend on the context and may be optimized through cross
validation. In any case, I conjecture (or rather speculate) that with α = (ε, ε) for
a small constant ε independent of m, the mixing time for ε < 1/2 is of order
m3−2ε logm.
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3 Appendix
The functions α and β are given by

α0(u, v) =
25

2
(v−u)2

(
80000u4v4−152000u4v3−152000u3v4 + 90000u4v2

+ 252400u3v3 + 90000u2v4 − 18000u4v − 122220u3v2 − 122220u2v3

− 18000uv4 + 12420u3v + 27738u2v2 + 12420uv3 + 3240u3

+ 16182u2v + 16182uv2 + 3240 v3 − 6156u2

− 15633 vu− 6156 v2 + 3645u+ 3645 v − 729
)
.

β0(u, v) =
(25

2

)2
(v − u)4

(
6400000000u8v8 − 24320000000u8v7

− 24320000000u7v8 + 37504000000u8v6 + 93568000000u7v7

+37504000000u6v8−30240000000u8v5−146374400000u7v6−146374400000u6v7

−30240000000u5v8+13572000000u8v4+120018240000u7v5+233005760000u6v6

+120018240000u5v7+13572000000u4v8−3240000000u8v3−54971856000u7v4

−195046704000u6v5−195046704000u5v6−54971856000u4v7−3240000000u3v8

+324000000u8v2+13500432000u7v3+91833066000u6v4+167842288800u5v5

+ 91833066000u4v6 + 13500432000u3v7 + 324000000u2v8− 1432080000u7v2

−23668200000u6v3−82693612080u5v4−82693612080u4v5−23668200000u3v6

− 1432080000u2v7 + 11664000u7v + 2901646800u6v2 + 23482334160u5v3

+ 44511382260u4v4 + 23482334160u3v5 + 2901646800u2v6 + 11664000uv7

− 127720800u6v − 3799373040u5v2 − 15209217720u4v3 − 15209217720u3v4

− 3799373040u2v5 − 127720800uv6 + 10497600u6 + 408414960u5v

+ 3551084388u4v2 + 6965123256u3v3 + 3551084388u2v4 + 408414960uv5

+ 10497600 v6 − 39890880u5 − 606551328u4v − 2281385088u3v2

− 2281385088u2v3 − 606551328uv4 − 39890880 v5 + 61515936u4

+ 485146584u3v + 933840981u2v2 + 485146584uv3 + 61515936 v4

− 49601160u3 − 218074518u2v − 218074518uv2 − 49601160 v3

+ 22261473u2 + 52435512 vu+ 22261473 v2

− 5314410u− 5314410 v + 531441
)
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